
InnoDB Compression Present and
Future

Nizameddin Ordulu nizam.ordulu@fb.com, Justin Tolmer jtolmer@fb.com
Database Engineering @Facebook

Agenda
•  InnoDB Compression Overview
•  Adaptive Padding
•  Compression using 32K Pages
•  Performance Issues with KEY_BLOCK_SIZE=4
•  Work in Progress
•  Questions

InnoDB Compression Overview

InnoDB Compression Overview
▪  Compression is enabled per table:

▪  CREATE TABLE users(
 id int PRIMARY KEY,

 email varchar(255)
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

▪  Uncompressed page is 16K by default.

▪  Compressed block size can be 8K, 4K, 2K, or 1K.

▪  Only the compressed pages are written to disk.

InnoDB Compression Overview
▪  Free space on the compressed page is called modification log (mlog).

DATA

10K

FREE SPACE

16K uncompressed page

COMPRESS

COMPRESSED

DATA

6K

MLOG

8K compressed page, 2K mlog

InnoDB Compression Overview
▪  Consecutive inserts to an uncompressed page use the free

space on the uncompressed page.

DATA

FREE SPACE

INSERT

DATA

FREE SPACE

INSERT

DATA

FREE SPACE

Uncompressed Page

InnoDB Compression Overview
▪  Consecutive inserts to a compressed page use mlog.

▪  Compressed pages and uncompressed pages are kept in sync.

COMPRESSED
DATA

EMPTY
MLOG

INSERT

COMPRESSED
DATA

RECORD 1

INSERT

COMPRESSED
DATA

RECORD 1
RECORD 2

Compressed Page

InnoDB Compression Overview
▪  When the mlog is full page is re-compressed, the new page

will have empty mlog. This is called a recompression.

COMPRESSED
DATA

REC1
REC2

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.
.
.
.

REC97
REC98

INSERT RECOMPRESS

NEW
COMPRESSED

DATA

EMPTY
MLOG

InnoDB Compression Overview
▪  A page-split happens when there is not enough free space on

the uncompressed page.

▪  The B-tree lock is x-latched during this operation.

INSERT SPLIT

DATA

FREE SPACE

DATA

FREE SPACE

DATA

FREE SPACE

Uncompressed Page

InnoDB Compression Overview
▪  Some recompressions will fail because of the lack of space

on the compressed page.

▪  These are called compression failures.

▪  Compression failures cause page-splits too.

INSERT INSERT RECOMPRESS RECOMPRESS FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

InnoDB Compression Overview
▪  Compression failures do not happen if the table data is

compressible enough.

INSERT SPLIT

DATA

FREE SPACE

DATA

FREE SPACE

DATA

FREE SPACE

Uncompressed Page

INSERT INSERT

InnoDB Compression Overview
▪  Compressing a page is an expensive operation.

▪  Failure means we spent the precious cpu cycles for nothing.

▪  Compression failures while holding an x-lock on B-tree are even
worse.

▪  The failure rate for compression operations was 40% on our test
servers.

Adaptive Padding

Adaptive Padding
▪  Idea: Restrict the amount of data on the uncompressed page to keep

it compressible.

▪  Pseudocode for pad calculation:

pad = 0!
while 1:!

!wait for N compression operations!
!if failure_rate > desired_failure_rate:!
! !pad += 128!
!if failure_rate < desired_failure_rate:!
! !pad -= 128!

Adaptive Padding
▪  Uncompressed page splits early.

INSERT SPLIT

DATA

FREE SPACE

PAD

DATA

FREE SPACE

PAD

Uncompressed Page

INSERT
INSERT

DATA

FREE SPACE

PAD

DATA

FREE SPACE

PAD

Adaptive Padding

COMPRESSED
DATA

EMPTY
MLOG

INSERT INSERT RECOMPRESS RECOMPRESS FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

•  And this prevents compression failure.

Adaptive Padding

COMPRESSED
DATA

EMPTY
MLOG

INSERT INSERT RECOMPRESS RECOMPRESS FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

•  And this prevents compression failure.

Adaptive Padding
Insert Benchmark with Sysbench

▪  Compression failure rate:

▪  mysql: 41%.

▪  fb-mysql: 5%.

▪  No difference in on-disk table size.

0

5000

10000

15000

20000

25000

30000

35000

mysql-compressed fb-mysql-compressed

Inserts Per Second

Adaptive Padding
▪  Configuration variables for adaptive padding in 5.6:

▪  innodb_padding_max_fail_rate: max compression failure rate.

▪  innodb_padding_max: maximum padding value as a percentage of
the page size.

32K InnoDB Pages?

Why 32K?
▪  Default InnoDB page size is 16K

▪  Compressed page format includes:

▪  Page header

▪  Compressed row data

▪  Uncompressed modification log

▪  Uncompressed metadata (transaction ID, rollback pointer, etc.)

▪  Possible benefits:

▪  Smaller uncompressed data to page size ratio

▪  Larger blocks may compress better

Implementation
▪  5.6 includes --innodb-page-size

▪  Max 16K

▪  Increase UNIV_PAGE_SIZE_SHIFT_MAX to 15

▪  Easy, right?

Problem #1
▪  Compilation error:
/home/jtolmer/mysql/56/storage/innobase/include/fsp0fsp.ic:287:4: error:
#error

▪  From code:
if UNIV_PAGE_SIZE_MAX <= XDES_ARR_OFFSET \
 + (UNIV_PAGE_SIZE_MAX / FSP_EXTENT_SIZE_MAX) \
 * XDES_SIZE_MAX
error
endif

▪  The extent descriptor array no longer fit on a single page!

Solution #1
▪  Increase extent size to 2M:
/** File space extent size in pages, one megabyte for pages sizes <= 16
kilobytes and two for larger page sizes */
#define FSP_EXTENT_SIZE ((UNIV_PAGE_SIZE <= (1 << 14) ? \
 1048576U : 2097152U) / UNIV_PAGE_SIZE)

▪  Hard to track down bug in fil_node_open_file():
if (size_bytes >= 1024 * 1024) {
 /* Truncate the size to whole megabytes. */
 size_bytes = ut_2pow_round(size_bytes, 1024 * 1024);
}

Problem #2
▪  Dense directory on compressed page:
/** Size of an compressed page directory entry */
#define PAGE_ZIP_DIR_SLOT_SIZE 2
/** Mask of record offsets */
#define PAGE_ZIP_DIR_SLOT_MASK 0x3fff
/** 'owned' flag */
#define PAGE_ZIP_DIR_SLOT_OWNED 0x4000
/** 'deleted' flag */
#define PAGE_ZIP_DIR_SLOT_DEL 0x8000

▪  14 bits too small to store 32K offset

Solution #2
▪  Increase slot size to 3 bytes:
#define PAGE_ZIP_DIR_SLOT_MASK (UNIV_PAGE_SIZE <= UNIV_PAGE_SIZE_DEF ? \
 0x3fff : 0x3fffff)
/** 'owned' flag */
#define PAGE_ZIP_DIR_SLOT_OWNED (UNIV_PAGE_SIZE <= UNIV_PAGE_SIZE_DEF ? \
 0x4000 : 0x400000)
/** 'deleted' flag */
#define PAGE_ZIP_DIR_SLOT_DEL (UNIV_PAGE_SIZE <= UNIV_PAGE_SIZE_DEF ? \
 0x8000 : 0x800000)

▪  Advantages:

▪  Easy

▪  Supports page sizes > 32K

▪  Disadvantage:

▪  Needed only a single bit but used an entire byte (per record)

Testing Process
▪  Load_and_replay_binlog tool

▪  Clones production instance

▪  Exports with mysqldump

▪  Transforms ROW_FORMAT and KEY_BLOCK_SIZE of CREATE TABLEs

▪  Imports

▪  Replays ~3 months of binary logs

▪  Re-fragments tables

Results – Sum of 20 largest tables

0

0.2

0.4

0.6

0.8

1

1.2

Uncompressed 2x Compression 4x Compression

16K

32K

One of Our Largest Uncompressed Tables

0

0.2

0.4

0.6

0.8

1

1.2

Uncompressed 2x Compression 4x Compression

16K

32K

KEY_BLOCK_SIZE=4

Poor Server Throughput
▪  Excellent job by Yoshinori!

▪  Testing with KEY_BLOCK_SIZE=4

▪  rows_inserted / sec started ~100 K, dropped to ~500

▪  Many 8k pages in pages_free:
mysql> select pages_free from I_S.innodb_cmpmem;
+-----------+------------+
| page_size | pages_free |
+-----------+------------+
1024	0
2048	0
4096	1
8192	62170
16384	0

Poor Server Throughput (cont.)
▪  GDB shows thread at:
buf_buddy_free_low (…) at storage/innobase/buf/buf0buddy.cc:482

▪  Code:
for (bpage = UT_LIST_GET_FIRST(buf_pool->zip_free[i]); bpage;) {
 ...
 bpage = UT_LIST_GET_NEXT(list, bpage);
}

▪  http://bugs.mysql.com/bug.php?id=68077

▪  Allocation of compressed pages based on a binary buddy system

▪  On free, buddy allocator will recombine if buddy page is free

▪  Scan of free list to find buddy was O(n)

Fixes
▪  Our fix in 5.1.63: replace list with tree using ut/ut0rbt.c.

▪  Oracle fixed in 5.6.11:
http://bazaar.launchpad.net/~mysql/mysql-server/5.6/revision/
4845.2.1.

Which Tables?
▪  Ran load_and_replay_binlog tool multiple times

▪  No compression

▪  KEY_BLOCK_SIZE=8

▪  KEY_BLOCK_SIZE=4

▪  Collect statistics:

▪  du -b *.ibd

▪  SELECT COMPRESS_OPS, COMPRESS_OPS_OK, COMPRESS_USECS FROM
I_S.TABLE_STATISTICS;

▪  Balance between disk space saved vs. CPU cost represented by:

▪  Number compression failures

▪  Number overall compressions

Results
▪  Deployed 5.1.63 fix to production

▪  Compressed best candidate table to 4x across all shards

▪  Harrison: “It is OUTRAGEOUS at the amount of space saved by the
<table_name> compression!”

Remaining Work
▪  Number of compression operations higher than we expected

▪  Nizam tackling that problem and more!

Rewriting Page Compression

Rewriting Page Compression
▪  Current implementation feeds records to zlib one by one.

▪  Prevents use of other compression libraries.

▪  Garbage is also compressed.

REC1

GARBAGE1

REC2

GARBAGE2

REC3

GARBAGE3

REC4

GARBAGE4

FEED ZLIB STREAM

Rewriting Page Compression
▪  Current implementation feeds records to zlib one by one.

▪  Prevents use of other compression libraries.

▪  Garbage is also compressed.

REC2

GARBAGE2

REC3

GARBAGE3

REC4

GARBAGE4

FEED ZLIB STREAM

Rewriting Page Compression
▪  Current implementation feeds records to zlib one by one.

▪  Prevents use of other compression libraries.

▪  Garbage is also compressed.

REC3

GARBAGE3

REC4

GARBAGE4

FEED ZLIB
STREAM

Rewriting Page Compression
▪  Current implementation feeds records to zlib one by one.

▪  Prevents use of other compression libraries.

▪  Garbage is also compressed.

REC4

GARBAGE4 FEED ZLIB
STREAM

Rewriting Page Compression
▪  Current implementation feeds records to zlib one by one.

▪  Prevents use of other compression libraries.

▪  Garbage is also compressed.

FINISH

ZLIB
STREAM

COMPRESSED
PAGE

IMAGE

Rewriting Page Compression
▪  New implementation serializes the records into a buffer

before passing data to compression.

▪  Does not compress garbage.

 REC1

GARBAGE1

REC2

GARBAGE2

REC3

GARBAGE3

REC4

GARBAGE4

SERIALIZE SERIALIZED BUFFER

Rewriting Page Compression
▪  New implementation serializes the records into a buffer

before passing data to compression.

▪  Does not compress garbage.

REC2

GARBAGE2

REC3

GARBAGE3

REC4

GARBAGE4

SERIALIZE SERIALIZED BUFFER

Rewriting Page Compression
▪  New implementation serializes the records into a buffer

before passing data to compression.

▪  Does not compress garbage.

REC3

GARBAGE3

REC4

GARBAGE4

SERIALIZE SERIALIZED BUFFER

Rewriting Page Compression
▪  New implementation serializes the records into a buffer

before passing data to compression.

▪  Does not compress garbage.

REC4

GARBAGE4

SERIALIZE SERIALIZED BUFFER

Rewriting Page Compression
▪  New implementation serializes the records into a buffer

before passing data to compression.

▪  Does not compress garbage.

▪  Allows the use of other compression libraries.

COMPRESS SERIALIZED BUFFER COMPRESSED
PAGE

IMAGE

Rewriting Page Compression
▪  We add the following headers to the compressed page:

▪  PAGE_ZIP_N_RECS: number of records in the serialization
stream.

▪  PAGE_ZIP_SERIALIZED_LEN: the total serialized length for
the page.

▪  PAGE_ZIP_COMPRESSED_LEN: the length of the
compressed page image.

▪  The values stored in these headers are used for monitoring
purposes and page-based padding.

Compact Storage For Metadata

Compact Storage For Metadata
▪  Older versions of the records are stored in the undo log.

▪  Each version of the record contains the following metadata:

▪  Last transaction id that modified the record (6 bytes).

▪  A pointer to the previous version in the undo log (7 bytes).

▪  13 bytes per record.

▪  Metadata is stored uncompressed even for compressed
tables.

Compact Storage For Metadata
▪  The metadata for a record is needed as long as there are

transactions that can see the older versions of the record.

▪  We modified the metadata storage so that only the metadata
that may be used are stored.

Compact Storage For Metadata
▪  We keep the minimum transaction id that can still be undone

in a global variable trx_id_undoable.

▪  trx_id_undoable is updated when the undo log is purged.

▪  Whenever a compressed page needs more space, we try
reducing the space needed for metadata.

▪  We get rid of the metadata entries for which trx_id <
trx_id_undoable.

Compact Storage For Metadata
▪  Earlier:

COMPRESSED
DATA

REC1
REC2

METADATA

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

METADATA

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.
REC12

METADATA

INSERT RECOMPRESS

NEW
COMPRESSED

DATA

EMPTY
MLOG

METADATA

Compact Storage For Metadata
▪  Earlier:

COMPRESSED
DATA

REC1
REC2

METADATA

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

METADATA

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.
REC12

METADATA

INSERT RECOMPRESS

NEW
COMPRESSED

DATA

EMPTY
MLOG

METADATA

Compact Storage For Metadata
▪  Now:

COMPRESSED
DATA

REC1
REC2

METADATA

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

METADATA

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.
REC12

METADATA

INSERT
COMPACT

METADATA

COMPRESSED
DATA

REC1
REC2
REC3

.
REC12

METADATA

Page Based Padding

Page Based Padding
▪  Adaptive padding works great if the compressibility of the

pages are similar.

▪  Some of the very incompressible pages may increase the
padding value unnecessarily.

▪  Instead of having a padding value per table, we decide when
to split a page based on the compressibility of the page.

Page Based Padding
▪  The compressibility of the page is determined by the values

stored in compressed page headers.

DATA

10K

FREE SPACE

16K uncompressed page

COMPRESS

SERIALIZED:10K
COMPRESED:6K

COMPRESSED

DATA
6K

MLOG

8K compressed page, 2K mlog,
compressibility: .6

Page Based Padding
▪  Instead of this:

COMPRESSED
DATA

EMPTY
MLOG

INSERT INSERT RECOMPRESS RECOMPRESS FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

Page Based Padding
•  We have this:

COMPRESSED
DATA

EMPTY
MLOG

INSERT INSERT RECOMPRESS …. CHECK IF
COMPRESSIBLE?

FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

Page Based Padding
▪  Eliminates almost all of the compression failures for most of

the tables.

▪  Less risk of wasting space in comparison to adaptive
padding.

Efficient Use of Modification Log

Efficient Use of Modification Log
▪  Page compressions are expensive and modification log

reduces the number of page compressions.

▪  With KEY_BLOCK_SIZE=4, we have very small space for
modification log.

▪  Performance suffers because of the increase in the number
of recompressions.

Efficient Use of Modification Log
▪  We compress the modification log when it becomes full.

▪  This makes room for new records in modification log.

▪  Cheaper than compressing the entire page.

Efficient Use of Modification Log
▪  Earlier:

COMPRESSED
DATA

REC1
REC2

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.

.

.

.

.

.
REC100

INSERT RECOMPRESS

NEW
COMPRESSED

DATA

EMPTY
MLOG

Efficient Use of Modification Log
▪  Now:

COMPRESSED
DATA

REC1
REC2

INSERT

COMPRESSED
DATA

REC1
REC2
REC3

INSERT

Compressed Page

.

COMPRESSED
DATA

REC1
REC2
REC3

.

.

.

.

.

.
REC100

INSERT
COMPRESS

MLOG

COMPRESSED
DATA

COMPRESED
MLOG 1

EMPTY
MLOG

Efficient Use of Modification Log
▪  When pages are compressed but they have very little mlog

space, a recompression will happen soon.

▪  To prevent this we require a minimum amount of mlog on
every compressed page.

Efficient Use of Modification Log

COMPRESSED
DATA

EMPTY
MLOG

INSERT INSERT
CHECK MLOG
SPACE AFTER

COMPRESSION
FAIL SPLIT

Compressed Page

COMPRESSED
DATA

EMPTY
MLOG

COMPRESSED
DATA

EMPTY
MLOG

•  We do not attempt to recompress if there won’t be
enough mlog space after compression.

Preliminary Results

Preliminary Results
▪  Achieved 3x compression using KEY_BLOCK_SIZE=4 with zlib

level=1.

▪  Performance was similar to using KEY_BLOCK_SIZE=8 with
current compression.

▪  LZMA gave more space savings but was prohibitive in terms
of CPU.

Questions

https://github.com/facebook/mysql-5.6

