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ABSTRACT

End-to-end encrypted relational database management sys-
tems (EDBs) are the “holy grail” of database security and
have been studied by the research community for the last 20
years. During this time, several systems have been proposed
with a variety of limitations that include weak security, poor
performance and restricted query expressiveness. We con-
tend that this state of affairs is due, in part, to a lack of
cohesion between the techniques and methodologies of the
database and cryptography communities. We believe that
the only way to make significant progress on this important
problem is to properly leverage techniques and ideas from
the two communities.

Towards this end, we identify five key design principles
for end-to-end encrypted relational databases. These prin-
ciples include security, performance and expressiveness con-
siderations. We describe a system called KafeDB; the first
encrypted relational database system that meets these princi-
ples. KafeDB is based on a new database encryption scheme
called OPX that supports a nontrivial subset of SQL queries.
Our prototype, built on top of PostgreSQL, shows the feasi-
bility of our approach. TPC-H shows our prototype is about
one to three order of magnitude slower than optimized plain-
text PostgreSQL and requires about one order of magnitude
more storage while offering end-to-end security.

Seny Kamarat
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1. INTRODUCTION

As we produce and consume increasing amounts of data, we
are witnessing several conflicting trends. On one hand, these
datasets are becoming more intrusive and privacy-sensitive
and, on the other, they are becoming harder to secure. In
fact, the constant occurrence of data breaches points to the
fact that the data management systems produced over the
last 40 years are not capable of adequately protecting the
data they store. While systems sometimes encrypt data in
transit and at rest, there are many stages in the data lifecycle
where it remains unencrypted, especially when in use.

An alternative way of deploying encryption is end-to-end
encryption. In this approach, the data is encrypted by the
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user before it even leaves its device. End-to-end encrypted
systems and services provide much stronger security and
privacy guarantees than the current generation of systems.
The main challenge in building such systems, however, is
that end-to-end encryption breaks many of the applications
and services we rely on, including cloud computing, analytics,
spam filtering, databases and search. The area of encrypted
systems aims to address the challenges posed by end-to-end
encryption by producing practical systems that can operate
on end-to-end encrypted data.

Encrypted databases. A key problem in this area is
the problem of designing encrypted databases (EDB); that is,
of building practical database management systems (DBMS)
that can operate on end-to-end encrypted databases.

The problem of encrypting relational databases is one of
the “holy grails” of database security. It was first explic-
itly considered by Hacigiimiis, Iyer, Li and Mehrotra [16]
who described a quantization-based approach which leaks
the range within which an item falls. In [23], Popa, Red-
field, Zeldovich and Balakrishnan described a system called
CryptDB that can support a non-trivial subset of SQL without
quantization. CryptDB achieves this in part by making use of
property-preserving encryption (PPE) schemes like determin-
istic and order-revealing (ORE) encryption [1, 6, 8], which
reveal equality and order, respectively. Because CryptDB’s
PPE-based approach was efficient and legacy-friendly, it was
quickly adopted by academic systems like Cipherbase [3] and
commercial systems like SEEED [24], and Microsoft’s SQL
Server Always Encrypted [12].

Unfortunately, this design paradigm was never formally
analyzed (e.g., using standard methods from cryptography)
or subject to any cryptanalytic evaluation. As a result, in
2015, Naveed, Kamara and Wright showed that PPE-based
EDBs could be attacked in practice with very high success
rates in the weakest possible adversarial model [21]. In the
setting of electronic medical records, for example, sensitive
attributes of up to 99% of patients could be recovered with a
snapshot attack (i.e., without even seeing any queries). Since
then, several follow-up works [15, 14] have improved on the
original NKW attacks.

General-purpose approaches. Besides using PPE,
there are several ways to design secure relational EDBs but
each solution achieves trade-offs between efficiency, query
expressiveness and leakage. General-purpose primitives like
fully-homomorphic encryption (FHE) and secure multi-party
computation (MPC) can be used to support all of SQL with-
out any leakage but at the cost of exceedingly slow query
execution due to linear-time asymptotic complexity and very
large constants. Similarly, oblivious RAM (ORAM) can also
be used to handle all of SQL with very little leakage (i.e.,
mostly volume leakage) but at the cost of a poly-logarithmic
multiplicative overhead in the size of the database.

Trusted hardware. Another approach to designing
relational EDBs is to use trusted hardware such as se-



cure coprocessors or Intel SGX. Several systems, most no-
tably TrustedDB [4] and StealthDB [28] take this direction.
Though our system could leverage trusted hardware by run-
ning our client proxy in an enclave', we do not investigate
this direction given the security concerns around SGX.
Towards a new generation of EDBs. Given the
high level of interest in encrypted database technology from
academia, industry and government; the inherent weaknesses
of quantization- and PPE-based solutions; and the imprac-
ticality of general-purpose EDBs, the design of practical
and secure encrypted database systems remains an impor-
tant open problem. A first step towards achieving this was
taken by systems such as ESPADA [10], Blind Seer [22] and
Stealth [17] which, roughly speaking, use structured encryp-
tion (STE) to index the columns of a database. While these
systems achieve much better security than the quantization-
and PPE-based solutions, they can only support a very re-
stricted subset of SQL; specifically, filter operations and no
joins or projections. In this work, we tackle the key challenges
that impede the development and deployment of encrypted
databases. Our contributions can be summarized as follows:

e (design principles) we identify and discuss five key prin-
ciples for the design of practical and secure relational
EDBs. These include a reasonable leakage profile, ef-
ficiency, legacy friendliness, optimization friendliness
and expressiveness. Achieving any strict subset of these
four requirements is insufficient.

e (construction) we describe the first encrypted database
scheme that follows all the design principles outlined
above. To achieve this we make two important technical
contributions: (1) we show, for the first time, how
to design optimization-friendly STE schemes; and (2)
we introduce a new technique called emulation that
makes STE-based solutions legacy-friendly. This new
scheme is called OPX and is an extension of the SPX
construction of Kamara and Moataz [18].

e (architecture) we propose an architecture for encrypted
database management systems that integrates the
needed cryptographic components into a traditional
DBMS architecture. This is, in part, done by introduc-
ing a crypto engine that is responsible for providing
end-to-end encryption and an emulation engine that
is responsible for making the encrypted databases and
queries “comprehensible” to a standard and unmodified
DBMS.

e (prototype) we describe the implementation and eval-
uation of a new system called KafeDB based on our
architecture, our OPX construction and our emula-
tors. KafeDB runs on top of an unmodified PostgreSQL
server. Our initial prototype demonstrates the feasibil-
ity of our architecture and approach. We evaluate its
performance empirically using the TPC-H benchmark
and report promising initial results: about an order of
magnitude query and storage overhead over standard
PostgreSQL, but offering considerably stronger security
guarantees than CryptDB and much more expressiveness
than ESPADA, Blind Seer and Stealth. To improve

1SGX currently allows 90MB of working memory and our
proxy is around 350K B in size.

upon the initial results, we will need more sophisti-
cated techniques in both cryptography and database
systems.

2. RELATED WORK

We already discussed related work on PPE-based and STE-
based relational encrypted databases so we focus here on
work in encrypted search and on other types of EDBs.

Encrypted search. Encrypted search is the area in cryp-
tography that focuses on the design, cryptanalysis and im-
plementation of protocols and systems that support search
on encrypted data. Encrypted search was first considered
explicitly by Song, Wagner and Perrig in [25] which intro-
duced the notion of searchable symmetric encryption (SSE).
Curtmola et al. introduced and formulated the notion of
adaptive semantic security for SSE [13] together with the first
sub-linear and optimal-time constructions. Chase and Ka-
mara introduced the notion of structured encryption which
generalizes SSE to arbitrary data structures [11].

Federated EDBs. Federated EDBs are systems that
are composed of multiple autonomous encrypted databases.
Most federated EDBs use secure multi-party computation
(MPC) to query the constituent EDBs securely. In this model,
multiple parties hold a piece of the database (either tables
or rows) and a public query is executed in such a way that
no information about the database is revealed beyond what
can be inferred from the result and some additional leakage.
Examples include SMCQL [5] and Conclave [29], which store
the databases as secret shares and encryptions, respectively,
and use MPC to execute the sensitive parts of a SQL query
on the shared/encrypted data. We note that standard EDBs
like KafeDB can be combined with MPC to yield a federated
EDB.

3. DESIGN PRINCIPLES

Designing a relational EDB is, arguably, the most chal-
lenging problem in encrypted search. Existing RDBMs are
the result of over 40 years of research and development so
competing with the performance of commercial DBMSs over
encrypted data is a tall order. To achieve this level of per-
formance, it stands to reason that EDBs need to inherit as
many of these advances as possible. With this in mind, we
outline five principles that are necessary for the design of
practical EDBs.

Adversarial models & leakage. There are two main
adversarial models considered in encrypted search: (1) persis-
tent adversaries which have access to the encrypted database
and can view all the query operations that are executed on
it; and snapshot adversaries which only have access to the
encrypted database. Persistent adversaries model attackers
that corrupt the server and stay long enough to view some
number of queries. Snapshot adversaries model attackers
that corrupt the server and exfiltrate a snapshot of its mem-
ory and disk. All cryptographic solutions that support search
on encrypted data in sub-linear time leak information against
persistent adversaries. This is true of PPE-based, STE-based
and ORAM-based solutions. However, it is known that both
STE and ORAM can lead to solutions with no leakage against
snapshot adversaries [2].

The security of an encrypted search solution is character-
ized by its leakage profile which is a formal description of the
information an adversary learns from observing and interact-



ing with the scheme. More precisely, in the the persistent
model, a leakage profile consists of: (1) setup leakage which
describes the information the adversary learns by just ob-
serving the encrypted database; and (2) query leakage which
describes the information the adversary learns by observing
the execution of queries. For dynamic schemes, which sup-
port the addition and deletion of data, the leakage profile
also includes add leakage and delete leakage. This approach
to characterizing leakage was introduced in [13, 11] and we
refer to [19] for additional details.

Principal #1: minimal leakage. An important design
goal for any encrypted database is to minimize the informa-
tion a persistent adversary is able to recover. At a minimum,
this means that there should be no known practical attack
against the scheme. Furthermore, the scheme’s leakage pro-
file should have the following characteristics:

o (minimal setup leakage) the setup leakage of the scheme
should include at most the “shape” of the database;
i.e., the number of columns and rows of each table.

o (output-dependent query leakage) when a query is exe-
cuted, the adversary should, at most, learn information
related to result of the query and not to the entire
database or column. Furthermore, the information
that is leaked should, at most, be statistical informa-
tion about the query or result like whether a query has
been queried in the past, or the number of rows that
contain a similar value.

To be clear, leakage profiles with these characteristics are
not provably immune to attacks. But, given our current un-
derstanding and the state-of-the-art results in cryptanalysis
[7], these leakage profiles seem difficult to attack in practice.
For more discussion about leakage attacks we refer the reader
to [7] and the discussions and references therein.

Principle #2: low asymptotic overhead. The system
should be competitive with a standard plaintext DBMS with
respect to query execution and storage. High performance
imposes efficiency requirements on the system’s database
encryption scheme. Specifically, it should achieve the same
asymptotic complexity as a plaintext database and preferably
with small constants. As an example, schemes that add a
linear or even polylogarithmic multiplicative overhead over
a plaintext query are unacceptable in practice. The same
applies for the scheme’s round and storage complexities.

Principle #3: optimization friendliness. In addition
to low asymptotic overhead, the underlying database encryp-
tion scheme should be optimization-friendly in the sense that
it should support the execution of optimized query plans
and, in particular, of plans that are optimized by commercial
query optimizers.

Principle #4: rich query expressiveness. The sys-
tem should support a non-trivial subset of SQL and, at a
minimum, the class of conjunctive SQL queries (or the SPC
algebra) which have the form:

SELECT attributes FROM tables
WHERE att; = a AND AND atte = atts AND

This requires being able to handle select, project and join
operators.

2Since our current design and system does not yet handle
range queries, we do not consider cryptanalytic work focused
on encrypted range schemes.

Principle #5: legacy friendliness. While building
an entirely new encrypted DBMS from the ground up is
an interesting technical question, designing a scheme that
can work on top of an existing, unmodified DBMSs is more
appealing from a practical standpoint. If the resulting system
is competitive with plaintext systems, achieves the required
security and provides rich query expressiveness, there is
almost no reason to build a new DBMS from scratch and
lose over 40 years of advances in database research and
engineering. Ideally, the design should be database-agnostic
in the sense that it should not depend on a particular DBMS.

4. SYSTEM OVERVIEW

KafeDB has a three-tier architecture composed of the ap-
plication, the client and the server, as shown in Figure 1.
Both the application and the client are assumed to operate
in a trusted environment, whereas the server is untrusted.
The client encrypts the application’s database and queries
and sends them to the server who executes them. The key
material is stored by the client so the server never sees the
data or queries in plaintext. Note that the client is stateless
and only stores the schema of the plaintext database and the
cryptographic keys.

The client is central to the KafeDB architecture, and most
of its modules have to be carefully designed such that any
given standard relational database can be used on the server.
The most important modules are the crypto engine and
the emulation engine, which are used throughout the data
management cycle for data setup, query optimization and
execution.

Crypto engine. In KafeDB, end-to-end encryption is han-
dled by a crypto engine that implements the database encryp-
tion scheme. It is responsible for encrypting the database and
queries and for decrypting the results. Currently, KafeDB’s
crypto engine implements our OPX construction but future
versions could be based on new and improved schemes.

Emulation engine. Once a database or query is en-
crypted it is handed to the emulation engine which is re-
sponsible for transforming them into relational tables and
SQL queries to be processed by the server. Note that the
tables and SQL queries output by the emulation engine are
not the same as the tables and SQL queries produced by the
application. In fact they are completely different since the
latter are representations of the OPX-encrypted tables and
queries of the application. Again, KafeDB’s emulation engine
currently implements a specific emulator designed for this
work but it could be replaced in the future with a different
emulator.

Setup. Our current focus is on analytical workloads,
therefore we design KafeDB to bulk load new data through the
setup module at the client®. The setup module invokes the
crypto engine to encrypt the data into encrypted structures,
and then it uses the emulation engine to reshape them into
tables and indexes.

Query optimizer. Due to encryption, the KafeDB server
cannot maintain statistics over the tables and is, therefore,
limited in how much it can optimize queries. In fact, since
its underlying database encryption scheme achieves minimal
setup leakage, the only information the server learns at setup
time is the size of the database. Because of this, KafeDB does

3We defer the extension on secure fine-grained updates that
are ACID-compliant to follow-up work.
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Figure 1: The KafeDB system architecture.

most of its query optimization at the client. One of the main
technical contributions of OPX is its ability to support any
SPC query plan. More precisely, the encrypted structures
and query protocols used by OPX are carefully designed so
that the supported operations (i.e., joins, filters, projections)
can be queried in any order. This flexibility results in KafeDB
being optimization-friendly since it can process query plans
that are produced by standard query optimizers. Besides
filter pushdown, we also identified two additional optimiza-
tions that are particularly effective in reducing some of the
costs introduced by OPX. These include: many-to-many
join factorization and multi-way join flattening. The former
transforms each many-to-many join into two many-to-one
joins (this requires an additional encrypted table at setup)
and the latter transforms a sequence of multiple joins (i.e. a
left deep tree) into separate pairs of joins (i.e. a bushy tree).

Split execution. KafeDB’s OPX-based crypto engine cur-
rently handles conjunctive SQL queries on encrypted data.
For more complex queries, we use split execution as intro-
duced in [27]. Given a query, the client splits it into two kinds
of subqueries: conjunctive subqueries, which are supported
by the OPX crypto engine, and other subqueries which are
not. The conjunctive subqueries are processed by the crypto
engine and the others are executed locally using the results
of the conjunctive subqueries.

5. THE OPX SCHEME

In this section, we give an intuitive description of OPX
and of our emulation techniques, and refer to [20] for the
formal treatment and analysis. First, however, we provide
some technical background that is necessary to understand
our construction.

5.1 Technical Background

OPX is a relational database encryption scheme. It is based
on, and considerably improves on, the SPX construction of
Kamara and Moataz [18]. The most important difference
between the two schemes is that OPX is optimization-friendly
whereas SPX is not.

Structured encryption (STE). A structured encryp-
tion scheme encrypts a data structure in such a way that
it can be privately queried. Intuitively, an STE scheme is
secure if the encrypted structure reveals nothing about the
data structure beyond a given setup leakage and the query

operation reveals nothing about the structure and/or query
beyond a given query leakage. The setup and query leakage
of a scheme constitute its leakage profile.

Encrypted multi-maps. A central building block in the
design of most STE-based solutions are encrypted multi-
maps. Briefly, an encrypted multi-map stores label/tuple
pairs (where the tuples can be of different sizes) and supports
Get and Put operations. OPX makes black-box use of EMMs
which means that they can be instantiated with using any
concrete construction. In our implementation, we make
use of a variant of the Pibase scheme of Cash et al. [9]
which has optimal storage and query complexity. Its setup
leakage is the size of all the tuples of the multi-map, and
its query leakage consists of the query equality pattern and
the response identity pattern. The query equality reveals if
and when the same query was made in the past, whereas the
response identity reveals the response of the query *

SPX. Kamara and Moataz proposed the first STE-based
database encryption solution to handle a non-trivial fraction
of SQL [18]. This scheme, called SPX, has complexity linear
in the query output size and (provably) leaks considerably less
than known PPE-based solutions like CryptDB and Monomi.
Roughly speaking, the scheme represents of the database
using various multi-maps that are then encrypted with a
multi-map encryption scheme. The main limitation of SPX,
however, is that it can only support queries in a specific
normal form. That is, all SPC queries have to be written
in the SPC normal form and then translated into a form
called the heuristic normal form. Due to this restriction,
SPX cannot handle many optimized query trees (e.g., ones
that result from filter pushdown or filter/join reordering).

5.2 Details of the OPX Scheme

We divide the scheme’s description in two parts: (1) a
setup phase during which the client outputs the encrypted
database; and (2) a query phase during which the client sends
an encrypted query. Here, we focus on the important ideas
behind the scheme and refer the necessary formal treatment
to [20].

Setup. The setup takes as input the plaintext database
DB and a security parameter (i.e., the length of the cryp-

Tt is trivial to make Pibase response-hiding but in the OPX
construction it is used as a building block and the response-
revealing variant is used by design in a manner that does
not reveal the query responses.



tographic keys). It then creates six data structures that
capture different representations of the database:

e (row representation) MMp is a multi-map that maps
each row identifier to a tuple composed of the cells of
the row;

e (column representation) MM¢ is a multi-map that maps
each column identifier to a tuple composed of the cells
of the the column;

e (filter representation) MMy, is a multi-map that maps
the unique values in every column to the rows that
contain that value;

o (partial join representation) {MM¢ ¢/ }c s is a set of
multi-maps that correspond to a pair of joinable
columns in the database. Each multi-map maps row
identifiers in one column to the row identifiers in the
other column that have equal cell value;

e (full join representation) {MMc}c is a set of multi-
maps, each of which corresponds to a column c of the
database. Each multi-map maps a column identifier ¢’
to the pairs of row identifiers that have the same value
in both ¢ and ¢’;

e (partial filter representation) SET is a set-membership
structure that checks whether a cell in a specific row
contains a specific value.

All the multi-maps are encrypted using a multi-map encryp-
tion scheme. The set structure is encrypted using a custom
encrypted set scheme that we detail in the full version of
this work. As mentioned, an important aspect of OPX is
that it has the ability to make use of any combination of
these structures to answer any conjunctive query. To do so,
it leverages a key design technique in structured encryption
called structural chaining. In its simplest form, it works as
follows: the client sends an encrypted query that can only
be used with one of the encrypted structure. Once the server
executes this encrypted query, it reveals an intermediary
response which is composed of other precomputed encrypted
queries that were stored in the encrypted structure during
setup. The server can then use these encrypted queries to
query other encrypted structures. As a concrete example, in
OPX, the client sends an encrypted SQL query to retrieve
all rows that are equal to some specific value. The server
will take this encrypted query and run it against EMMy,
the encrypted multi-map of MMy, which outputs all the
necessary encrypted queries to run against EMMg.

Query. The query phase of OPX takes as input an opti-
mized SQL query tree whose nodes are relational operators.
OPX then replaces each node with a corresponding token
for a specific encrypted structure. The emulation engine
then emulates the token tree as an encrypted SQL query and
sends it to the server. The server executes the encrypted
query leveraging the structural chaining discussed above.

Efficiency. OPX’s query complexity can be shown to
asymptotically match the plaintext’s when measured in terms
of query output size. Furthermore, it is the first STE-based
scheme that can support query optimization such that its
encrypted query can incur lower complexity at execution.
Its storage overhead over plaintext comes from the creation
of multiple (encrypted) database representations. While
most of these representations do not significantly increase

the asymptotic storage overhead, the partial and full join
representations can incur a worst-case quadratic blowup in
database size. We use an idea of query rewrite called many-
to-many join factorization to circumvent this blowup, and
our results in TPC-H shows significant improvement in both
storage and query time in Section 6. At a high level, this
new query rewrite rule factors a many-to-many join (e.g.
foreign key to foreign key) into two many-to-one joins (e.g.
foreign key to primary key) such that each only incurs linear
complexity.

Security. Because OPX uses encrypted multi-maps exten-
sively, its leakage profile depends the profile of its underlying
encrypted multi-map constructions. In our current instantia-
tion, OPX leaks a combination of query equality and response
identity patterns. At a high level, it reveals frequency infor-
mation on how the client accesses the database such as if and
when the client sends the same query. The server can also
learn which query touches which rows, as well as the rows
touched rows that are common between different encrypted
queries. Note, however, that OPX—and therefore KafeDB—
provably leaks significantly less than PPE-based schemes and
systems like CryptDB and Monomi. Furthermore, its leakage
profile is not prone to any known practical attack. We refer
the formal security proofs to [20].

5.3 Emulation

While STE-based solutions are efficient and more secure
than PPE-based solutions they have an important limita-
tion: they require a custom server and, therefore, are not
legacy-friendly. To address this, we introduce a new tech-
nique called emulation that can make STE-based schemes
like OPX legacy-friendly. While the notion of emulation is
generally applicable, in this project we focused on designing
SQL emulators; that is emulators to make OPX run on any
unmodified relational RDBMS. The main advantages of our
emulator are: (1) it does not impact OPX’s efficiency; (2) it
preserves its security; and (3) it is agnostic to the underlying
relational DBMS. An emulator consists of two algorithms: a
reshape algorithm and a reform algorithm.

Reshape. This algorithm transforms the encrypted
database, which consists of a set of EMMs, into a set of
relational tables. It relies on sub-emulators that transform
the individual EMMs into tables. In our current KafeDB
implementation, we use the Pibase EMM from [9] so our
sub-emulator is designed for that particular construction. At
a high level, the sub-emulators parse each EMM into a set of
label/tuple pairs which it then inserts as a row into a table.
It then creates a plaintext index on the (encrypted) label
column. In Figure 1, we summarize all the generated tables.

Reform. This algorithm transforms the (encrypted) query
tree into a normal SQL query. Here, we use Common Table
Expressions (CTEs) to capture the recursive nature of Pibase
EMM queries. We will provide details on our SQL emulators
in follow-up work.

6. EVALUATION

We implemented KafeDB and compared its performance
against CryptDB and (standard) PostgreSQL. We want to
stress that the current version of KafeDB should be viewed as
as a first step towards designing practical and secure EDBs
and is the first system to achieve the five principles outlined
in Section 3. Previous systems like CryptDB failed to achieve
the first principle: it has non-trivial setup leakage and is
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Figure 2: TPC-H Benchmark with scale factor 1.

vulnerable to a series of practical attacks. Other systems
like ESPADA, Blind Seer and Stealth are not optimization-
friendly or legacy-friendly and only support filters. The main
purpose of our evaluation is to demonstrate that one can
design an EDB systems without giving up completely on
security, functionality and performance.

Implementation. The KafeDB client uses and extends
Spark SQL ’s Catalyst for query parsing and planning, and
its executor to facilitate split execution over the KafeDB
server which runs PostgreSQL 9.6.2. Our implementation is
availalbe for download [26]. For the cryptographic primitives,
we use AES in CBC mode with PKCS7 padding for symmetric
encryption, and HMAC-SHA-256 for pseudo-random functions.
Both primitives are provided by Bouncy Castle 1.64 in the
Client and by the pgcrypto module in PostgreSQL 9.6.2.°

Testing environment. We conducted our experiments
on Amazon (EC2) with instance type t2.2x1large, which has 8
CPUs, 32GB RAM and 1TB of Elastic Block Store. Following
the typical hardware setting in the research literature, we
chose to keep high memory capacity ratio to the database size,
which amounts to 0.5x for KafeDB and 7.2x for plaintext
PostgreSQL.

Data generation. We use the TPC-H benchmark with a
scale factor 1, which leads to about 8.6 million rows and 1GB
of data. We only index the filtered and joined attributes for
KafeDB and plaintext PostgreSQL. This indexing strategy
helps to ensure the best possible query performance for both
PostgreSQL and KafeDB.

Comparisons. For the purpose of efficiency evaluation,
we also compare KafeDB to CryptDB from [27]. The original
version of CryptDB [23] only supports 4 out of the 22 TPC-H
queries, so the results we recall here are from a modified
version of CryptDB in [27] that supports the full TPC-H. The
hardware setup differs slightly in [27] where most noticeably
the authors used a machine with slightly less RAM of 24GB
compared to the 32GB of RAM in our setting®. Since the
code of [27] is not open-source, and in order to draw fair
comparisons, we only report the query and storage multi-

5The only secure mode provided by PostgreSQL 9.6.2.
®The authors in [27] stated their evaluation numbers were
similar across different hardware setup.

plicative overheads incurred by these systems over a plaintext
PostgreSQL.

Overview of our results. As an initial study, we provide
below a summary of our TPC-H results for KafeDB with OPX
scheme for scale factor one:

e KafeDB was about an order of magnitude slower than
CryptDB. For KafeDB, excluding the three queries that
timed out, the median slowdown relative to plaintext
was 45.6x with a range of 3.2x-1407.9x; whereas for
CryptDB the median was 3.92x with a range of 1.04x-
55.9%;

e All queries performed better with encrypted query
optimizations applied. With selection pushdown,
the speedup varied from 4x to 53x.  Without
many-to-many join factorization, the single join
between Customer and Supplier timed out after 24
hours, whereas the factorized joins with additionally
Nation took only 12 minutes. With multi-way join
flattening, the speedup was around 20x.

e KafeDB incurred an order of magnitude size blowup
over plaintext due to both ciphertext expansion and
the complexity of the encrypted structures with a mul-
tiplicative factor of 13.17x. CryptDB appears to incur
a smaller 4.21x size blowup;

e KafeDB requires about an order of magnitude more time
to set up than to load the plaintext into PostgreSQL
with a multiplicative factor of 10.37x.

e At scale factor 10, KafeDB showed signs of limited scal-
ability where the overhead for most queries exceeded
three orders of magnitude compared to plaintext.

Note however that this initial prototype of KafeDB did not
undergo system-level optimization, and the OPX scheme still
has much room for improvement beyond the new support
for query optimization. Here we focus on functionality and
security at first, and defer more sophisticated improvement
on the efficiency and security to the future work.



7.

CONCLUSION

The problem of building end-to-end encrypted relational
databases is an important topic in database security. To help
guide the design of practical and secure encrypted databases,
we identified five principles that revolve around security,
functionality and efficiency. As an initial step, we designed
the first STE-based encrypted relational database scheme

that supports query optimization and that is legacy-friendly.

We also built a system to illustrate our scheme’s practical
viability. We hope that our initial results will motivate and
guide future work to improve the functionality, efficiency and
security of encrypted relational database systems.
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