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1. Introduction 

In one sense, statistics is practice of summarizing 
data by reducing the dimensionality of a data set in a sensible 
way. One way in which the dimensionality of a data set can 
be reduced is to classify the n items in a dataset into k 
clusters. One such method of classification is known as the k-
means clustering algorithm.  In this algorithm the statistician 
uses a measure of distance between the items to define items 
in a dataset as similar, and then classifies that item as having 
membership to one of k clusters. 

In some instances, the k-means algorithm may 
reduce the dimensionality a bit too far since it does not give 
any insight into how close specific elements of a cluster were 
to being classified differently. To aid in this conundrum, a 
method of ‘fuzzy clustering’ was developed that assigns a 
probability1 to each element of being included in each of the k 
cluster. While inserting this extra information certainly 
addresses the issue at hand, it also increases the 
dimensionality of the summary from a ( )n x 1   matrix (i.e. a 
single column with a number to classify the cluster), to a 
( )nk x  matrix (i.e. a probability of inclusion to each of the k 
clusters for each element in the data set). 

 Graphics have long been a staple for statisticians to 
reduce the dimension of data. The most readily used example 
of this is the use of the scatter-plot to display the association 
between two variables. This form of summary works because 
there is a 1:1 mapping between the association one sees in the 
points and the mathematical model used to describe the line. 
In this paper, we propose to use color to similarly reduce the 
dimensionality of the ( )nk x  fuzzy clustering summary, 
enabling the user to gain inference from the fuzzy clustering 
techniques without having to examine a dramatically 
increased set of numbers. 

Section 2 of this paper gives a review of how color is 
reproduced, and defines the Red, Green, Blue (RGB) color 
space. Section 3 defines the space of the ( )nk x  summary 
produced by fuzzy clustering techniques (fuzzy space), 
suggests a possible extension to the method, and demonstrates 
                                                           
1 Opinions expressed in this paper are those of the author and 
do not constitute policy of the Bureau of Labor Statistics. 
2 These values aren’t really probabilities, rather ‘fractional 
classifications.’ We chose to use the term since they have 
similar properties, and we felt their use would ease the 
reader’s transition for notation and vocabulary, and broaden 
the appeal. 
 

a useful map between the fuzzy space and the RGB color 
space. Section 4 covers two specific examples of applying 
this map, and Section 5 gives overall conclusions as well as 
points for further study. 

The technique presented in the paper is the 
culmination of an effort to present the results of several 
measures computed to summarize the ‘quality’ of each of the 
120 price indexes published monthly at the International Price 
Program (IPP). 

 
2. Color 
Overview 

Color exists as a response of our eyes observing 
specific wavelengths of light. White light comes from a 
source that contains all wavelengths of visible light, and our 
usual notions of color are responses to light that has been 
‘filtered’ by reflecting back from a substance that ‘filters out’ 
other specific wavelengths of light within the white light. 
This form of color production is called a ‘subtractive’ system 
of color reproduction, and examples would be the color you 
see outside in everyday objects. Another method of observing 
color is to observe frequencies of light being produced at the 
source. This form of color production is referred to as an 
‘additive’ system of color reproduction and examples would 
be the light found in lasers, given off from burning wood or 
natural gas. 

Depending upon the method of production of color, 
there exist four primary colors that cannot be obtained by 
mixing any other. For the subtractive method these colors are 
Cyan, Magenta and Yellow, with Black being obtained by the 
presence of all, and white being obtained by the presence of 
none. For the additive method these colors are Red, Green 
and Blue, with Black being obtained by the presence of none, 
and white being obtained by the presence of all.  

Because all other colors are merely ‘blendings’ of 
these primary colors depending upon the method of 
production, they form a hyper-plane in four dimensions, and 
can be described with a ‘color cube’ (see Figure 1). In 
practice we can’t get every color since there are problems 
finding ‘pure’ primary colors with which to blend, this leads 
print media to use a four color process (Cyan, Magenta, 
Yellow, and Black commonly referred to as a CMYK 
process) to reproduce color, and Television/Computer/Film 
media to use a RGB (Red, Green, Blue) process to reproduce 
color.  

As this paper is being reproduced electronically, we 
will focus on the RGB color model 
 
RGB Color model 

The standard method of displaying color on a RGB 
color monitor is to divide the amount of Red, Green and Blue 
into factional levels of intensity and then ‘light’ the three 
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levels on a given point. For a Television screen, these 
fractional levels are continuous, for a computer screen, they 
are discrete, and for the ‘richest’ implementation each of the 
primary colors is broken up into 256 different levels, yielding 
2563 distinct colors.  

Because primary colors can’t be reconstructed by 
any of the other colors in the visible spectrum, it should be 
clear that they form a basis for the color cube, and the colors 
displayed on a computer screen are being modeled 
mathematically by a subset of 3ℜ  (a three dimensional 
Cartesian set of real numbers), specifically a unit cube. Table 
1 gives a listing of the colors and the vertices. 

Figure 1: color cube 

Table 1: Colors and their RGB colors space coordinates 

Vertices Corresponding 
color 

(0,0,0) Black 
(1,0,0) Red 
(0,1,0) Green 
(1,1,0) Yellow 
(0,0,1) Blue 
(1,0,1) Magenta 
(0,1,1) Cyan 
(1,1,1) White 

 
 

3. Spaces induced by fuzzy clustering 
Overview 

In this section, we will outline the assumptions and 
goals of the known methods of fuzzy clustering (‘general’ 

fuzzy clustering), and describe the space of fuzzy clustering 
results. We then give a method for selecting an acceptable 
color scheme for each of the fuzzy spaces (induced by k=2, 
k=3, k=4) that can be possibly mapped into the RGB color-
space. We will then propose an extension to the goals of 
known fuzzy clustering methods, constrained fuzzy 
clustering; and then describe the space of the results that one 
would encounter if such an algorithm was used that optimized 
those goals, as well as a method for selecting acceptable color 
schemes. 
 
General Fuzzy Clustering 

The goal of ‘general’ fuzzy clustering is to assign a 
probability of inclusion, ji,π  for observation i into cluster j 
for each of the k known clusters. No assumption is made 
about possible constraints about membership to these clusters, 
and it is presumed that every point belongs to at least one of 
the clusters. The fuzzy clustering algorithm we chose to use 
was the ‘fanny’ algorithm used by S plus. This seeks to 
minimize:  
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where the dissimilarities d(i,j) are known and the 

memberships ji,π  are unknown. The assumptions of this 
algorithm are: 
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To visualize the space of possible values, consider 

first the simplest case when k = 2. In this case, we can easily 
see that we could describe this space as the interval from 0 to 
1 (this would be the front edge on the triangle formed by the 
plane defined by the fuzzy space shown in Figure 2). Clearly 
any particular data point’s ‘fuzzy’ assignment could be 
described by this segment (since 

)1,0( ,12,1, ∈∀−=⇒= aaa ii ππ ). If we had k=3, and 
we did not constrain inclusion in any way (i.e. membership 
into any cluster i, does not exclude membership into any other 
cluster), the triangular plane shown in figure 2 will describe 
the space of all possible ji, π . 

 



 

Figure 2: Space of possible values for ijπ  

In general we could define the entire set of values for 

ijπ (the probability for observation i being in cluster j) as 
being the set of points defined by the following: 

 

 
Specifically, this would be a hyper-plane in k-

dimensions. It should also be clear that the ‘span’ of the 
space2 is k-1. Because of this, the largest k for which of the 
space can be visualized in three dimensions is the case of 
k=4. The shape of that space is the wedge shown in Figure 3. 
Specifically, this figure is the projection of Π  onto the RGB 
color-space (shown in Figure 1). This can easily be seen by 
holding the fourth component of the vector constant. When 
this is done it then becomes the ‘location’ term for the 
triangular plane that is created by the other three free 
variables. If we vary this fourth component over all possible 
values, you will obtain the solid wedge shown in Figure 3. 
This ‘wedge’ also represents the greatest variation of color we 
can display the results of ‘general’ fuzzy clustering methods 
using the RGB color-space model of color reproduction. 
 
Picking Colors for k=4 

It should be evident that the wedge shown in Figure 
3 provides a map from the set of all possible fuzzy values to 
particular palette of colors. Since this map is based upon a 
projection from a four dimensional space (the hyperplane) to 
a three dimensional space (the wedge), it isn’t a 1:1 mapping3. 
                                                           
2 We say ‘span’ here since space defined here is not a linear 
subspace, and as such the notions of span introduced in 
Linear Algebra wouldn’t generally be true. Specifically, it is 
the minimum number of dimensions needed to reproduce the 
space. 
3 To see this, consider this simpler case where k=3. As shown 
in Figure 2 the fuzzy space is an equilateral triangle with 

As will be discussed at the end of this section, the mapping is 
‘close enough’ to 1:1 for our purposes to still be useful. This 
map was obtained by setting the level of Red to the possible 
values of 1π , the level of green to the possible values of 2π , 

and the level of Blue to the possible values of 3π . This pallet 
is then described as the set of all colors within the wedge of 
the color cube in the direction of the red (1,0,0), green (0,1,0), 
or blue (0,0,1) vertices. Other pallets could be obtained by 
rotating the projection inside the RGB color-space. An 
example of one such rotation would be to replace the values 

of 1π  with ′
1π  where 11 1 ππ −=′ , moving the vertices of 

the wedge that lies directly across from its hypotenuse4 (the 
face of the wedge with vertices (1,0,0), (0,1,0), (0,0,1)) from 
(0,0,0) to (1,0,0). This process of rotation will give the eight 
possible (there are eight vertices on a cube) color schemes for 
k=4 shown in Table 2. 

Table 2: Possible color schemes for k=4 

Vertices Opposite 
Hypotenuse 

(coordinates) 

Corresponding 
Colors (coordinates) 

Black (0,0,0) Black, Red, Green, Blue 
Red (1,0,0) Red, Magenta, Yellow, Black 

Green (0,1,0) Green, Cyan, Black, Yellow 
Yellow (1,1,0) Yellow, White, Red, Green 

Blue (0,0,1) Blue, Black, Cyan, Magenta 
Magenta (1,0,1) Magenta, Red, White, Blue 

Cyan (0,1,1) Cyan, Green, Blue, White 
White (1,1,1) White, Yellow, Magenta, 

Cyan 
 
Picking Colors for k=3 

When considering only three clusters in which to 
assign membership of the data points, there are two methods 
for picking the colors to use: 

The first simply picks the colors of the vertices of 
the hypotenuse of given wedge. Figure 3 demonstrates the 
picking of colors Red, Blue and Green for the case of k=3. 
There are another seven possible schemes available using this 
method, one for each of the rotations outlined picking colors 
for k=4.  

The second is to apply a linear projection from a 
given hypotenuse selected via method 1 to one of the six 
faces on the color cube. A particular example of this would be 
to choose the color scheme {Black, Blue, Red} obtained by 
projecting the hypotenuse shown in Figure 3 onto the face of 
the RGB color-space with vertices Black, Blue, Magenta, 
Red. The effect of this second method is to provide another 
forty-eight valid color schemes. While we run into the same 

                                                                                                    
vertices (1,0,0), (0,1,0), (0,0,1). To project this triangle onto 
the right triangle formed by its shadow in the axis plane, we 
would have to distort it slightly. 
4 We use hypotenuse to describe the surface of the wedge 
with the largest surface area 
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distance distortion problem touched upon for the k=4 case, it 
is of little consequence to our application for this case as well.  

 

Figure 3: Constrained color cube 

 
Picking Colors for k=2 

In the case of two clusters, we can pick any path 
joining any vertices in the color space. Specific examples of 
this would be Red and Black (set level of Red equal to the 
value 1π ), Blue and Yellow (set level of Blue equal to the 

value of 1π  and the levels of Red and Green equal to value of 

2π ). 
 
Comments 

The problem of the distortion in distance that is 
encountered by projecting a space that is described by k 
variables onto a space that is described by k-1 can be seen by 
observing Figure 3. The first hint of trouble comes by 
observing that the area of the hypotenuse of the wedge is 
certainly greater than the area of the triangle that forms the 
‘floor’ of the wedge. The problem is compounded a little 
further by noticing that our notion of distance is really one of 
how many colorshifts do we have between two points (as 
opposed to our more natural Euclidean measure of distance). 
In the appendix we show that this measure of distance is quite 
likely outside the bounds of most people’s ability to perceive 
the distance between colors. In short: projecting the spaces 
from their native k description to the projected k-1 description 
has no identifiable impact on the map.  

 
Constrained fuzzy clustering 

For the simplest case, consider k=3. Suppose that we 
know that if data point i is a member of cluster 1, then it could 
not possibly be a member of cluster 3; however, this data 
point could also be a member of cluster 2. More generally, 
suppose we can have ‘mingling’ between clusters 1 and 2 or 
clusters 2 and 3, but not 1 and 3. We could think of this space 
graphically as the union of two cases general fuzzy clustering 

when k = 2, specifically two (0,1) line segments joined at a 
central point. A specific example of this would be the 
classification of items being ‘good’, ‘bad’, or ‘fair’. If you 
know that the method you are using to suggest classification 
is reasonable, it isn’t really possible for an item to be 
fractionally a member of both ‘good’ and ‘bad’ without being 
a member of ‘fair’. More to the point, an item can’t be both 
‘good’ and ‘bad’, but could be ‘good’ and ‘fair’ or ‘fair’ and 
‘bad’. We can observe this graphically by considering Figure 
4. 

Figure 4: Color map for fuzzy space constrained Red and 
Blk or Blk and Grn 

Suppose now we have k = 4. If we know that we can 
have mingling between clusters 1, 2, and 3; or mingling 
between clusters 2, 3, and 4, we could represent this space 
graphically as the union of the two projected triangles given 
for the general fuzzy clustering when k = 3 that share an 
adjacent base (see Figure 5). 

Figure 5: Color map for fuzzy space constrained by  
(Red and Blu and Blk) or (Red and Grn and Blk) 

It should be intuitively clear that by disallowing 
‘mingling’ you can reduce the dimension necessary in the 
RGB target space for your map. Suppose again that we know 
we have a mingling between sets that can have minglings 



 

(12), (23), (34), (45), (56), we could map these probabilities 
by assigning each pair two edges of a face of the RGB colors 
space such that no face has more than two edges used. From 
the above discussion of general fuzzy clustering, mapping six 
clusters simply isn’t possible when the assignments are 
obtained using ‘general’ fuzzy clustering.  

Currently, we have not found any stock fuzzy 
clustering packages that allow for such limited mingling. We 
also acknowledge that it some cases it would be a stretch to 
even consider such a constraint, but in the second example 
given below we will outline below, there are strong reasons to 
believe the simplest constrained fuzzy space was reasonable.  
 
4. Examples 
Overview 

All of these results are clearly dependent upon the 
accuracy of reproduction of color. It is our opinion that the 
way to view these results is to use a relatively new computer 
monitor that has been reasonably calibrated for 24 bit color. 
The simplest way to achieve this is to make sure your monitor 
is fairly new, and that your computer has been configured to 
display specifically for that monitor. Hard copies can be used; 
bearing in mind that accurate color reproduction can only 
really be obtained for 24 bit color with photo-capable 
printers. 
 
Fisher Iris Data 

The Fisher Iris data is a classic data set for the 
classification problem. To summarize, four measurements 
(sepal length and width, and petal length and width) were 
made on 150 different Irises. It was known that there were 
three different types of Irises measured - Setosa, Virginica, 
and Versicolor. The goal was to see if classification of the Iris 
types could be obtained by using the four measurements.  

Figure 6: Fisher Iris Cluster Projection 

 S-plus was used to obtain probability estimates for 
each item’s inclusion into given cluster. The first step in 
‘coloring’ these results is to pick a color scheme. For this 
example, we (arbitrarily) chose to use the vertices Red 
(1,0,0), Magenta (1,0,1), and Yellow (1,1,0). If we plot the 
results of the fuzzy clustering in three dimensions (its natural 
space), it is clear from Figure 6 and the discussion above that 
a projection onto the Red, Yellow, White, Magenta surface of 

the RGB color space will yield a mapping that is very close to 
1:1. To give added information as to possible 
misclassifications, we computed K-means clustering using S-
plus.  The idea behind this came from our observation that if 
the two methods (K-means and fuzzy clustering) do not 
provide the same results this would be a likely indicator of a 
boundary point.  The two sets of results were summarized by 
using the K-means clustering as the word of the color placed 
over the color created by the RGB color space map. The 
sample table of this summary is seen in Table 3 (the entire 
table can be seen in the Appendix).  

Table 3: Summary table for Fisher Iris Data 

 
The items that lie in the border areas can be quickly 

identified by the colors alone (especially if one uses the color 
reference table shown in Table 4) as being observations 5, 12, 
and 16. Closer inspection of the probabilities for these 
observations shows the fuzzy clustering algorithm estimates 
that these observations are equally likely to be Virginica or 
Versicolor Irises. Close inspection of all the probabilities 

fisher iris data 
obs  P(Setosa) P(Versicolor) P(Virginica) Cluster 

1  91.61% 4.88% 3.51% Red 
(Setosa) 

2  5.42% 22.68% 71.89% Yellow 
(Virginica)

3  6.96% 56.38% 36.67% Magenta 
(Versicolor)

4  5.73% 20.63% 73.64% Yellow 
(Virginica)

5  6.11% 43.81% 50.08% Magenta 
(Versicolor)

6  86.06% 8.08% 5.86% Red 
(Setosa) 

7  6.76% 26.34% 66.90% Yellow 
(Virginica)

8  8.88% 60.13% 30.98% Magenta 
(Versicolor)

9  7.39% 53.27% 39.34% Magenta 
(Versicolor)

10  80.15% 11.33% 8.52% Red 
(Setosa) 

11  6.13% 67.33% 26.54% Magenta 
(Versicolor)

12  6.53% 49.17% 44.30% Magenta 
(Versicolor)

13  4.73% 24.71% 70.56% Yellow 
(Virginica)

14  12.98% 66.42% 20.60% Magenta 
(Versicolor)

15  4.71% 22.26% 73.03% Yellow 
(Virginica)

16  7.34% 47.16% 45.50% Magenta 
(Versicolor)

17  6.51% 21.32% 72.17% Yellow 
(Virginica)

… … … … … 



 

shows that these are the only elements in the selection that are 
in a boundary.  

 

 Table 4: Color reference for Iris Data 

 
 The tables 3 and 4 were created using Microsoft 

Excel to first create a HTML page and then importing that 
page into Microsoft Word. 
 
Twelve Month Variance Example 

The International Price Program (IPP) of the Bureau 
of Labor Statistics (BLS) produces a plethora of internal 
reports to aid economists in their assessment of the price 
index quality for the strata they report on. These reports are 
read by economists who must make decisions about the data 
obtained from a given company quickly and accurately. One 
set of reports under development focuses on the variance in 
annual price changes. It would be helpful to an economist to 
compare the coefficient of variation of a given strata’s 
estimate of annual price change to the coefficient of variation 
of annual price changes across all published strata. 

Figure 7: 12 Month Variance Rotation and Projection 

Initially it was proposed to partition the set of 
coefficients of variation into quartiles with the coefficients in 
the largest quarter being ‘bad’, the middle half being ‘fair’, 
and the lowest quarter being ‘good’. It became clear however, 
that this method was lacking, since there were clear clusters 

in the dispersion of the variances between the different strata 
that did not correspond with the quartiles. We opted to use 
this method of fuzzy clustering to give added guidance to the 
economist as if there were no clear clusters; the method 
would (on average) give no worse results than those initially 
proposed.  

In this example (as in the last), we have three 
clusters; however, this case is different in that there is a clear 
order to the values, as well as impossibility for ‘interaction’ 
between two directions by any path other than the border of 
the plane. This observation suggests that the ‘constrained’ 
fuzzy clustering discussed in section 3 should be used. If it 
were, the theory says that all probability assignments should 
occur so that they lie on line segments that form the right 
angle of the Red, Yellow and Green triangle in Figure 7. 
Unfortunately, no constrained fuzzy clustering software yet 
exists (to our knowledge), so we again applied S-plus’ fuzzy 
clustering algorithm to the vector of coefficients of variation, 
noting that the results may not be entirely accurate. Again, 
since we were classifying three clusters, we needed to pick a 
RGB color scheme, and we chose to use Red, Green, and 
Yellow. Inspection of Figure 7 shows that we obtained this 
map by moving the origin of the original coordinate system 
(0,0,0) to (1,1,1). We then projected this rotation onto the 
Black, Red, Yellow, Green face of the RGB color space. We 
oriented the map to put Red as ‘bad’ Yellow as ‘fair’ and 
Green as ‘good’ (see Figure 7). 

In a simplified example, suppose an economist was 
tasked with gathering the data for published strata 23-34. As 
with the previous example, we chose to summarize this data 
by putting the K-means clustering in print, and the color 
derived from the fuzzy clustering as a background. Clearly 
the information displayed in this form is far more compact 
than a table that contains an indicator for the k-means 
clustering, and a column each for the probabilities assigned 
via fuzzy clustering. It is also far more informative than a 
picture of all the data points with their strata numbers 
highlighted. Yet, the economist is able to ascertain all the 
information from either of these figures in a far more compact 
form. 

Table 5: Summary table for 12 month variance data 

sample 
stm#  

sampling stratum 
description  coeff var cluster 

23 TEXTILE AND TEXTILE 
ARTICLES  0.257399 green 

24 COTTON  0.523422 yellow 

26 

SWEATERS, 
PULLOVERS, 
SWEATSHIRTS, AND 
SIMILAR ARTICLES, 
KNITTED OR 
CROCHETED  

0.451669 yellow 

28 

MEN'S SUITS, 
BLAZERS, TROUSERS, 
BIB OVERALLS, 
SHORTS (OTHER THAN 
SWIMWEAR)  

0.544465 yellow 

29 WOMEN'S SUITS, 0.708234 red 

Fisher iris data 
%Red  %Magenta  %Yellow color  
1.0 0.0 0.0 Red  
0.5  0.5  0.0  Red-Magenta  
0.0  1.0 0.0 Magenta  
0.0  0.5  0.5  Magenta-Yellow  
0.0 0.0 1.0  Yellow  
0.5  0.0 0.5  Yellow-Red  



 

BLAZERS, DRESSES, 
SKIRTS, TROUSERS, 
SHORTS (OTHER THAN 
SWIMWEAR)  

30 MEN'S OR BOYS' 
SHIRTS  0.684721 red 

32 

OTHER MADE UP 
TEXTILE ARTICLES; 
SETS; WORN 
CLOTHING AND WORN 
ARTICLES" RAGS  

0.311910 green 

33 

FOOTWEAR, 
HEADGEAR, 
UMBRELLAS, WHIPS, 
FEATHERS; 
ARTIFICIAL FLOWERS  

0.784319 red 

34 
FOOTWEAR, GAITERS 
AND THE LIKE; PARTS 
OF SUCH ARTICLES  

0.677354 red 

 
Looking at this set, sample stm# 24 and 28 stand out 

as being potential ‘border’ points. However, if we compare 
these problem points to the reference strip found in Table 6 
we may conclude there aren’t any border points at all.  

Table 6: Reference table for 12 month variance data 

12 month variance data 

%Red %yellow %Gree
n color 

1.0 0.0 0.0 Red 

0.5 0.5 0.0 Red-
Yellow

0.0 1.0 0.0 Yellow

0.0 0.5 0.5 Yellow
-Green

0.0 0.0 1.0 Green 

0.5 0.0 0.5 Red-
Green 

 
Indeed, perusal of the probability assignments 

suggests that all the points are solidly in the cluster assigned 
by K-means clustering. The worst case was stratum 28 where 
the Red, Yellow, Green fuzzy probabilities are (29.76%, 
56.12%, 14.11%). Not really a good glowing endorsement for 
any particular cluster, but still more yellow than any other 
cluster. 

An economist looking at this data will see that some 
of their strata fall into a ‘high’ annual variance group, and is 
free to determine if these fluctuations are occurring in items 
that historically have had high price volatility or if the 
variation may be due to other, more controllable factors such 
as Low response or outliers. The economist can also see that 
there are no borderline ‘high variance’ strata based upon the 
k-means vs. fuzzy clustering results. 

While this particular table was created in an identical 
fashion as above, in its final implementation, the table could 
be compiled using a Java program, and incorporated with 

other useful information to the Economist with a fuzzy triple 
for the three clusters given when the mouse is hovered over 
the cell in question. 
 
5. Conclusions 

The uses and benefits of clustering data have been 
well established over the last few years.  Graphics have also 
long been a staple for statisticians to reduce the dimension of 
data, while still providing useful information.  This paper 
combined these two methods and introduced a graphical 
enhancement to clustering output.  We believe that this 
method provides a robust and reasonably accurate way to 
display the results of fuzzy clustering to give guidance to the 
user as to how ‘close’ a particular data point is to the 
boundary of its cluster by comparing the corresponding fuzzy 
cluster color to the ‘true’ color of being in each group alone.  

While we are aware that certain low level distortions 
occur during the projections in the color space we suggest 
their use in the case of k = 3 as short cut for coding, and point 
out that they really are not necessary. We also note that 
mapping to the color-space when k = 4 is not possible without 
the projections. 

 
6. Appendix 
Gradients and distance changes 
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At this point, it is important to recognize the 
overarching goal: to ascertain the loss of color induced by the 
projection. The first step towards this end is to determine how 
much given color in the fuzzy space ‘covers’ a given color in 
the projected space. Since the directional derivative will give 
us the change in f(x,y) for a unit change in the direction of u, 
it’s inverse will give the amount of change on the plane that 
contains u (i.e. the projected plane) for a one unit change in 
f(x,y). If we then compute distance of a color shift in the 
direction of u in the projected plane, we can find the number 
of colors shifts in the fuzzy plane needed to reach the next 
color shift in the projected plane by division. If we cleverly 
pick v to have a length that is the length of the projected 
plane’s colorshift, we get the following result: 
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That is, the number of color shifts (CS) in the fuzzy 

space represented by a single color in the projected space is 
equal to v•∇ ),( yxf . 
Since we are dealing with a plane, this rate of change is 
constant regardless of where it occurs, we can describe the set 
of all possible values for v•∇ ),( yxf  thus: 
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Similarly, 
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The projected maps outlined for the cases of k=3, 

k=4 aren’t really 1:1 maps because there is a distortion of the 
distances as one moves from the kernel to the target spaces. 
However, given our ultimate objective, and the density of the 
RGB color-space we feel that the map is adequate for our 
goals. This assertion can be seen when k=3 by first noticing 
that for a plane, the gradient in the direction of v (denoted 

v•∇ ),( yxf ) can be interpreted as the number of color 
shifts in the fuzzy plane represented by a color shift in the 
projected plane.  

The v that maximizes the gradient is 1,1 . This 
maximum can be interpreted as being the direction that has 
the most color shifts represented by a single color shift in the 
projected plane. In this ‘worst-case’ scenario, we get the 
number of fuzzy plane shifts in color represented by a 
projected plane color-shift to be 

2111,1),( =−−=•∇ yxf . Similarly, the number of 
fuzzy plane shifts represented by a projected plane color-shift 
when moving in the direction of 1,0  (or 0,1 ) will be the 

minimum number of color shifts represented a shift in the 
projected plane, with there being an equal number of shifts. 
While this seems like bad news for the worst case scenario 
keep in mind three facts:  

 
1) making the colors appear ‘closer’ in terms of color 

will only give us a more ‘conservative’ 
representation of the closeness between points, and 
the ultimate goal of quickly identifying boundary 
points. 

2) Both the fuzzy plane and the projected planes start 
and end with the same colors at their vertices 

3) There are a lot of colors. In the worst case, we are 
shrinking the total number of colors from 512 (the 
number distinct colors across the ‘slant’ edge in the 
relevant direction) to 256. It is entirely likely that 
most people could not discern any color difference 
for the cluster of points that mingle at the borders we 
are hoping to classify. 
 
All of these notions extend to the projection we have 

when projecting the 4D plane that results from the case of 
k=4 into the solid ‘wedge’ shown in Figure 3, with the worst 
case scenario now having the projected space representing 
three colors of the fuzzy space instead of 2 as in the above 
example. The same caveats that are listed above still apply as 
well, suggesting to us that in this case there is little cause for 
concern for our purposes. 
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