

The XCSSET Malware: Inserts Malicious

Code Into Xcode Projects, Performs UXSS

Backdoor Planting in Safari, and Leverages

Two Zero-day Exploits

Appendix

Introduction
We have discovered an unusual infection related to Xcode developer projects. Upon further investigation,

we learned that a developerôs Xcode project at large contained the source malware ð which leads to a

rabbit hole of malicious payloads. Most notably, we found two zero-day exploits: one is used to steal

cookies via a flaw in the behavior of Data Vaults; another is used to abuse the development version of

Safari. The malware has the capability to hijack Safari and inject various Javascript payloads.

This scenario is quite unusual; in this case, malicious code is injected into local Xcode projects so that

when the project is built, the malicious code is run. This poses a risk for Xcode developers in particular.

The threat escalates when affected developers share their projects via platforms such as GitHub, leading

to a supply-chain-like attack for users who rely on these repositories as dependencies in their own

projects. We have also identified this threat in other sources including VirusTotal and Github, which

indicates this threat is at large.

In this technical brief, we will discuss our investigation into this attack which includes the hidden Mach-o

executable, its Applescript payload functions along with the three zero-day exploits we discovered, and

the JS payloads it injects to exfiltrate and manipulate data from browsers.

Initial Entry
Xcode is an integrated development environment (IDE) used in macOS for developing Apple-related

software and is available for free from the Mac AppStore. Since its release, plenty of developers have

used Xcode for their Apple software needs.

Figure 1. A sample Xcode project and its contents

https://support.apple.com/en-ph/guide/security/sece3bee0835/web

When creating a project in Xcode, a project file (.xcodeproj) is generated that contains the code and

resources to be built together. Inside the project, schema files that contain how each part is mapped are

also generated.

For this incident, we initially traced an infected projectôs Xcode work data files and found that a reference

to another folder was listed instead of to the main folder this workspace has.

Figure 2. Modified workdata string

We were able to identify a hidden folder located in one of the .xcodeproj files for the project. The hidden

folder contains the following:

1. xcassets ς Mach-O file malware

2. Assets.xcassets ς shell script to call the Mach-O malware

Figure 3. Hidden contents of project

In one of the project files (.pbxproj), a reference to Assets.xcassets was found. Once the project is built

and compiled, we suspect that the malicious code is executed.

Figure 4. Reference to hidden contents

In our testing, executing the Mach-O xcassets shows that it drops the following files in the folder

~/Library/Caches/GameKit/. Note that the symbol ~ indicates the current user.

¶ .domain ς refers to the file containing the target command and control (C&C) server address

¶ .report ς refers to the file containing the file path and app bundle dropped; its use will be

discussed in the next section

¶ <number>.jpg ς refers to the screenshot of the current desktop; a new screenshot is taken

approximately every minute and the filename for the screenshot changed in increments of one.

Once a new screenshot is taken, the previous one is deleted.

¶ Pods ς is a copy of the Mach-O xcasset

Figure 5. List of initial dropped files using a file event monitor tool

Figure 6. Contents of hidden files .report and .domain

Figure 7. Contents of the GameKit folder containing the visible dropped files (screenshot and Pods)

It also drops several application bundles containing a suspicious main.scpt in the current userôs

Application Scripts folder, including xcode.app:

Figure 8. Dropped app bundles and the malicious AppleScript file

These dropped app bundles make use of a Mach-O wrapper (applet) to execute the main payload

main.scpt. As we can see from the screenshot above, the malware also drops a bundle that masquerades

as the legitimate Xcode.app but runs the malicious payload in the same way instead.

By delving deeper into the xcassets Mach-O file, we found that its main purpose is to communicate with

the server in order to download and run its main payload, main.scpt. All malicious fake apps are

generated by main.scpt. More details on how this payload works shall be discussed in the following

sections.

Figure 9. TCP stream contents

The above is the TCP stream output for communication with the IP address 46.101.126.33, which

contains its assigned domain, adobestats.com. It is encrypted using RC4 as traced while debugging.

Main Payload

Figure 10. Contents of dropped app bundle Xcode.app found in the Application Scripts folder

Further checks on main.scpt show that it is compiled as a run-only binary script and can't be decompiled

with static methods. After investigating the C&C server, we were able to obtain a plaintext AppleScript

version.

Checking this reveals that it holds a lot of functions and calls that are responsible for the observed

infection behavior:

Figure 11. List of names for dropped app bundles

A hardcoded list of names to assign dropped app bundles containing the same payload main.scpt is

present, which matches dropped bundles found in our testing. The domains adobestats[.]com and

flixprice[.]com are also listed for use for C&C communication.

Figure 12. Code snippet for checking system information

This code first pings to check if connection is established, then sends the following basic system

information of the infected user:

1. MacOS Version

2. System Language

3. IOPlatformSerialNumber

4. Firewall States

5. SIP Enabled Status

It then proceeds to kill the running processes listed:

1. com.apple.core

2. com.oracle.java

3. agentd

4. operad

5. edged

6. firefoxd

7. yandexd

8. avatard

9. braved

A majority of these processes are for installed browsers, and their significance is related to the data

exfiltration features that will be discussed in the next sections.

Figure 13. Screenshot of browser-related functions in main.scpt

As observed in this figure showing the browser-related code, the payload AppleScript file contains various

calls to different modules by calling the executor function boot (moduleName, background). This function

downloads the moduleôs AppleScript code from the following to-be-constructed URL:

¶ https://" & domain & "/agent/scripts/" & moduleName & ".applescript

This is compiled into a Mac app package through the command osacompile, similarly constructed as:

osacompile -x -o xcode.app main.applescript

The osacompile command is powerful. The parameterized command ñosacompile -x -o test

main.applescriptò will only generate a binary AppleScript file, while ñosacompile -x -o xcode.app

main.applescriptò will generate a completed app folder.

The package name is based on the input module name and mapping to an installed well-known

application name. Furthermore, it replaces the appôs corresponding icon file and "Info.plist" to make the

fake app look like a real, normal app, and thereby making it hard to distinguish without further

investigation.

Figure 14. Screenshot of a newly generated app by the malware

Figure 15. Code snippet for loading

If the creation of the fake app package is successful, it will then execute the fake app package.

In the main call stack, the following functions/modules will be called:

Figure 16. Screenshot of calls for the identified payload applescript modules

Finally, it uses the creation timestamp of ~/Library/Caches.GameKit/.report as a reference point to check

if it should execute its more notable modules, replicator and pods_infect, for injecting the malicious code

into local and Cocoapods-packaged Xcode projects respectively.

The timestamp from .report is compared to the current time taken on the machine. The replicator and

pods_infect functions will be executed 12 hours (43,200 seconds) after the Applescript execution.

Figure 17. Code for delay of running replicator and pods_infect

Payload Modules
Below is a summary list of the modules identified that we obtained by tracing downloads for each module

before they were compiled:

Module Feature

payloader Checks last installed module and re-installs entry Mach-O malware (originally
called Pods), C&C communication

replicator Injects local Xcode projects with malicious code

pods_infect Injects local repository of Xcode Cocoapods projects source-controlled by git

safari_remote Uses exploit to create fake version from server

safari_update Updates safari to version 13

safari_cookie Uses exploit to read Safari cookie data

safari_killer Checks if safari_remote is already executed, kills running safari process

safari_recover Checks SIP, replaces safari with malicious one in dock using dockutil

chrome_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

chrome_data Downloads python script from server; collects credit card and user login data

firefox_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

opera_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

opera_data Downloads python script from server; collects credit card and user login data

yandex_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

brave_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

edge_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

360_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

notes Collects saved data from notes.app

evernote Obtains saved accounts from user's Evernote

contacts Obtains saved contacts from user's QQ/WeChat)/Telegram/Skype

telegram Obtains local app directory data from user's Telegram

telegram_lite Obtains local app directory from user's Telegram Lite

skype_session Collects saved local source Skype directory and Skype session data and sends to
server

force_allow_screen_skype Opens dialog to prompt user to enable security and privacy system preferences

wechat_files Collects local app directory data from user's WeChat

force_allow_screen_wechat Displays prompt to make request permission for WeChat screen recording

firewall_off Turns off firewall via user input

updates_off Turns off system updates via user input

screen Re-downloads entry Mach-O Pods, takes a screenshot of current desktop using
chkdsk.app/copy of screen.applescript posing as donor app every ~2 minutes (if
Catalina) or takes a screenshot via screen capture shell command every ~30
seconds (if Mojave or lower)

encrypter Performs AES CBC encrypting on files under ~/Documents, ~/Downloads, and
~/Desktop with fixed key and renames to <filename>.enc. Only files with sizes
less than 500MB are encrypted.

decrypter The opposite of encrypter module; finds all *.enc files under ~/Documents,
~/Downloads, and ~/Desktop folder, then performs AES CBC decryption with
the same fixed key used in encrypter module

ransom_block Gets active process list and kills certain critical processes in an infinite loop

ransom_ui Sends request to server to get ransom note, then shows the ransom note to
victim user

exec (old/commented out) Executes command from server and sends logged files
under /Library/Containers, /Library/Group Containers, /Library/Application
Support
(new) Executes command from server then searches for directories with name
containing substring "evernote", uploads result to server

finder Searches for files in Desktop, Documents, Downloads, Dropbox, and WeChat
source directory based on server query (including Xcode projects); uploads
folders excluding git files to server

finder_app Executes module payload as Finder app; enumerates all hidden directories in
system except inside Pictures and Applications folders

remove_old Removes ~/Library/Frameworks.app, ~/Library/CoreFramework, and
~/Library/LaunchAgents/com.apple.core.launchd.plist

uploader In ~/Documents, ~/Desktop, ~/Downloads folder, searches all Xcode project
source code folder, compresses them to zip package, and uploads to server. Zip
files containing Xcode project source code are uploaded to server as well.

uploader_folder Compresses whole ~/Desktop folder excluding all .git folders to zip file and
uploads to server. If total data size in ~/Desktop folder excluding .git folders is
greater than 200MB, then the module will do nothing.

cleaner Removes ~/Library/LaunchAgents/com.apple.core.accountsd.plist and
/Library/Application Support/com.apple.frameworks

reboot Shows fake message to user saying that a system update requires a reboot of
the operating system

remote.ssh Checks if remote login via Secure Socket Shell (SSH) is ŜƴŀōƭŜŘ ƻƴ ǘƘŜ ǾƛŎǘƛƳΩǎ
machine; if not, it will enable remote login by calling command 'do shell script
"sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist" with
administrator privileges', which needs user authentication. After that, it tries to
find or generate SSH key and upload private key file to server, so the attacker
can remotely connect via SSH to the victim machine at any time with the
private SSH key without inputting username and password.

rnd Calls ransom_ui.applescript, ransom_block.applescript; before the calling of
these two modules, the calling to encryptor module and sleep 600 seconds was
being commented now

test Incomplete script file for testing purpose

bootstrap original/plaintext version of main.scpt; already discussed as main.scpt

demo Kills malicious planted Safari dev version (Safari for WebKit development) and
relaunches malicious Safari

demo1 Shows a dialog as a blackmail/ransom note to let user contact specified QQ ID,
then launches QQ

demo2 Shows dialog containing only string "demo2"

We will now discuss the more notable modules that we believe makes this malware distinct from the rest.

replicator
The "replicator" module will first download the latest shell script "Assets.xcassets" and Mach-O file

"xcassets" from server as preparation for Xcode project infection.

Figure 18. Code for downloading latest copy of module

After, it sets the home folder of current login as top folder for searching Xcode projects. If the username is

"vladbookpro", the top folder will be set as ~/Downloads/infect, which suggests that "vladbookpro" is the

username of the malware author and this logic is to control the infection scope on their own machine.

Figure 19. Code mentioning vladbookpro username

It enumerates all .xcodeproj folders under the top target folder except Pods.xcodeproj, which might be the

project name developed by the malware author. If keyword "3F708E50247A0EB6004066FD" or

"162E3FD122D63A22006D904C" can be found in project file, the infection process will be skipped to

avoid multiple infections. According to the FORCED_STRATEGY value, it decides whether to infect

during the build phase part or build rule part. In the script we have, FORCED_STRATEGY is initialized

with empty string, so the script will decide by getting a random number.

Figure 20. Code for strategy selection

Figure 21. Payload for build phase infection

Figure 22. Payload for build rule infection

Besides infection on Xcode project directory, it also finds and infects any Xcode projects compressed in

zip files. To handle zip files, it also downloads a 7za binary from server.

Figure 23. Code for downloading 7za binary

pods_infect
The pods_infect module is for infecting iOS Xcode projects using CocoaPods packages. It starts by

enumerating the CocoaPods "target_integrator.rb" file under "/Library/Ruby/Gems" folder.

Figure 24. Code for enumerating file

To avoid multiple infections, it checks if the target ruby script file contains the two server domain names.

As a matter of fact, however, in following infection logic, none of these two keywords are added to the

script file.

Figure 25. Code to avoid multiple infections

As infection logic, for the current target Xcode project which uses CocoaPods, the code gets

target.user_project_path. It downloads a shell script file "build.sh" and Mach-O file "project.xworkspace"

from a malicious server and puts these files in a hidden folder .git under the target Xcode project folder.

Figure 26. Code for infection

The downloaded Mach-O file is exactly the same one downloaded by the replicator module, while the

shell script file is also quite similar with the one used in the replicator module.

Figure 27. Code for added files

safari_update
This module downloads a Safari update package from the server, which is named either

Safari131Mojave.pkg or Safari1304Mojave.pkg. The version chosen is based on the currently installed

Safari version. The two packages are update packages from Apple with valid code signatures. After it is

downloaded, it proceeds to install the Safari update package.

Data Vault vulnerability used for Safari cookie theft
macOS protects the Safari cookie file ~/Library/Cookies/Cookies.binarycookies with the System Integrity

Protection (SIP) feature.

Figure 28. Protection of the Safari cookie file

However, we found a bypass method when analyzing the malwareôs safari_cookie module. It is a zero-

day vulnerability exploitation that is at large. Based on our analysis, the malware tries to steal the safari

cookie file by using this vulnerability.

Figure 29. Code to acquire Safari cookie file

This vulnerability is related to how the operating system handles Data Vaults. The behavior is similar to

what would happen if Full Disk Access was granted. Also, the malware checks if TCP port 22 is open on

the victimôs system. If not, it will execute the following AppleScript:

https://support.apple.com/en-ph/guide/security/sece3bee0835/web

Figure 30. AppleScript code

Regarding the root cause, we think the SSHD process must have the privilege to read all disks. It will then

spawn another SCP process to read the restricted file successfully. Both the SSHD and SCP processes

are running with the common user ID 501. Since the use of port 22 is required for the SSHD and SCP

processes, another way might be implemented in the future to leverage the same exploit if this port is not

available.

Figure 31. Relevant code of safari_cookie module

Note that for this vulnerability to be exploited, the user must have administrator privileges or a separate

sandbox escape vulnerability would be needed. Alternately, the SSHD process can be opened by the

user themselves for ease of use.

