
A Path Layer for the Internet: Enabling
Network Operations on Encrypted Protocols

Mirja Kühlewind∗, Tobias Bühler∗, Brian Trammell∗, Stephan Neuhaus†, Roman Müntener†, and Gorry Fairhurst‡
∗ETH Zurich, {mirjak,buehlert,briant}@ethz.ch;

†Zurich Univ. of Applied Sciences, {neut, munt}@zhaw.ch;
‡Univ. of Aberdeen, gorry@erg.abdn.ac.uk

Abstract—The deployment of encrypted transport protocols
imposes new challenges for network operations. Key in-network
functions such as those implemented by firewalls and passive
measurement devices currently rely on information exposed by
the transport layer. Encryption, in addition to improving privacy,
helps to address ossification of network protocols caused by
middleboxes that assume certain information to be present in the
clear. However, “encrypting it all” risks diminishing the utility
of these middleboxes for the traffic management tasks for which
they were designed. A middlebox cannot use what it cannot see.

We propose an architectural solution to this issue, by intro-
ducing a new “path layer” for transport-independent, in-band
signaling between Internet endpoints and network elements on
the paths between them, and using this layer to reinforce the
boundary between the hop-by-hop network layer and the end-to-
end transport layer. We define a path layer header on top of UDP
to provide a common wire image for new, encrypted transports.
This path layer header provides information to a transport-
independent on-path state machine that replaces stateful handling
currently based on exposed header flags and fields in TCP; it
enables explicit measurability of transport layer performance;
and offers extensibility by sender-to-path and path-to-receiver
communications for diagnostics and management. This provides
not only a replacement for signals that are not available with
encrypted traffic, but also allows integrity-protected, enhanced
signaling under endpoint control. We present an implementation
of this wire image integrated with the QUIC protocol, as well
as a basic stateful middlebox built on Vector Packet Processing
(VPP) provided by FD.io.

I. INTRODUCTION

New Internet transport protocols, such as QUIC [1], [2],
leverage encapsulation and encryption of transport-layer head-
ers, seeking to improve end-user privacy in the face of per-
vasive surveillance as well as to facilitate deployment in the
Internet. Prior experience with new transport protocols such as
SCTP [3], or new TCP extensions such as TCP Fast Open [4],
shows that these protocols can be difficult to deploy due in
part to incorrect modification and dropping of packets with
unknown headers by middleboxes.

On the one hand, future transport protocols that leverage
encryption assist in the restoration of the end-to-end nature of
the Internet by returning complex processing to the endpoints.
On the other hand, many of these middlebox functions, such
as network address translation (NAT), firewalling, or passive
network performance measurement, are essential to network
operations and troubleshooting. Since middleboxes cannot
modify what they cannot see, a decision to use pervasive
transport header encryption, whatever the motive, will have
implications for network operations and design.

This tussle between middleboxes that inspect transport
headers and end-to-end transport protocols which encrypt their
headers can lead to an arms race: middlebox vendors attempt
to reverse-engineer protocols in order to support the inference-
based functions their current devices perform on non-encrypted
protocols such as TCP; protocol designers tighten their designs
to provide stronger resistance to said reverse-engineering, and
so on.

The transport layer is the lowest layer at which end-to-end
interactions across the Internet happen. Transport protocols,
being layered directly over the network service, are sent in
the payload of network-layer packets. However, this simple
architectural view hides one of the core functions of the
transport - to discover and adapt to the properties of the
Internet path that is currently being used. The design of
Internet transport protocols is as much about trying to avoid
the unwanted side effects of congestion on a flow and other
flows sharing capacity, avoiding congestion collapse, adapting
to changes in the path characteristics, etc., as it is about end-
to-end feature negotiation, flow control and optimising for
performance of a specific application.

In this paper we propose a separation of these two sets
of functions, arguing that it is not enough to have an end-
to-end transport layer directly above the network layer, and
therefore introduce a path layer between them. We identify
three classes of protocol header information, each of which can
be empty in any given packet: (1) fields for the exclusive use of
the remote endpoint, such as transport capability negotiation
or information needed for synchronising endpoint state; (2)
fields that on-path devices are intended to inspect, but must
not modify; and (3) fields that on-path devices are intended
or assumed to modify. Fields in the first class belong in
the transport layer, and since experience shows that it is not
effective for a protocol specification to nicely ask that on-path
devices not modify transport-layer headers, these should be
encrypted. Fields in the second and third class belong in the
path layer, and access to these should be cryptographically
controlled.

Indeed, the most recent interesting example of a new
transport protocol, QUIC [1], follows this approach. UDP
encapsulation provides port numbers, which are effectively
in the third class due to the widespread deployment of NAT
on access networks [5]; almost everything else is encrypted.
However, this approach does not support the second class
of transport headers. TCP sequence numbers and flags, for
example, contain no semantic information from the application
layer, but are widely used for performance measurement and

978-3-901882-98-2 c© 2017 IFIP

on-path state maintenance, respectively.

Currently, stateful on-path devices often manage forward-
ing state by using an internal model of the TCP state machine
to determine when a TCP flow starts and ends; instead, UDP
flows must rely on timeouts that are generally short relative
to those for TCP [6], requiring UDP-encapsulated transports
either to generate unproductive keep-alive traffic for long-lived
sessions, or to tolerate connectivity problems and reconnect
after loss of forwarding state. Despite these efforts to duplicate
the TCP state machine, on-path devices are not necessarily
interested in whether a TCP packet sets the SYN or FIN or
RST flag. Rather, they are interested in whether the packet is
the first or last in a flow, because then they need to allocate
or deallocate memory to manage that flow. The actual flags
in the TCP header are incidental, and that the middlebox
merely uses these flags to infer essential information about the
flow to which the packet belongs. If a packet could explicitly
expose essential information to the path, then the incidental
information contained in the transport header could remain
encrypted, and thus protected from tampering.

This paper presents the design principles of a Path Layer
UDP Substrate (PLUS) header, designed to support in-band
signaling for transport-independent management of in-network
state and add explicit support for enhanced in-network ser-
vices. PLUS is intended to be deployed together with an
encrypted transport protocol such as QUIC [1] to protect
confidentiality of headers and payloads, and also to protect
the integrity of information in PLUS that is exposed to the
network. PLUS therefore provides a common “wire image”
for new, encrypted transport protocols.

This work is based on an ongoing experimental effort by
the authors on the topic of in-band signaling and transport
protocol evolution [7], [8], [9], [10], [11], further developed
through discussion at two Birds of a Feather (BoF) sessions
within the Internet Engineering Task Force (IETF): SPUD
in March 2015 and PLUS in July 2016. The present work
defines design goals for path layer signaling that enables
endpoints to safely send information to the path on which
they travel, and vice versa (Section II), on the background
of a well-defined, limited set of applications (Sections III
and IV), and based on wider discussions about this ongoing
effort. It then specifies PLUS, a new protocol providing an
integrity-protected and extensible common wire image for
all future encrypted transports (Section V), and reports on a
first reference implementation of PLUS for both the endpoint,
integrated with QUIC, and middleboxes implemented using
the FD.io Vector Packet Processor [12], focusing on how
this implementation differs from a traditional, fully-layered
approach (Section VI).

A. Related Work

As the ability to extend TCP is dependent on network
conditions [13], [14], transport protocols are emerging that use
UDP as an encapsulation layer. PLUS applies lessons learned
from a great deal of prior work on application-to-network
and/or network-to-application signaling to this practice. Work
on Quality of Service (QoS) has led to standardized signaling
approaches such as NSIS [15]. However, due to deployment
challenges of a separate signaling protocol these proposals
have seen very little inter-domain deployment.

Other approaches for network signaling operate at the ses-
sion layer, e.g. as proposed by Kissel et al [16] or e.g. Session
Initiation Protocol (SIP) [17] for initiation of media sessions.
These protocols expose specific application semantics, while
PLUS is independent of application or transport protocol.
The IETF IPPM working group has produced a network-layer
specification [18] defining an IPv6 Destination Option to carry
timestamp and packet serial number information, enabling
loss and latency measurements. However, its reliance on IPv6
extension headers may limit deployment on the Internet at
large [19].

II. REQUIREMENTS AND DESIGN GOALS

We start from a set of design principles, derived from
functional requirements, observations about devices currently
deployed in the Internet, and current best practices in protocol
design and implementation:

1) An endpoint should be able to explicitly expose
any signals used by on-path devices. We refer to
this as sender-to-path signaling.

2) An endpoint should be able to request signals from
devices on the path. We refer to this as path-to-
receiver signaling.

3) An on-path device should not be able to forge,
change, or remove a signal sent by an endpoint.
This implies a need for end-to-end integrity protec-
tion for these signals.

4) The endpoint should control signaling between
endpoints and the path, or from one on-path
device to another. The use of signaling on a given
packet or flow is therefore optional. An on-path
device should not be able to force an endpoint to
send a signal, or to use the mechanism to send a
signal of its own volition without explicit cooperation
from the endpoints. This can be achieved by integrity
protection over a scratch space allowing devices on
path to send specified signals to receivers.

5) It should be possible for an endpoint to request
and receive signals from a previously unknown
on-path device. This implies that, in the absence of
a cryptographic introduction protocol or public-key
infrastructure for on-path devices in the Internet –
which we consider to be impractical – authentication
of signals from these on-path devices is not possible.

6) The mechanism should present no significant sur-
face for amplification attacks. We can achieve this
by specifying that no signal can request transmission
of a packet beyond forwarding the packet carrying the
signal. This relies on in-band signaling, piggybacked
on higher-layer traffic.

Our design assumes that transport and application layer
information is encrypted, and is independent from encryption
at layer 2 or layer 3. The former is hop-to-hop, and is therefore
independent of on-path usage of the path layer header. The
latter is generally applied via tunneling. As with all tunnels,
nodes along the path forwarding the tunneled traffic cannot
inspect or modify traffic inside the tunnel. We therefore
understand an “on-path” device to be one which, in the current
Internet architecture, could inspect or modify the transport-
layer headers.

encrypt +
MAC

sender

receiver

on-path
device

IP

path signal type

signal

transport

application

value

encrypt +
MAC

MAC

IP

path signal type

transport

application

value

IP

path signal type

transport

application

value

decrypt +
verify

verify

MAC

Fig. 1. Sender-to-path signaling: signals are readable by on path-devices, but
modification is detected by the receiver

encrypt +
MAC

sender

receiver

on-path
device

IP

path signal type

signal

transport

application

value

encrypt +
MAC

MAC

IP

path signal type

transport

application

value

IP

path signal type

transport

application

value

decrypt +
verify

verify

MAC

signal

Fig. 2. Path-to-receiver signaling: signal content is writable by on-path
devices, but signal presence is protected end-to-end. Signals can neither be
added nor removed on path.

Sender-to-path signaling, as shown in Figure 1, is unen-
crypted but with integrity protection, relying on the receiver
to verify integrity. On-path devices can read these signals, but
not verify their authenticity. Modifications to these signals will
be detected by the receiver, which can respond by raising an
error to the transport and/or application layer.

Path-to-receiver signaling, as shown in Figure 2, is also
initiated by the sender. The sender places the requested signal-
ing type in the packet and creates a “scratch space” writable by
on-path devices in the packet. The length of the scratch space
is fixed by the sender, to avoid problems with downstream
loss and/or fragmentation due to packet size changes along
the path. Path accumulation signals, such as those proposed in
IPIM [20] and further specified in Section V-D, can also use
this mechanism; in this case, the scratch space is initialized by
the sender to some value, and each device aware of the signal
along the path updates it according to an algorithm specified
by the type, until the final accumulated value is received at the

zero

stopping

a→b

associate
b→a

toidle

to
associated

tostop

stop
x→y

associating

associated

uniflow

confirm
a→b

stopwait

stop-confirm
y→x

Fig. 3. A transport-independent path layer state machine.

receiver. Since some path-to-receiver signals may be of more
use to the sender than the receiver, path-to receiver signaling
can be augmented by feedback, the return of the final value
of a signal from the path by the receiver back to the sender.

III. A TRANSPORT-INDEPENDENT ON-PATH STATE
MACHINE

Our most basic signaling requirement is to support on-path
recognition of session establishment and disestablishment, as
provided by passive observation of the TCP three-way hand-
shake and the FIN and/or RST flags on connection shutdown.
These are visible on the path between endpoints, and therefore
are often used by those network devices for state management,
(e.g., by NATs and firewalls).

The most important signals derived from these observations
concern flow lifetime and association of the two directions of a
bi-directional flow, associating a uniflow with its reverse coun-
terpart. Firewalls and other stateful network elements can use
this association to assume endpoint consent to communicate.
A stop signal that indicates the last packet of a flow can also
assist state management, and allows for longer timeout for
active flows than presently possible for UDP [6], reducing the
rate at which keep-alive traffic must be sent to avoid loss of on-
path state. Stateful network devices can apply stricter policies
for a flow which does not provide these signals, such as shorter
timeouts to remove flow state, or rules to drop unknown traffic.

Figure 3 shows a transport-independent state machine that
details the basic operation of a stateful on-path device.

The state machine has the following properties:

1) A device on path that can see traffic in both directions
knows each side of an association wishes that associ-
ation to continue. This allows firewalls to delegate
policy decisions about accepting or continuing an
association to the servers they protect.

2) A device on path that can see traffic in both directions
knows that each device can receive traffic at the
source address it provides. This allows firewalls to
protect against trivially spoofed packets, implemented
by associating and associated states.

3) Both endpoints confirm the desire to end communi-
cation, providing resistance against early state expiry

attacks (e.g. TCP RST injection) by on-path devices,
implemented by the stopwait and stopping states.

The first two properties hold with current firewalls and NATs
observing the flags and sequence/acknowledgment numbers
exposed by TCP. Detailed signaling for this state machine is
defined in sections V-B and V-B. The abstract state machine
is described in further detail in [9].

IV. NETWORK PERFORMANCE MEASUREMENT

Passive performance measurement is a second important
application of information presently available in the unen-
crypted TCP header. Basic metrics suffice for most perfor-
mance measurement tasks: transmission rate, latency/jitter, and
packet loss rate. Transmission rate can be trivially measured
by counting bytes associated with a traffic flow, whether the
headers are encrypted or not, then dividing this count by the
observation time interval. We therefore focus on latency and
loss.

Round-trip time (RTT) measurement requires the ability to
match packets in one direction with packets in the opposite
direction, for both directions of the flow. Current inference-
based passive measurement approaches [21], [22] generally
use the TCP Timestamp Option [23], when available [13],
[24]. In contrast, loss measurement requires inference about
the loss detection and retransmission algorithms in use by the
sender [25].

PLUS is designed to support explicit passive measurability
of RTT and loss to replace inference-based approaches. We
follow the principles proposed by Allman et al [20] that
measurement should be explicit, in-band, visible, cooperative,
and under the absolute control of the endpoint. Indeed, we find
that designing signals expressly for measurement, much of the
messy inference involved in turning a TCP packet stream into
metric samples becomes unnecessary.

To measure latency, we propose a simplification of the
arrival information primitive in [20]: a simple packet serial
number (PSN) that increases by one with every packet sent, in-
cluding retransmissions and control packets (unlike TCP), and
a packet serial echo (PSE) that reflects the last packet number
seen in the opposite direction. This is simple to implement, and
provides adequate information for the calculation of latency
between each endpoint and a passive observation point on both
the upstream and downstream path between them (e.g., at a
network border or CPE gateway, where these measurements
are usually deployed).

Given two endpoints a and b, an observation point c can
measure the time interval between seeing a given PSN on a
packet sent by a and an equal or greater PSE on a packet
sent by b to get a latency estimate on the path c ↔ b. By
reversing the measurement, it can likewise estimate c ↔ a,
and a↔ b = c↔ b+ c↔ a.

Loss estimation on the path a→ c for packets in direction
a→ b is supported by our PSN/PSE measurement facility by
counting gaps in the sequence of PSNs sent by a. However,
this gives no visibility into loss on the path c→ b.

Since PLUS has a goal of transport protocol independence,
it cannot simply expose transport protocol internals: requiring

observation points and measurement analysis to infer behavior
of endpoints based upon an identification of the transport
protocol is precisely the current situation we want to avoid.
Therefore, we must rely on the receiver to expose information
about the loss and congestion experienced. We take design
inspiration from the Congestion Exposure (ConEx) proto-
col [26], and define a sender-to-path signal for periodically
exposing counts of detected packet loss and congestion signals
to provide a delayed but accurate loss metric to the path.

Each sender emits a periodic sender-to-path signal con-
taining a two-tuple {l,m} where l is a cumulative count
of the number of detected losses l since the beginning of
the flow and m is a cumulative count of the number of
detected ECN [27] marks since the beginning of the flow. A
measurement point can receive and analyze the series of signals
to derive various loss statistics: lt2−lt1, for example, gives the
number of losses detected by the sender in the time interval
(t1 − owd(a → c), t2 − owd(a → c)), where a first-order
estimate of the one-way delay from the sender owd(a → c)
can be derived from RTT measurements1. Comparing this to
the observed packet transmission rate during the same interval,
as well as to the upstream loss information available from the
PSN series, allows a measurement point to estimate upstream
as well as downstream loss rates. The addition of ECN marking
information, similarly, together with an analysis of observed
ECN congestion signals at the IP layer, allows the estimation of
upstream and downstream congestion for ECN-enabled flows.

V. PATH LAYER UDP SUBSTRATE (PLUS)

Based on our design goals, requirements, and desired
signaling focused on network management and measurement,
we present the Path Layer UDP Substrate (PLUS). PLUS
is implemented as a header between the UDP header and
an encrypted transport header. The PLUS header explicitly
exposes information intended by the sender for use by devices
along the path independent of the transport protocol, hiding
everything else with transport encryption.

The PLUS header can appear in two formats: a Basic
Header carrying information for state management, basic
measurability, and simple packet treatment; and an Extended
Header carrying a path communication field, described in
Section V-C. The Basic Header supports sender-to-path sig-
naling for state maintenance and basic measurement. The
Extended Header supports both sender-to-path and path-to-
receiver signaling.

A. Basic Header

The format of the PLUS headers together with the UDP
header is shown in Figure 4. The magic field is a 28-bit
number that identifies this packet as carrying a PLUS header.
This magic number can be used by PLUS-aware devices on
path to distinguish PLUS packets from non-PLUS packets,
since PLUS cannot be identified by UDP port number. It is
chosen to avoid collision with possible values of the first four
bytes of any packet in widely deployed protocols on UDP.
This both minimizes the chance of accidental classification

1Path asymmetry, of course, reduces the accuracy of this estimate. We leave
accurate OWD estimation through timestamp exposure and synchronization as
a topic for future work.

PCF Value (varlen)

UDP source port UDP destination port

UDP length UDP checksum

magic 0xd8007ff L R S X

Connection and Association Token (CAT)

Packet Serial Number (PSN)

Packet Serial Echo (PSE)

Transport-Layer Headers (encrypted)

PCF Type PCF Len II

Fig. 4. The PLUS header format. The Basic Header (X=0) omits the PCF
fields; the Extended Header (X=1) has all fields.

of a non-PLUS protocol as PLUS, and makes it difficult to
cause spurious PLUS packets to be generated by reflection or
amplification.

The next four bits provide flags: two per-packet Quality
of Service (QoS) signals, a stop signal, and an extended
header bit. The (L)oLa flag, when set, indicates that the
packet is latency sensitive and prefers drop to delay. The
(R)oI flag, when set, indicates that the packet is not sensitive
to reordering and thus does not need to be given the same
treatment or routing as other packets of the same flow. These
two signals address many QoS challenges operators face in
current networks but cannot be reliably provided end-to-end
by existing mechanisms, such as the use of the Differentiated
Services Codepoint (DSCP) field in the IP header [28]. The
(S)top flag indicates a stop or stop confirmation signal when
set; see Section V-B. When the E(X)tended Header bit is set,
the Extended Header is present; see Section V-C.

The Connection/Association Token (CAT) is a 64-bit token
identifying this association. The CAT is chosen randomly
by the connection initiator, and allows both multiplexing of
flows over a 5-tuple as well as fast rebinding: a PLUS packet
sharing one endpoint (source address/port pair, or destination
address/port pair) and the CAT with an existing flow is taken
to belong to that flow, since the other endpoint identifier might
change due to a mobility event or address translation change.

The Packet Serial Number (PSN) is a 32-bit serial number
for this packet. The initial PSN for each direction in a flow
is chosen randomly. Each subsequently sent packet in a flow
increments the PSN by one, wrapping around. Respectively,
the Packet Serial Echo (PSE) is the most recent PSN seen by
the sender in the opposite direction before this packet was sent.
If no packet has yet been seen by the sender (i.e., the packet is
the first packet in a bidirectional flow), the sender sets the PSE
to zero. The CAT and PSE together serve as an indication that
a packet was actually seen by the remote endpoint, and used
for confirmation and stop-confirmation signals. PSN and PSE
together are used for latency measurement as in Section IV.

Since PLUS is designed to be used for UDP-encapsulated,
encrypted transport protocols, overlying transports are pre-
sumed to provide encryption and integrity protection for their
own headers, and need to provide integrity protection for the
PLUS Basic Header. This implies an interface between PLUS
and the transport layer to support this protection, discussed in

more detail in Section VI-A1.

B. State Establishment and Maintenance

The PLUS Basic Header provides the signaling required for
the abstract state machine described in Section III. A PLUS-
aware on-path device forwarding a packet with a PLUS Basic
Header that uses a 5-tuple and CAT for which it has no state,
moves the flow to the uniflow state. If it does not see a packet
within an idle timeout interval for the same flow (with the
same CAT and in the same direction), it will move the flow
back to zero state, but may continue forwarding packets in that
direction (the a → b direction in Figure 3).

If a PLUS-aware on-path device forwards a packet with a
PLUS Basic Header that matches a 5-tuple and CAT as a flow
in the uniflow state, but in the opposite direction (the b →
a direction in Figure 3), it moves that flow to the associating
state. It stores the PSN of the packet that caused this transition,
and waits for a packet in the a→ b direction containing a PSE
indicating that that packet has been received. When it sees that
packet, it transitions the flow to the associated state. Otherwise,
it drops state after an idle timeout interval.

Once a flow has moved to the associated state, it will
remain in that state for an associated timeout interval. It resets
the timer each time it forwards a packet with a PLUS Basic
Header in either direction for this flow, identified by the 5-tuple
and CAT.

When a PLUS-aware on-path device that forwards a packet
for a flow in the associated state with an S flag set, it moves
this flow to the stopwait state. It stores the PSN on the packet
causing the transition, and continues forwarding packets as
if in associated state, dropping state after expiration of the
associated timeout interval. When it sees a packet in the
opposite direction with the S flag set and the PSE set to exactly
the stored PSN, it transitions the flow to closing state. The
device will forward packets in both directions for flows in the
stopping state within a stop timeout interval; these packets will
not reset the timer.

C. Extended Header

When the Extended Header bit is 1, the PLUS Extended
Header is present. This header adds a Path Communication
Field (PCF) to the Basic Header, as shown in Figure 4.
The Extended Header has an 8-bit PCF type field, a 6-bit
PCF length field, a 2-bit Integrity Indicator, and a variable-
length PCF value field, protected by the overlying transport
encryption.

The PCF Type field defines the structure and semantics of
the PCF value. The PCF Length field defines the length of
the PCF value field in bytes, from 0 to 63 bytes. The PCF
Integrity Indicator (II) is used to implement path-to-receiver
as well as sender-to-path signaling, implemented by treating a
portion of the field as if all its bits are zero for purposes of
integrity protection and integrity verification. This protects the
type and length of path-to-receiver signals, but allows part or
all of the PCF Value to be writable by devices on path.

If the Integrity Indicator is 00, the PCF value is not integrity
protected; if it is 11, the PCF value is integrity protected in
its entirety. The other two values provide for partial integrity

protection: 01 indicates that the the first quarter of the PCF
value is protected; 10 indicates that the first half of the PCF
value is protected. The integrity protected range is always
rounded up to the nearest byte.

D. Extended Header Types

This section defines a set of initial Extended Header types
to illustrate the flexibility provided by the Extended Header.
Other PCF types are reserved for future use.

The PCF is used to expose loss and congestion markings
to the path. PCF Type 1 indicates the Loss and Congestion
Exposure field, a field which is 2, 4, 8, or 16 bytes long,
and contains two 1, 2, 4, or 8 byte unsigned integers in
network byte order. The first is a total count of packets detected
as lost by the sender since the start of the connection. The
second is a count of the total number of congestion markings
(ECN CE codepoints) received by the sender since the start
of the connection. Its integrity indicator is always 11, since
the information cannot be modified by on-path devices. PCF
Type 1 packets can be emitted as often as once per RTT as
estimated by the sender; lower rates result in less overhead,
but lower fidelity measurements by devices on path.

The PCF is also used for path accumulation; to be useful
this requires deployment of future PLUS-aware middleboxes.
PCF Type 2 carries a two byte value reflecting the Path
Maximum Transmission Unit (PMTU), initialized to the MTU
of the link on which the packet is initially sent. When a PLUS-
aware middlebox forwards a packet with this PCF, it updates
the value with the minimum of the value present and the MTU
of the link over which it will forward the packet. The integrity
indicator for PCF Type 2 is always 00, since the path can
modify the entire value.

PCF Type 3 carries an 8 byte field for path tracing, similar
to the Path Changes mechanism in section 4.3 of [20]. The
sender chooses a random 8-byte value for each flow, and
initializes the PCF value field with this value for each packet
with PCF Type 3 in the flow. Each on-path PLUS-aware device
fills the PCF value in packets the forwards with the the result
of XORing the received value with an 8-byte device identifier,
chosen randomly and used for all path trace accumulator
signals by the device. Packets traversing the same set of PLUS-
aware forwarding devices are therefore received with the same
accumulated value, and changes to the set of devices on path
can be detected by the receiver. The integrity indicator for PCF
Type 3 is always 00, since the path can modify the entire value.

Devices on path must recognize that they are requested
to participate in signaling by understanding the Extended
Header and the semantics of each type. However, there is no
guarantee that they will participate or reply honestly. Therefore
all signals are advisory only. Endpoints are still required
to implement mechanisms to handle incorrect or incomplete
exposed information, as in existing protocols. For example, if
an endpoint learns an accumulated MTU for a path, it should
not directly use the obtained value, but rather use a probing
technique (such as a varient of the packetization layer path
MTU discovery process [29]) to confirm whether this value is
appropriate.

E. Encrypted Feedback

Path-to-receiver signals transmit information requested
from the path by the sender to the receiver; however, the
sender often also needs the information that was requested.
The transport protocol running atop PLUS must therefore
provide a feedback channel for the full PLUS Extended Header
on any packet received containing a PCF value where the
integrity indicator is not 11. Returning the entire header allows
the sender to associate the value fed back with the original
packet sent; feedback of the entire header depending only
on the II value allows receivers to feed back PCF values
they do not understand. We assume the overlying transport
provides end-to-end encryption, and that signals fed back do
not need to be exposed to the reverse path. The feedback
channel interface must be designed on a per-transport basis.
Section VI-A illustrates how this works in QUIC.

F. Transport layer API

The information presently supported by PLUS does not
require any application interaction: CAT, PSN/PSE, and the
loss/congestion PCF all expose either information available
within PLUS, or that is readily available from the internals of
the overlying transport. Similarly, MTU accumulation is only
useful at the transport layer, and path change detection is, in
its initial form, more suited to diagnostic tools in the spirit
of traceroute than online use by an application. The transport-
application interface therefore needs no change when a given
transport is running over PLUS. However, there can be further
benefits if an application is aware of PLUS. The decision to
enable or disable PLUS on a given flow or node may be
driven not only by the needs of the transport protocol but also
the application, or even the user, following the principles of
transparency and endpoint control.

VI. INSIGHTS FROM IMPLEMENTATION

For evaluating the fitness of PLUS, we implement both a
PLUS-enabled endpoint using QUIC, a new encrypted trans-
port protocol, and a PLUS-aware middlebox that uses PLUS
information for state management and passive measurement.

As an encapsulation layer requiring some integration be-
tween transport and path layer, PLUS raises questions of
overhead and performance. Of course PLUS adds additional
bits to each packet, however, Extended Header fields need
not be present on every packet in a flow. So each PCF type
can be tuned for a fidelity/overhead tradeoff by the sender.
Further, a close integration between the transport protocol and
PLUS, especially if the transport protocols supports optional
extensibility mechanisms, makes it possible that PLUS Basic
Header fields, since they are integrity protected, can replace
equivalent fields in the overlying transport, reducing per-packet
overhead in bytes.

Questions on the overall performance of PLUS are closely
coupled to the use case. Some PCFs must only be sent
once, other need to be repeated frequently. Depending on
the information provided, PLUS adds a certain bit overhead
but still can provide input to a network function that can
improve the overall performance, e.g. providing low latency
for latency-sensitive applications. However, based on our initial
implementation, we can provide some qualitative pointers

path layer
(PLUS)

transport layer
(QUIC)

se
cu

ri
ty

(T

LS
+

Q
U

IC
 P

P)

UDP/IP
(via socket)

send

handshake

pa
ck

etpacket +
pseudo-
header

si
gn

al

protected
packet

M
T

U

transport layer
(QUIC)

se
cu

ri
ty

(T

LS
+

Q
U

IC
 P

P)

UDP/IP
(via socket)

receive

handshake

pa
ck

et

packet

si
gn

al

protected
packet +
pseudo-
header

fe
ed

ba
ck

re
qu

es
t

path layer
(PLUS)

verify
error

(b) on packet reception(a) on packet transmission

Fig. 5. Interfaces between QUIC and PLUS

toward answers. Since PLUS is designed to work over UDP,
advances in technologies for user-space stacks (including fd.io,
on which our middlebox implementation is based) make it
possible to build highly performant PLUS-capable transport
protocol implementations that do not cross a kernel context
switch boundary. In our selected use case to enable basic
measurements based on information in PLUS Basic Header,
the performance penalty is negligible.

A. Endpoint Implementation: QUIC

QUIC is a UDP-encapsulated, encrypted transport protocol
initially developed by Google and currently being standardized
within the IETF2. Although this provides a natural choice for
the overlying transport, the protocol is as-yet a moving target.
Our work is based a openly available quic-go implementa-
tion3 of a recent Google-internal version of QUIC, from which
the IETF version of QUIC has diverged. The most crucial
change was the replacement of a QUIC-specific cryptographic
protocol with TLS. Despite tracking a work in progress, the
design of the interface between QUIC and PLUS has been
fairly stable that we describe in more detail below.

1) A Two-way Interface: PLUS, as QUIC, requires a differ-
ent interaction with its cryptographic protocol than the tradi-
tional layering concept used for TLS over TCP. Further, PLUS
can benefit from a tight coupling between the two protocols,
especially in the case of QUIC. The service PLUS provides to
its overlying transport is transmission of packets over a UDP
socket with a PLUS Basic or Extended Header. PLUS requires
the overlying transport to provide: integrity protection of the
PLUS pseudoheader (the PLUS header with any bytes marked
as unprotected by the integrity indicator replaced by zeroes),
and feedback of path-to-receiver information to the sender
along with delivery of this information to the application, as
necessary.

2) Integrity Protection of the PLUS header: Each QUIC
packet header is integrity protected, but not encrypted, using
Authenticated Encryption with Additional Data (AEAD) [30].
The interface between PLUS and QUIC achieves integrity
protection by extending this additional data to also cover the
adjacent PLUS packet pseudoheader.

Figure 5(a) shows the flow for sending a packet: QUIC
directly interacts with the TLS component [31] for the
TLS handshake enabling the initial exchange of cryptographic

2See https://github.com/quicwg/base-drafts
3https://github.com/lucas-clemente/quic-go

information, without using encryption, or other control action.
However, all payload packets that are to be encrypted are
handed directly from QUIC to PLUS, along with an indication
of the QUIC header length to be integrity protected. PLUS
adds its header, and passes the packet to TLS+QUIC packet
processing for encryption of the QUIC payload including its
internal control information and integrity protection of the
public QUIC and PLUS headers. The resulting packet is
returned to PLUS for transmission over a UDP socket.

An additional interface allows QUIC and PLUS to ex-
change further signalling information. PLUS must inform
QUIC about the maximum datagram size minus the length of
the PLUS header, since the length of the Extended Header
can vary on a per-packet basis. Other information can be
exchanged e.g. to coordinate the QUIC connection and packet
number with the PLUS CAT and PSN, or to provide input for
information signalled using a certain PCF. Our implementation
allows this information to either be stable for the lifetime of
a flow, such as the L flag (e.g. utilising information from the
system or socket configuration), or could dynamically change
based on the state of the transport protocol or application on
top, such as a request to send or increase the frequency of
Extended Headers to perform measurements.

On packet reception, this process runs in reverse, as shown
in Figure 5(b). The packet protection component signals QUIC
when it detects tampering with the integrity-protected part of
the QUIC or integrity-protected part of the PLUS header.

3) The PLUS Feedback Frame: QUIC is a multistreaming
transport that splits its payload and control data into frames
associated with streams [1]. Stream 0 is reserved for control
traffic and use of the embedded TLS 1.3. PLUS feedback
information can be carried in a new feedback frame added to
QUIC on the control stream. The interface shown in Figure 5
allows PLUS to request feedback infromation for inclusion
in a QUIC feedback frame returned to the sender. As noted
in Section V-E, the feedback frame contains the entire PLUS
Extended Header on the received packet with a path-to-receiver
signal.

B. Middlebox implementation: FD.io – VPP

The Fast Data – Input/Output (FD.io) project [12] col-
lects multiple projects and libraries to provide fast and pro-
grammable IO services for networking and storage. FD.io runs
on a variety of architectures and development environments
and automatically uses features like DPDK [32]. A core
component of FD.io is the Vector Packet Processing (VPP)
library [33]. A PLUS-aware middlebox can be implemented
in one (or multiple) VPP nodes.

A PLUS header is identified by a magic number (described
in Section V-A). For each UDP packet, the “IP4 UDP lookup”
node fetches the four UDP payload bytes and compares these
to the PLUS magic number. This indicates the placement of
the PLUS node in the VPP tree as shown in Figure 6. If a
PLUS header is present, the packet is forwarded to the PLUS
node for handling. The packet pointer then moves to the start
of the next header; the following node may therefore even be
unaware of the PLUS header. However, if the following node
wants to access fields in the underlying headers, it has to be
aware of the additional offset due to the PLUS header. We

D
PD

K
 in

pu
t IPv4 input

IPv4 lookup

IPv4 local

IPv4/UDP lookup

ad
di
tio
na
l

no
de
s

ou
tp

ut

PLUS basic header

PCF

Fig. 6. Placement of a PLUS nodes in the VPP tree, assuming an IPv4
header.

include this information in the metadata exchanged between
nodes.

A PLUS-aware middlebox aims to also support flows
between endpoints whose IP addresses change during the flow,
e.g. due to NAT re-binding. Therefore, the PLUS node cannot
blindly compare the observed five-tuple and CAT with the
existing flow states. We apply a two-step approach. First, the
PLUS node tries to find an existing state for the CAT value.
In a second step, the five-tuples are compared. If the observed
packet shares at least one endpoint (source address/port respec-
tively destination address/port) with the existing flow state, the
packet is assigned to this flow and the state may be updated.
Otherwise, the five-tuple and CAT build state for a new flow.

Since each PLUS packet can carry only one PCF at a
time, each distinct PCF value is processed in a separate VPP
node: the first PLUS node handles flow state and, if the
Extended Header is present, it forwards the packet to the
correct PCF node based on the PCF Type field. This approach
allows new Extended Header types to be easily added. PCF
nodes may read or modify certain parts of the PCF value
field depending on the PCF type. For PCF type 1, we only
read the provided information and compare the number of
congestion marked packets to the total number of packets seen
to estimated the current congestion level, providing passive
measurement information for troubleshooting. For type 2, we
compare current value to the MTU provided on the next hop
and overwrite it if our new value is lower. For type 3, we also
read the value, XOR it with a fingerprint randomly chosen at
startup time, and write the result.

VII. DEPLOYING PLUS

Our implementation experience confirms the basic via-
bility of our approach; however, a few challenges remain
to deployability in the Internet. Assuming that overhead is
negligible, why would endpoint implementers and network
operators deploy PLUS?

The transport-independent state machine in section III
provides an incentive for initial adoption. Replacing UDP
traffic whose state must be managed by idle timeouts with
traffic exposing per-flow start and end signals, distinguishable
by a magic number that is probabalistically unlikely to be
generated by reflected traffic, removes an incentive to stop
blocking UDP on the 3-5% of Internet-connected networks
that currently do so [34], [35]. PLUS presents an opportunity
to unify in-network state management for all traffic. From the
endpoint point of view, exposing state information similar to
TCP can reduce keep-alive traffic for long-lived, sparse flows,
saving endpoint resources such as battery consumption, e.g.,
when the radio needs to reconnect on a mobile device.

As a generic facility, PLUS offers an powerful primitive
for signaling between middleboxes and endpoints, making it
possible to deploy new service models. Operators can enhance
network performance while empowering endpoints to control
the usage of these services. The more valuable an offered
service is to the endpoint, the higher are the chances for
adoption. However, not all such models are desirable. For
example, an operator could require an endpoint to present a
token within a PCF as proof of payment or viewing of an ad
to get certain “fast lane” network treatment.

More generally, a path-to-receiver signaling mechanism
could potentially be abused as a side channel; for example,
a middlebox on an access network could place Personally
Identifiable Information (PII), a so called “supercookie”, about
a subscriber on packet for tracking purposes. These potential
abuses are addressed by the third and fourth design principles
in section II: since only the sender can add PCFs and determine
integrity protection on them, side-channel abuse is not feasible
in the general case, providing stronger security support than
most protocols deployed today, including TCP.

Coercion by a user’s sole access provider is unfortunately
impossible to combat. However, the fact that the existence of a
PCF is protected end-to-end and its value is visible to all nodes
along the path as well as the receiver means that such coercion
would at least be widely transparent; a coercive access provider
would presumably seek a more secretive way to exercise such
coercion, such as at layer 2 on its own network or out-of-band.
PLUS therefore presents no additional surface for this attack.

Further, restrictions on PCF vocabulary, most importantly
the restriction that all PCF information be treated by both end-
points and on-path devices as advisory, is designed to reduce
the set of attacks available to uncooperative endpoints and
middleboxes. As such PLUS provides better protection than
widely deployed protocols today, and enables encryption of all
end-to-end information in the transport layer while providing
a clear split of information needed to maintain current traffic
management practices, as an deployment incentive to both
endpoints and middleboxes.

VIII. NEXT STEPS

Our work to date provides confidence that the design and
flexibility of PLUS will be suitable to address a large variety
of path layer use cases, and we are currently focused on
demonstrating the feasibility of the functional mechanisms re-
quired by our design goals, and the scalability of our approach
for fast packet processing for in-network functions. Our next
steps focus on detailed evaluation of these use cases, showing
that the benefits provided by each make a compelling case to
deploy PLUS. For example, we are currently investigating the
use of the L flag for simplified mobile QoS, as input for bearer
selection and active queue management (AQM) and enhanced
scheduling in mobile networks. As PLUS provides a generic
path layer, the benefits it provides increase with every new
PCF type added and each middlebox that understands them.
We intend PLUS as a foundational mechanism for research
and experimentation with uses for an Internet-deployable path
layer, and new methods for network traffic management lever-
aging cooperation between endpoints and on-path devices.

IX. ACKNOWLEDGMENTS

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 688421, and was supported by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract number
15.0268. The opinions expressed and arguments employed reflect only
the authors’ views. The European Commission is not responsible for
any use that may be made of that information. Further, the opinions
expressed and arguments employed herein do not necessarily reflect
the official views of the Swiss Government.

We thank the proponents and participants in the SPUD and PLUS
BoFs, whose feedback and ideas have been instrumental in developing
this work; especially Joe Hildebrand, Ted Hardie, Natasha Rooney,
and Aaron Falk.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Se-
cure Transport,” IETF, Internet-Draft draft-ietf-quic-transport-02, 2017.

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol:
Design and Internet-Scale Deployment,” in Proceedings of ACM SIG-
COMM 2017 Conference (to appear), Los Angeles, California, USA,
August 2017.

[3] R. Stewart, “Stream Control Transmission Protocol,” IETF, RFC 4960,
September 2007.

[4] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
Internet Requests for Comments, RFC Editor, RFC 7413, December
2014, http://www.rfc-editor.org/rfc/rfc7413.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7413.txt

[5] G. Maier, F. Schneider, and A. Feldmann, “Nat usage in residential
broadband networks,” in Proceedings of the 12th International
Conference on Passive and Active Measurement, ser. PAM’11.
Atlanta, GA: Springer-Verlag, 2011, pp. 32–41. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987510.1987514

[6] S. Hatonen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and
M. Kojo, “An experimental study of home gateway characteristics,”
in Proc. ACM IMC, 2010.

[7] B. Trammell and J. Hildebrand, “Evolving transport in the Internet,”
Internet Computing, IEEE, vol. 18, no. 5, pp. 60–64, Sept 2014.

[8] B. Trammell, M. Kuehlewind, E. Gubser, and J. Hildebrand, “A new
transport encapsulation for middlebox cooperation,” in 2015 IEEE
Conference on Standards for Communications and Networking (CSCN),
Tokyo, Japan, Oct 2015, pp. 187–192.

[9] M. Kuehlewind, B. Trammell, and J. Hildebrand, “Transport-
Independent Path Layer State Management,” Working
Draft, IETF Secretariat, Internet-Draft draft-trammell-plus-
statefulness-03, March 2017, http://www.ietf.org/internet-drafts/
draft-trammell-plus-statefulness-03.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-trammell-plus-statefulness-03.txt

[10] B. Trammell, “Abstract Mechanisms for a Cooperative Path Layer under
Endpoint Control,” IETF, Internet-Draft draft-trammell-plus-abstract-
mech-00, Sep 2016.

[11] B. Trammell and M. Kuehlewind, “Path Layer UDP Substrate
Specification,” Working Draft, IETF Secretariat, Internet-Draft draft-
trammell-plus-spec-01, March 2017, http://www.ietf.org/internet-drafts/
draft-trammell-plus-spec-01.txt. [Online]. Available: http://www.ietf.
org/internet-drafts/draft-trammell-plus-spec-01.txt

[12] A Linux Foundation Project, “The Fast Data Project (FD.io),” 2017,
https://fd.io/.

[13] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference, ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 181–
194. [Online]. Available: http://doi.acm.org/10.1145/2068816.2068834

[14] R. Craven, R. Beverly, and M. Allman, “Middlebox-cooperative TCP
for a non end-to-end Internet,” in Proceedings of ACM SIGCOMM 2014
Conference, Chicago, IL, USA, August 2014.

[15] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next
Steps in Signaling (NSIS): Framework,” IETF, RFC 4080, June 2005.

[16] E. Kissel and M. Swany, “The eXtensible Session Protocol: A
Protocol for Future Internet Architectures,” Indiana University, Tech
Report TR700, Feb 2012. [Online]. Available: http://www.cs.indiana.
edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR700

[17] J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF, RFC 3261,
June 2001.

[18] N. Elkins, R. Hamilton, and M. Ackermann, “IPv6
Performance and Diagnostic Metrics (PDM) Destination Option,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-ippm-
6man-pdm-option-10, May 2017, http://www.ietf.org/internet-drafts/
draft-ietf-ippm-6man-pdm-option-10.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-ietf-ippm-6man-pdm-option-10.txt

[19] F. Gont, J. Linkova, T. Chown, and W. Liu, “Observations on the
Dropping of Packets with IPv6 Extension Headers in the Real World,”
Internet Requests for Comments, RFC Editor, RFC 7872, June 2016.

[20] M. Allman, R. Beverly, and B. Trammell, “Principles for Measurability
in Protocol Design,” ACM SIGCOMM Computer Commuication Review,
vol. 47, no. 2, April 2017.

[21] S. D. Strowes, “Passively measuring TCP round-trip times,” Commun.
ACM, vol. 56, no. 10, pp. 57–64, Oct. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2507771.2507781

[22] B. Trammell, D. Gugelmann, and N. Brownlee, “Inline Data Integrity
Signals for Passive Measurement,” in Proc. Sixth Int. Wksp. on Traffic
Measurement and Analysis, London, England, April 2014.

[23] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance,” Internet Requests for Comments,
RFC Editor, RFC 7323, September 2014.

[24] M. Kühlewind, S. Neuner, and B. Trammell, “On the State of ECN and
TCP Options on the Internet,” in Proceedings of the 14th International
Conference on Passive and Active Measurement, ser. PAM’13. Hong
Kong, China: Springer-Verlag, 2013, pp. 135–144. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36516-4 14

[25] M. Allman, W. M. Eddy, and S. Ostermann, “Estimating Loss Rates
with TCP,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 3, pp.
12–24, Dec. 2003. [Online]. Available: http://doi.acm.org/10.1145/
974036.974038

[26] B. Briscoe, R. Woundy, and A. Cooper, “Congestion Exposure (ConEx)
Concepts and Use Cases,” IETF, RFC 6789, 2012.

[27] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” Internet Requests
for Comments, RFC Editor, RFC 3168, September 2001, http:
//www.rfc-editor.org/rfc/rfc3168.txt. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc3168.txt

[28] J. You, M. Welzl, B. Trammell, M. Kuehlewind, and K. Smith,
“Latency Loss Tradeoff PHB Group,” IETF, Internet-Draft draft-you-
tsvwg-latency-loss-tradeoff-00, March 2016.

[29] M. Mathis and J. Heffner, “Packetization Layer Path MTU Discovery,”
Internet Requests for Comments, RFC Editor, RFC 4821, March
2007, http://www.rfc-editor.org/rfc/rfc4821.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4821.txt

[30] D. McGrew, “An Interface and Algorithms for Authenticated
Encryption,” Internet Requests for Comments, RFC Editor, RFC
5116, January 2008, http://www.rfc-editor.org/rfc/rfc5116.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc5116.txt

[31] M. Thomson and S. Turner, “Using Transport Layer Security (TLS) to
Secure QUIC,” IETF, Internet-Draft draft-ietf-quic-tls-02, 2017.

[32] A Linux Foundation Project, “Data Plane Development Kit (DPDK),”
2017, http://dpdk.org/.

[33] “Vector Packet Processing (VPP),” 2017, https://wiki.fd.io/view/VPP/
What is VPP%3F.

[34] K. Edeline, M. Kuehlewind, B. Trammell, E. Aben, and B. Donnet,
“Using UDP for Internet Transport Evolution,” arXiv, cs.NI
arXiv:1612.07816, 2016, ETH TIK Technical Report 366. [Online].
Available: http://arxiv.org/abs/1612.07816

[35] I. Swett, “QUIC Deployment Experiment @ Google,” Proceedings
of IETF 96, July 2016. [Online]. Available: https://www.ietf.org/
proceedings/96/slides/slides-96-quic-3.pdf

