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Abstract 
The U.S. Bureau of Labor Statistics uses estimates of industry output to 
construct preliminary annual productivity statistics for U.S. manufacturing industries. 
The official measures of output become available much later.  We examine how well 
several alternative models predict output for each of the 21 industries which make up 
U.S. manufacturing, using data sources available within four months of the end of 
the reference year. To measure prediction quality, we use a form of year-wise cross-
validation in which industry output from any of the years 2007-2014, even the first, can 
be predicted by the others and calculate the implied prediction error. This error metric 
enables us to test the prediction method on each industry over eight years. Our 
predictors are highly correlated, which reduces the accuracy of prediction. Several 
methods to address the collinearity problem generate more accurate out-of-sample 
estimates than ordinary least squares regression.  We find that selecting only the best 
three regressors reduces prediction error by 15%, and a principal components 
regression by about 20%, compared to OLS. 
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1. Introduction

The Bureau of Labor Statistics (BLS) Office of Productivity and Technology 
produces annual measures of labor productivity for U.S. manufacturing 
industries. Labor productivity shows the growth rate rates of output per hour worked in 
the industry. Industry output measures are drawn mainly from sources which are not 
available until 11 months after the reference year has ended.  

This study examines the quality of preliminary estimates of output for each 
detailed manufacturing industry prepared from a regression analysis of data that is 
available within four months of the end of the year. There is a tradeoff between timeliness 
and accuracy, as more data becomes available over time. 

The next sections describe the definitions, data sources, and the linear 
regression methodology which predicts a value-of-production from predictors.  The 
predictors are highly collinear, which produces some overfitting of the regression, and 
therefore larger errors in prediction.  We experiment with variants of linear regression 
designed to adapt to collinearity: ridge, lasso, elastic net, subset selection, and principal 
component regressions. The best-performing of these methods in the out-of-sample tests 
here are subset selection to three predictors which improved accuracy versus ordinary 
least squares regression by 15%, and principal-components regression which improved 
on OLS by 20%. 



2. Definition of industries, output, and growth rates 
 
U.S. manufacturing establishments are classified by their primary products into categories 
of the North American Industry Classification System (NAICS).  There are 21 3-digit 
NAICS classifications in manufacturing, with numbers ranging from 311 to 339.  Each of 
these 3-digit industries is subdivided into 4-digit industry categories, with numbers ranging 
from 3111 to 3399.  All of our data sources use these classifications, but sometimes the 
published statistics group together some of the 4-digit industries. The main results below 
are for 3-digit industries.  Each industry-year is an observation in the regressions to follow. 
 
The final data for industry output comes from the Census Bureau’s Annual Survey of 
Manufactures (ASM) and are not available until approximately 11 months following the 
end of the reference year. In years ending in 2 or 7, the more complete Economic Census 
is conducted, and the ASM is not conducted. For these years, the final industry output 
figures are not available for more than 18 months after the reference year. The 2012 
Economic Census became available in late 2014. 
 
The output measure to be predicted for each industry is its annual Value of Production in 
current (nominal) dollars. Value of Production is a sectoral output measure, meaning it 
includes production that is sold or transferred outside the industry but excludes production 
that is sold within the industry. Industries are made up of establishments, and if an 
establishment produces goods in multiple industry categories, all its revenue is counted in 
the largest one, its primary industry.1 
 
The Value of Production is constructed from four components, each of which is expressed 
in current dollars: the sum of shipments and change in inventory, minus resales (goods 
resold without transforming them) and intrasectoral transactions (sales within the 
industry). The first three elements are drawn from the Economic Census or the Annual 
Survey of Manufactures. The fourth component, intrasectoral transactions, is estimated by 
BLS/OPT based on Economic Census data describing the flow of products between 
establishments within the same industry.2 
 
Annual growth rates of each industry’s value of production (VoP) are defined thus: 
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1 Revenue from an establishment’s products that fit into its industry category is called primary 
output; revenue from products fitting more naturally into other industries is called secondary 
production.  The basic chemicals industry (NAICS 3251) has the highest fraction of secondary 
production – about 14 percent of its output.  The presence of secondary production creates a minor 
mismatch between some of the predictor variables and the output measure, since some of these 
variables are associated with establishment activity and others with the primary industry. The 
mismatch is not explored further in this paper, but it would be possible to construct predictions 
separated along this dimension. 
2 Intrasectoral transactions are flows of goods and payments between establishments within an 
industry (Gullickson, 1995, and https://www.bls.gov/news.release/history/prod2_08082006.txt).  

https://www.bls.gov/news.release/history/prod2_08082006.txt


This unitless logarithmic growth rate is a standard construct in such regressions. In this 
work, growth rates of the dependent variable and the predictors were all calculated in this 
form.3   
 

3. Empirical summary of the output growth rates 
 
The overall growth of value of production across all 21 manufacturing industries over this 
period was 1.2 percent per year.  The unweighted average growth, however, is near zero 
because growth was concentrated in certain large industries whereas many of the small 
industries were shrinking. In several cases, output rose or fell by 50 percent from the year 
before, notably in some of the primary metals production industries (NAICS 331) in the 
turbulent year 2009. 
 
The data needed to construct the value of production for each industry are available from 
the ASM, which is usually released in November following the reference year.  These 
values are typically revised in the following year’s ASM.   
 
In 2011, 3-digit industries varied from $5.665 billion in annual revenue (for NAICS 316, 
Leather and allied products) to $838 billion (for NAICS 324, Petroleum and coal products).  
Four-digit industries varied from $1.44 billion in annual revenue (for NAICS 3159, 
Apparel accessories) to $838 billion (for NAICS 3241, Petroleum and coal products).  
Predictions tend to be more accurate for larger industries, presumably because the 
predictors and the estimates of final output are both constructed from larger samples. 
 

4. Data Available to make Preliminary Estimates 
 
Several data series associated with industry activity levels are available early enough so 
that we can use them to predict the value of production for the previous year.  Their year-
to-year changes are positively correlated to output changes. The subsections below discuss 
each predictor variable, the industries it covers, and the timing of its availability. 
 

4.1 Industrial Production Indexes (IPIs) 
 
The Federal Reserve Board releases estimates of real output by industry each month.  These 
are called the Industrial Production Indexes.  For 50% to 60% of manufacturing industries, 
the IPI draws mainly from data on physical quantity output from trade associations and 
government agencies and from estimates of industry activity from the Census Bureau’s 
Capacity Utilization Survey. When such physical quantity measures are not available, IPI 
estimates are based mainly on production hours worked in the industry, which are drawn 
from BLS’s Current Employment Statistics (CES). IPI estimates draw from industry-
specific regressions and judgment by industry specialists at the Federal Reserve.4 
 
The IPIs cover all 3-digit and 4-digit NAICS manufacturing industries. However, NAICS 
industries 3311 (iron and steel mills and ferroalloy manufacturing) and NAICS 3312 (steel 

3 Experiments with the data in arithmetic growth rates of the form (Xt-Xt-1)/Xt-1 did not produce 
better predictions. 
4  Sources: Communications with Kim Bayard and Charlie Gilbert of the FRB, from 
http://www.federalreserve.gov/releases/g17/About.htm and from the Industrial Production 
Explanatory Notes, Industrial Production and Capacity Utilization - G.17, at the Federal Reserve 
Board web site. http://www.federalreserve.gov/releases/g17/IpNotes.htm. 

http://www.federalreserve.gov/releases/g17/About.htm
http://www.federalreserve.gov/releases/g17/IpNotes.htm


product manufacturing from purchased steel) are combined into one index.  Indexes for 
some 4-digit industries are available only on request. 

 
The first IPI report for a given month is released about six weeks after the end of that month 
and is revised in later releases.  The first annual estimates for a reference year are available 
by the end of January and are updated in succeeding months. 
 
IPI growth rates are later benchmarked to the Economic Census and the ASM.  This study 
uses IPI growth rates for each year that were released before this “benchmarking” was 
conducted, since in the context of preliminary estimates, ASM and Economic Census data 
are not yet available for the reference year.  
 

4.2 Producer Price Indexes (PPIs) 
 
Manufacturers are producers, and producer price indexes deflate the value of the items 
they produce, whether sold to other producers or to consumers. PPIs are helpful for this 
model because some variables are nominal, others real.  The dependent variable, value of 
production, is in current (nominal) dollars.  Several predictors, such as the IPI indexes, are 
in constant-dollar terms. There are PPIs for every 3- and 4-digit industry, matched with 
products as accurately as possible. 
 
Monthly PPIs are published three weeks after the end of the reference month, and annual 
averages are available at the end of January. Small revisions based on corrections and late 
respondents are published four months later. By the end of March, near-final PPIs are 
available for the reference year. 
 

4.3 M3 shipments data 
 
The Census Bureau’s Manufacturers' Shipments, Inventories, and Orders (M3) data are 
based on a voluntary monthly survey of U.S. manufacturing companies, including most 
companies with $500 million or more in annual shipments. M3 data include the value of 
shipments, total inventories, inventories by stage of fabrication, new orders received, and 
unfilled orders.  
 
The M3’s accounting concepts are the same as those of the ASM, but the M3 survey varies 
from the ASM in other respects: the M3 covers companies, not establishments; it does not 
cover all 4-digit manufacturing industries; the sample size is smaller than in the ASM, and 
the M3 survey has a low response rate.  Large companies are overrepresented in the M3 
sample by selection, and the Census Bureau reweights the responses to represent the size 
distribution of the population of actual companies. 
 
The M3 survey covers all 3-digit NAICS and roughly 23 of the 4-digit NAICS 
manufacturing industries. The 4-digit coverage includes some combinations and partial 
coverage, which we stretch into proxy measures by subtracting and dividing the known 
numbers. Estimates for the remaining 4-digit industries are constructed by subtracting the 
known 4-digit estimates or proxies from the 3-digit industry that contains them, as 
explained in the section “Constructing proxies.”  The term “proxy” is used for the M3 
values because they do not perfectly match the industry. 

 
The M3 survey is available shortly after the end of each month. Preliminary and revised 
year-end results of the M3 survey are typically released two and three months after the end 



of the calendar year, so the revised data are available in time to be used to generate 
preliminary estimates. 

 
4.4 Imports and exports data 

 
Monthly data on imports and exports by industry is gathered by the U.S. Customs and 
Border Protection (CBP) and made available shortly after the end of the month by the U.S. 
International Trade Commission (USITC).  Imports are categorized by the kind of product 
that was imported and the products can be mapped to industry categories.5  In this way, the 
USITC imports and exports data covers all 3- and 4-digit manufacturing industries except 
one, for which a good proxy is available.6 
 

4.5 Wages and employment data 
 
The Quarterly Census of Employment and Wages (QCEW) covers over 96 percent of 
manufacturing-industry jobs in the United States.  The QCEW data includes employment 
counts and the total wage bill for each 4-digit manufacturing industry, and we use these as 
separate predictors here. 
 
QCEW data is available about five and a half months after the end of each quarter. Near 
the end of March, the data for the third quarter of the previous year becomes available.  We 
therefore use the growth in wages and in employment from the first three quarters of one 
year to the first three quarters of the next year.  It is feasible to use other data to construct 
estimates for the fourth quarter of the reference year, but our past experiments using such 
estimates as predictors did not improve predictions. 
 

4.6 Construction of “proxy” predictors for four-digit industries 
 
In some data sources, such as the M3, certain industries have been combined, or are not 
included.  If two industries are combined in a statistical release, we impute the growth rate 
of the total to the component industries. This kind of estimate has worked well as a proxy. 
For most 4-digit industries which are not reported, proxies are computed by taking the best 
available 3-digit total and subtracting the component 4-digits that are observed. The 
remainder approximates the best available growth rate for this 4-digit element. 
 

5 Imported and exported products are classified by “end-use code,” associated with categories such 
as corn, medicinal equipment, or civilian aircraft.  These categories are documented on the Census 
Bureau’s Foreign Trade Reference Codes web page: http://www.census.gov/foreign-
trade/reference/codes/index.html#enduse. Goods are also classified into the Harmonized System 
Codes (HS Code), discussed at http://www.foreign-trade.com/reference/hscode.htm. BEA further 
estimates the proportions of imports which are put to use as materials in production, versus long-
lasting investment capital goods, versus final consumption, and these differences are used in 
productivity statistics. In this study, we use the values of imports, not information on how they were 
used. 
6 The missing one is NAICS 3328 (Coating, Engraving, Heat Treating, and Allied Activities). For 
that industry, the annual changes from imports and exports from NAICS 3327 (Machine shops; 
turned product; and screw, nut, and bolt manufacturing) worked well to predict output growth in 
3328. Other sub-industries and residuals from industry 332 were considered, but 3327 performed 
best. After this substitution, estimates of imports and exports levels at the 4-digit level no longer 
add to the estimated 3-digit levels, but only growth rates, not levels, matter in the regressions. 

http://www.usitc.gov/
http://www.usitc.gov/
http://www.census.gov/foreign-trade/reference/codes/index.html#enduse
http://www.census.gov/foreign-trade/reference/codes/index.html#enduse
http://www.foreign-trade.com/reference/hscode.htm


The same issue arises for other data sources, to a lesser degree.  Import/export data is 
missing for industry 3328, but growth rates of industry 3327 were found to be a good proxy 
to predict output growth in 3328. The IPI combines 3311 and 3312 data, and the 
movements in the total were good proxies for each. In the future, we may use sales and 
revenue figures from the Census Bureau’s Quarterly Financial Reports (QFR), which are 
good predictors for industry output. Because the QFR data do not cover all the industries, 
and its classifications have changed over the years (Census Bureau, 2012), the QFR is not 
used in this study. 
 

4.7 Summary of predictors and regressions 
 
The regressions below use the growth rates of all seven measures of industry activity 
discussed above as independent variables. Including industry indicators and past output 
levels as regressors did not consistently improve out-of-sample performance, and they are 
left out of the regressions shown here. 
 
Within three months of the end of the reference year, seven of these predictors are 
available, at least in preliminary versions.  An additional month would not give much more 
data.  These tests therefore use data as it was available before each April when possible, 
and do not include later revisions of the predictors. 
 
Figure 1 illustrates the scale of the growth rates, shown in arithmetic form (Xt /Xt-1).  Each 
of the four main columns is numbered for a NAICS 4-digit industry.  Data points in the left 
column of the pair of columns above each industry show growth rates of the predictor 
variables, and the data points on the right show the dependent variable and one model’s 
prediction of them.  Generally, the predictions here are averages of the predictors.  For 
industry 3112, the variable to be predicted is outside the range of the predictors. If this is a 
consistent pattern, a model could accommodate it with a constant, a fixed effect by industry 
or other predictors. 
 

 
Figure 1:  Growth rates of example predictors, industry output, and predictions of output 
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4.8 Quality of these predictors 
 
Growth in each of the predictors is highly correlated with the main dependent variable, the 
growth in value of production, at both the 3-digit and 4-digit level.  Correlations are greater 
at the 3-digit level than the 4-digit level, presumably because samples are larger in larger 
industries. 
 
Table 1 summarizes the results of single-variable regressions used to estimate the growth 
rate of the value of production. Each line is from a separate regression. The specification 
of these log-linear regressions for industry i, year t, and predictor X is  
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Table 1.  Univariate regressions of industry value-of-production growth, 2007-2014 

N=168 industry-years 
 

Predictor Regression coefficient R2 
IPI 1.19 0.59 
PPI 1.31 0.36 

M3 shipments 1.08 0.71 
Imports 0.76 0.76 
Exports 0.78 0.71 

Wages, quarters 1-3 1.32 0.59 
Employment, quarters 1-3 1.51 0.49 

 
 

5. The collinearity problem 
 
The predictors are highly collinear. A core problem here is that collinearity of the predictors 
leads to overfitting of the regressions, which creates predictions that are overly sensitive to 
random variation in the predictors.  Pair-wise correlations across the predictors are high, 
as shown in Table 2. 
 

Table 2.  Pair-wise correlations across the growth predictors 
 

 IPI PPI Imports Exports Wages M3 

IPI 1.000      

PPI 0.207 1.000     

Imports 0.780 0.600 1.000    

Exports 0.599 0.648 0.824 1.000   

Wages 0.853 0.283 0.728 0.638 1.000  

M3 shipments 0.731 0.647 0.865 0.776 0.736 1.000 
Employment 0.793 0.198 0.614 0.545 0.946 0.647 

 
 



Pairwise correlations do not perfectly indicate how much multicollinearity will affect a 
regression.  The Variance Inflation Factor (VIF) measures how much the variance of 
each OLS-estimated coefficient was raised by collinearity.  The VIF for each predictor i is 
computed from the R2 from regressing it on the other predictors: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = 1
1−𝑅𝑅𝑖𝑖

2   (3) 

 
According to standard heuristics, a regression VIF over 4 calls for attention, and a VIF over 
10 calls for particular scrutiny. Table 3 shows VIFs in our data. 
 

Table 3.  Variance Inflation Factors 
 

 3-digit industries 4-digit industries 
IPI 6.41 2.79 
PPI 3.01 1.67 

Imports 7.64 3.05 
Exports 3.74 2.12 
Wages 15.95 8.01 

Employment 11.07 7.12 
M3 shipments 5.74 2.44 

 
Our goal is to build a model that is not too sensitive to collinearity, avoids overfitting the 
data, and produces good prediction accuracy.  Pruning variables would be feasible, but our 
objective in this paper is to evaluate methods that make some use of the unique information 
in all these variables. 
 

6. Measures of prediction accuracy 
 
Measures of the accuracy of a prediction method are somewhat different from those that 
measure the fit of a regression.  A regression fits well to the degree that the independent 
variables jointly correlate to the dependent variable within the sample.  However, the 
practical problem to be addressed is to use past years of full data to predict the output in 
the target year for which output data is not available.  In the language of data science, the 
prediction problem calls for the use of a “training data set,” for which the right answer is 
known, to calibrate the exact prediction model, including the coefficients of any regression.  
The quality of the method is then judged on the accuracy of its predictions on "test data" 
which was not included in the training data but is believed to have come from the same 
data-generating process, and to have the same relationships between the variables.  
Measures of accuracy in which the training data and test data are separate will be called 
out-of-sample measures of accuracy. 
 
In practice, we will have near-complete data for all industries on a set of past years and 
would want to predict all industries for the latest year. Simulating that problem in these 
tests, we could repeatedly attempt to predict the latest year with full data, 2014, and 
compare accuracy across methods.  However, 2014 data may be distinctive, and we can 
obtain more information on the accuracy of methods by treating each year as test data.  
Therefore, for each method we carry out the following form of cross-validation. 
 



We treat observations from 2007-2013 as the training data, run the regression or other 
prediction method to “train” the coefficients, and apply the resulting model to 2014 data 
for each industry.  For each 2014 industry, we measure the out-of-sample error of this 
method by the difference between the predicted value and the actual industry output 
observed later.  We denote this difference, this error or residual, by eit, where i is industry 
and t is year.  Then, we conduct this exercise again using 2007-2012 and 2014 together as 
the training set and 2013 as the test set, and so on, using each year as test data once. Each 
year’s data will be test data in one “fold,” in this k-fold construction. 
 
At the conclusion of this process, for each method we have a set of residuals eit for each 
industry and year, and we can use them to evaluate the performance of the method overall 
against alternative methods, and by year or by industry. The term “cross-validation” 
describes the construction of out-of-sample errors of this kind.  Because we did not drop 
one observation at a time (the usual kind of cross-validation), but a whole year of data at a 
time, this is "year-wise cross-validation."  It would be possible to drop one observation at 
a time and compute coefficients from the others, including those from the same year, but 
this would not reflect as well the problem to be faced in production; the error rates would 
be biased low because more information would be available in the test than in the 
production environment.  
 
A panel of errors eit for each model can be described by several different statistics to 
characterize the performance of the model compactly: 
 
• R2, the coefficient of determination, which is a unitless number between zero and one 

expressing the fraction of the total sum of squared deviations in the dependent variable 
that is fit by the regression or other prediction method. An out-of-sample version of 
this statistic can be computed, but in the end we will not show R2s here because it does 
not translate quickly into a measure of the level of error the user of the final statistic, 
the dependent variable, will experience.  To envision this, imagine a panel of industry-
years where the predictors have almost no relation to the output levels, but output 
varies only slightly each year. The regression then performs poorly but the predictions 
could be good because the total deviations from year to year are small.  In extreme 
cases, an R2 could be near zero or undefined even when predictions are adequate. 
 

• The maximum observed error for each model across all industries, all years, or all 
industry-years. In general, the more economically turbulent earlier years 2007-2010 
have larger prediction errors than the later years, and small industries have larger 
prediction errors than large ones, perhaps because of sample sizes in the predictors. 
 

• The mean absolute error (MAE) is the absolute value of the difference between the 
predicted growth rate and the actual growth rate: 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝑛𝑛
𝑖𝑖=1   This measure 

has the same units as the dependent variable.  Here, an MAE of .02 represents an 
average of 2% error in the dependent variable, which is an industry output growth rate.  
The MAE and RMSE have the advantage that they are always defined for any set of 
predictions and will therefore always give a ranking of prediction methods. 

• Root mean square error:  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ 𝑒𝑒𝑖𝑖𝑖𝑖2𝑛𝑛
𝑖𝑖=1     This metric matches the optimality 

criteria of ordinary least squares regression. RMSE, unlike MAE, penalizes errors that 
have a large absolute value more than a set of smaller ones with the same total.  RMSEs 



are in the same units as the dependent variable.  RMSEs are larger than MAEs, on the 
order of 40% in this data, and grow larger yet with larger sample sizes. 

 
We have chosen to show the RMSE and not the other statistics in this paper for simplicity 
and to match the usual methods in the literature.  Chai and Draxler (2014) discuss the 
choice between MAE and RMSE.  They report that the MAE is more suited to uniformly 
distributed errors, whereas the RMSE is more appropriate if the errors have a normal 
distribution, as they seem to here. In the data and models shown here, the correlation 
between the RMSE and the MAE is approximately .98.  We show the RMSE in 
comparisons across methods below. 
 
We have checked for time series relations among the growth rates, and we do not find 
trends over time in how they relate to one another, which would make prediction of earlier 
years in this way more dubious. 
 

7. Models tested 
 
We tried several modeling approaches. These include ordinary least squares (OLS), ridge 
regression, Lasso, elastic net, subset selection, and principal component regression. See 
Hastie, Tibshirani, and Friedman (2009) for an excellent introduction to these methods.  
 
We used the R computing environment (https://cran.r-project.org/) and the caret package 
(http://topepo.github.io/caret/index.html) for this analysis. The caret package provides 
an interface to many modeling functions in R, making our analysis consistent across the 
various approaches.  
 

7.1 Ordinary least squares 
 
Ordinary least squares estimates minimize squared-errors and are unbiased:  
 

        (4) 
 
When these coefficient estimates were constructed in the 3-digit industry sample sets and 
applied to make predictions in the out-of-sample year, the average RMSE was .082, that 
is, 8.2% error in output growth.  Residuals from OLS appear normally distributed and 
appear to be autocorrelated.  We do not have an explanation of why they are autocorrelated. 
 
Coefficients vary somewhat in the yearly models obtained through cross-validation. 
Among the systematic relationships are those of employment and wages.  Employment 
change and wage change are highly correlated to one another. When both are included in 
regressions predicting output, employment has a positive coefficient and wages have a 
negative coefficient. This makes sense insofar as employment increases directly cause 
more output, whereas wage increases make creation of output more costly.  Relatedly, 
expanding industries tend to hire low-wage staff at the margin, whereas industries which 
are contracting in size tend to keep relatively high-wage employees and not to hire new 
low-wage staff. Thus employment counts are correlated more highly to output than wages 
are. 
 
 
 

https://cran.r-project.org/
http://topepo.github.io/caret/index.html


 
Table 4. OLS predictors of VoP growth all 3-digit manufacturing industries 

All variables are in log growth form:  ln(value in year t / value in year t-1). 
N=168 (21 3-digit industries for 2007-2014. R2 = 0.69, RMSE=.073 (in sample) 

 
 Coefficient p-value 
PPI growth 0.295 0.086 
IPI growth 0.307 0.083 
M3 shipments growth 0.029 0.833 
Imports growth 0.211 0.052 
Exports growth 0.314 0.000 
Wage growth, quarters 1-3 -0.704 0.006 
Employment growth, quarters 1-3 1.11 0.000 

 
 

7.2 Ridge, Lasso, and Elastic Net regressions 
 
A ridge regression is a constrained least-squares regression. This method is designed to 
reduce sensitivity resulting from collinearity by pressing regression coefficients toward 
zero. The ridge regression equation can be expressed in different forms, with equivalent 
constraints. For p parameters and N observations and an R chosen by the investigator: 
 

(5) 
 
One form of the ridge regression constraint is denoted R above.  R is a hyperparameter 
generally selected by cross-validation from the training data. We let the constraint be 
chosen automatically by the caret package’s cross-validation and training functions. The 
resulting RMSE for the 3-digit industry panel was 0.077.  Thus ridge regression slightly 
outperforms OLS. 
 
A lasso regression is an alternative constrained least-squares regression method.  
Coefficients are constrained by the sum of their magnitudes. 

(6) 
 
The lasso method tends to select among regressors by pushing some of the estimated 
coefficients toward zero (Tibshirani, 1996). In this application, the results are about the 
same as for ridge regression, with an RMSE of 0.077. 
 
The Elastic net method incorporates both ridge and lasso constraints, weighing the R and 
L constraints above by performance in cross-validation.  It performed better than the earlier 
methods, giving an RMSE of 0.074. 
 

7.3 Best three predictors – subset selection 
 
Three predictor variables tended to have the highest importance. Furthermore, they are not 
very highly correlated with one another. These are IPI, PPI, and Exports. Using only these 
three predictors in an OLS regression, we obtained an out-of-sample RMSE of 0.070.  



 
7.4 Principal-components regression 

 
In principal-components regression, one first applies principal component analysis to the 
predictors and then uses these constructed variables, the components, in OLS to make 
predictions.  We obtain uncorrelated observations when we transform our data to the space 
spanned by the principal components, which is one way to address collinearity. We could 
keep all principal components or use a smaller number, which reduces the dimensionality 
of the regression. Typically, one would retain enough components to explain a high 
percentage of the variation in the original data (Jackson, 1991). 
 
The first principal component is a linear combination of the 7 growth predictors, and we 
found that only one principal component was needed to explain over 95% of the variation.  
The first component weighted most heavily the IPI, PPI, exports, and employment-minus-
wages. Estimates were produced by the pls package in R (Mevik, Wehrens, and Liland, 
2016). 
 
The first component was then used to predict VoP growth by OLS. The RMSE for 3-digit 
industries with this method, using one component, was 0.065 -- the best of all the methods 
we tried.  To our surprise, adding the second principal component as a regressor did not 
reduce the prediction error.   
 

8. Discussion, alternatives, and future research 
 
We have experimented with splines and random forest models, but these methods did not 
improve significantly on the performance of OLS.  We think the reason is that the 
underlying problem doesn’t call for their flexibility. The modeled relationships seem 
basically linear, with no major bends and curves. The flexibility enabled by these methods 
did not help accuracy in prediction for this problem.  One reason could be that the ratio of 
numbers of observations to the numbers of parameters, sometimes expressed as N/P, is not 
large enough.  Here there are N = 147 observations in training set for 21 3-digit industries. 
Furthermore, dividing up industries into groups to create industry indicators did not seem 
to help accuracy. Estimates for some more complicated models were not computable 
because there were too few observations. 
 
Table 5 summarizes the performance of the available model predictions.  Random forests 
predictions vary slightly from run to run, and the figure shown is an average.  
 

Table 5.  Summary of model performance metrics 
 

Model Root mean squared error (RMSE) 
Ordinary least squares with all 7 variables 0.082 

Random forests 0.080 
Ridge regression 0.077 
Lasso regression 0.077 

Elastic net 0.074 
OLS with best 3 predictors 0.070 

Principal components regression 0.065 
 



Compared to OLS with all seven growth variables, we find in these tests that pruning 
variables to the selected three reduces out-of-sample prediction errors by approximately 
15%, and principal components regression using all seven reduces errors by approximately 
20%.  For methods other than OLS, generally speaking, the in-sample performance of the 
regression is slightly worse if a regressor is eliminated. 
 
The use of wage and employment predictors in forecasting output generally produces 
slightly better output estimates, mainly by reducing the most extreme errors. If the resulting 
estimate is used to produce a productivity measure, there is a beneficial side effect to using 
these predictors. When errors in labor estimates are large and positive, they also raise the 
predicted output level, biasing it high, and so the effect of such errors is muted in the 
resulting productivity ratio.  When errors in employment and wages are low, they lead to 
an under-prediction of output. Thus, there is a negative feedback effect of incorporating 
errors in labor estimates which tend to slightly reduce errors in early productivity estimates. 
 
The fact that the principal components method works best suggests that the underlying the 
data-generating process has a particular pattern.  These measures of industry activity – 
value of production, shipments, employment, wages, and the like – are related entirely 
linearly, and perhaps they are close to being measures of the same underlying flow, and 
there are no curvilinear or threshold relations among them.  
 
There are a number of additional experiments which may improve predictions further: 

• There is autocorrelation in the residuals from the OLS regression, and using these 
residuals as predictors could therefore improve predictions.  It is not clear why 
there is autocorrelation. 

• Interactions between the predictors might create better predictors. 
• It is possible to use these and other predictors to estimate each of the four 

components of the Value of Production -- shipments, inventory change, resales, 
and intrasectoral transactions. The accounting rules require certain components of 
four-digit industries to add exactly to their levels in the three-digit industries, and 
this fact can be applied to slightly improve predictions, as has been shown in past 
research (Meyer et al. 2015).  To do this here would add complexity to our 
evaluation of the more advanced predictions methods, so in this study we show 
only direct predictions of the Value of Production. 

• Evidence from across industries is sometimes best modeled with a random 
coefficients model, a linear model in which coefficients can have a normal 
distribution, varying somewhat by industry. 

• Finally, it would be possible to use other data sources in the regression.  Data from 
the Census Bureau’s Quarterly Financial Reports is available for many of these 
industries, treating reported revenues or profits as predictors of output.  The 
American Association of Railroads releases estimates of transport volumes and 
values for the products of U.S. manufacturing industries.  These data sources are 
organized by NAICS industry and are available early enough to be included in the 
predictions here, but data limitations and required transformations made them too 
difficult to apply in this work. 

 
9. Conclusion 

 
The regression approach can include many variables for predicting value-of-production 
levels by industry.  For large industries, it is possible to get good estimates four months 



after the reference year ends, but not for all industries.   Prediction accuracy is verifiably 
affected by the high collinearity of the predictors.  This collinearity leads to regression 
coefficients that seem to be excessively sensitive to small variations in the predictors, 
according to our out of sample tests. 
 
We explored several regression methods to reduce the problem, and measured their 
performance by year-wise cross-validation. We find that compared to OLS with all seven 
growth variables, selecting the best three predictors reduced out-of-sample prediction 
errors by 15%.  Principal components regression reduced errors by 20%. 
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