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Suppose a vector autoregressive moving-average model is estimated for m observed variables of primary interest for an appli-
cation and n—m observed secondary variables to aid in the application. An application indicates the variables of primary interest
but usually only broadly suggests secondary variables that may or may not be useful. Often, one has many potential sec-
ondary variables to choose from but is unsure which ones to include in or exclude from the application. The article proposes
a method called weighted-covariance factor decomposition (WCFD), comparable to Stock and Watson’s method here called
principle-components factor decomposition (PCFD), for reducing the secondary variables to fewer factors to obtain a parsi-
monious estimated model that is more effective in an application. The WCFD method is illustrated in the article by forecasting
quarterly observed U.S. real GDP at monthly intervals using monthly observed four coincident and eight leading indicators
from the Conference Board (http://www.conference-board.org). The results show that root mean-squared errors of GDP fore-
casts of PCFD-factor models are 0.9—11.3% higher than those of WCFD-factor models especially as estimation-forecasting
periods pass from the pre-2007 Great Moderation through the 2007-2009 Great Recession to the 2009-2016 Slow Recovery.
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1. INTRODUCTION

Parsimony means minimizing the number of estimated parameters of a model while maintaining its fit of data.
Parsimony is desired because, being subject to less sampling variability, parsimonious models are expected to be
more effective in applications. Because variables bring estimated parameters into a model, minimizing the number
variables in a model furthers its parsimony. Suppose a vector autoregressive moving-average (VARMA) model is
estimated to forecast a few (m) variables of primary interest using many (n—m) secondary variables to aid in the
forecasting. An application indicates the variables of primary interest but usually only broadly suggests secondary
variables that may or may not be useful in the application. Often, one has many potential secondary variables to
choose from but is unsure which ones to include in or exclude from the application. To further parsimony, somehow
the number of secondary variables need to be minimized. Stock and Watson (2002a,b) proposed a method based
on standard principal components analysis (PCA) for replacing possibly many secondary variables with fewer
“factors’.

We call Stock and Watson’s method principal-components factor decomposition (PCFD), which has the fol-
lowing steps: (i) uses eigenvectors of the sample contemporaneous covariance matrix of secondary variables to
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linearly transform them to factors; (ii) based on experience and experimentation (including using information cri-
teria), decides which factors are significant; (iii) estimates an AR equation of primary variables and significant
factors; and (iv) uses the estimated AR equation to forecast the primary variables.

By eigenvalue decomposing the sample contemporaneous covariance matrix of secondary variables, PCFD uses
no lagged sample correlations (no dynamic sample information) among secondary variables and no contempora-
neous or lagged sample correlations between primary and secondary variables to compute factors. PCFD could
include dynamic sample information by including covariances of lagged secondary variables in the covariance
matrix to be decomposed, but, whether the variables are significantly serially correlated or not, the added covari-
ances are likely to be redundant and to degrade the decomposition and lead to poorer results, as reported by Stock
and Watson (2002b). PCFD accounts only for variations of secondary variables in its factorization, so that it may
put the ‘noise’ of irrelevant secondary variables into factors and resulting forecasts because it ignores correlations
between primary and secondary variables.

The article develops a corresponding method called weighted covariance factor decomposition (WCFD) that
corrects these disadvantages and illustrates the method with U.S. data on quarterly observed real GDP as the single
primary variable and monthly observed four coincident and eight leading indicators as the secondary variables.
By contrast with PCFD, by eigenvalue decomposing an estimated covariance matrix of forecast errors of primary
variables (at some chosen number of forecast periods ahead), WCFD can use all significant sample correlations (all
significant dynamic sample information) in terms of an initial estimated VARMA model to compute factors. By
eigenvalue decomposing the ‘weighted covariance’ matrix of forecast errors of primary variables, WCFD accounts
for correlations between primary and secondary variables in its factorization. These advantages are borne out in the
application in the article that reports root mean-squared errors of PFCD-based forecasts being up to 11.3% higher
than those of WCFD-based forecasts. We have not seen in the statistics and econometrics literatures any similar
PCA-like decompositions based on weighted covariances, although an online search of ‘weighted covariance PCA’
returns numerous articles in various fields of science. For example, Delchambre (2015) develops and illustrates a
modified standard PCA based on weighted covariances motivated by the same aim of down-weighting irrelevant
or less-relevant observations to minimize the impact of noise.

Corresponding to PCFD, WCFD has the following steps: (i) estimates an initial VARMA model of primary and
secondary variables; (ii) uses the initial model to compute factors that account for variations in primary variables;
(iii) based on experience and experimentation (including using information criteria), decides which factors are
significant; (iv) estimates a smaller VARMA model of primary variables and significant factors; and (v) forecasts
primary variables using the second estimated model.

Hotelling (1933) developed PCA to its modern form (Anderson, 1984, ch. 11). Let {C,};2 denote popula-
tion autocovariance matrices of a vector of variables in y, and their k-period lags in y,_, and let 6k denote a
sample-based estimate of C,. Like classical PCA, Stock and Watson’s (2002a,b) PCFD also uses only 6‘0 to pro-
duce factors. By contrast, by using Fourier-transformed { 6,( }sz0 for a finite K, Forni and Reichlin (1998) and Forni
et al. (2000) use dynamic sample information to produce factors. The present article uses the dynamic sample
information {a’k}/’fzo in the form of an initially estimated VARMA model to produce factors.

Earlier maximum likelihood estimates (MLE) of dynamic factor models (Sargent and Sims, 1977; Geweke and
Singleton, 1981) were restricted to small models with few variables and parameters, because MLE is demanding
computationally. By the end of the 1990s, despite large reductions in computing costs, interest shifted to applying
PCA to hundreds of observed financial and macroeconomic variables to produce small dynamic factor models
(Forni and Reichlin, 1998; Forni et al., 2000; Stock and Watson, 2002a,b).

More recently, Bernanke et al. (2005) introduced factor-augmented VAR (FAVAR) models, which have been
extended to factor-augmented VARMA (FAVARMA) models (Dufour and Stevanovic, 2013). FAVARMA models
are basically sums of unobserved VARMA terms with some terms being considered ‘dynamic factors’, so that
FAVARMA models are basically VARMA models with particular functional restrictions on parameters. In the
present application, we initially estimated both VAR and VARMA models with zero and functional restrictions,
but gave up on them and do not report their results, because they fit the mixed-frequency data (MFD) poorly
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Table I. Normalized root mean-squared errors of GDP forecasts

Normalized root mean-squared errors (NRMSE) — 1-24 months ahead

—2
#vars/model R of GDP BIC 1 2 3 6 12 18 24  Average 1-24  Rank

‘Early’ estimation-forecasting period: January 1959-December 1995 and January 1996-December 2007 (444 and 144 months)

1/AR2 0.081 -6734 0960 0.960  0.960 0.961 0.994 1.004 1.006 0.991 7
S5/VAR2 0.677 1098  0.746  0.763 0.959 0.994 0.993  1.001 1.002 0.966 2
5/PCF3/VAR2 0.507 9498  0.803 0.799 0917 0.989 1.000  1.000 1.000 0.975 3
5/WCF2/VAR4 0.596 —-601 0.740 0.749  0.883 0.968 0.969 0.999 1.012 0.954 1
13/VAR1 0.546 4425 0901 0.936 1.024 0.979 0.994  1.000 1.006 0.985 5
13/PCF3/VAR2 0.340 11,407 0.849 0.868 0971 1.003 1.005 1.005 1.005 0.991 6
13/WCF2/VAR4 0.513 —1566 0.858  0.842 1.009 1.030 0.991 0.997 1.002 0.982 4
‘Middle’ estimation-forecasting period: January 1959-December 2007 and January 2008—June 2018 (588 and 126 months)
1/AR2 0.098 -8927 1.029 1.029 1.029 1.120 1.209 1.223 1.227 1.179 6
5/VAR2 0.486 1506  0.724 0.864  0.793 0.991 L.115  1.132 1.136 1.053 2
S/PCF3/VAR2 0.472 12,358 0.834  0.925 0.977 1.187 1227 1.228 1.228 1.177 5
5/WCF2/VAR3 0.451 —1440 0.799 0.872  0.864 1.037 1.150  1.174 1.182 1.099 4
13/VAR1 0.503 5792 0.699 0.752  0.801 0.995 1.119  1.135 1.137 1.045 1
13/PCF3/VAR2 0.285 14,983 0.868  0.998 1.134 1.220 1.228  1.228 1.228 1.197 7
13/WCF2/VAR2 0.425 —1555 0.699 0.765 0.851 1.008 1.141  1.168 1.179 1.075 3
‘Late’ estimation-forecasting period: January 1959—-December 2009 and January 2010-June 2018 (612 and 102 months)
1/AR2 0.117 -9269 1.192 1.192 1.192 1.193 1.193  1.193 1.193 1.193 6
5/VAR2 0.637 1330 1.096  1.097 1.099 1.137 1.155 1.166 1.160 1.154 3
S/PCF3/VAR1 0.255 2568  1.188  1.170 1.174 1.176 1.176  1.176 1.176 1.176 5
5/WCF2/VAR2 0.419 -1116 1.116  1.095 1.068 1.070 1.168 1.162 1.108 1.131 1
13/VAR1 0.545 5730  1.114  1.138 1.144 1.162 1.151  1.172 1.159 1.154 4
13/PCF3/VAR2 0.206 14,674 1217 1.172 1.222 1.195 1.193  1.193 1.193 1.195 7
13/WCF2/VAR2 0.441 —1504 1.098 1.094 1.067 1.075 1.180 1.167 1.034 1.139 2

Overall average NRMSE and rank

#vars/model 1/AR2  5/VAR2 5/PCF3 5/WCF2 13/VAR1 13/PCF3 13/WCF2
Overall average NRMSE ~ 1.121 1.058 1.109 1.061 1.061 1.128 1.065
Overall rank 6 1 5 2 2 7 4

and produced poor forecasts. Therefore, all reported results of the application in Table I are for unrestricted VAR
models.

Although the literature cited above and the present application are based on sampling estimation methods,
dynamic factor models have been estimated using Bayesian methods (Otrok and Whiteman, 1998; Kim and Nelson,
1999; Aguilar and West, 2000). The statistics literature has also considered dynamic factor models under the
rubrics canonical analysis (Box and Tiao, 1977) and reduced rank regression (Ahn and Reinsel, 1988; Deistler
and Hamman, 2005).

PCA and PCFD is strictly meaningful only if C,, exists, if the data generating process is stationary, so that 6‘0
converges stochastically to C as the number of sample periods goes to infinity. PCA/PCFD can be computed more

wileyonlinelibrary.com/journal/jtsa Published 2019. This article is a U.S. Government J. Time Ser. Anal. 40: 968-986 (2019)
work and is in the public domain in the USA. DOI: 10.1111/jtsa. 12506



WEIGHTED-COVARIANCE FACTOR DECOMPOSITION OF VARMA MODELS 971

accurately if 60 is positive definite, which occurs in practice if the data have more sample periods (7) than vari-
ables (n) and no variables exactly satisfy linear equations. Additional assumptions have often been made in terms
of the approximate factor model (AFM), so that PCA/PCFD provides consistent estimates of AFM parameters,
principally bounds on eigenvalues as 7" and n go to infinity (Bai and Ng, 2002; Stock and Watson, 2002a,b; Doz
et al., 2012). Because the present article conducts no asymptotic analysis, 7 and n are assumed to be finite and
fixed.

The article illustrates WCFD by forecasting U.S. quarterly-observed real GDP at monthly intervals using
monthly-observed four coincident and eight leading indicators as secondary variables. Although WCFD has
nothing per se to do with MFD, using MFD makes the application more realistic, challenging, and interesting.
Following Zadrozny (1990) and Mittnik and Zadrozny (2004), Kalman-filtering-based MLE is used in the appli-
cation to estimate VAR models with the MFD. Computational constraints still limit how many VAR parameters
MLE can successfully estimate, although in the application using a FORTRAN program we were able to success-
fully estimate up to 260 VAR parameters in about 30 minutes, starting with setting all parameter values to 0.01 or
0.001. When this did not work, when the program did not converge in an acceptable amount of time or stopped
at unreasonable parameter values, significant additional time was spent retrying the estimation from other, largely
randomly selected, neighboring starting parameter values until convergence or near convergence at reasonable
parameter values was achieved. These difficulties with MLE are considerably greater when using MFD than when
using single-frequency data.

An alternative extended Yule—Walker method (Chen and Zadrozny, 1998) for estimating a VAR model
with MFD computes as easily and quickly as any linear estimation method but was not used because it has
not yet been tested thoroughly enough. Also, by optimizing over disturbance covariances as well as over
VAR coefficients, MLE tends to get closer to minimal Kullback—Leibler information (KLI), hence, to the
true data generating process (Bowden, 1973). For these reasons, all models in the application were estimated
using MLE.

WCFD also provides a purely data-based and economic-theory-free variance decomposition of a model,
although this aspect is not pursued here. Sims (1980a,b) advocated computing variance decompositions of esti-
mated VAR models to judge explanatory power of one variable over another. Initially, Sims advocated variance
decompositions based on Cholesky decomposition, which is a purely numerical method. Following Cooley and
Leroy’s (1985) critique, Bernanke (1986), Sims (1986), and most others now mostly base variance decomposi-
tions on structural identifications. Being based on a presumably well-fitting initial estimated model, yet being
economic-theory-free, WCFD could be used as an exploratory data-based variance decomposition, prior to a more
conclusive structural decomposition. The WCFD decomposition matrix R is the counterpart of the Cholesky and
structural decomposition matrices in this literature.

The article proceeds as follows. Section 2 explains the WCFD decomposition. Section 3 discusses deciding
which WCFD factors are significant. Section 4 reviews the PCFD decomposition and factorization steps and
explains the WCFD factorization step. Section 5 applies PCFD and WCFD to U.S. data from 1959 to 2018 to fore-
cast quarterly-observed real GDP at monthly intervals using monthly-observed four coincident and eight leading
indicators and evaluates the forecast accuracies. Section 6 concludes by summarizing the article and discussing
estimating an initial ‘diagonal’ VARMA model when too many variables result in too many estimated parameters
in a ‘non-diagonal’ VARMA model. Appendix A discusses two closely related methods for computing the WCFD
decomposition.

2. WCFD DECOMPOSITION

In what follows all quantities are real except possibly complex AR and MA characteristic roots. Let y, denote
an n X 1 vector of stationary sample-mean-adjusted variables observed in periods 7 = 1, ..., T, presumed to be
generated by a stationary VARMA model:

V=AY Ay +E+BE e+ B, 2.1)
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972 P. A. ZADROZNY AND B. CHEN

where &, is an n X 1 vector of unobserved innovations, distributed normally, identically, independently, with zero
means and positive definite covariance matrix X, or &, ~ NIID(0,,, ,, Z;), where 0, | denotes the n X 1 zero vec-
tor. Partition y, = (y{t, y;)T, where y,, contains m primary variables, y,, contains n—m secondary variables, and
superscript 7" denotes transposition.

Model (2.1) is stated more concisely in terms of lag operator L as A(L)y, = B(L)§,, where
AlL)=1,-AL—--- —APU’, B(L)y=I1,+B,L+---+ B,L1, and [, denotes the n X n identity matrix. Often, some or
all elements of reduced-form parameter matrices A;, B;, and X, are restricted to zero or in terms of fewer structural
parameters. To compute WCFD, we need to know only the values of the reduced-form parameters and do not need
to know any structural restrictions on them.

We define AR and MA characteristic roots as follows. Model (2.1) is stationary if and only if the absolute

characteristic AR roots are <1, namely, if and only if det[/,? — A, #7 =1 —- .. —A,_1A—A,]=0implies | 1| <1,
where det[-] denotes the determinant of a square matrix. Model (2.1) is invertible if and only if the absolute
characteristic MA roots are <1, namely, if and only if det[/,A — B A9~ L= B,_, A-— Bq] =0implies | 4| < 1.

Zadrozny (2016) stated assumptions, including those above, and proved that under them a VARMA model is
locally identified with single- or MFD.
If model (2.1) is stationary, then, it has a unique Wold infinite moving-average representation,

v =YL, = <Z ‘P_,U‘) D A (2.2)
j=0 j=0

where W(L) = A(L)~' B(L). Whether or not the model is stationary, the finite sequence {¥; }fzo can be computed by
iterating on
min(j,p)
W= ) AY_,+B, (2.3)

=1

forj=1,...,J, starting with ¥, =, , such that B; = 0 for j > g. WCFD uses Wold decomposition (2.2) to decompose
X, as RRT=% ¢» such that the columns of R account for variations of primary variables in a PCA-like fashion.

In exactly or nearly non-stationary models, especially when the forecasting horizon h is large, the WCFD
decomposition could ‘latch’ onto the largest exactly or nearly non-stationary AR root (the latter defined, say, by
0.99 < | 4;| < 1) and account for nearly 100% of the weighted covariances with one factor, a result that is not use-
ful when it masks significant subdominant cycles of a model. In such cases, we could filter out exactly or nearly
nonstationary AR roots before computing WCFD. Let {4;};_, denote the v exactly or nearly nonstationary AR
roots of model (2.1). We would filter Wold representation (2.2) using A(L) = (1 —4,L) ... (1 = 4,), would obtain

Y, = ‘f’(L)é,, where ¥, = A(L)y, and li‘(L) = ML)¥(L), and would compute the WCFD decomposition using ‘f‘(L).
For a given forecast horizon h > 1, let n,, =y, ., — E,y,, denote the n X 1 vector of errors from forecasting y, . ,

in period ¢. In terms of innovations, forecast errors are

h-1
TEDI S (24)
i=0
and have covariance matrix
h—1
T, =En,n, =Y WI9. (2.5)
=0

We define WCFD in terms of weighted covariances of forecast errors of primary variables in y,,. The pri-
mary variables are mapped from all variables as y,, = Wy,, where W is a specified m X n weighting matrix and
1 <m = rank(W) <n. Then, v = En}{thh, = tr[QI’,] is the expected weighted h-period-ahead squared forecast
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error of the primary variables, where Q = W7 W represents the weights as an n X n symmetric positive semi-definite
matrix and #r[-] denotes the trace of a matrix. Using equation (2.5),

h-1
— T
v=tr|Q) LR (2.6)
=0
The following three examples illustrate different weighting matrices:
2.1. Selecting Portfolio Value as Primary
Let y,, = value of a portfolio, y,, = (n — 1) X 1 vector of portfolio elements, and W = (0, w,, ...,w,) = 1 X n vector

of portfolio weights, such that a portfolio weight is positive or negative depending on whether its portfolio element
is an asset or a liability. Portfolio value y,, is the single primary variable and portfolio elements are secondary
variables. Other secondary variables can be added to y,,.

2.2. Selecting J of n Variables as Primary

Let {z
j=1
1,0,...,0)7 be the nx 1 vector with 1 in position i; and zeros elsewhere. Stack row-form e ,forj=1,...,J,0n

C {1, ... ,n} index a subset of J of n variables selected as primary variables and let ¢ = ©,..., 0,

top of each other in any order and obtain the J X n welghtmg matrix W that selects the J varlables from Yy, as the
primary variables in y,.

2.3. Setting WCFD Equivalent to PCFD

If W=1 , the initial VARMA model is stationary, and forecast horizon /% is large (strictly, # = o), then, v = sum of
equally weighted variances of all variables in y, and WCFD is equivalent to PCFD, except for numerical differences
due to different computations.

WCFD produces the nxn decomposition matrix R that satisfies RRT = T ¢ and broadly corresponds to a
factor-loading matrix in PCA/PCFD. For r; = column i of R, (2.6) can be written equivalently as v = Z?:o v,, where

v, = rl.TQri 2.7
is the portion of the weighted A-step-ahead forecast-error variance, v, accounted for by the ith uncorrelated dis-
turbance, €;,, and Q = Zh ! ‘PTQ‘I’T Q is symmetric positive semi-definite, but may be non-positive definite even
for large h. If so, a computed WCFD decomposition may be inaccurate, but can be made accurate by making Q
positive definite by adding 6/, to it, where ¢ is a small positive number.

We define the WCFD decomposition recursively. Let Z, 25, X,=0,,,,and,fori=2,. -1, = E -X; XT
X =[r,...,r;,_y],and Y, =[r;, |, ..., 1,], amatrix of slack vanables that ensures that ;7] + Y YT % holds For
i=1,...,n—1, we want to maximize v, = = Qr with respect to r; and Y}, so that r, ", + Y Y[T Z holds and, for

i=n,wewant X, X" +r,r" =3, to hold.

First, given X, = X, and Q, we maximize v, with respect to r; and Y, subject to r,7{ +Y, Y| = X, by eliminating
Y, from first-order conditions (FOC; see Appendix A) and solving for r, and v,. Then, given X, = r, and X, =
Z; — X,X], we maximize v, with respect to r, and Y,, subject to r,r; + Y,¥] = Z,, by eliminating Y, from
the FOC and solving for r, and v,. Continuing like this, we determine X, = [r,, ..., r,_,]. Finally, given X, and
Z, =Z; — X, X', we determine r, such that r,r" =X, and RR" = X, hold for R =[r,, ...,r,].

We assume that (i) Z, is positive definite; (i) 1 <m = rank(W) <n; and, (iii) the positive eigenvalues of Q are
distinct. Q is symmetric positive semi-definite by construction and non-null by assumption (ii). Then, it follows
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974 P. A. ZADROZNY AND B. CHEN

from the discussion in Appendix A that the significant part of the WCFD decomposition, associated with the signif-
icantly positive eigenvalues of 2.0, exists and is unique. In practice, assumptions (i) and (iii) hold when variables
are not subject to linear restrictions. The details for computing the WCFD decomposition are in Appendix A.

3. SIGNIFICANT WCFD FACTORS

Because each PCFD and WCFD factor has an associated eigenvalue, deciding which PCFD and WCFD factors are
significant amounts to deciding which PCFD and WCFD eigenvalues are significantly different from zero. This
section first considers a stochastic test for this decision and, then, reduces it to the simpler non-stochastic test that
is used in the application.

First, consider the following variant of Anderson’s (1984, ch. 11, pp. 473-5) test for significance of the largest
PCA eigenvalues based on first-order normal approximation. For given tolerance p € (0, 1), let H, denote the
hypothesis that the largest eigenvalues v; of £.0, fori =1, ..., k, account for at least 1 — p of weighted covariances,
so that H, is true if and only if

§o=pv==p Yy vi+(=p) ) v,<0, 3.1
P i=kt1
where p = (—p, ... ,—p,1—p, ... ,1 =p)Tandv = (v, ... ,v,)" are n X 1 vectors.

Consider the following testing sequence. Start with £ = 1 and test H, = H,. If H, is accepted (strictly, not
rejected), accept k = 1 as the number of significant largest eigenvalues of X.Q and associated factors; otherwise,
test H, = H,. If H, is accepted, accept k = 2 as the number of significant largest eigenvalues and associated
factors; otherwise, continue like this until possibly reaching £ = n— 1. If H, _, is accepted, accept k = n—1 as
the number of significant largest eigenvalues and associated factors; otherwise, accept k =n as the number of
significant largest eigenvalues and associated factors. Because v; >0 and Z:lzl v; = 1, the testing sequence is
always conclusive.

WCFD maps ¢ to v nonlinearly and differentiably as v = v(¢h), where vector ¢ collects parameters of the initial
VARMA model. If ¢ is certain, for example, because it was chosen for a hypothetical model, then, H, is accepted
if and only if 6, <0. However, generally, ¢ is estimated and uncertain, so that 6, inherits sampling variability
from estimated parameters, so that H, should be tested stochastically. This can be done by expanding 6, <0 to a
stochastic statement similar to Anderson’s (1984, ch. 11, pp. 473-5) asymptotic test for the number of significant
largest PCA eigenvalues, as follows.

If VARMA model (2.1) is stationary and invertible and additional assumptions hold (Hosoya and Taniguchi,

1982), ﬁ (<$ — ¢,) ~ AN(0, S,)), where a hat (") denotes an estimated value, subscript zero denotes a true value,

and ~AN denotes an asymptotic normal distribution as the number of sample periods, 7, goes to infinity. Under
A A AT A

further assumptions (Serfling, 1980, pp. 122-4), ﬁ (v —vy) ~ AN(0, VvS,Vv ), where Vv denotes the Jacobian

matrix of first-partial derivatives of v(¢) evaluated at $ Then, because p is constant,

VTG, - 6,) ~ ANO,52), (3.2)

where 8% = ﬁTV\A_@VﬁT,T), S estimates S, such that plimpmg = S,, and Vv and ng can be computed using the

matrix-differentiation method in Mittnik and Zadrozny (1993) and Chen and Zadrozny (2003, Appendix A).
Using (3.1) and following standard sampling-theory testing, let « € (0, 1) denote a chosen significance level and

let ¢, denote a critical value defined by Prob[z <c,] = 1 — &, where z~N(0, 1). Then, for given k, p, and a, H, is

accepted if and only if

6k
=2 <o (3.3)
;s
3
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Test (3.3) could mislead if 3\,( is not asymptotically normally distributed. For such cases, Onatski’s (2009, 2010)
non-normal eigenvalue distributions or Bai and Ng (2002) and Bai’s (2003) information criteria could be used. The
present application ignores uncertainty about c/S\k and decides non-stochastically on the significant largest eigenval-
ues and associated factors, based on experience and experimentation (including using information criteria), as did
Stock and Watson (2002b). When ignoring the uncertainty about 3,(, ¢, = 0 and test (3.3) reduces to 3\,( < 0. The
uncertainty can be ignored in the forecasting application because any choice of significant factors can and should
be reviewed in terms of forecast accuracy.

In PCFD and WCFD, for a given tolerance p, using test (3.3) stochastically or nonstochastically, one chooses
as significant the smallest number of largest eigenvalues and associated factors that, respectively, account for at
least 1 — p of the sum of variances of secondary variables and at least 1 — p of the sum of weighted covariances
of forecast errors of primary variables. In a particular application, experimentation can determine which value of
p leads to the best choice of significant factors with the best results. In the present application, experimentation
showed that p = .10 led to the best choice of significant factors, 3 in PCFD and 2 in WCFD.

4. PCFD AND WCFD FACTORIZATIONS

For simplicity, this section proceeds with one primary variable in y,,. The generalization to m primary variables
is straightforward but notationally more tedious. With one primary variable, weighting matrix W is a 1 X n row
vector and significant-factor vector f;, is an k X 1 column vector; with m > 1 primary variables, W and f,, are m X n
and k X m matrices.

The PCFD factorization is obtained as follows. Suppose that the eigenvalues of the sample covariance matrix
of the n— 1 secondary variables in y,, are distinct, so that the (n — 1) X (n — 1) matrix M of the eigenvectors is
orthogonal. Then, the n — 1 PCFD factors in f, = (¢, . ..., ¢,_, )" are defined and computed by

f=M"y,,. “.1)

Partition f, = (f[,f1)", where f, = (@, ,» ....¢ )" and fo, = (@41 1»--- @,_1. )", respectively, contain k
significant and n — k — 1 insignificant factors, and, correspondingly, partition M = [M,,M,] = [(n—1) Xk,
(n—1)x(n—k—1)], so that (4.1) has the regression form

Yo = Mfy, +u, 4.2)

where, for M, = (n—1)Xxk matrix of regression coefficients, f;, = kX1 vector of regressors, and
u, = M,f,, = (n— 1) X 1 vector of regression errors. Because f;, and u, are orthogonal and, therefore, uncorrelated,
regression (4.2) satisfies this basic regression assumption.

The WCFD equation corresponding to (4.2) is obtained as follows. The WCFD decomposition of an initial
VARMA model produces the n X n non-singular decomposition matrix R whose inverse maps the model’s inno-
vations to uncorrelated disturbances, €, = (g, ...,€,) = R7'&, =R Y(¢&,,, ..., &), fort =1, ..., T. The initial
VARMA model is presumably stationary and has the Wold representation (2.2). Using Re,_; = Z:;l r;€;,_;, where
R = [ry, ..., r,], the Wold representation can be written as y, = Y, @;,, where ¢,, = E;’:O Wre;,_;, so that
primary y,, = Wy, has the k-significant-factor representation

ijt—j>

k
Yiu = Z Pis +ﬁt’ 4.3)
i=1

where, fori=1,.... k, @,;, = X7, W¥re,_; = ith significant WCFD factor and %, = X', @,

sum of insignificant WCFD factors. The k-significant-factor representation (4.3) has the regression form
Vi =Mf,, +7, (44
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corresponding to (4.2), where M, = (67, ... ,67) = 1 x k vector of regression coefficients, o7 = E(¢,;,)%
f, = (@14 - P1g)" = kx 1, vector of regressors, @,,, = @,;,/o}, and i, = regression error. Because i,
and %, are uncorrelated, because ¢;, and €, are uncorrelated for i #j and s # ¢, regression (4.4) satisfies this basic
regression assumption.

WCEFD factors are computed for an initial estimated VARMA model and data in the following four steps:

Step 1: Innovations cannot be computed for a sample period if any data in the period are missing. In the applica-
tion, missing data occur because models are estimated using monthly quarterly MFD and because outlying
observations are treated as missing. The missing data were filled in by applying Kalman smoothers (Ander-
son and Moore, 1979) based on initial (estimated) models. The monthly indicators also have missing data
due to outliers that also need to be filled in by smoothing before either PCFD or WCFD factors can be
computed. Stock and Watson (2002b) similarly suggested filling in missing data in PCFD by using the
expectation-maximization (EM) algorithm (Dempster et al., 1977).

Step 2: If no data are missing in any period or once any missing data have been filled in, then, except for some
initial periods, innovations can be computed by iterating on definition (2.1) of a VARMA model. Some
initial innovations cannot be computed in this way because the data start in period ¢ = 1. In the application,
this problem is solved by applying a Kalman filter (Anderson and Moore, 1979) based on an initial VAR
model. Specifically, for each sample period 7 = 1, ..., 7, the filter computes y, ,_, = forecast of y, made
in period 7 — 1, whereupon the innovation in period # is estimated as &, =y, — y,;,_;, where y, denotes either
observed y, or its smoothed estimate. Both Kalman smoothers and filters were initialized in the application
by setting initial state vectors to zero and their covariance matrices to unconditional covariance matrices
implied by the initial VAR models.

Step 3: For a full set of innovations, &,, for t = 1, ..., T, with no missing values, uncorrelated disturbances are
computed as g, = R™'&,, where R = WCFD decomposition matrix.

Step 4: Wold coefficient matrices of a model, ¥;, are computed by iterating on (2.3), starting with ¥, = 1,. For the
ith WCFD factor, @, ;, = Z;:l WY¥.re;,_;, to be computed approximately, its infinite sum must be truncated.
Because the Wold coefficient matrices of stationary VARMA models decline exponentially to zero as j
increases, for every stationary model there is some J at which the sum of WCFD-factor terms beyond J can

be considered negligible and ignored. The truncated J-term approximate ith WCFD factor is
J
o= 2 Wriey . (4.5)
=1

To compute (p(]]l?[ using truncation (4.5), starting from period 7 = 1, requires getting around not having presample

values of €;,. One option is to assume that presample ¢;, are equal to their zero means; another, used in the
application, is to compute and use (p(ljl) . only for 7>J+ 1, so that truncation (4.5) doesn’t include any presample
values of g;,.

The four computational steps appear accurate in the application. First, the Kalman-smoothed GDP estimates
replicate observed GDP to within 8-9 decimal digits, that is, have ‘single precision’ accuracy. Second, because
the largest absolute AR root of any estimated model is about 0.85, for the / = 50 used in the application, elements
of the approximation-error matrices, @, ;, — (p(flot) ,fori=1, ..., k, are all about £0.0001, that is, have ‘semi-single
precision’ accuracy. Finally, significant-factor threshold p = 0.10, used in the application for a final choice of
k = 2 significant WCFD factors in every case, suggests that ordinary least squares (OLS) estimates of regression
(4.4) should yield R? of GDP 2 0.90. However, except in one case, OLS estimates of regression (4.4) yielded R? of
GDP = 0.99, with very high ¢ statistics of estimated coefficients up to about 50. Oddly, the best-fitting factor model,
5/WCF2/VAR4 (see Table 1), had the lowest R? of GDP = 0.50 of regression (4.4), perhaps because its WCFD
decomposition was the least accurate to only about three decimal digits, whereas the other WCFD decompositions
were accurate to about 13—14 decimal digits, that is, close to double-precision accuracy.
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5. APPLICATION TO FORECASTING QUARTERLY GDP AT MONTHLY INTERVALS

5.1. Data Sources

Quarterly observed U.S. real GDP data from March 1959 to June 2018 obtained from the Bureau of Economic
Analysis (BEA) are the latest comprehensive revision produced by the Bureau, released in August 2018. Monthly
observed U.S. coincident and leading indicators from January 1959 to June 2018 were obtained from the Confer-
ence Board (2018): four coincident indicators, (i) number of employees on non-agricultural payrolls, (ii) personal
income less transfer payments, (iii) index of industrial production, and (iv) manufacturing and trade sales; and,
eight leading indicators, (v) average weekly hours worked in manufacturing, (vi) average weekly initial claims for
unemployment insurance benefits, (vii) manufacturer’s new orders of consumer goods and materials, (viii) manu-
facturer’s new orders of non-defence capital goods excluding aircraft, (ix) new permits for building private housing
units, (x) Standard and Poor’s index of 500 stock prices, (xi) Conference Board’s index of consumer expectations,
and (xii) interest rate spread (interest on 3-month Treasury bills minus interest on 1-year Treasury notes).

5.2. Data Transformations

Before being used in estimation the data were (i) naturally logged (except the interest rate spread because it
has negative values), (ii) first-differenced at their sampling intervals (GDP quarterly; indicators monthly), (iii)
standardized (sample means subtracted then divided by sample standard deviations), and (iv) normalized (outliers
more than 3.5 standard deviations from zero treated as missing values). Figures 1 and 2 graph the data for the whole
sample period in log forms (except the interest rate spread) and differenced-log forms (except the interest rate
spread that is differenced without logging). (Figure 1 includes the Conference Board’s coincident index, because
an even number of graphs displays better.) Each graphed series was standardized using sample means and sample
standard deviations of the whole sample period.

The data were transformed by logging and differencing to make them more stationary and easier to estimate
models with. Standardization simplified estimation by eliminating the need to estimate constant terms and made
MLE computations easier by scaling all variables similarly. The graphs show the differenced data as more sta-
tionary than the undifferenced data, having no trends and with more uniform variations, except for some turbulent
periods.

The graphed data were left unnormalized to show outliers. A hallmark of constant-parameter VAR models is
their ability to account for noise-perturbed trigonometric cycles. Therefore, the data used for estimation were
normalized so that outliers would not distort an estimated model’s ability to account for the trigonometric cycles,
but the data used for forecasting were left unnormalized to make the forecasting more realistic.

5.3. Three Estimation-Forecasting Periods

In the past 20 years, the U.S. economy went from what has been called the ‘Great Moderation’ to the ‘Great Reces-
sion’ (dated December 2007-June 2009 by the National Bureau of Economic Research), including a financial crisis
(peaking in September 2008), to the recent ‘Slow Recovery’ (2009-2016), to a resumption of trend-level growth
(2017-2019). The data used in the application cover January 1959—June 2018. To capture three distinct snapshots
of a GDP forecaster’s real-time experience of going from the Great Moderation to the present, the model estima-
tion and forecasting in the application was carried out separately for each of three estimation-forecasting periods:
an ‘early’ period in which models were estimated for January 1959-December 1995 and forecasts were made for
January 1996-December 2007; a ‘middle’ period in which models were estimated for January 1959—December
2007 and forecasts were made for January 2008—June 2018 and, a ‘late’ period in which models were estimated
for January 1959-December 2009 and forecasts were made for January 2010-June 2018. The three vertical lines
in the graphs in Figures 1 and 2 are positioned at December 1995, December 2007, and December 2009, at the
ends of the estimation periods in the three estimation-forecasting periods. It is common to evaluate a forecasting
method ‘recursively’, meaning advancing estimation and forecasting period by period. Although doing this can
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Figure 1. U.S. quarterly real GDP, monthly four coincident indicators and index of coincident indicators, January 1959—June
2018 (a) Natural logs and (b) differences of natural logs

be expected to lead to more accurate forecasts, here this was not done because it would mask the distinct results
obtained for the three estimation-forecasting periods.

5.4. Identification of Univariate AR and VAR Models with MFD

Under additional assumptions on parameters, beyond those made below (2.1), Zadrozny (2016) proved analytically
that high-frequency VARMA models are locally identified (uniquely determined) with high-low frequency data,
in particular, monthly VARMA models are locally identified with monthly-quarterly data. Local identification can
also be checked numerically by checking the negativity of eigenvalues of the Hessian matrix of second-partial
derivatives of the likelihood function evaluated at MLEs. The numerical method showed that all estimated monthly
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Figure 2. U.S. quarterly real GDP and monthly eight leading indicators, January 1959-June 2018. (a) Natural logs, except
interest rate spread and (b) differences of natural logs, except unlogged differences of interest rate spread

models here were locally identified, including monthly univariate AR(2) models of GDP estimated using only

quarterly GDP data.

5.5. GDP as Stock or Flow

GDP would be considered a ‘continuous-time stock’ if it were observed as the value of a continuous-time gener-
ating process at a moment = and a ‘continuous-time flow’ if it were observed as an integral of the process. If a unit
of continuous time measures one month, then, g = / t=t—l g(r)dr = quantity of continuously generated GDP in
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the month ending at moment ¢ and gﬁq) = fT ’= .3 8(r)dr = quantity of continuously generated GDP in the quarter

ending at moment ¢. By the linearity of integration:
)
g ="+ +8, (5.1

for discrete-time months t =1, ..., T.

We might say that quarterly-observed discrete-time GDP is a ‘discrete-time flow’ because it sums three con-
secutive monthly ‘discrete-time stocks’ according to (5.1). However, following Zadrozny (1990), we instead say
that quarterly GDP is a ‘discrete-time stock’ if it enters a discrete-time monthly VARMA model as gf") and is a
‘discrete-time flow’ if enters the model as gfm). Whereas the discrete-time-stock specification of GDP imposes no
restrictions on the parameters of a discrete-time monthly VARMA model, the discrete-time-flow specification of
GDP does and is so called because (5.1) is part of the mapping from the parameters to the likelihood function.

The imposition of restrictions on a discrete-time monthly VARMA model by (5.1) in the discrete-time-flow
case is discussed in more detail in Zadrozny (1990) in the context of computing the likelihood function for MFD
using a state-space representation of a VARMA model and the Kalman filter. Like Zadrozny (1990), the present
application initially tried the discrete-time-flow specification of GDP, but, because it produced inferior results
compared with the discrete-time-stock specification of GDP, it was abandoned, so that Table I reports only the
results of the discrete-time-stock specification of GDP.

Mariano and Murasawa (2003) correspondingly estimated a discrete-time monthly FAVARMA-type
single-factor model using quarterly-observed GDP and monthly-observed indicators and used it to compute
monthly smoothed estimates of the single factor, considered a “new coincident index of business cycles,” but used
a discrete-time-flow specification of GDP based on a weighted sum that differs from equation (5.1). Whereas their
monthly smoothed-estimated factor corresponds to a smoothed estimate of g('"), like Zadrozny (1990), here we

t
produce monthly forecasts of gﬁq).

5.6. Application Results

All WCFD results in Table I were obtained with WCFD forecast horizon 4 = 12 months. Experimentation with
neighbouring values of % led to similar results that are not reported in the table. Also, all WCFD results in the
table are based on the weighting vector W= (1,0, ..., 0), with 4 or 12 zeros, that picks GDP as the single primary
variable, y,,, from the vector of variables, y,.

All results in Table I are grouped from top to bottom into the three ‘early’, ‘middle’ and ‘late’
estimation-forecasting periods. Results for the 21 estimated models are reported in 7 rows per period. The