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Abstract: We propose a joint model for point estimates and their variances when observed variances may 
contain bias. The bias in variances for groups of domains may be induced by an estimation procedure, such 
the weight smoothing procedure of Beaumont (2008) to compute a domain point estimator. While the 
weight-smoothed point estimator is more efficient than the original weighted survey estimator, its variance 
estimation procedure requires truncations that induces bias in the domain variance estimator.  The proposed 
formulation generalizes the joint point estimator and variance models to explicitly parameterize a 
multiplicative bias in observed variances under a nonparametric formulation that allows the data to discover 
distinct bias regimes. As a consequence of the better variance estimation, domain point estimates are more 
robustly estimated under a joint model for the domain point estimates and their associated variances. We 
compare the performances of alternative models in application to estimates from the Current Employment 
Statistics survey and in simulations. 
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1. Introduction

Estimates for smaller domains are often made by employing models that allow for “borrowing strength” 
across multiple domains to produce more efficient domain point estimation. The Fay-Herriot (FH) model 
provides a relatively simple formulation that produces more efficient domain-level estimation. The success 
of the FH model depends on the existence of good covariates that allow for a quality description of the 
underlying process, which customarily is formulated as a regression model; a normally distributed “random 
effects” term expresses deviations of the signal around the regression line.  

In the classical FH formulation, the variances of direct sample estimates are assumed to be fixed and known 
to researchers. In practice, they are estimates and contain noise. Instead of assuming that variances of direct 
sample estimates are “fixed and known”, Maiti et al (2014) and Sugasawa et al. (2017) proposed models to 
simultaneously fit point estimates and their variances; a few alternative formulations were considered in 
Gershunskaya and Savitsky (2018). The joint treatment of point estimates and variances is a more efficient 
way of modeling, compared to the classical FH, because it exploits the relationship between point estimates 
and their variances. 

In this paper, we focus on the quality of domain-indexed survey sampling variances, which provide the 
estimation model information on the quality of direct sample inputs.  Our goal is to allow more flexibility 
in their estimation in order that we may more accurately assess the quality of the direct sample inputs, which 
would be expected to improve the quality of small domain estimations. 

1 Any opinions expressed in this paper are those of the authors and do not constitute policy of the Bureau 
of Labor Statistics.  



 

 

It is clear that the quality of the resulting model estimates depends on the quality of the inputs; both the 
domain point estimates and their estimated variances. We begin our assessment of the quality of input 
variances with a pre-modeling step where we adopt Beaumont’s (2008) generalized design-based paradigm 
and treat survey weight as random variables. This approach permits smoothing survey weights before 
applying them in the expansion estimator formula. The theory states that the resulting “smooth weight” 
(SW) estimator is unbiased with respect to a generalized design approach (that includes the distribution 
over survey samples and the random variable used to generate sampling weights). The SW estimator 
produces lower domain variance inputs than the traditional estimator that uses the original survey weights 
(in what follows, we use abbreviation UW to refer to the estimator based on the original “unsmoothed” 
weights). The approach was applied by Gershunskaya and Sverchkov (2014) for the sample-based domain 
estimation in the Current Employment Statistics (CES) survey conducted by the Bureau of Labor Statistics. 
We start with and use smoothed weights for improved CES domain point estimates and variances as inputs 
in our domain-level modeling. 

Beaumont (2008) proposes two ways for estimating the variance of the SW estimator. The first approach 
uses an additive (negative) adjustment to the traditional design variance of the UW estimator. The 
adjustment can be estimated using the bootstrap. However, this approach can lead to negative values: in the 
CES application, we observed that a large portion of domain estimates resulted in negative variance 
estimates that had to be truncated to zero. Therefore, we used the second approach proposed in the same 
paper. We describe it in more detail in Section 2. This approach, however, also employs ad hoc truncations 
to avoid negative variance estimates or squared biases. As a result, variance estimates input to our domain-
level modeling for the SW estimator may be of low quality for a subset of domains.  

In this paper, we devise a more flexible model for the variances in application to the SW point estimate and 
variance inputs, both the original UW and smoothed SW variance estimates, with the goal to obtain a more 
accurate estimator. The paper is organized as follows. In Section 2, we briefly describe the Beaumont’s 
variance estimation approach for the SW estimator. We introduce our joint models for domain point and 
variance estimation in Section 3. The bias adjustment property is discussed in Section 4. The CES 
application results are given in Section 5. A simple simulation study in Section 6 is designed as an 
illustration to help explain the observed CES results.  

2. Sample estimation with the weight smoothing 

We refer the reader to Gershunskaya and Sverchkov (2014) for the description of the CES estimator and 
the weight smoothing procedure. 

We next describe the variance estimation approach used to compute the SW variances that we propose to 
use for domain modeling in the sequel. The method for SW variances is based on Beaumont (2008). In 

Beaumont’s notation, variance of the SW estimate ˆSWT  of finite population target T  is 

         2 2ˆ ˆ ˆ ˆ| | | , | , | ,SW SW SW SWV T Y E T T Y E V T Z Y B T Z Y Y      

where    ˆ ˆ| , | ,SW SWB T Z Y E T T Z Y  , Y is a response variable and Z is a variable used to 

determine the inclusion probabilities (i.e., conditioning on both Z and Y denotes the classical design 
distribution, conditioning on Y only denotes the generalized Beaumont’s approach where weights are 
treated as random variables.) 

Thus, the variance is estimated by 



 

 

     2ˆ ˆ ˆ ˆ ˆ ˆ| | , | , .SW SW SWV T Y V T Z Y B T Z Y       (1) 

Note that both parts on the right hand side of (1) are expressed with respect to the traditional design 

approach, i.e. where the weights are treated as fixed. The first term in (1),  ˆ ˆ | ,SWV T Z Y ,  is the estimate 

of variance where the smooth weights are fixed (through Z) and treated as if they were the design weights. 
This quantity may be obtained with the usual methods for survey variance estimation. In the CES 
application, we used Balanced Repeated Replication (BRR) resampling method. The squared bias term, 

 2ˆ ˆ | ,SWB T Z Y , may be estimated as  2ˆ ˆ ,SW UWT T  where ˆUWT  is an estimator based on the original 

survey weights. However, this would be a biased estimate of the squared bias, since 

     2 2ˆ ˆ ˆ ˆ ˆ ˆ| , | , | ,SW UW SW UW SW UWE T T Z Y E T T Z Y V T T Z Y           .  

Thus, the unbiased estimate of the squared bias is 

     22ˆ ˆ ˆ ˆ ˆ ˆ ˆ| , | , .SW SW UW SW UWB T Z Y T T V T T Z Y        (2) 

Note that the second term in (2),  ˆ ˆ ˆ | ,SW UWV T T Z Y , may be obtained from the same BRR procedure 

as  ˆ ˆ | ,SWV T Z Y . Since (2) can produce negative values, Beaumont (2008) recommended to replace 

negative values by zeros, so that the estimate of the squared bias is 

    22ˆ ˆ ˆ ˆ ˆ ˆmax 0, | ,SW UW SW UWB T T V T T Z Y    . 

Finally, according to the theory, the variance of the SW is no greater than the variance of the UW estimator. 
Thus, another truncation sets the variance of SW to be equal to the variance of UW in cases where it happens 
to go above the latter: 

      2ˆ ˆ ˆ ˆ ˆ ˆ ˆ| min | , , | , .SW UW SWV T Y V T Z Y V T Z Y B     (3) 

As a result of the above mentioned truncations, the quality of the resulting variance estimate may suffer. 
Therefore, for the model inputs, we consider a case that uses the BRR-based variance of UW in place of 
the variance of SW to avoid the truncations inherent in the SW variances. We will next see how we 
parameterize the model for our variances to remove the bias in use of the UW variance for the SW point 
estimate inputs. It turns out that the model fit based on such variance “bias-corrected” version performs 
better than when the input variances (3) are used without such correction term. 

3. Description of the models 

Our Model 1 is the classical Fay-Herriot (FH) model (Fay and Herriot 1979.) Let iy  be a survey estimate 

of target parameter i  for domain i ; for each domain, 1,...,i N , assume  

 | ~ ,
ind

i i i iy N v  ,         (4) 



 

 

 2 2| , , ~ ,
ind

T
i u i uNβ x β     .        (5) 

Equation (4) says that survey estimates are unbiased and normally distributed with variance  iv  that is 

assumed to be fixed and known. Equation (5) states the assumption about the underlying process. In 
particular, we assume that target population values i  are normally distributed around regression line 

T
ix β  , where ix  is a vector of covariate values for domain i ; model parameters  2, , uβ   are to be 

estimated from the model. 

In practice, true variances of the survey estimates are not known, and iv  represent some estimate of the 

variance. Since direct survey estimates of the variances contain noise, the traditional approach is to use 
some sort of smoothing of the variances (for example, based on a generalized variance function, or GVF) 
before they are used in the modeling.  

A more efficient approach to use available direct variance estimates is to fit them simultaneously with the 
point estimates in a single model. This co-modeling approach was proposed by Maiti et al. (2014) who also 
presented an EM algorithm for their model. Sugasawa et al. (2017) considered the co-modeling approach 
within the Bayesian paradigm. We next employ as our Model 2 the revised version of Sugasawa et al. 
(2017).   

In Model 2, we present a “simple” co-modeling formulation (the model is referred to as FHS). Assume the 
following holds for pairs of direct survey estimates  ,i iy v  for each domain :i  

 2 2| , ~ ,
ind

i i i i iy N    ,         (6) 

 2 2| , , ~ ,
ind

T
i u i uNβ x β     .        (7) 

* *
2

2
| , ~ ,

2 2

ind
i i

i i
i

an an
v a G


 
 
 

,        (8) 

  2 | ~ 2,exp .
ind

T
i iIG z γ γ         (9) 

Conditions (6) and (7) are the same as FH’s (4) and (5), except that 2
i  signifies an unknown variance 

parameter. Condition (8) states that direct variance estimates  iv  are unbiased and have gamma distribution. 

The shape and scale parameters of the gamma distribution also depend on an unknown parameter a  and 
domain sample size, in (we use standardized values for sample sizes, 

      * min 1 max min 0,1 .i i i i ii ii
n n n n n     ) Condition (9) is a model for true variance 2 :i the 



 

 

variance has the inverse gamma distribution and the mean depends on vector of covariates iz through 

 exp T
iz γ , where γ  are unknown parameters. 

In this paper, we construct a new formulation for a nonparametric model for the variances (not included in 
Gershunskaya and Savitsky (2018)) designed to capture bias and noise in either the case we use SW 
variances as inputs or UW variances in lieu of the SW variances as inputs to our models. The former express 
high rates of truncation that induce bias and noise in subgroups of domains while the latter is positively 
biased under our use of SW point estimates. 

In Model 3 (CFHG), we assume that (6) holds and relax assumptions (7),(8), and (9) of the FHS model by 
replacing them with the finite mixtures of respective distributions: 

 2 2

1
| , , , ~ , ,

iid K T
i u k k i uk

Nπ μ β x β    


       (10) 

* *
2

21
| , , , ~ ,

2 2

ind K i i
i i kk

k i

an an
v a G

b
 



 
 
 

b π ,      (11) 

  2

1
| , ~ 2,exp .

ind K T
i k i kk

IG z 
γ π γ        (12) 

In (10)-(12), we assume the existence of several underlying processes, each characterized by its own cluster-
specific parameters k , ,k kb γ .  Parameters kb  may be used to detect bias; for example, the use of UW 

variances are expected to be positively biased for estimation of the true variances, 2
i . Domains with (non-

truncated) SW variances that are lower than UW variance would be allocated to cluster, k, with 1.kb   

We also expect that a subset of domains will express noisy and inefficient variance estimates due to small 
sample sizes.   In this case the kb  term helps to stabilize estimation of 2

i  in a similar manner as a ridge 

regression term (on the logarithm scale). The 'k sγ represent regression coefficients for the true variances 

and allow for different clusters of domains – induced by bias or noise – to express distinct sensitivities to 
predictor inputs. 

We, next, allow the prior distributions to be influenced by predictors, ig , so that two domains, 1i  and 2i , 

who have similar predictor values, 
1i

g  and 
2i

g would be assigned a higher probability to cluster together, a 

priori. These predictors specifically influence how domains co-cluster. Using predictors to influence the 
prior probability of co-clustering is another way to use predictors beyond a regression relationship with the 
response variable.      

In CES, for example, information on average earnings in domains may inform on the structure of the 
clusters. Let ig  denote an l -dimensional vector of such covariates. Assume 

 1
| , , ~ , .

ind K

i g g k l gk gk
g μ Σ π N μ Σ

        (13) 



 

 

Thus covariates ig  are used as additional input data in the model. We are not interested in the fitted values 

of parameters ,g gμ Σ , but fitting ig  and including the 
gkμ  and 

gΣ  in the clusters along with k , ,k kb γ  

helps better identify the clustering structure to give sharper estimates. 

4. The bias correction property of the multiplicative variance model 

We formulate the bias protection property for a particular case of a scalar multiplicative bias term, when 
all domains are assumed to have similar bias. A multi-cluster bias regime is viewed as a generalization of 
this single-cluster case. 

Suppose the following model holds for domains 1,..., :i N  

 2 2| , ~ , ,
ind

i i i i iy N             (14) 

 2 2| ~ 0, ,
ind

i u uN            (15) 

* *
2

2

1
| , , ~ , ,

2 2

ind
i i

i i
i

an an
v a b G

b



 
 
 

       (16) 

2 ~ 1, ,
2 2

ind

i iG       
 

         (17) 

and let 

1 ~ 1̀ , .
2 2

ind
b bb G

    
 

          (18) 

Consider the following condition: 

   2 *2

* 1
1 3

i
i i i i

i i i

i

v
y any b

an




 

    
 

   


  
       (19) 

Condition (19) states that observed variances that are assumed to be having bias b  do not deviate “too 

much” from 2
ib . 

The following statement holds (see the derivation in Apendix). 

Proposition 1. Assume model (14)-(18) and condition (19) hold. Then the conditional distribution of ,b

after integrating out 2
i ,  given data and other parameters is: 

   
  

*
*

2
1

1
| ... ~ 1, 1 .

2 2

N
i i

b b
i i i i

an vN N
b IG an

N y




  
  

  
            

   (20) 



 

 

For instance, the conditional expected value of ,b given data and other parameters, after integrating out 
2
i , is 

   | ... 1 ,E b w w b            (21) 

where *
b

b

w
an







 and 
 

*

*

2
1

1

1

i
N i

i i i i

n
v

nb
N y 



  





  
   

 , 

b  represents a multiplicative bias correction.  Since iy  is unbiased, the MSE term in iy  corrects 

for the bias in iv  by multiplying the ratio into 2
i . If “average reliability of estimated variances” 

*an  is large relative to b  (which is typical), *
ban  , then weight w  is small, allocating more 

weight to b . If, however, estimated variances are less reliable under small domain sample sizes, 

such that *an  becomes small, then b  would still be between 1 and b  but closer to 1 (which shrinks 
the estimate towards the prior). 

5. CES application results 

We fit our three models for ten estimation cycles for domains defined by area and industry: for example, 
the 2008 year cycle starts with October 2008 estimates and ends in September 2009, the last cycle 
considered, 2017 year cycle, starts in October 2017 and ends in September 2018. Domains are grouped 
together by major industries and the modeling is performed independently by month and each major 
industry. In our application, there were from 54 to 725 domain counts in different industries. Some of the 
domains have sample that is considered large enough and estimates for these domains are published without 
the use of a modeling. The majority of domains, however, have small samples; estimates for such domains 
are published using a model. In our research, we use the set of all domains to fit the models. The summary 
results are reported based on the “domains of interest”, i.e. those domains that are designated to be published 
using a model (see Table 1, column “N” for the “model domain” counts.)  

The evaluation is based on comparison of the CES estimates to the “true” employment levels that become 
available to researchers on a lagged basis from the administrative Quarterly Census of Employment and 
Wages (QCEW) file. Due to different seasonality patterns between the employment series derived from 
QCEW data and CES, the most meaningful comparison of the two series is after 12 months of estimation. 
Mimicking the production setup, we obtain level estimates after 12 months of estimation from monthly 

ratio estimates ,îR  (based on various models, as well as on the sample): respective monthly ratio estimates 

are multiplied together and by respective September’s starting level, 
,0iY , that is available to CES at the 

start of the estimation period: 

12

,12 ,0 ,
1

ˆ ˆ .i i iY Y R 
 

           (22) 



 

 

 

Figure 1: Example of a 12-month CES estimation cycle 

For illustration of alternative estimates in conjunction with 12 months of the CES production cycle, in 
Figure 1, we plot estimates of employment levels for the period from September 2008 to September 2009 
for one of the domains in industry 7072 (Hospitality). Black line (with solid dots) represent true population 
levels from the QCEW source. The other lines show alternative estimators: direct SW and based on FH, 
FHS, and CFHG models (we present here only the versions where we used UW variances in lieu of the SW 
variances as inputs.) 

In Table 1 we report industry level and overall results for the 2008 cycle. The resulting September 2009 

level estimates, ,12îY , are then compared with the true levels that are available from QCEW after a lag of 6 

to 9 months after the reference period. Results for each major industry and overall, presented in Table 1, 
are based on the mean absolute deviation (MAD): 

1
,12 ,121

N

i ii
MAD N Y Y


   ,        (23) 

where ,12iY  comes from the (QCEW) census data and is used as “the gold standard” for the estimates. 



 

 

Table 1: Real data results for 2008 estimation cycle. 

 
 Direct FH FHS CFHG 

Ind N UW SW 

UW 

vrnc 
UW 

SW SW UW 

vrnc 
UW 

SW SW SW SW 

vrnc 
SW 

vrnc 
UW 

vrnc 
SW 

vrnc 
UW 

vrnc 
SW 

vrnc 
UW 

1000 55 725 563 603 519 515 473 448 487 504 529 

1500 252 944 683 834 654 657 490 424 405 419 420 

2000 91 1555 1036 1035 821 818 905 803 819 826 820 

3000 232 930 698 792 671 674 564 524 520 523 516 

3100 262 1065 922 1039 920 945 929 914 946 885 892 

3200 157 775 627 618 502 500 521 466 466 455 449 

4000 43 430 333 402 270 269 313 248 236 250 244 

4100 297 655 455 493 398 398 384 354 348 336 342 

4200 433 620 520 532 486 485 447 448 441 430 429 

4300 381 732 491 637 537 501 391 361 365 357 355 

5000 364 494 366 397 343 335 323 300 293 286 288 

5500 509 691 529 541 483 480 474 422 418 411 410 

6000 200 877 660 638 593 591 485 483 470 473 471 

6054 98 977 785 707 646 673 612 623 639 645 650 

6055 58 868 550 573 502 487 453 423 421 418 431 

6056 180 1558 1395 1118 1270 1233 1099 1320 1292 1354 1309 

6500 229 676 531 722 595 621 327 327 319 323 320 

6561 50 1881 1477 1982 1700 1653 1529 1267 1272 1071 1132 

6562 266 922 781 702 726 745 601 656 653 655 658 

7000 235 798 445 395 344 332 356 317 304 311 304 

7071 51 1681 1056 873 680 653 747 582 568 596 591 

7072 131 849 647 488 491 468 449 503 501 465 463 

8000 290 711 550 700 625 658 329 318 314 303 304 

Overall 4864 825 629 665 591 590 511 495 491 485 484 
 
In Table 1, we observe that, for every major industry, SW direct estimates have smaller MAD than the 
estimates based on the original survey weight. The models based on the SW estimates as inputs also have 
smaller MAD compared to those based on the UW (to save space, we omitted from the Table results for the 
CFHG based on UW as point estimates.)  

FHS and CFHG perform better than the FH model, and CFHG is better than FHS. 

Using the UW variance as input, even when SW is used as input point estimate, gives better MAD results.   

As noted earlier, we ran the models for 10 estimating cycles. In Table 2 we present the overall results for 
each year from 2008 to 2017. 

In Table 2, we observe that overall results are consistent over the 10 years considered, in that the CFHG 
model performs slightly better than the FHS models. The last two columns, showing the CFHG results 
based on SW and the UW variances indicate that the respective MAD results are close. 

 



 

 

Table 2: Overall MAD, relative to MAD of SW (after 12 months of each estimation cycle). 
 

Year 

 Direct FH FHS CFHG 

N UW SW 
UW SW SW UW SW SW SW SW 
vrnc 
UW 

vrnc 
SW 

vrnc 
UW 

vrnc 
UW 

vrnc 
SW 

vrnc 
UW 

vrnc SW 
vrnc 
UW 

2008 4,864 825 629 665 591 590 511 495 491 485 484 

2009 4,609 784 610 598 543 540 436 412 403 397 398 

2010 4,570 776 665 538 519 515 411 410 404 396 399 

2011 4,609 664 496 515 457 447 380 354 349 341 341 

2012 4,497 641 506 457 423 420 370 351 347 341 339 

2013 4,537 618 488 460 412 405 363 339 334 332 332 

2014 4,624 598 434 411 362 362 359 333 332 329 330 

2015 4,559 589 445 413 374 369 356 337 334 333 333 

2016 4,496 610 475 446 409 405 343 328 324 322 324 

2017 4,566 616 461 427 379 375 330 307 303 303 302 

 

In Figure 2, we give an example of the distribution of estimated variances (on the log scale) under 
alternative models and the direct variance estimates (based on industry 7072 at month 6.) In this example, 
the fitted variance based on the clustering model CFHG is smaller, on average, than the fitted variance 

based on the FHS model, indicating that the bias/ridge term, kb ,  in CFHG has corrected for over-estimation 

of variances. 

 

Figure 2: Distribution of log variances  

Figure 3 plots FHS- and CFHG-based fitted variances of the direct point estimates versus the “observed” 
variance of the direct sample UW that was used as the input in both models (values are plotted on the log 
scale.) We also put estimated variances of SW on the same scatter plot (black dots). Note that SW variances 



 

 

lie on or below the 45 degree line. A large number of dots lying on the line indicates that there was a large 
portion of truncated variances (since we force SW variances not to exceed the UW variances). This 
idiosyncrasy of SW variance estimates could be a reason why we obtained better modeling results by using 
UW variances as proxies of SW variances for the model inputs. Green diamonds show the fitted FHS-based 
variances and red triangles are CFHG-based variances. Note that CFHG-based variances are generally 
smaller than FHS-based variances. This is consistent with the distribution plot in Figure 2. In Section 6, we 
provide simulation results with the aim to recreate the observed phenomenon under a simplified simulation 
scenario. 

In Figure 4, we show respective distributions of the standardized values, where the square root of respective 
direct or model-fitted variances is used in the denominator for standardization. We observe that the 
distributions when direct variances are used has long tails, while distributions based on model-fitted 
variances are compact, with most of their mass lying within the (-2,2) interval. Comparison with the 
monthly QCEW values gives us a general idea of the form of respective distributions; however, we cannot 
fully rely on comparison with the monthly QCEW values because of aforementioned differences in the 
seasonal patterns in QCEW and CES series. In order to better understand the properties of respective 
confidence intervals, we consider simulations in Section 6. 

 

Figure 3: Log(fitted) vs Log(observed UW-based) variances of the sample-based SW estimator. 

In Figure 5, we present the violin plots showing the distribution of posterior samples – which convey 

credibility (confidence) intervals – for the mixture probabilities 1 , 2 ,  and 3  for the case of fitting 

3K   mixture components for CFHG model that uses UW variances and SW point estimates as inputs. 

The violin plots in Figure 6 represent the distribution of posterior samples of parameters 1 ,b  2 ,b  and 3b  



 

 

for respective mixture components. The violin plots in Figure 7 represent the distribution of posterior 

samples of parameters 1 ,  2 ,  and 3  for respective mixture components. 

 

Figure 4: Distribution of Z = (SW-Truth)/sqrt(fitted_vrnc).  

 

Figure 5: Estimated cluster probabilities from fitting the CFHG model with K=3. 



 

 

 

Figure 6: Bias/ridge adjustment for mixture components from fitting the CFHG model with K=3. 

 

Figure 7: Intercept estimates for mixture components from fitting the CFHG model with K=3. 

Note that mixture probability 2 ,  corresponding to uncertain wide ranging values of parameters 2b  and 

2 , is small.  As for the two larger clusters, we see that (i) the first cluster 1b  adjustment accounts for a 

positive bias from use of UW variances; (ii) the third cluster contains domains with lower range of 3  and 



 

 

the 3b  adjustment below 1 may reflect inefficient large variances for noisy domains whose observed 

estimated variances were overly small. 

6. Simulations 

In this Section, we consider a simulation scenario to illustrate how the proposed model works.  

For each domain i  in a set of 300N   domains, generate estimation targets i  as  

i i i ix u     ,        (24) 

where auxiliary data ~ ( 2,2),ix Uniform   1  , random effects  2~ 0,iu N  , 2 1,   

and  

0, 1,...,0.95 ,

2, 0.95 ,..., ,i

i N

i N N



  

 

that is, 5 percent of domains have a different intercept than the bulk of the observations.  

The “observed point estimates” are 

i i iy e  ,        (25) 

where   2~ 0,i ie N   and variances 

  2 ~ 1, ex  p ,i IG c z      

with 0.1,    ~ 0,1 ,z N  and  2exp 0.5c    and three scenarios for : 8,4,1  , corresponding 

to lower-to-higher degrees of variability of true variances around the mean value represented by the function 

 expc z . 

We generate “observed” variances as  

2

1
~ 3,3 ,i i

i

v b G


 
 
 

       (26) 

where ib  represent a bias in the estimate of the variance for domain .i  Assume three groups of domains 

biases: 

2, 1,...,0.6 ,

0.3, 0.6 1,...,0.8 ,

1 0.8 1,..., .
i

i N

b i N N

i N N


  
  

 

Generate vector of covariates  1 2,i i ig g g  for domain i , where  2~ ,0.25 , 1,2 :li lg N m l    



 

 

1

0, 1,...,0.95 ,

2, 0.95 ,..., ,

i N
m

i N N


  

 

2

0, 1,...,0.6 ,

2, 0.6 1,...,0.8 ,

4 0.8 1,..., .

i N

m i N N

i N N


  
  

 

We fitted the models using 6K   clusters. In Table 3 we show the mean squared errors (MSE), based on 
100 simulation runs, for “direct estimator” Y and estimators based on alternative models. We included two 
versions of the FH model fit: FH(V), where the “observed” variances are used as “fixed and known” inputs, 
and FH(GVF), where a GVF used as “fixed and known” input. Here, we computed GVF using the same 
form and covariates as in the FHS or CFHG models.   

In all l  scenarios, CFHG models has the lowest MSE.  

Table 3: MSE of point estimates 

l  Y FH(V) FH(GVF) FHS CFHG 
8 0.998 0.606 0.563 0.573 0.537 
4 0.999 0.586 0.562 0.562 0.522 
1 1.013 0.502 0.566 0.516 0.475 

 

In Table 4, we present MSE of fitted variances of Y. All model-based variances have lower MSE than the 
“observed” variances. As expected, when 8   (low variable around the “synthetic” variance), the GVF 
has the lowest MSE. However, with increased variability of true variances, the MSE of GVF increases. 
CFHG fitted variances have lower MSE than FHS fitted variances in 8   and 4   scenarios. 

Table 4: MSE of variances of “direct estimator” Y 

l  Observed GVF FHS CFHG 
8 1.840 0.382 0.907 0.523 
4 2.192 0.586 0.938 0.608 
1 10.003 7.246 1.999 3.509 

 

Table 5: Coverage properties of variances of “direct estimator” Y, 95% nominal 

 Coverage  Length 
l  True Observed GVF FHS CFHG  True Observed GVF FHS CFHG 
8 0.950 0.897 0.979 0.976 0.948  3.857 4.290 4.753 4.887 4.263 
4 0.950 0.896 0.976 0.978 0.957  3.798 4.228 4.768 4.850 4.298 
1 0.951 0.898 0.971 0.979 0.976  3.483 3.869 4.790 4.592 4.332 

 

In Table 5, we present the coverages of confidence intervals of “direct estimator” Y based on respective 
fitted variances. The “observed” variances do not give the nominal coverage. CFHG model provides nearly 
nominal coverage in 8   and 4   scenarios, with shorter lengths of the intervals, and slight 
overcoverage in the 1   scenario.  
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Figure 8: Cluster probabilities, intercepts, and bias/ridge adjustments, from fitting CFHG with K=6. 

In Figure 8, we present the violin plots showing the distribution of posterior samples for k , k , and kb  for 

those clusters where estimated cluster probability is greater than 0.05 (based on a single simulation.) . 

The CFHG model, in this example recognizes at least 4 distinct clusters having cluster probabilities from 
0.05 to about 0.60. The first plot shows posterior distribution of cluster probabilities. The second plot shows 



 

 

posterior distributions of k ’s. The third plot shows the distribution of respective cluster biases kb . We 

observe that k  is distributed around 1.5-2 in the cluster where k  is around 0.05 and kb  is around 1. The 

cluster that has probability k  about 0.6 also has estimated bias adjustment of about 1.5-2, which 

corresponds to the overestimated group; the other two clusters (each distributed roughly around 0.15-0.2) 

correspond to bias adjustments kb  centered around 1 and 0.3. Thus, based on the values of estimated biases, 

we should expect to recover at least part of the bias in the estimated variances.  

7. Summary 

In this paper, we proposed clustering model that utilizes additional covariates to inform clustering. The 
model is robust to deviations from the linearity and can correct for a bias in the variance estimates. 

Results from application on ten years of data from the Current Employment Statistics survey suggest that 
direct SW estimates are more efficient than UW estimates. Models based on SW estimates perform better 
than models based on UW estimates. Joint point estimates and variances models, FHS or CFHG, perform 
better than the classical FH model. Overall, CFHG performs slightly better than FHS, although results vary 
by industry. FHS model with SW point estimates and UW-based variances as inputs performs better than 
the FHS model that uses as inputs SW point estimates and estimated SW variances. MAD from the CFHG 
model based on these pairs of inputs are close.  
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Appendix: Proof of Proposition 1 

Let  2 2 2
1 1, , ,..., , ,...,u N Nb       denote the vector of parameters and let  1 , ..., ND d d , where 

 ,i i id y v  is the data vector for domain .i  .   

The posterior distribution of   is 
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The posterior density of parameters is: 
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The full conditional distributions for 2
i  and :b  
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Then, integrating out 2
i , gives us: 

 
   

 

*

*

22

1 2 1 22 2

* *2 2 21
2

2 2 2 2

1 1 1 1
| exp exp

2 22 2

1 1 1 1 1 1
exp exp exp

2 2 2 2

i b
i

i ii
i i

u iu i

an
an

i i i b
i i

i i i i

y
f d

an an v
v

b b b b

 




    

 
   



  
         

                          
          



 

 

 
   * *

2 2
2

11

1 1
,| , , exp exp exp ln .

2 2

b b

i

N N
an anN N

ab b
u i i i

ii

N N
f b D c a c

b b b b

   
 





                           
   

Consider 

 
  

  
 

2
*

2 *

2 *

*2

1 3
ln ln

2 1 2 2 2

1
21

ln
3
2 2 2

i i i
i i

i i i i

i
i i i i

ii i i

yv an
y an

b

v
y an

b

any

 









     


  


  

    
           

 
     
     
 

 

The first summation term doesn’t depend on b .  Using condition (19) and approximation 
ln 1x x  , we can write (after leaving out the multiplicative terms that don’t depend on b ): 
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