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Abstract 
Nonparametric regression is the model-based sampler's method of choice when there is 
serious doubt about the suitability of a linear or other simple parametric model for the 
survey data at hand. It supersedes the need for use of design weights and standard design-
based weights. Recognition of this is especially helpful in confronting problems in  
sampling situations where design weights are missing or questionable. One example is 
the case where we have data from two (or more) samples from a given population. We 
discuss this case. 
 
Key Words: inclusion probabilities, post-stratification, model-based, model-assisted, 
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1. Introduction: the two sample problem 
The two sample problem is simply stated: Suppose two distinct surveys gather related 
information on a single population U. How do we best combine data from the two 
surveys to yield a single set of estimates of a population quantity (“population 
parameter”) of interest? 
 
For example, at the Bureau of Labor Statistics (BLS), the survey of Occupational 
Employment Statistics (OES) and the national Compensation Survey (NCS) both collect 
data on occupational employment and wages in different ways and with different 
emphases.  It has been an ongoing research question at BLS how the data from these two 
surveys might be unified into a single overall product.  
 
In general, one possible way to address this situation is to get separate estimates from the 
two surveys and weight them together with weights the inverse of their estimated 
variances.  See, for example, (Merkouris, 2004) and the references therein. Another 
possibility is to combine the two data sets into a single data set and modify the weights 
on individual sampled units in some appropriate fashion (Dorfman, 2008).   
 
Consider the following example.  The Beef Population (N = 410) is a collection of 
Australian Beef Farms (Cattle Ranches) that has been often studied beginning with 
(Chambers and Dunstan 1986).  The auxiliary variable x is the Acreage of the farms, 
known prior to the survey for all farms in the population. The variable of interest y is the 
size of the herd sold in the particular year of interest. Values of y are available for those 
farms selected into the sample. Of interest is the total number of cattle sold across all 
farms,  Now suppose a first sample (“Sample 1”) is taken by simple random 

sampling (srs), with say sample size n1 =  50, and the results are as in Figure 1.  The line 
fitted to the curve is the result of a quadratic regression fit of y on log(x).  The residuals 
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from the fit are given in Figure 2, giving some evidence that the variance increases with 
x. Some further investigation suggests the variance increases as xd, with d somewhere  
between 1 and 2. 
                                                 Figure 1 

     
Now suppose there is a budget surplus and it is decided to take a second sample (“Sample 
2”) that capitalizes on the new knowledge of variance structure.  Ideally this would be a  
probability proportional to size (pps) sample with size variable xd/2 , but as an 
approximation, a stratified simple random sample (stratsrs) is taken – ten strata, with 
cum(x3/4) equal in each, and 5 units taken at random in each.    Thus there are now two 
samples, each of size 50, of different types, and composing a combined bigger sample 

1 2s s s  .  The number of distinct units in the combined sample would typically be less 
than 100, because of overlap. 
 
How best make inference from the combined data?  Several approaches seem worth 
considering. 
 
1.1 Design-based approaches 
1. Mixture Approach. Get separate estimates for each sample, and weight them together 
by the inverse of their estimated variances:         

                            1 1
1 1 2 2

ˆ ˆˆ ˆmixT v T v T   ˆ

2i

Here the individual   would be estimators suitable for the respective samples, for 
example, their corresponding Horvitz-Thompson estimators. 

k̂T

 
2. Using overall inclusion probabilities. If we wish to base an estimate on the combined 
data s, and to proceed according to design-based methodology, then a first step is to get 
overall inclusion probabilities *

1 2 1i i i i       . These can be incorporated into an 
Horvitz-Thompson estimator, a Hajak estimator, or a model-assisted estimator. For 
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example, the Horvitz-Thompson estimator would be *
* 1 2

ˆ
i ii s s

T w  
 y ,with * *

i iw 1  .   

We should note that units occurring in both samples (“overlaps units”) appear only once 
in the expression.  This assumes we can identify duplicates – if we cannot, or it is too 
expensive or time consuming to do so, we will be stuck with the mixture method. 
 
                                         Figure 2 

 
 
1.1.1 A Disconcerting Example 
Using the overall inclusion probabilities in combination with the Horvitz-Thompson 
estimator can lead to counter-intuitive results.  
 
Suppose a population of size N is sampled twice (independently) by srs. Then for 

, we have 1i s s  2 * 2
1 2 1 2i n N n N n n N    .  Suppose both samples take half of 

the population: 1 2 2n n N  . The minimal size the combined sample could be is 2N  
and the maximal is N; the expected sample size is (3/4)N. Then 

* 1 / 2i   * 1 2

4ˆ
3 ii s s

T  
  y1/ 2 1 / 4 3 4   and the HT estimator is .  This is a bit 

strange:  if the actual combined sample size is less than (3/4)N, we can anticipate the 

estimate will tend to be low.  And contrariwise, if larger, *T̂  is likely to be too large. In 
the extreme case where the combined n = N (not likely in practice, but possible), we 
would know the estimate is 33% too high.   
 
In general, design-based weights play a subtle dual role.  Explicitly, they get used 
because they lead to attractive sampling properties: across all possible samples under the 
design, the average of estimates is the target (“unbiasedness”) or is close to it (“near-
unbiasedness”), etc.  Implicitly, they seem appropriate for the particular sample at hand 
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insofar as  they give a fair way for the units in the sample selected to represent to us what 
the population is like.  For example in stratified sampling, if the strata are so chosen that 
y values within a stratum are likely to be near each other, then weighting up the sampled 
units by the ratio of the number in the stratum to the number sampled, makes good sense.  
Thus there are two aspects to sampling weights: (a) the across-potential-samples--their 
sampling properties and (b) the for-this-sample-within-this-population--their 
representativeness.  In the above simple example, the representative aspect is lost.  
Question: Should we still want to use inclusion probabilities when their representative 
aspect –the way they tie this sample to the population sampled—goes by the wayside? 
 
1.2. Model-based 
3. Post-stratification. Ignore sampling probabilities and use “post-stratified” weights, to 

form an estimator of the form  
1

1 2p̂s h h ih i h s s
T N n

  
 y  , where {h} are suitably 

chosen strata, Nh = number of population units in h, and nh is the number of unique units 
in the combined sample that fall in stratum h. The original sampling does need not be 
stratified for this idea to be germane. Dorfman (2008) considers “iterated” post-
stratification, where several post-stratified estimates, using systematically varied stratum 
boundaries, are averaged to give an overall estimate.  This is implicitly a species of 
estimate based on non-parametric regression. 
 
2. Nonparametric regression estimation 
4. Nonparametric regression estimation.  More generally, we can use weights that spring 
from a model that supposes only that the expected value of y, conditional on x, is 
continuous in x. Thus, suppose, for i U , that yi depends on xi through the model                              

 i iy m x i 

i

, where  is an unspecified function assumed to be continuous, and 

the errors

 im x

  are independent with mean 0 and variance  iv x . We can refer to this set-up 

as the weak model. In this scheme, we can ignore which of the original samples, the yi  are 
available from and can ignore the inclusion probabilities.   
 
The field of nonparametric regression offers a variety of ways to estimate 

   |m x E y x



 for values of x within reasonable range of the sample values of xi, in 

particular for non-sample x = xj.. Then the very simple idea is to get nonparametric 

estimates  ˆ jm x  for all xj inU and estimate T by  ˆ ˆ jj U
T m


 x .  

 

This is reasonable, since we expect  j jj U j U
m x y




  .  A slightly better idea, in 

keeping with standard model-based practice, is to capitalize on the fact that the sample 

y’s are known, and take  \
ˆi jj U s
m x

 
  n̂p i s

T y .  

 
Many ways are current for doing nonparametric regression estimation.  The basic idea of 
all of them is that the auxiliary variable x provides some measure of nearness of points, 

so that we take as an estimate a weighted sum  ˆ j ij ii s
m x w y


 , where the relative 

sizes of the wij  depend on the distance of (sample) xi to xj.  Probably the simplest version 
of this is (Nadayara-Watson) kernel estimation, where for  b a chosen scaling factor (the 
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“bandwidth”), and K a symmetric density function, for example, the standard normal 

density function, we take  

'

'

i j

b
ij

i j

i s

x x
K

b
w

x x
K

b

 
 
 

 
 
 


. 

 
Another possibility, with slightly better properties, is local polynomial regression.For 
each xj, a weighted regression predictor is calculated with the weights on ith sample point 
dependent on distance of xi  from xj, again scaled by a bandwidth b  ( Fan 1992; Ruppert 

and Wand 1994). Let  
 

 

1 11

1

q

q

n n

x x x x

X x

x x x x

  
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 
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             
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n
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  
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  

  



  






.  The local polynomial regression estimate at xj is 

then given by               
1

ˆ 10 0
T T

b j j b j j j b jm x X x W x X x X x W x y


  s  

                                     b
ij ii s

w y



 
The (standard) use of nonparametric regression, outside of the context of survey 
sampling, is “smoothing”--getting a picture of the curvilinear relation of y on x, through a 
cloud of points.  The choice of the bandwidth b makes a big difference in the degree of 
smoothness of the curve, and there exist many competing ways to do the selection. One 
that has a good deal of appeal is One Sided Cross Validation                                        
OSCV (Hart &Yi, 1998).  The preferred bandwidth is a well chosen multiple of the 

bandwidth b  which minimizes the one-sided prediction error 

 prederr( ) = , where b   
2n

i ii m
m x y


   im x


 uses only data with x < xi.   

 
Figure 3 below shows some sample data from the Fast Sine Population (Breidt and 
Opsomer 2000), with curves fit from two bandwidths.  The green curve is a local linear 
smoother using bandwidth b = 0.005, which was apparently too small, judging from the 
many gratuitous changes of direction of the curve; the red curve used b = 0.2, which was 
too large: clearly changes of direction in the data are being missed. 
 
Figure 4 shows the same data, with the black curve determined by the OSCV selected 
bandwidth black, b =.0233; the true underlying curve which generated the data is shown 
is shown in red.  The OSCV based curve seems like a pretty good match.  
 
 
 
 
 

 

Section on Survey Research Methods – JSM 2009

281



                                                              Figure 3 

 
In the sampling context, if interest is in estimating T, the general closeness of  to 

 across the range of x is not in itself of interest.  We want, rather, that               

 m̂ x

 m x

 \
ˆii s j U s

T y m
 

  ˆ
jx x be close to T, or, equivalently, that  ˆr j\

ˆ
j U s

T m


  be 

close to . 
\r jj U s

T y



 

Now  \ \
ˆ ˆ b
r b jj U s j U s i s

T m x
 

    ij iw y


b
i ii s

W y


 , where  .  

Therefore, we want b to minimize 

\

b b
i ij U s

W w


 j

 2

rr̂E T T = B2 + v, where the Bias B and Variance v 

of are respectively    T̂

         \
ˆ ˆ| U jj U s jB E T T E m x m x


   x  

                                    \
ˆ jj U s jE m x m x


                                      (1) 

                                   \

b
i ii s j U s

W m x m x
 

   j                               (2) 

       2

\
ˆvar | b

U i ii s j U s
v T T W v x v x

 
    x j , where 

                                          var |i iv x x i . 

We want b to minimize B2 + v1, where v1 = first term of v, since 2nd term of v does not 
depend on b. 
 
2.1 Options for Choosing Bandwidth 
1) Can use a standard method from the smoothing literature, for example OSCV.  
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                                                            Figure 4 

 
2) Plug-in estimate of B2 + v1

:  Can plug in a “pilot estimate”  ˆ jb
m x  for m(xj)’s in B      

and, for first term of v, estimate     2

i i iv x E y m x      by   

where 

 v x   2
ˆ ˆi i ib

y m x  

   ' '' , '
ˆ 1b b

iiwb i i i ii s i i
m x w y

 
  is an approximation to estimate of   jm x , 

which avoids using yi, as in (Opsomer and Miller 2005)—henceforth O&M. For the pilot 
estimate we can use an estimate based on, for example, OSCV. 
3) Design-based cross-validation (O&M), to be described below.  
 
Note that (2) explicitly takes into account the non-sample x’s, but (1) and (3) do not.   
 
2.2 Asymptotics 
For small b and large nb, under some fairly unrestrictive and simple conditions, 

   2

\
1 / 2 K j U s jB c b m x


   + lower order terms 

      2
rO N b  

 
 

 
22

2 2
22

1
1r ir

i pi s
s i

f xN
v x O b

n nbf x




  
   

  
   

    2
rO N n  

Proof will be given elsewhere.  Dorfman (1992, 1994) gives asymptotics for kernel-based 
estimators. 
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2.2.1 Some Implications of the asymptotics 
The dominant component of the variance is independent of bandwidth choice and is of 

order  2
rO N n , the same as for more conventional survey sample estimators of total. 

To minimize the variance, the sample design should be such that sample density is 
proportional to standard deviation, i.e. the sample should be roughly a probability 
proportional to size sample, with size measure the standard deviation, again in keeping 
with typical survey sample theory. 
 
The secondary terms of the variance will be of equal order provided the bandwidth b is of 
order n-1/5, which is the same order that minimizes mean square error in ordinary 
smoothing.  However, this is not the optimal order in the present case. 
 
We see this by looking to the bias B.  B2 will be of lower order than the variance term 
only if b is of lower order than n-1/4, which is narrower, of course, than n-1/5.  This implies 
that the secondary terms of the variance cannot be of equal order.  For smaller 
bandwidth, the first term b2 of the secondary terms will be smaller, and the second term 
larger.  Mean square error will be minimized when the second term and the bias squared 
term are equal, which occurs when b = O(n-1/3).  Thus we would expect the best 
bandwidth for the estimation of totals to be narrower than that for standard smoothing. 
 
2.3 Model-assisted non-parametric regression 
One motive for turning to nonparametric regression based estimators for the two sample 
problem is the opportunity to avoid worrying about the complexities of inclusion 
probabilities in this context.  Indeed, given sufficient population data, nonparametric 
regression seems a suitable replacement to standard design-based estimation.   
 
But perhaps model-assisted nonparametric regression estimation, that is, estimation 
which makes use of the weak model but relies on inclusion probabilities nonetheless 
would be better, as suggested in simulation studies by (Breidt & Opsomer 2000) —
henceforth B&O.   Maybe the inclusion probabilities are still indeed necessary, even if 
the model is weak?   
 

B&O note that if the actual means  jm x  were known for j U , then a design unbiased 

estimator of T would be the model-assisted estimator 
   *ˆ i i

js U
i

y m x
T m




   x .  

The weighted up residual adjustment in the first term allows for the fact that there is a 

difference between the true targets, the yi, and the mean values  jm x , which can be 

expected merely to be near the yi.   
 

Since the   jm x  are not known, the basic idea is to use np regression to estimate  jm x  

and plug into the above expression: 

  
   ,

ˆˆ ˆi i
np tw js U

i

y m x
T




   m x  .                                 (3) 

 
Their estimator modifies the simple nonparametric regression estimator in two ways: 
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1) By “twicing”, the addition of the weighted sum of residuals, with the weights given by 
the inverse inclusion probabilities. To the extent that the inclusion probabilities are 
representative, this makes sense, and one could equally well use, for example, post-
stratified weights.  In general, twicing seems like not a bad idea, although one need not 
be locked into using the inverse inclusion probabilities (cf. Chambers, et al, 1993). 
 
2) Standard design-based theory will also lead to altering the internal kernel weights.  

The weights ijw  which get applied to the ith sample point in estimating  ˆ jm x  in local 

linear regression depend on kernel weights   1 i j
ib j

i

x x
W x K

b b 
 

  
 

j

 which depend on 

the inclusion probabilities.  This means that the less likely to be selected sample points 
will tend to have proportionately greater weight than they would under standard 
nonparametric regression.  In practice, this does not seem to make much difference.  But 
it is interesting to note a small discomfiting fact, what might be called the “paradox of the 

leaping neighbor”: situations can arise where say i kx x x  , but    ib j jW x xkbW  .   

 
Bandwidth selection is also, of course, a concern for model-assisted nonparametric 
regression estimation of totals.  The estimator (3) will be virtually unbiased, so the aim is 
to choose a bandwidth which minimizes the design variance. (Opsomer and Miller 2005) 
[O&M] find b to minimize 

                               = v̂      
,

ˆˆˆˆvar
j b jij i j i b i

i j s
ij i j

y m xy m x
T

  
  





 
 ,   (4) 

 

where  ˆ b jm x ' ij ii s
w y

 , with   

                          
,

1'

0,

ij

ijij

w
j i

ww

j i






  

 

 

The idea is to avoid using yi as an ingredient in  ˆ b im x ;  otherwise, the residuals could 

be made to shrink by taking b small.  We may call the procedure which minimizes (4) pi-
weighted cross-validation.  Indeed, in the case of simple random sampling, with the i ’s 
all equal,   it is readily seen that this procedure is equivalent to standard cross-validation. 
 

3. Simulation Study on Beef Population 
The simulation study of B&O showed the model-assisted nonparametric estimators 
outperforming by a fair margin competing non-model-assisted estimators of Dorfman 
(1992) and Chambers et al. (1993).  This study considered the estimators at two 
somewhat arbitrarily selected bandwidths. Indeed, since the sample design considered 
was simple random sampling, where the  ’s wash out in the local linear weights, what 
B&O were actually comparing were a twiced local linear estimator against a simple 
kernel estimator and a linear-model-based estimator with a kernel adjustment of 
residuals. We do not expect the same bandwidth to be optimal for this array of estimators, 
and the logical possibility exists that at their optimal bandwidths, the relative merits of 
the estimators might shift.  In any case, since the ’s played no role, the study was not, 
strictly speaking, a comparison between design-based and model-based methodology. 
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We here report on a set of simulation studies, with a mix of survey designs, and 
employing various approaches to selecting the best bandwidths.  We employ the Beef 
Population U  of Australian farms, of size N = 410, with auxiliary variable  x = Acreage, 
known for all the farms, and variable of interest y = Herd size, known only on the 
sampled farms.  Of interest is the population total of cattle ll U

T y


 . 

 
We suppose, for each run of the experiment that two samples are taken:  
Sample 1: srs (n1 = 50) 
Sample 2: stratsrs--approximation to pps(x3/4) – ten strata, with cum(x3/4) equal in each, 
and 5 units taken at random in each, so that n2 = 50, also.  
 
The total experiment consists of 500 runs of pairs of samples.        
The median number of distinct units in the combined samples was 94, and ranged 
between 88 and 99. 
 
The following table gives the estimators considered. 
 
Estimator Formula Comment 
Nonparametric 
regression  

 \
ˆ ˆnp i ji s j U s

T y m
 

   x   

Nonparametric 
regression, twiced 

   ,

ˆˆ ˆi i
np tw js U

i

y m x
T




   m x

i

 
Two versions:  
(a) post-stratified 
(b) *

i   (as in HT) 

Poststratified  
 

1

1 2p̂s h h ih i h s s
T N n

  
  y  Using strata from s2 

Horvitz-Thompson                  *
* 1 2

ˆ
i ii s s

T w  
 y ,     

 

* *
i iw 1   
*

1 2 1i i i i 2i        

Hajek * *
*, 1 2 1 2

ˆ
cal i i ii s s i s s

T N w y    
 w   same  as HT *

iw

mixture of separate 
est’rs 

                         

                     1 1
1 , ;1 2 , ;

ˆ ˆ ˆˆ ˆmix np tw np twT v T v T   2

ˆkv =  , ;
ˆˆvar np tw kT  

k = 1, 2 
 
 
Thus there were two versions of the twiced estimator (in case of combined sample) 
(a) Poststratified (“np-twiceP”) 

 
 

 ,

ˆˆ ˆi i
np tw js U

h i

y m x
T m




   x  

  ,h hh i n N i h   , strata taken to be strata that defined s2 

(b) Strict Model-Assisted (“np-twice*”) 

   *
, *

ˆˆ ˆi i
np tw js U

i

y m x
T m x *

1 2 1i i i i


   2i, with        . 

For the bandwidths selection formula (4), we also need the overall joint probability of 
inclusion of units i and j, which works out to be 

*
1 2 1 2 1 2 2ij ij ij ij ij i j i j1                1 2 2 2 1 1ij i j ij i j         . 

 
For bandwidth selection, we investigated several methods: 

 

Section on Survey Research Methods – JSM 2009

286



(1)  Hart-Yi’s one sided cross validation, oscv  
(2)  plug-in to equation (2) using oscv as pilot  
(2*) plug-in using a “near-oscv” pilot estimator, where the pilot bandwidth was the 
smallest b that gave one sided prediction error within 5% of the minimum prediction 
error, under their algorithm.  This was in accord with a suggestion of (Ruppert 1997) that 
smaller pilot bandwidths are preferable for minimizing the bias of the pilot estimator. 
(3) The design-plug-in of (Opsomer-Miller) , equation (4) above. 
(4) plug-in using expression for bias and variance of twiced estimator, which is the 
analogue to (2) for the twiced estimator. 
 

For an estimator we considered three measures of relative success across the 500 runs:  T̂
(I) bias measured as ratio of mean value (across runs) to target 

     bias =  ( )1,500
ˆ /rrun

T T T


  

(II) root mean square error divided by target 

     rmse =  2

( )1,500
ˆ /rrun

T T T


  

(III) Frequencies of being a lesser or equal distance to target than the simple 
nonparametric regression based estimator using plug-in based bandwidth 

     freq =  ( ) ( )
ˆ ˆ# /r np rT T T T Run   # s  

 
3.1 Results of Beef Simulation 
We offer results for 
(a) sample 1, gotten through simple random sampling, not a very good design given the 
heteroscedasticity of y-errors 
(b) sample 2, a stratified version of pps(x3/4) sampling – a pretty good design 
(c) the combination of sample 1 and sample 2 
 
Results are tabulated in the tables below. 
 
                                   Simulation Results for 1s  = srs (498 runs)* 

estimator bandwidth mean/T 100rmse/T 100ratio.nearer 
np oscv 1.05 18.33 49.8 
 plug-in 0.98 13.74 ------ 
 plug-in-nr 0.98 14.31 ------ 
 design-cv 1.04 36.07 48.4 
 plug-in-tw 0.99 14.11 63.5 
np-twice oscv 1.00 16.56 50.2 
 plug-in 0.97 13.48 44.2 
 plug-in-nr 0.97 14.06 44.4 
 design-cv 1.00 35.14 50.8 
 plug-in-tw 0.97 13.50 46.0 
poststrat  0.87 19.35 30.7 
Hajek  1.00 20.66 30.3 
HT  1.00 20.66 30.3 
mix  ------ -------- ------- 
*two samples were omitted where, because of uneven spread of x-values, the np 
estimator could not be calculated (and other estimators gave distorted results) 
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                           Simulation Results for 2s  = stratified (~pps(x3/4)) 

estimator bandwidth mean/T 100rmse/T 100ratio.nearer 
np oscv 0.96 12.01 53.0 
 plug-in 0.96 11.35 ------ 
 plug-in-nr 0.99 9.88 67.4 
 design-cv 1.03 10.88 54.8 
 plug-in-tw 0.98 13.58 65.4 
np-twice oscv 0.99 10.80 57.4 
 plug-in 0.99 10.06 61.2 
 plg-in-nr-tw 0.99 9.72 62.4 
 design-cv 1.00 10.38 59.4 
 plug-in-tw 0.99 10.24 60.8 
poststrat  1.00 9.99 60.6 
Hajek  1.00 9.99 60.6 
HT  1.00 9.99 60.6 
mix  ------ ------ -------- 
              
Observations on srs sample s1 

1. the plug-in is good, with twicing giving improvement 
2. plug-in using “near oscv” not as good 
3.  the oscv and especially design-cv, which is just standard cross-validation in this case,  
   have serious problems with respect to rmse    (but note the ratio-nearer numbers) 
4. the poststratified estimator was not so good, but the only stratification scheme used  
   was the one already in place for  s2.  It’s possible that a more adaptable post- 
   stratification would have done better (cf. Dorfman 2008) 
 
Observations on the stratsrs sample s2 
1. twicing clearly desirable 
2. using near-oscv as pilot improves things 
3. simple plug-in not so good, but otherwise plug-in best 
4. it is puzzling that, for the twiced estimator, the straight plug-in and plug-in using  
    “near” oscv did better than a plug-in formula based on the twiced formula itself – but  
     the differences are not great 
5. design-cv and plug-in-twice on a par 
6. straight use of oscv in second rank 
7. post-stratified, which in this case is just the stratified, among best; it can be improved 
but not, it seems, by much 
 
Our major interest lies in the Combined Sample, given below. 
 
Observations on the combined  sample 1 2s s s   
1. the model-assisted estimator is best by a small margin.  That is does better than similar  
   versions with post-stratified weights is surprising, given the degree to which  
   the simple post-stratified estimator outperforms the Hajek or HT. 
2.for twicing, all methods of bandwidth selection about same 
3. plug-in-near, without twicing, is competitive with twiced estimators 
4. simple poststratification estimator is among best 
5. Hajek and Horvitz-Thompson not so good 
6. the mixture estimator altogether deficient – it pays to be able to treat the combined  
   sample as one sample 
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                                          Simulation Results for 1 2s s s   

estimator bandwidth mean/T 100rmse/T 100ratio.nearer 
Np oscv 1.06 9.63    36.2    
 plug-in 1.00 7.26 -------- 
 plug-in-nr 0.99 7.04 -------- 
 design-cv 1.07 9.86    33.4 
 plug-in-tw 1.02 8.27 48.6    
Np-twiceP oscv 1.00 6.97 56.0 
 plug-in 0.99 7.05 53.4 
 plg-in-nr-tw 0.99 6.92 55.6 
 design-cv 1.00 7.05 56.2 
 plug-in-tw 1.00 6.92 57.0 
Np-twice* design-cv 1.00 6.86 59.8 
poststrat  1.00 6.92 53.6 
Hajek  1.00 7.67 44.0 
HT  1.00 8.94 38.0 
mix  0.97 18.53 41.6 
 
 

4. Discussion 
1. One question we must face is: Are design weights and design-based approach  
     necessary, as appeared to be the case in the B&O simulation study? The answer as  
     evidenced here is No. Although the model-assisted twicing estimator using design-cv  
    was best in the combined sample by a small margin, it is clear that nonparametric  
    regression based estimators do quite well without these weights.  
2. Twicing with post-stratified weights, using plug-in choice of bandwidth, was always  
    competitive. 
3. The plug-in approach is a viable means of selecting bandwidth.  The improvements  
    that arose by modifying the pilot estimator suggest that there is room for improvement 
4. poststratification, which can be regarded as a simple version of np regression, did  
    quite well in the combined sample.  It is worth revisiting the iterated poststratified  
    estimator of (Dorfman 2008) – it is basically a kind of variable bandwidth estimator 
5. conventional cross validation and design-cross validation 
    gave variable results – did surprisingly well on the combined sample, but were second  
    rate in the individual srs and stratified samples 
6. Straight Horvitz-Thompson, Hajek, and especially the mixture method should be  
    avoided if sufficient information is available to apply one of the other estimators 
7.  Overall, np regression is a suitable way to handle the two sample problem. 
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