
NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin
1
, Xiaozhou Li

2
, Haoyu Zhang

3
, Robert Soulé

2,4
,

Jeongkeun Lee
2
, Nate Foster

2,5
, Changhoon Kim

2
, Ion Stoica

6

1
Johns Hopkins University,

2
Barefoot Networks,

3
Princeton University,

4
Università della Svizzera italiana,

5
Cornell University,

6
UC Berkeley

ABSTRACT
Wepresent NetCache, a new key-value store architecture that

leverages the power and flexibility of new-generation pro-

grammable switches to handle queries on hot items and bal-

ance the load across storage nodes. NetCache provides high

aggregate throughput and low latency even under highly-

skewed and rapidly-changing workloads. The core of Net-

Cache is a packet-processing pipeline that exploits the ca-

pabilities of modern programmable switch ASICs to effi-

ciently detect, index, cache and serve hot key-value items in

the switch data plane. Additionally, our solution guarantees

cache coherence with minimal overhead. We implement a

NetCache prototype on Barefoot Tofino switches and com-

modity servers and demonstrate that a single switch can pro-

cess 2+ billion queries per second for 64K items with 16-byte

keys and 128-byte values, while only consuming a small por-

tion of its hardware resources. To the best of our knowledge,

this is the first time that a sophisticated application-level

functionality, such as in-network caching, has been shown

to run at line rate on programmable switches. Furthermore,

we show that NetCache improves the throughput by 3-10×

and reduces the latency of up to 40% of queries by 50%, for

high-performance, in-memory key-value stores.

CCS CONCEPTS
• Information systems→Key-value stores; •Networks
→ Programmable networks; In-network processing; •
Computer systems organization→ Cloud computing;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00

https://doi.org/10.1145/3132747.3132764

KEYWORDS
Key-value stores; Programmable switches; Caching

ACM Reference Format:
Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,

Nate Foster, Changhoon Kim, Ion Stoica. 2017. NetCache: Balancing

Key-Value Stores with Fast In-Network Caching. In Proceedings of
SOSP ’17, Shanghai, China, October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132764

1 INTRODUCTION
Modern Internet services, such as search, social networking

and e-commerce, critically depend on high-performance key-

value stores. Rendering even a single web page often requires

hundreds or even thousands of storage accesses [34]. So, as

these services scale to billions of users, system operators

increasingly rely on in-memory key-value stores to meet the

necessary throughput and latency demands [32, 36, 38].

One major challenge in scaling a key-value store—whether

in memory or not—is coping with skewed, dynamic work-

loads. Popular items receive far more queries than others, and

the set of “hot items” changes rapidly due to popular posts,

limited-time offers, and trending events [2, 11, 19, 21]. For

example, prior studies have shown that 10% of items account

for 60-90% of queries in the Memcached deployment at Face-

book [2]. This skew can lead to severe load imbalance, which

results in significant performance degradations: servers are

either over- or under-utilized, throughput is reduced, and

response times suffer from long tail latencies [14]. This degra-

dation can be further amplified when storage servers use

per-core sharding to handle high concurrency [5].

The problem of load imbalance is particularly acute for

high-performance, in-memory key-value stores. While tra-

ditional flash-based and disk-based key-value stores can be

balanced using a fast in-memory caching layer (such as

SwitchKV [28]), server-based caching does not work for

in-memory stores, because there is little difference in per-

formance between the caching and storage layers (Figure 1).

Alternatively, one could use selective replication—i.e., repli-

cating hot items to additional storage nodes. However, in

addition to consuming more hardware resources, selective

https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

replication requires sophisticated mechanisms for data move-

ment, data consistency, and query routing, which compli-

cates the system design and introduces overheads [10, 25, 40].

This paper presents NetCache, a new key-value store ar-

chitecture that leverages the power and flexibility of new-

generation programmable switches to cache data in the net-

work. Switches are optimized for data input-output and of-

fer orders of magnitude better performance over traditional

caches and storage servers (Figure 1), making them an ideal

place to build an on-path caching layer for high-performance,

in-memory key-value stores. Whereas traditional caches of-

ten require a high cache hit ratio (>90%) to absorb most

queries, NetCache uses switches as a load-balancing cache
with medium cache hit ratio (<50%) [28]. A load-balancing

cache services accesses to hot items and makes the remain-

ing load on servers more uniform. Although switches have

limited on-chip memory, NetCache exploits the theoretical

result that caching O (N logN) items is sufficient to balance

the load for N storage servers (or CPU cores) across the en-

tire hash-partitioned key-value storage cluster, regardless of

the number of items stored in the system [17]. Overall, the

entire system is able to guarantee high aggregate throughput

and low latency, despite workload skew.

The core of NetCache is a packet-processing pipeline that

detects, indexes, stores, and serves key-value items. We use

match-action tables to classify keys, which are carried in

packet headers, and register arrays implemented as on-chip

memory in programmable switches to store values. We ex-

ploit the multi-pipeline, multi-stage structure of modern

switch ASICs to efficiently index and pack variable-length

values into limited switch table and memory resources.

To identify hot items in the switch data plane, NetCache

maintains counters for each cached key, and a heavy-hitter

detector for uncached keys. This leverages the fact that

switches are naturally placed on the data path and interpose

on all queries through the system. The heavy-hitter detector

includes a Count-Min sketch [12] to report hot uncached

keys, and a Bloom filter [8] to remove duplicate reports. Both

data structures can be implemented in the switch data plane

at line rate using minimal resources. The heavy-hitter detec-

tor obviates the need for building, deploying, and managing

a separate monitoring component in the servers to count

and aggregate key access statistics [28].

Another advantage of our architecture is that it automati-

cally guarantees cache coherence with low overhead. Read

queries for cached items are handled directly by switches

without having to visit a storage server. Write queries for

cached keys invalidate any copies stored in the switches on

the routes to storage servers, and the servers atomically up-

date the switches with new values. Hence, the control plane

is only responsible for inserting and evicting appropriate

keys based on cache counters and heavy-hitter reports.

NetCache is incrementally deployable. It is particularly

suitable for modern rack-scale storage systems that contain

thousands of cores per rack and use per-core sharding for

high performance. We only need to program the ToR switch

to add the NetCache functionality; other parts of the network

are unmodified. NetCache is fully compatible with existing

routing protocols and network functions. We provide a Net-

Cache library for clients to access the key-value store, which

exposes an API similar to existing key-value stores. We also

provide a simple shim layer for storage servers, which makes

it easy to integrate NetCache with existing key-value stores.

In summary, we make the following contributions.

• We design NetCache, a new key-value store architecture

that leverages new-generation programmable switches to

cache data in the network for dynamic load balancing (§3).

• We design a packet-processing pipeline that efficiently

detects, indexes, stores, and serves hot key-value items in

the switch data plane, as well as a mechanism to guarantee

cache coherence (§4).

• We implement a prototype of NetCache on Barefoot Tofino

switches and commodity servers (§6). NetCache only uses

a small portion of Tofino on-chip resources, leaving enough

space for traditional packet processing.

• We perform an evaluation on the NetCache prototype

(§7) and demonstrate that NetCache is able to run on pro-

grammable switches at line rate—i.e., processing 2+ billion

queries per second (QPS) for 64K items with 16-byte keys

and 128-byte values on a single switch. Overall, the system

improves the throughput by 3-10×, and reduces the latency

of up to 40% of queries by 50%, for high-performance, in-

memory key-value stores.

We discuss system limitations and possible solutions in §5.

In particular, NetCache focuses on a single key-value storage

rack; provides a restricted key-value interface; and cannot

handle highly-skewed, write-intensive workloads. The per-

formance and capability of new-generation programmable

switches make them appealing to be used beyond traditional

network functionalities. We hope that our first-hand experi-

ences with programmable switches will be valuable to inform

a new generation of distributed systems that deeply integrate

switches and servers.

2 MOTIVATION
NetCache is motivated by the recent trend towards high-

performance, in-memory key-value stores. We argue that

caching hot items in the network like NetCache is a natu-

ral solution to provide performance and strong consistency

guarantees for in-memory key-value stores under highly

skewed and dynamic real-world workloads.

Load balancing for performance guarantees. As a criti-
cal building block for large-scale Internet services that serves

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

Queries

Cache Key-Value Store

O(N log N) items
M replicas

T’ QPS/replica
N nodes (partitions)

T QPS/node

Billions of items

Flash/Disk: O(100) KQPS In-memory: O(10) MQPSTraditional
In-memory: O(10) MQPSNetCache Switch: O(1) BQPS

Figure 1: Motivation. To provide effective load balanc-
ing, a cache node only needs to cacheO (N logN) items,
but needs to be orders of magnitude faster than a stor-
age node (T ′ ≫ T). NetCache caches data in the net-
work when key-value stores move to the memory.

billions of users, key-value stores are expected to provide

high performance guarantees to meet strict service level

agreements (SLAs). Ideally, if the throughput of each storage

node is T , a key-value store with N nodes should be able

to guarantee an aggregate throughput of N ·T . Given that

each node handles no more load thanT , the query latency is

also bounded. These performance guarantees make it easy

for service providers to scale out a storage system to meet

particular SLAs.

Unfortunately, the skewed, dynamic nature of real-world

workloads make it difficult to provide such guarantees [2, 11,

19, 21]. Popular items are queried far more often than other

items, leading to severe imbalance on the storage servers.

The system is bottlenecked by the overloaded nodes, leaving

many other nodes not fully utilized, so that the entire system

cannot achieve the desired aggregate throughput. Moreover,

overloaded nodes receive more queries than they can handle,

leading to long queues for outstanding queries. This causes

the system to have high tail latencies, which violate the

latency requirements.

Fast, small cache for load balancing. Caching is an ef-

fective technique for alleviating load imbalance (Figure 1).

Theoretical analysis proves that a cache only need to store

O (N logN) items to balance the load for a hash-partitioned

key-value cluster with N storage nodes, regardless of the
number of key-value items [17]. Specifically, given N nodes

with total system load ofN ·T , if the cache is able to absorb all
queries to the hottestO (N logN) items, then no node would

experience more than T load with high probability, regard-

less of the query distribution. Since O (N logN) is relatively
small, the hot items can be replicated to all cache nodes in

order to avoid circular load balancing issues in the caching

layer. While O (N logN) items seem small enough to be put

into each client, it is difficult to ensure cache coherence, and

client caching would not have the caching benefits if there

are many clients accessing a common set of hot items but

this set is not hot to each client. Therefore, it is more effective

to build a caching layer in front of the storage servers.

To handle arbitrarily skewed workloads, the caching layer

must provide an aggregate throughput comparable to the

storage layer. GivenM caching nodes with per-node through-

put T ′, we need

M ≃ N ·
T

T ′
.

If T ′ ≃ T , then M ≃ N , which implies that we would need

to build a caching layer with a similar number of nodes as

the storage layer. This has (i) high cost, as it uses too many

caching nodes, and (ii) high overhead, asM nodes must be

modified for each cache update. Therefore, it requiresT ′ ≫ T
(i.e., orders of magnitude difference) to build a cost-effective,

low-overhead caching layer.

In-network caching for in-memory key-value stores.
In-memory caches are effective for flash-based and disk-

based key-value stores since DRAMs are orders of magni-

tude faster than SSDs and HDDs. However, as key-value

stores themselves are being moved to the main memory, in-

memory caches lose their performance advantage and are

no longer effective. Consider an in-memory key-value store

with 128 servers: if each server provides 10 million QPS, the

entire store can achieve 1.28 billion QPS throughput, and the

caching layer needs to provide comparable throughput.

Building the caching layer into the network is a natural

solution for balancing in-memory key-value stores. Switches

are optimized for I/O—e.g., current ASICs such as Barefoot

Tofino [4] and Broadcom Tomahawk II [7] are able to pro-

cess several billion packets per second. This means that

we can build the caching layer with a single box for high-

performance, in-memory key-value stores. Furthermore, if

we use the ToR switch as the cache for a key-value storage

rack, it incurs no latency penalties and no additional hardware
cost. Other possible alternatives like FPGAs or NPUs either
do not provide enough throughput with a single box or are

not immediately deployable (e.g., are not yet available or are

too expensive).

Programmable switch ASICs for in-network caching.
Modern commodity switches have tens of megabytes on-chip

memory. Since many in-memory key-value stores target at

small values (e.g., <100-byte values for 76% read queries in

the Memcached deployment at Facebook [34]), the on-chip

memory is big enough to store theO (N logN) items for load

balancing, while can still leave enough switch resources for

traditional network functionalities. We show in Figure 10(e)

in §7 that empirically caching a few thousand items is enough

for a rack with 128 servers (or partitions). For large items

that do not fit in one packet, one can always divide an item

into smaller chunks and retrieve them with multiple packets.

Note that multiple packets would always be necessary when

a large item is accessed from a storage server.

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

Clients

Key-Value
Cache

Query
Statistics

High-performance Storage Servers

Key-Value Storage RackController

L2/L3
Routing

ToR Switch Data plane

(a) NetCache architecture.

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

get, put,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

(b) NetCache packet format.

Figure 2: NetCache overview.

Traditional switch ASICs are fixed function, so adding a

new feature requires designing and manufacturing a new

ASIC, which incurs huge capital and engineering costs. How-

ever, new-generation programmable switch ASICs like Bare-

foot Tofino [4] and Cavium XPliant [9] make in-network

caching viable and immediately deployable. They allow users

to program the switch packet-processing pipeline without

replacing the switch ASICs. Specifically, we are able to (i)
program the switch parser to identify custom packet formats

(e.g., containing custom fields for keys and values), (ii) pro-
gram the on-chip memory to store custom state (e.g., store

hot items and query statistics), and (iii) program the switch

tables to perform custom actions (e.g., copy values from on-

chip memory to packets and detect heavy hitters). The goal

of this paper is to leverage programmable switches to make

in-network caching a reality.

3 NETCACHE OVERVIEW
NetCache is a new rack-scale key-value store architecture

that leverages in-network caching to provide dynamic load

balancing across all storage servers. We assume the rack

is dedicated for key-value storage and the key-value items

are hash-partitioned to the storage servers. We use the ToR

switch that is directly connected to the servers as a load-

balancing cache. Figure 2(a) shows the architecture overview

of a NetCache storage rack, which consists of a ToR switch,

a controller, and storage servers.

Switch. The switch is the core component of NetCache. It is

responsible for implementing on-path caching for key-value

items and routing packets using standard L2/L3 protocols.

We reserve an L4 port to distinguish NetCache packets (Fig-

ure 2(b)) from other packets (§4.1). Only NetCache pack-

ets are processed by NetCache modules in the switch. This

makes NetCache fully compatible with other network proto-

cols and functions.

The key-value cache module stores the hottest items. Read

queries are handled directly by the switchwhile write queries

are forwarded to the storage servers (§4.2). Cache coherence

is guaranteed with a light-weight write-through mechanism

(§4.3). We leverage match-action tables and register arrays

to index, store, and serve key-value items (§4.4.2).

The query statistics module provides key-access statistics

to the controller for cache updates (§4.4.3). This is critical

for enabling NetCache to handle dynamic workloads where

the popularity of each key changes over time. It contains (i)
per-key counters for the cached items and (ii) a heavy hitter

(HH) detector to identify hot keys not present in the cache.

The HH detector uses a Count-Min sketch to report HHs and

a Bloom filter to remove duplicate HH reports, both of which

are space-efficient data structures and can be implemented in

programmable switches with minimal hardware resources.

Since the switch is a read cache, if the switch fails, opera-

tors can simply reboot the switch with an empty cache or

use a backup ToR switch. The switch only caches hot items

and computes key access statistics; it does not maintain any

critical system state. Because NetCache caches are small,

they will refill rapidly after a reboot.

Controller. The controller is primarily responsible for up-

dating the cache with hot items (§4.3). It receives HH reports

from the switch data plane, and compares them with per-key

counters of the items already in the cache. It then decides

which items to insert into the cache and which ones to evict.

Note that the NetCache controller is different from the net-

work controller in Software-Defined Networking (SDN): the

NetCache controller does not manage network protocols or

distributed routing state. The operator uses existing systems

(which may be an SDN controller or not) to manage routing

tables and other network functions. The NetCache controller

does not interfere with these existing systems and is only

responsible for managing its own state—i.e., the key-value

cache and the query statistics in the switch data plane. It can

reside as a process in the switch OS or on a remote server. It

communicates with the switch ASIC through a switch driver

in the switch OS. As all queries are handled by the switch and

storage servers, the controller only handles cache updates

and thus is not the bottleneck.

Storage servers. NetCache servers run a simple shim that

provides two important pieces of functionality: (i) it maps

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

NetCache query packets to API calls for the key-value store;

(ii) it implements a cache coherence mechanism that guar-

antees consistency between the caching and storage layers,

hiding this complexity from the key-value stores. This shim

layer makes NetCache easy to integrate with existing in-

memory key-value stores.

Clients. NetCache provides a client library that applications
can use to access the key-value store. The library provides an

interface similar to existing key-value stores such as Mem-

cached [32] and Redis [38]—i.e., Get, Put, and Delete. It
translates API calls to NetCache query packets and also gen-

erates replies for applications.

4 NETCACHE DESIGN
4.1 Network Protocol
Packet format. Figure 2(b) shows the packet format of Net-

Cache. NetCache is an application-layer protocol embed-

ded inside the L4 payload. Similar to many other key-value

stores, NetCache uses UDP for read queries (to achieve low

latency) and TCP for write queries (to achieve reliability) [34].

The NetCache fields are inside the TCP/UDP payload and a

special TCP/UDP port is reserved for NetCache. NetCache

switches use this port to invoke the custom packet process-

ing logic for NetCache queries; other switches do not need to

understand the NetCache format and treat NetCache queries

as normal packets. The major header fields for NetCache are

OP, SEQ, KEY and VALUE. OP stands for operator and denotes

whether it is a Get, Put, Delete or any other type of query.

SEQ can be used as a sequence number for reliable transmis-

sions by UDP Get queries, and as a value version number by

TCP Put and Delete queries. KEY and VALUE store the key

and value of an item respectively. VALUE is empty for Get
and Delete. Get queries and replies have the same packet

format, except that switches and storage servers add the

VALUE field in the reply packets.

Network routing. NetCache leverages existing routing pro-
tocols to forward packets. For a NetCache query, based on

the data partition, the client appropriately sets the Ethernet

and IP headers and sends the query to the storage server that

owns the queried item, without any knowledge of NetCache.

NetCache switches are placed on the path from the clients to

the storage clusters. They process NetCache queries based on

Algorithm 1; other switches simply forward packets based

on the destination MAC/IP address according to the L2/L3

routing protocol. In this way, NetCache can coexist with

other network protocols and functions.

4.2 Query Handling
The key advantage of NetCache is that it provides an on-

path in-network cache to serve key-value queries at line rate.

Algorithm 1 ProcessQuery(pkt)

– cache : on-chip key-value cache

– stats : on-chip query statistics

1: if pkt .op == Get then
2: if cache .hit (pkt .key) and cache[pkt .key].valid () then
3: add pkt .value header

4: pkt .value ← cache[pkt .key]
5: stats .cache_count (pkt .key)
6: else
7: stats .heavy_hitter_count (pkt .key)
8: if stats .is_hot_key (pkt .key) then
9: inform controller for potential cache updates

10: else if pkt .op == Put or pkt .op == Delete then
11: if cache .hit (pkt .key) then
12: cache .invalidate (pkt .key)
13: Update packet header and forward

Read queries (Get) on cached items are directly returned by

switches without traversing any storage server, providing

very low latency; write queries (Put and Delete) are passed
to storage servers with no performance overhead. Figure 3

illustrates how NetCache handles different types of queries,

and Algorithm 1 gives the pseudo code.

Handling read queries. The switch checks whether the

cache contains the item or not. If it is a cache hit and the

value is valid (Figure 3(a)), the switch inserts a pkt .value
field to the packet header, copies the value from the cache

to pkt .value , and increases the counter of the item (line 2-

5). Except for the inserted pkt .value field, other fields of

the packet are retained. Then the switch updates the packet

header by swapping the source and destination addresses

and ports in L2-L4 header fields, and returns the packet back

to the client as the reply.

If it is a cache miss (Figure 3(b)), the switch counts the

key access with its HH detector, and informs the controller if

the key is hot (line 7-9). By counting queries with uncached

keys, the HH detector only reports new popular keys not

in the cache, which saves both the memory consumption

in the switch for HH detection and the computation in the

controller for cache updates. The query is then forwarded to

the corresponding storage server, which processes the query

and sends the reply back to the client.

Handling write queries. The switch checks whether the

item is in the cache (Figure 3(c)). If so, the switch invalidates

the cached value, stopping subsequent read queries from

fetching the old value from the cache (line 10-12). The query

is then forwarded to the corresponding storage server, which

updates the value atomically and replies to the client.

4.3 Cache Coherence and Cache Update
Cache coherence. NetCache uses write-through to guaran-

tee cache coherence. The switch invalidates the cached value

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

Client Server

1

2

Hit Count

Switch Data plane
Cache Stats

(a) Get query with cache hit. Switch directly replies query.

Client Server

1

4

Miss Count

Switch Data plane
Cache Stats 3

2

(b) Get query with cache miss. Switch does statistics only.

Client Server

1

4

Invalidate

Switch Data plane
Cache Stats 3

2

(c) Put/Delete query. Switch invalidates key if in cache.

Figure 3: Handling different types of queries.

when it processes a write query for a cached key, and modi-

fies the operation field in the packet header to special values

to inform the server that the queried key is in the cache.

Cache invalidation ensures that while a write query is in

progress, all subsequent read and write queries are sent to

the server, which updates the value atomically and serializes

the queries for consistency. The server recognizes from the

packet header that the key is cached, then sends another

packet to update the switch cache with the new value, and

retries the update upon packet loss for reliability. The server

replies to the client as soon as it completes the write query,

and does not need to wait for the switch cache to be updated.

The server blocks all subsequent write queries until it con-

firms the switch cache is updated with the new value, in

order to ensure the consistency between the server and the

switch cache.

This design provides lower latency for write queries than

a standardwrite-through cache which updates both the cache
and the storage server before replying to the client. After

the update, the item becomes valid again and begins to serve

following read queries. The updates are purely in the data

plane at line rate. We do not use write-back to avoid possible

data loss caused by switch failures, and do not use write-
around because data plane updates incur little overhead and

are much faster than control plane updates. Note that our

data plane design (§4.4.2) only allows updates for new values

that are no larger than the old ones. Otherwise, the new

values must be updated by the control plane.

Cache Update. To cope with dynamic workloads, the con-

troller frequently updates the cache with the hottest keys.

The primary challenge is the limited switch table and register

update rate. Commodity switches are able to update more

report hot keys

fetch counters

update cache

fetch values

Switch Data Plane Controller Storage Servers

Key-Value
Cache Store

Heavy-Hitter
Detector

Counters for
Cache Keys

Figure 4: Cache update.

than 10K table entries per second [35]. While this number

is continuously being improved over time, the update rate

is not sufficient to support traditional cache update mech-

anisms like LRU and LFU. These mechanisms update the

cache for every query, which may cause unnecessary cache

churns and hurt overall cache performance. Compared to a

traditional cache with high cache hit ratio (>90%), NetCache
provides a load balancing cache with medium cache hit ratio

(<50%). Therefore we insert an item to the cache only when

it becomes hot enough (based on HH detection in the data

plane), rather than for each item access.

Specifically, the controller receives HH reports from the

data plane via the switch driver in the switch OS (Figure 4). It

compares the hits of the HHs and the counters of the cached

items, evicts less popular keys, and inserts more popular

keys. As the cache may contain tens of thousands of items, it

is expensive to fetch all counters and to compare them with

HHs. To reduce this overhead, we use a sampling technique

similar to Redis [39], i.e., the controller samples a few keys

from the cache and compare their counters with the HHs.

The values of the keys to insert are fetched from the storage

servers. To guarantee cache coherence during cache updates,

when the controller is inserting a key to the cache, write

queries to this key are blocked at the storage servers until

the insertion is finished, which is the same as handling write

queries to cached items. Future write queries to the key are

handled by data plane updates as discussed previously.

4.4 Switch Data Plane Design
The core of NetCache is a packet-processing pipeline that

realizes (i) a variable-length key-value store to serve cached

items with guaranteed cache coherence, and (ii) a query

statistics engine to provide essential key-access information

for cache updates, as introduced in Figure 2(a) and Algo-

rithm 1. We first give a brief background on the emerging

programmable switch data plane and then present our design

for the NetCache data plane.

4.4.1 A Primer on Switch Data Plane

Figure 5 illustrates the basic data plane structure of a modern

switch ASIC. The data plane contains three main compo-

nents: ingress pipeline, traffic manager, and egress pipeline

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

Pipe

Traffic
Manager

Ingress
Pipeline

Egress
Pipeline

Ports

Header & Metadata

ETH
Table

IPv4
Table

IPv6
Table

ACL
Table

IPv4
Table
IPv6
Table

ETH
Table

ACL
Table

Match Action
dstip=10.0.0.1 egress_port=1

dstip=10.0.0.0/24 egress_port=2

… …

default drop()

(d) Example IPv4 table.

Stage 1

(a) Switch data plane architecture. (b) Inside one pipe.

(c) Logical view of packet processing.

pkt

Stage 2 Stage 3

Figure 5: A primer on switch data plane.

(Figure 5(a)). A switch usually has multiple ingress and egress

pipes, each with multiple ingress and egress ports. When a

packet arrives at an ingress port, it is first processed by the

tables in the ingress pipe, then queued and switched by the

traffic manager to an egress pipe, and finally processed by

the pipe and emitted via an egress port.

Each pipe contains multiple stages (Figure 5(b)). These

stages process packets in a sequential order, and have their

own dedicated resources, including match-action tables and

register arrays. When processing a packet, the stages share

the header fields and metadata of the packet, and can pass in-

formation from one stage to another by modifying the shared

data. The entire packet processing can be abstracted using a

graph of match-action tables. Figure 5(c) gives an example

graph. These tables are mapped to the stages by compilation

tools. Tables in the same stage cannot process packets se-

quentially. Each table matches on a few header fields and

metadata, and performs actions based on the matching re-

sults. Figure 5(d) shows an example IPv4 table that picks an

egress port based on destination IP address. The last rule

drops all packets that do not match any of the IP prefixes in

the match-action table.

Programmable switches allow developers to define their

own packet formats, build custom processing graphs, and

specify the match fields and actions for each table. Devel-

opers typically write a program with a domain-specific lan-

guage like P4 [6], and then use a compiler provided by switch

vendors to compile the program to a binary that can be loaded

to switches. Developers need to carefully design their pro-

cessing pipelines in order to meet the hardware resource and

timing requirements of switch ASICs. The major constraints

of the pipeline design include (i) the number of pipes, (ii)
the number of stages and ports in each pipe, and (iii) the
amount of TCAMs (for wildcard and prefix matching) and

SRAMs (for prefix matching and data storage) in each stage.

Match pkt.key==A pkt.key==B pkt.key==C pkt.key==D
Action bitmap=111

idx=0
bitmap=110
idx=1

bitmap=010
idx=2

bitmap=101
idx=2

Match bitmap[0] == 1
Action process_array_0(idx)

0 1 2 3

A B D Array 0

Lookup
Table

Value
Table 0

A B C

A D

Array 1

Array 2

Match bitmap[1] == 1
Action process_array_1(idx)

Match bitmap[2] == 1
Action process_array_2(idx)

Value
Table 1

Value
Table 2

Match pkt.key==A pkt.key==B
Action process_array(0) process_array(1)

0 1 2 3

A B

Register Array

action process_array(idx):
if pkt.op == read:

pkt.value array[idx]
elif pkt.op == cache_update:

array[idx] pkt.value

(a) Simple key-value store with a single register array.

(b) NetCache key-value store with multiple register arrays.

Figure 6: NetCache switch data plane key-value store.

4.4.2 Variable-Length On-Chip Key-Value Store

NetCache leverages the stateful memory in emerging pro-

grammable switch ASICs such as Barefoot Tofino chip [4]

to store key-value items. The stateful memory is abstracted

as register arrays in each stage. The data in the register ar-

ray can be directly retrieved and updated at its stage at line

rate through an index that indicates the memory location.

Figure 6(a) shows how to construct a simple key-value store

with a match-action table and a register array. The table uses

exact-match to match on the key field in the packet header

and gives an index for each matched key as the action data.

The action is to process the data at the given index location

based on the operation type in the packet header.

The size of data that each register array can read or write

for each packet is fixed and limited for each stage, because a

switch ASIC has to meet strict resource and timing require-

ments. In order to realize a variable-length key-value store

with relatively large values, we need to use multiple register

arrays, and concatenate the values from multiple stages to

construct a large value. The challenge is how to design the

key-value store with maximum resource efficiency.

There are three types of resource overheads to be mini-

mized: (i) the number of entries in match-action tables, (ii)
the size of action data given by a table match, and (iii) the
size of intermediate metadata. A straightforward approach

for variable-length key-value stores is to replicate the table

in Figure 6(a) for each register array, which is obviously inef-

ficient since the match entry for a key needs to be replicated

multiple times. A better approach is to use one lookup table

that matches on the keys and generates a list of indexes for

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

Algorithm 2 Switch Memory Management

– key_map : key⇒ (index, bitmap)

– mem: array of bitmap, which marks available slots as 1 bits and

occupied slots as 0 bits

1: function Evict(key)
2: if key_map .hasKey (key) then
3: index, bitmap = key_map[key]
4: mem[index] =mem[index] | bitmap
5: return true
6: else
7: return false ▷ The item is not cached

8: function Insert(key , value_size)
9: if key_map .hasKey (key) then
10: return false
11: n = value_size/ unit_size
12: for index from 0 to sizeof(mem) do
13: bitmap =mem[index]
14: if number of 1 bits in bitmap ≥ n then
15: value_bitmap = last n 1 bits in bitmap
16: mark last n 1 bits inmem[index] as 0 bits
17: key_map[key] = (index, value_bitmap)
18: return true
19: return false ▷ No space available to cache the item

all the arrays. However, it still has high overhead in terms

of action data and intermediate metadata, as it requires a

separate index for each register array.

Figure 6(b) shows our approach to construct an efficient

variable-length on-chip key-value store. It has one lookup

table with match entries for each key. Each match action

produces two sets of metadata: (i) a bitmap indicating the

set of arrays that has the value for this key, and (ii) a single
index pointing to the location of the data within these arrays.

Each register array is processed with the same given index,

after a simple check on the corresponding bit in the bitmap.

The data in the register arrays is appended to the value field

(Figure 2(b)) when the packet is processed by the match-

action tables in the pipeline.

Memory management. NetCache’s in-network key-value

store minimizes hardware resource usage. The only restric-

tion is that we cannot freely assign indexes in register arrays

for a key. A key’s value has to use the same index for all its

register arrays. The NetCache controller manages the map-

ping between slots in register arrays and the cached items,

as described in Algorithm 2. Evicting an item is simple as the

controller only needs to free the slots occupied by the item

(line 1-7). Cache insertion is more complicated, as the con-

troller needs to decide which slots to allocate to the new item

(line 8-19). The problem can be formulated as a bin packing

problem. The values are balls with different sizes. The bins

are slots in register arrays with the same index, e.g., bin 0

includes slots of index 0 in all register arrays. This is because

the data plane design requires that an item is stored in the

same index for all its register arrays (Figure 6). We use First

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

sample

Figure 7: Query statistics in the data plane.

Fit, a classical heuristic algorithm for bin packing problems,

to allocate memory slots (line 12-18). It is an online algo-

rithm to handle periodic item insertions and evictions. Our

bitmap is flexible as it does not require an item to occupy

the same index in consecutive tables, which alleviates the

problem of memory fragmentation, though periodic mem-

ory reorganization is still needed to pack small values with

different indexes into register slots with same indexes, in

order to make room for large values.

4.4.3 Query Statistics

The NetCache switch data plane provides query statistics

for the controller to make cache update decisions. The query

statistics module contains three major components (Fig-

ure 7): (i) a per-key counter array to keep query frequency

of each cached item, (ii) a Count-Min sketch [12] to detect

hot queries for uncached items, and (iii) a Bloom filter [8]

that removes duplicate hot key reports (to reduce controller

load). All statistics data are cleared periodically by the con-

troller. The clearing cycle has direct impact on how quickly

the cache can react to workload changes.

The three components are built upon register arrays and

hashing functions in the switch data plane. In addition to

data read and write operations described in previous sections,

register arrays also support simple arithmetic operations

such as add, subtract and compare. The per-key counter is

just a single register array. Each cached key is mapped to a

counter index given by the lookup table. A cache hit simply

increases the counter value of the cached key-value item in

the corresponding slot by one.

The Count-Min sketch component consists of four register

arrays. It maps a query to different locations in these arrays,

by hashing the key with four independent hash functions.

It increases the values in those locations by one, uses the

smallest value among the four as the key’s approximate

query frequency, and marks it as hot if the frequency is

above the threshold configured by the controller.

A hot query for an uncached key should be reported to the

controller for potential cache updates. Once a key frequency

is above the threshold, it will keep beingmarked as hot by the

Count-Min sketch before the counters are refreshed by the

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

Miss RoutingNetCache
Query?

No

Cache
Lookup

Yes
Hit

Ingress Egress

Query
Statistics

check / update
cache status

valid

invalid

Packet In

Cache Value
Process

Packet Out

Mirror to egress entry

Figure 8: Logical view of NetCache switch data plane.

controller. We add a Bloom filter after the Count-Min sketch,

so that each uncached hot key would only be reported to the

controller once.

Ideally, we would like to minimize the slot number and slot

size of each register array to maximize resource efficiency.

However, a small slot number would lead to high false posi-

tives for Count-Min sketches and Bloom filters, and a small

slot size would make counter values quickly overflow. To

meet this challenge, we add a sampling component in front

of other components. Only sampled queries are counted for

statistics. The sampling component acts as a high-pass filter

for the Count-Min sketch, as it can filter out queries for most

of the non-frequent keys. It also allows us to use small (16-

bit) slot size for cache counters and the Count-Min sketch.

Same as the heavy-hitter threshold, the sample rate can be

dynamically configured by the controller.

4.4.4 Put Everything Together: Pipeline Layout

Figure 8 shows the pipeline layout in the switch data plane

and the packet flow in the switch for a NetCache query.

Essentially, it realizes Algorithm 1 with the table designs de-

scribed in §4.4.2 and §4.4.3. The cache lookup table is placed

at the ingress pipeline, and is replicated for each upstream
ingress pipe of the switch, such that the switch can handle

client queries from any upstream ports. Its size is equal to

the cache size. Since both the keys and actions are small,

replicating the lookup table does not consume a lot of re-

sources. On the other hand, the value tables and their register

arrays are large and replicating them is too expensive. We

place them at the egress pipeline. Each egress pipe only stores
the cached values for servers that connect to it. This avoids
value replications across pipes, reduces the switch memory

consumption, and simplifies the routing behavior.

An ingress pipe first checks if an incoming packet is a

NetCache query by looking at its header fields, and a cache

lookup is performed for NetCache queries. The lookup table

produces three sets of metadata for cached keys: a table

bitmap and a value index as depicted in Figure 6, a key index

used for cache counter as depicted in Figure 7 and for cache

status array which will be described later, and an egress port

that connects to the server hosting the key.

All packets will then traverse the routing module. When

handling a read query for cached keys, the routing module

performs the next-hop route lookup by matching on the

source address because the switch will directly reply the

query back to the client. The switch then saves the routing

information as metadata, and sends the packet to the egress

port given by the cache lookup table (which belongs to the

pipe containing the cached value). The routing module for-

wards all other packets to an egress port by matching on the

destination address.

At the egress pipe, queries that hit the cache are first pro-

cessed by the cache status module. It has a register array that

contains a slot for each cached key, indicating whether the

cache is still valid. Write queries invalidate the bit and read

queries check if the bit is valid. All NetCache read queries

are processed by the statistics module as described in §4.4.3.

Only queries for valid keys will go for value processing, as

described in Figure 6(b). Since each cached item is bound to

an egress pipe, in cases of extreme skew (e.g., all queries are

destined to items bound to one pipe), the cache throughput

is bounded by that of an egress pipe, which is 1 BQPS for a

Tofino ASIC in our prototype.

So far all packets are assigned with the egress port con-

necting to the destination server. The read queries that get

valid cache values need to be sent back to the client, through

the port given by the routing table. We use packet mirroring
to redirect the packets to the upstream port based on the

routing information saved in the metadata.

5 DISCUSSION
NetCache has a few limitations. For example, it focuses on

a single key-value storage rack; does not support arbitrary

keys and big values; and cannot well handle highly-skewed,

write-intensive workloads. We discuss these issues, their

possible solutions, and our experiences with programmable

switches in this section.

Scaling to multiple racks. We focus on rack-scale key-

value stores in this paper. The ToR switch, which is directly

connected to the storage servers, serves as a load-balancing

cache for the storage rack. With this cache, NetCache is able

to guarantee billions of QPS with bounded query latencies

for the rack, which is sufficient for many use cases. Neverthe-

less, NetCache can scale out to multiple racks for large-scale

deployments. Since ToR switches can only balance the load

for servers in their own racks, the load on individual racks

can become imbalanced when we have tens of such racks.

This requires us to cache hot items to higher-level switches in

a datacenter network, e.g., spine switches. Ideally, we would

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

like to provide a “one big memory” abstraction where the

on-chip memories of all switches work as a single big cache.

We need to carefully design a cache allocation mechanism

to minimize routing detours and maximize switch memory

utilization, as well as a cache coherence mechanism to en-

sure cache coherence with multiple switch caches. A full

exploration is our future work.

Restricted key-value interface. The current NetCache

prototype provides a restricted key-value interface, where

the keys have fixed 16-byte length and the values have 128-

byte maximum size. Variable-length keys can be supported

by mapping them to fixed-length hash keys. The original

keys can be stored together with the values in order to han-

dle hash collisions. Specifically, when a client fetches a value

from the switch cache, it should verify whether the value is

for the queried key, by comparing the original key to that

stored with the value. And if a hash collision happens, the

client should send a new query directly to the storage servers

to fetch the intended value. Supporting variable length keys

in the data plane can be achieved through consuming more

hardware resources and more complicated parsing logic. We

leave this as a future work.

For the value size, by assigning different bitmaps and in-

dexes to different keys, NetCache can store values with differ-

ent sizes in the on-chip memory, at the granularity of output

data size of one register array. The maximum value size is

the total output data size of all register arrays, usually at the

order of hundreds of bytes, which is large enough for many

in-memory key-value applications for web services [2, 34].

Larger values (up to MTU size) can be supported by using

packet mirroring/recirculation to let a packet go through

the pipe for multiple rounds, with each round appending a

few hundred bytes to the value field. Note that packet mir-

roring/recirculation reduces the effective throughput as a

mirrored/recirculated packet consumes resources that can

be otherwise used for a new packet. This attributes to a

fundamental trade-off between throughput and resources

(memory and compute) in modern switch ASIC design.

Write-intensive workloads. NetCache provides load bal-

ancing for read-intensive workloads, which are common in

many real-world scenarios (e.g., the GET/SET ratio is 30:1 in

the Memcached deployment at Facebook [2]). As all write

queries have to be processed by storage servers, the load on

storage servers would be imbalanced under high-skewed,

write-intensive workloads. Conceptually, this problem could

be solved by directly handling write queries on hot items

in the switch. However, the results of write queries would

be lost under switch failures. This can be solved by writ-

ing to multiple switches for fault-tolerance but requires a

mechanism to ensure the consistency of multiple copies in

switches, which we leave as future work.

Encryption. Encryption is often used when critical informa-

tion is stored in a key-value store, especially in public clouds.

Since NetCache does not need to interpret the meanings of

the key-value items, NetCache can serve encrypted values

indexed by encrypted keys, as long as the packet format can

be recognized and parsed by the switch. NetCache cannot

hide key access patterns without new mechanisms.

Experiences with programmable switches. During the

design and development of NetCache, we sometimes found it

challenging to fit the key-value store and the query statistics

modules into switch tables and register arrays. This can be

improved in next-generation programmable switches from

both the software and hardware sides. In the software side,

the current programming API and compiler of programmable

switches are low-level. Designing the data plane modules for

NetCache requires us to carefully deal with the stages, the

size of register arrays in each stage, and the bytes that can

be read and written in each register array. The programming

API should provide higher-level abstractions for developers

to write network applications and the compiler should intel-

ligently map the applications to the switch data plane under

various switch resource constraints. In the hardware side, we

expect next-generation programmable switches to support

larger slots for register arrays so that the chip can support

larger values with fewer stages.

Programmable switches beyond networking. The per-
formance and programmability of new-generation switches

make them appealing to be used beyond traditional network

processing, just as the way GPUs are used beyond graph-

ics. Switches have high IO but limited programmability and

resources, and servers have low IO but general-purpose com-

putation and abundant resources. A new generation of het-

erogeneous distributed systems can be designed with these

two types of devices, which have disparate but complemen-
tary capabilities. NetCache is only one concrete example

of such heterogeneous systems. We expect programmable

switches can be deeply integrated into cloud systems to build

high-performance and robust cloud services in the future.

6 IMPLEMENTATION
We have implemented a prototype of NetCache, including all

switch data plane and control plane features described in §4,

a client library that interfaces with applications, and a server

agent that provides a shim layer to in-memory key-value

stores and guarantees cache coherence.

The switch data plane is written in P4 [6] and is compiled

to Barefoot Tofino ASIC [4] with Barefoot Capilano software

suite [3]. The cache lookup table has 64K entries for 16-byte

keys. The value tables and register arrays spread across 8

stages. Each stage provides 64K 16-byte slots. This results

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

in a total of 8 MB for the cache with value size at the granu-

larity of 16 bytes and up to 128-byte values. The Count-Min

sketch contains 4 register arrays, each with 64K 16-bit slots.

The Bloom filter contains 3 register arrays, each with 256K

1-bit slots. The Count-Min sketch and the Bloom filter uses

hash functions provided by the Tofino ASIC, which perform

random XORing of bits of the key field. The controller can

configure the frequency to reset the Count-Min sketch and

the Bloom filter. We reset them every second in the experi-

ments. In total, our data plane implementation uses less than

50% of the on-chip memory available in the Tofino ASIC,

leaving enough space for traditional network processing.

We use standard L3 routing as the routing module, which

forwards packets based on destination IP address.

The controller is written in Python. The P4 compiler gen-

erates Thrift APIs for the controller to update the data plane

through the switch driver at runtime. The controller uses

these APIs to receive heavy-hitter reports from the data

plane, fetch counters, and updates the cached items, accord-

ing to the mechanism described in §4.3.

The client library and the server agent are implemented in

C with Intel DPDK [20] for optimized IO performance. The

client library provides a key-value interface, and translates

API calls to NetCache packets. The client can generate key-

value queries according to a Zipf distribution with mixed

read and write operations at up to 35 MQPS with the 40G

NICs on our servers.

We have implemented a simple (not optimized) in-memory

key-value store with TommyDS [41] for our evaluations. It

provides up to 10 MQPS throughput. We have implemented

a server agent which provides a shim layer for NetCache to

hook up with the key-value store. Read queries only involve

simple translations between NetCache packets and API calls

of the key-value store. An additional mechanism is imple-

mented to guarantee cache coherence for write queries and

cache updates as described in §4. We have implemented a

light-weight high-performance reliable packet mechanism

to ensure a new value is updated to the switch data plane

for write queries. Similar to the client library, our current

implementation of the server agent provides up to 35 MQPS

IO with the 40G NICs. Our server agent supports per-core

sharding with Receive Side Scaling or DPDK Flow Director

to handle highly concurrent workloads.

7 EVALUATION
In this section, we provide evaluation results on NetCache.

The results demonstrate that NetCache runs on programmable

switches at line rate (§7.2), provides significant performance

improvements on throughput and latency for high-performance

key-value stores (§7.3), and efficiently handles a wide range

of dynamic workloads (§7.4).

7.1 Methodology
Testbed.Our testbed consists of one 6.5Tbps Barefoot Tofino
switch and three server machines. Each server machine is

equipped with a 16-core CPU (Intel Xeon E5-2630) and 128

GB total memory (four Samsung 32GB DDR4-2133 memory).

One machine, which is equipped with two 40G NICs (Intel

XL710), is used as a client to generate key-value queries;

the other two machines, one with a 40G NIC (Intel XL710)

and the other with a 25G NIC (Intel XXV710), are used as

key-value storage servers.

Workloads. We use both uniform and skewed workloads.

The skewed workloads follow Zipf distribution with different

skewness parameters (i.e., 0.9, 0.95, 0.99), which are typical

workloads for testing key-value stores [28, 37] and are evi-

denced by real-world deployments [2, 11]. We use Zipf 0.99

in most experiments to demonstrate that NetCache provides

high throughput even under extreme scenarios, indicating

that the storage rack can always meet its performance goals

without much resource over-provisioning. We also show that

NetCache still significantly improves the performance under

less-skewed workloads (e.g., Zipf 0.9 and 0.95). Our client

uses approximation techniques to quickly generate queries

under a Zipf distribution [18, 28]. We use 16-byte keys and

the keyspace is hash partitioned across storage servers. We

use 128-byte values and a cache size of 10,000 items by de-

fault, and also include experiments to show the effects of

value size and cache size to the system performance. Most

experiments use read-only workloads, as NetCache targets

for load balancing read-intensive workloads. Nevertheless,

we show the system performance while varying the ratio

and skewness of write queries.

We also evaluate NetCache with three dynamic workloads

same as SwitchKV [28], by changing the popularity ranks

of keys in the Zipf distribution. We denote N as the change

size andM as the cache size.

• Hot-in. For each change, the N coldest keys are moved to

the top of the popularity ranks; other keys decrease their

popularity ranks accordingly. This is a radical change since

the system needs to immediately put the N keys to the

cache in order to balance the storage servers.

• Random. For each change, N hot keys are randomly se-

lected from the topM hottest keys, and are replaced with

random N cold keys. This is a moderate change since the

chosen N hot keys is unlikely to be the hottest N keys.

• Hot-out. For each change, the N hottest keys are moved

to the bottom of the popularity ranks; other keys increases

their popularity ranks accordingly. This is a small change

since the hottestM-N keys are still in the cache.

Setups. A Barefoot Tofino switch is able to provide 256

25Gbps ports. Ideally, we would like to build a full storage

rack with 128 storage serves, each of which connects to one

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

25Gbps port; the other half ports can be used as upstream

ports to connect clients or other switches. Given the lim-

ited servers we have, we use the following three setups to

evaluate NetCache from different aspects.

• Snake test for switch microbenchmark (§7.2). Snake
test is a standard practice in industry to benchmark switch

performance. For a switch with n ports, port 0 and port

n-1 are connected to two servers separately, and port 2i-1
is connect to port 2i for 0 < i < n/2. By having the two

servers send traffic to each other, all ports are sending and

receiving traffic because of the snake structure. Specifically,
a query packet sent by one server will enter the switch

at port 0, and leave the switch at port 1. Since port 1 is

directly connected to port 2 by a cable, the packet will

enter the switch again at port 2. The switch will treat the

packet as a new query packet, process it, and send it out of

port 3, so on and so forth. Finally, the packet will be sent

to port n − 1 and be processed by the receiver. In this way,

the query packets are looped back to the switch at each

egress ports except for the last one. This allows us to stress

test the switch performance at full traffic load. The process
to read and update values is executed each time when the

packet passes an egress port. To avoid packet size from

increasing for read queries, we remove the value field at

the last egress stage for all intermediate ports. The servers

can still verify the values as they are kept in the two ports

connected to them. Such a setup mimics a scenario where

servers send traffic to all switch ports. We use this setup

to demonstrate that programmable switches can process

NetCache queries at line rate.

• Server rotation for static workloads (§7.3).We use the

machine with two 40G NICs as a client, and the other two

machines as two storage servers. We install the hot items

in the switch cache as for a full storage rack and have the

client send traffic according to a Zipf distribution. For each

experiment, each storage server takes one key-value par-

tition and runs as one node in the rack. The client server

generates queries only destined to the corresponding par-

titions in the experiment based on the Zipf distribution. By

rotating the two storage server for all 128 partitions (i.e.,

performing the experiment for 64 times), we aggregate

the results to obtain the result for the entire key-value

store rack. Such result aggregation is justified by (i) the
shared-nothing architecture of key-value stores and (ii)
the microbenchmark that demonstrates that the switch is

not the bottleneck.

To find the maximum effective system throughput, we

first find the bottleneck partition and use that partition as

one of the two partitions in the first iteration. The client

generates queries destined to the two partitions, and ad-

justs its sending rate to saturate the bottleneck partition.

We obtain the traffic load for the full system based on this

0 32 64 96 128
Value Size (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (B

Q
P

S
)

(a) Throughput vs. value size.

0 16K 32K 48K 64K
Cache Size

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (B

Q
P

S
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).

sending rate, and use this load to generate per-partition

query load for remaining partitions. Since the remaining

partitions are not the bottleneck partition, they should be

able to fully serve the load. We sum up the throughputs of

all partitions to obtain the aggregate system throughput.

• Server emulation for dynamicworkloads (§7.4). Server
rotation is not suitable for evaluating dynamic workloads.

This is because we would like to measure the transient

behavior of the system, i.e., how the system performance

fluctuates during cache updates, rather than the system

performance at the stable state. To do this, we emulate

128 storage servers with two servers by using 64 queues

in each server. Each queue processes queries for one key-

value partition and drops queries if the received queries

exceed its processing rate. Based on the number of received

query replies, the client server adjusts its sending rate to

find out the saturated system throughput. The key-value

queries are generated according to a Zipf distribution, and

the popularity ranks of keys are adjusted according to the

three dynamic workloads. Because each server emulates 64

storage servers by using 64 queues, the throughput of each

queue (i.e., each emulated storage server) becomes 1/64 of

that of an actual storage server. Therefore, the aggregate

system throughput is scaled down by a factor of 64. Such

emulation is reasonable because in these experiments we

are more interested in the relative system performance

fluctuations when NetCache reacts to workload changes,

rather than the absolute system performance numbers.

7.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §7.1). We demonstrate that NetCache is

able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache

with 64K items and vary the value size. Two server machines

and one switch are organized to a snake structure. The switch

is configured to provide 62 100Gbps ports, and two 40Gbps

ports to connect servers. We let the two server machines

act as clients and send cache read and update queries to the

switch to measure the maximum throughput. As described

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (B

Q
P

S
) NetCache (cache)

NetCache (servers)

NetCache
(cache+servers)
NoCache

(a) Throughput vs. skewness.

0
5

10 NoCache zipf-0.9

0
5

10 NoCache zipf-0.95

0
5

10 NoCache zipf-0.99

Storage Server ID
0
5

10

Th
ro

ug
hp

ut
 (M

Q
P

S
)

NetCache zipf-0.99

(b) Load on individual storage servers.

0.0 0.5 1.0 1.5 2.0
Throughput (BQPS)

0

5

10

15

20

La
te

nc
y

(¹
s)

NoCache
NetCache(servers)

NetCache(average)
NetCache(cache)

(c) Latency vs. throughput.

0.0 0.2 0.4 0.6 0.8 1.0
Write Ratio

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (B

Q
P

S
)

NetCache uniform write
NetCache zipf-0.9 write
NetCache zipf-0.99 write

NoCache uniform write
NoCache zipf-0.9 write
NoCache zipf-0.99 write

(d) Impact of write ratio.

100 101 102 103 104

Cache Size (log scale)

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

 (B
Q

P
S

) zipf-0.99 (total)
zipf-0.99 (servers)
zipf-0.9 (total)
zipf-0.9 (servers)

(e) Impact of cache size.

0 1024 2048 3072 4096
Number of storage nodes

0

20

40

60

80

Th
ro

ug
hp

ut
 (B

Q
P

S
) Leaf-Spine-Cache

Leaf-Cache
No-Cache

(f) Scalability (simulation).

Figure 10: System performance.

in §7.1, a query sent by one server machine traverses the

switch according to the snake structure, and is received and

verified by the other server machine. Figure 9(a) shows the

switch provides 2.24 BQPS throughput for value size up to

128 bytes. This is bottlenecked by the maximum sending

rate of the servers (35 MQPS). Specifically, we have 2 (two

servers) × 35 (per-server throughput) × 32 (each query is

replicated 31 times due to the snake structure) MQPS = 2.24

BQPS. The Barefoot Tofino switch is able to achieve more

than 4 BQPS. The throughput is not affected by the value size

or the read/update ratio. This is because the switch ASIC is

designed to process packets with strict timing requirements.

As long as our P4 program is compiled to fit the hardware

resources, the switch data plane is able to process NetCache

queries at line rate.

Our current prototype supports value size up to 128 bytes.

Bigger values can be supported by using more stages or

using packet mirroring/recirculation for multiple rounds of

packing processing as we discussed in §5.

Throughput vs. cache size. We use 128 bytes as the value

size and change the cache size. Other settings are the same

as the previous experiment. Similarly, Figure 9(b) shows that

the throughput keeps at 2.24 BQPS and is not affected by the

cache size. Since our current implementation allocates 8 MB

memory for the cache, the cache size cannot be larger than

64K for 128-byte values. We note that caching 64K items is

sufficient to balance the load for a key-value storage rack as

we show in §7.3.

7.3 System Performance
We now present the system performance of a NetCache key-

value storage rack that contains one switch and 128 storage

servers using server rotation (as described in §7.1).

Throughput. Figure 10(a) shows the system throughput un-

der different skewness parameters with read-only queries

and 10,000 items in the cache. We compare NetCache with

NoCache which does not have the switch cache. In addition,

we also show the the portions of the NetCache throughput

provided by the cache and the storage servers respectively.

NoCache performs poorly when the workload is skewed.

Specifically, with Zipf 0.95 (0.99) distribution, the NoCache

throughput drops down to only 22.5% (15.6%), compared to

the throughput under the uniform workload. By introducing

only a small cache, NetCache effectively reduces the load

imbalances and thus improves the throughput. Overall, Net-

Cache improves the throughput by 3.6×, 6.5×, and 10× over

NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

To zoom in on the results, Figure 10(b) shows the through-

put breakdown on the individual storage serverswhen caching

is disabled (top three) and enabled (bottom). NetCache uses

the switch cache to absorb queries on the hottest items and

effectively balances the load on the storage servers.

Latency. Figure 10(c) shows the average query response la-

tency as a function of system throughput. NoCache process

all queries with storage servers and the average latency is

15 µs . Its throughput saturates at 0.2 BQPS, after which the

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

Q
P

S
)

average throughput per sec.
average throughput per 10 sec.

(a) Hot-in workload (radical change).

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

Q
P

S
)

average throughput per sec.
average throughput per 10 sec.

(b) Random workload (moderate change).

0 20 40 60 80 100
Time (s)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (M

Q
P

S
)

average throughput per sec.
average throughput per 10 sec.

(c) Hot-out workload (small change).

Figure 11: Handling dynamic workloads. The throughput is for a single client.

system would have queries infinitely queued up at bottle-

neck servers. NetCache processes queries on cached keys

with negligible latency overhead. The 7 µs query latency

is mostly caused by the client. Overall, by accounting for

queries processed by the storage servers, the average latency

of NetCache is 11–12 µs . The latency is steady when the

system throughput grows to 2 BQPS.

Impact of write ratio. NetCache targets at read-intensive
workloads, and certain types of write-intensive workloads

can offset the benefits of in-network caching. This is because

write queries invalidate cached items along their routes to

storage servers. As a result, write queries not only do not

benefit from caching, but also cause cache misses for read

queries on the invalidated items. In the adversarial setting

where write queries visit the same skewed set of hot keys as

read queries, the effect of caching would disappear and the

system performance would degrade to the baseline.

Figure 10(d) plots how the system throughput changes

with different write ratios. The read queries follow Zipf 0.99

distribution. With uniformwrite queries, load across the stor-

age servers is balanced, so increasing the write ratio reduces

the overall throughput of NetCache linearly. In comparison,

the throughput of NoCache is low under small write ratios

because of skewed reads, and the throughput increases with

bigger write ratios because the writes are uniform.

On the other hand, with the same skewed key distribu-

tions for both read and write queries, even with a write ratio

of 0.2, most read queries on hot items have to reach the

storage servers to retrieve the latest values. Because of the

severe load imbalance, the overall system throughput of Net-

Cache drops significantly. Thus, the throughput of NetCache

is similar to or even slightly worse than that of NoCache

with write ratio greater than 0.2 under highly skewed write

workloads, because NetCache has to pay extra system over-

head for maintaining cache coherence. When the write ratio

is smaller than 0.2, NetCache has better throughput than

NoCache, and the gap is bigger with smaller write ratios and

less skewed writes. Therefore, NetCache is most effective

for read-intensive workloads with highly-skewed reads, and

uniform or moderate-skewed writes. For write-heavy work-

loads with highly-skewed writes, the switch cache should be

disabled to avoid the extra overhead for maintaining cache

coherence. This is a generic principle applicable to many

caching systems.

Impact of cache size. Figure 10(e) shows how the num-

ber of cached items affect the system throughput for Zipf

0.9 and 0.99 workloads. With a cache size of only 1,000

items, the 128 storage nodes are well balanced and achieve

the same throughput as with a uniform workload (see Fig-

ure 10(a)). The total system throughput (switch cache and

storage servers) continues to grow as the number of cached

items increases. Because of the skewness of the workload,

additional throughput improvement on larger cache sizes

is diminishing (note the log scale on x-axis). Furthermore,

when the cache size is small, because Zipf 0.9 is less skewed

than Zipf 0.99, the system achieves higher throughput under

Zipf 0.9. On the other hand, when the cache size is large, the

cache provides more throughput under Zipf 0.99, and thus

the total throughput is higher under Zipf 0.99.

Scalability. This experiment evaluates how NetCache can

potentially scale to multiple racks, as briefly discussed in §5.

We use simulations with read-only workloads and assume

the switches can absorb queries to hot items. We leave cache

coherence and cache allocation for multiple racks as future

work. Figure 10(f) shows the simulated results when scaling

out the storage system to 4096 storage servers on 32 racks.

In fact, the load imbalance problem is more severe with more

servers, since the entire system is bottlenecked by the most

loaded node. As a result, the overall system throughput of

No-Cache stays very low and is not growing even whenmore

servers are added. NetCache running only on ToR switches

(Leaf-Cache) gives limited throughput improvements when

scaling out to tens of racks: the workload inside a rack is

balanced, but the load imbalance between racks still exists.

Caching items in spine switches (Leaf-Spine-Cache) balances

the load between racks, and so the overall throughput grows

linearly as the number of servers increases.

NetCache: Balancing Key-Value Stores with Fast In-Network Caching SOSP ’17, October 28, 2017, Shanghai, China

7.4 Handling Dynamics
Finally, we evaluate how NetCache handles dynamic work-

loads using server emulation (as described in §7.1). Our ex-

periments use the Zipf 0.99 workload with 10,000 items in the

cache. Each experiment begins with a pre-populated cache

containing the top 10,000 hottest items. The controller runs

as a process in the switch OS, and refreshes the query statis-

tics module every second via the switch driver. We evaluate

how NetCache reacts to three types of dynamic workloads in

terms of system throughput.We use the client to dynamically

adjust its sending rate to estimate the real-time saturated

system throughput. Specifically, if the client detects packet

loss is above a high threshold (e.g., 5%), it decreases its rates;

if the packet loss is less than a low threshold (e.g., 1%), client

increases its rates. This method cannot accurately measure

the real-time effective system throughput since the client

may under-react or over-react.

Hot-in. We move 200 cold keys to the top of the popularity

ranks every 10 seconds. Figure 11(a) shows how the aver-

age throughput per second and per 10 seconds change over

time. With the in-network heavy hitter detector, the cache

is frequently updated to include new hot keys. As a result,

the per-second throughput recovers very quickly after a

sudden workload change. We hypothesize that these radi-

cal changes are unlikely to happen frequently in practice.

Nevertheless, this experiment demonstrates that NetCache

is robust enough to react to dynamic workloads even with

certain adversarial changes in key popularity.

Random. We randomly replace 200 keys in the 10,000 most

popular keys every second. The highest ranked popular keys,

in this case, are less likely to be replaced, so the deep drops

in throughput are less frequent, as shown in Figure 11(b). If

we look at the average throughput per 10 seconds, the per-

formance looks almost unaffected by the workload changes.

Hot-out. We let 200 hottest keys suddenly go cold every

second, and increase the popularity ranks of all other keys

accordingly. Since it’s only a change in relative ordering

for most cached keys, the system throughput is almost not

affected. Figure 11(c) shows that NetCache can easily handle

hot-out workloads with very steady throughput over time.

8 RELATEDWORK
In-memory key-value stores. Given the high-throughput

and low-latency requirements of large-scale Internet ser-

vices, key-value storage systems are shifting to in-memory

designs [1, 15, 16, 22, 23, 26, 27, 29, 30, 34, 36, 38, 42, 43].

They use a variety of techniques to improve the system per-

formance, from using new data structures and algorithms,

to exploiting various system-level optimizations and new

hardware capabilities.

Load balancing. When scaling out key-value stores, the

overall performance is often bottlenecked by the overloaded

servers, due to highly-skewed workloads [2, 11]. Traditional

methods use consistent hashing [24] and virtual nodes [13] to

mitigate load imbalance, but these solutions fall short when

dealing with workload changes. “Power of two choices” [33]

and data migration strategies [10, 25, 40] are designed to

balance dynamic workloads, but introduce additional sys-

tem overheads for replication and migration, and have lim-

ited ability to handle large skew. SwitchKV [28] uses an

in-memory caching layer to balance the flash-based storage

layer, but is inadequate when the storage layer is also in

memory. EC-Cache [37] uses online erasure coding to bal-

ance in-memory key-value stores. It splits an item tomultiple

chunks and thus is not suitable for small items. As a result, it

focuses on the workloads for date-intensive clusters, whose

item sizes are much larger than typical key-value stores that

support web services as targeted by NetCache.

Hardware acceleration. Recent work on network hard-

ware presents new opportunities to improve datacenter key-

value stores. IncBricks [31] designs middleboxes to cache

items inside the network. IncBricks primarily focuses on

improving the cache hit ratio for performance speedup, and

thus requires larger storage space. Compared to NetCache,

IncBricks requires deployments of specialized hardware (i.e.,

NPUs) to collocate with existing programmable switches, in

order to function as an in-network caching layer. NPUs are

not fast enough to satisfy the throughput requirement for a

load-balancing cache. In contrast, NetCache provides a load

balancing cache which requires little storage space, and is

able to efficiently handle workload changes.

9 CONCLUSION
We present NetCache, a new rack-scale key-value store de-

sign that guarantees billions of QPS with bounded latencies

even under highly-skewed and rapidly-changing workloads.

NetCache leverages new-generation programmable switches

to build an on-path caching layer to effectively balance the

load for the storage layer and guarantees cache coherence

with minimal overhead. We believe that NetCache is only

one example of ultra-high performance distributed systems

enabled by high-speed programmable switches.

Acknowledgments We thank our shepherd John Ouster-

hout and the anonymous reviewers for their valuable feed-

back. Xin Jin and Ion Stoica are supported in part by DHS

Award HSHQDC-16-3-00083, NSF CISE Expeditions Award

CCF-1139158, and gifts from Ant Financial, Amazon Web

Services, CapitalOne, Ericsson, GE, Google, Huawei, Intel,

IBM, Microsoft and VMware. Robert Soulé is supported in

part by Swiss National Science Foundation Award 166132.

SOSP ’17, October 28, 2017, Shanghai, China X. Jin et al.

REFERENCES
[1] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-

ishayee, Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast

Array of Wimpy Nodes. In ACM SOSP.
[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload Analysis of a Large-scale Key-value Store.

In ACM SIGMETRICS.
[3] Barefoot. 2017. Barefoot Capilano. (2017). https://www.

barefootnetworks.com/technology/#capilano.

[4] Barefoot. 2017. Barefoot Tofino. (2017). https://www.barefootnetworks.

com/technology/#tofino.

[5] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. 2011. Many-

core Key-value Store. In IEEE IGCC.
[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

independent Packet Processors. ACM SIGCOMM CCR (July 2014).

[7] Broadcom. 2017. Broadcom Tomahawk II. (2017). https://www.

broadcom.com/.

[8] Andrei Broder and Michael Mitzenmacher. 2004. Network applications

of Bloom filters: A survey. Internet mathematics (2004).
[9] Cavium. 2017. Cavium XPliant. (2017). https://www.cavium.com/.

[10] Yue Cheng, Aayush Gupta, and Ali R. Butt. 2015. An In-memory Object

Caching Framework with Adaptive Load Balancing. In EuroSys.
[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with

YCSB. In ACM SOCC.
[12] Graham Cormode and S. Muthukrishnan. 2005. An improved data

stream summary: The Count-Min sketch and its applications. Journal
of Algorithms (April 2005).

[13] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and

Ion Stoica. 2001. Wide-area Cooperative Storage with CFS. In ACM
SOSP.

[14] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. ACM
CACM (February 2013).

[15] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. 2014. FaRM: Fast Remote Memory. In USENIX NSDI.
[16] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3:

Compact and Concurrent MemCache with Dumber Caching and

Smarter Hashing. In USENIX NSDI.
[17] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky.

2011. Small Cache, Big Effect: Provable Load Balancing for Randomly

Partitioned Cluster Services. In ACM SOCC.
[18] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and

Peter J. Weinberger. 1994. Quickly Generating Billion-record Synthetic

Databases. In ACM SIGMOD.
[19] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A. Freed-

man, Ken Birman, and Robbert van Renesse. 2014. Characterizing

Load Imbalance in Real-World Networked Caches. In ACM SIGCOMM
HotNets Workshop.

[20] Intel. 2017. Intel Data Plane Development Kit (DPDK). (2017). http:

//dpdk.org/.

[21] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich.

2002. Flash Crowds and Denial of Service Attacks: Characterization

and Implications for CDNs and Web Sites. InWWW.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using

RDMA efficiently for key-value services. In ACM SIGCOMM.

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design

Guidelines for High Performance RDMA Systems. In USENIX ATC.
[24] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew

Levine, and Daniel Lewin. 1997. Consistent Hashing and Random

Trees: Distributed Caching Protocols for Relieving Hot Spots on the

World Wide Web. In ACM STOC.
[25] Markus Klems, Adam Silberstein, Jianjun Chen, Masood Mortazavi,

Sahaya Andrews Albert, P.P.S. Narayan, Adwait Tumbde, and Brian

Cooper. 2012. The Yahoo!: Cloud Datastore Load Balancer. In CloudDB.
[26] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia,

Michael Kaminsky, David G Andersen, O Seongil, Sukhan Lee, and

Pradeep Dubey. 2015. Architecting to achieve a billion requests per

second throughput on a single key-value store server platform. In

ISCA.
[27] Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J

Freedman. 2014. Algorithmic improvements for fast concurrent cuckoo

hashing. In EuroSys.
[28] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen,

and Michael J. Freedman. 2016. Be Fast, Cheap and in Control with

SwitchKV. In USENIX NSDI.
[29] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.

2011. SILT: A Memory-efficient, High-performance Key-value Store.

In ACM SOSP.
[30] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-

sky. 2014. MICA: A Holistic Approach to Fast In-memory Key-value

Storage. In USENIX NSDI.
[31] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,

and Kishore Atreya. 2017. IncBricks: Toward In-Network Computation

with an In-Network Cache. In ACM ASPLOS.
[32] Memcached. 2017. Memcached key-value store. (2017). https://

memcached.org/.

[33] Michael Mitzenmacher. 2001. The Power of Two Choices in Random-

ized Load Balancing. IEEE Transactions on Parallel and Distributed
Systems (October 2001).

[34] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul

Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.

2013. Scaling Memcache at Facebook. In USENIX NSDI.
[35] NoviFlow. 2017. NoviFlow NoviSwitch. (2017). http://noviflow.com/

products/noviswitch/.

[36] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,

Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,

Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen

Yang. 2015. The RAMCloud Storage System. ACM Transactions on
Computer Systems (August 2015).

[37] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and

Kannan Ramchandran. 2016. EC-Cache: Load-Balanced, Low-Latency

Cluster Caching with Online Erasure Coding. In USENIX OSDI.
[38] Redis. 2017. Redis data structure store. (2017). https://redis.io/.

[39] Redis. 2017. Using Redis as an LRU cache. (2017). https://redis.io/

topics/lru-cache.

[40] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.

Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.

2014. E-Store: Fine-grained Elastic Partitioning for Distributed Trans-

action Processing Systems. VLDB (November 2014).

[41] TommyDS. 2017. TommyDS C library. (2017). http://www.tommyds.it/.

[42] Vijay Vasudevan, Michael Kaminsky, and David G. Andersen. 2012.

Using Vector Interfaces to Deliver Millions of IOPS from a Networked

Key-value Storage Server. In ACM SOCC.
[43] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson,

George Cabrera III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,

Anthony Giardullo, Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence,

Mark Marchukov, Dmitri Petrov, and Lovro Puzar. 2012. TAO: How

Facebook Serves the Social Graph. In ACM SIGMOD.

https://www.barefootnetworks.com/technology/#capilano
https://www.barefootnetworks.com/technology/#capilano
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.broadcom.com/
https://www.broadcom.com/
https://www.cavium.com/
http://dpdk.org/
http://dpdk.org/
https://memcached.org/
https://memcached.org/
http://noviflow.com/products/noviswitch/
http://noviflow.com/products/noviswitch/
https://redis.io/
https://redis.io/topics/lru-cache
https://redis.io/topics/lru-cache
http://www.tommyds.it/

	Abstract
	1 Introduction
	2 Motivation
	3 NetCache Overview
	4 NetCache Design
	4.1 Network Protocol
	4.2 Query Handling
	4.3 Cache Coherence and Cache Update
	4.4 Switch Data Plane Design

	5 Discussion
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Switch Microbenchmark
	7.3 System Performance
	7.4 Handling Dynamics

	8 Related Work
	9 Conclusion
	References

