
Packet Capture With libpcap and other Low Level Network
Tricks

Download libpcap Unix source from Dave Central
Download libpcap for win32 HERE!
Search for other neat-o libpcap stuff from google

Contents

Intro (You are already here)
Capturing our First Packet
Writing a Basic Packet Capturing Engine
Analyzing packets..... (in progress)

Who this is for: Allright peeps, this tutorial assumes at least a cursory knowledge in networks in
general. For example, what a packet is, how packets are sent, physical vs datalink vs network layers etc.
However, I am not assuming any previous knowledge in network programming, just a basic familiarity
with c. If you already are a c/c++ master, then you might as well just man 3 pcap so you can skip my
annoying writing style. You should have a working c compiler on your system and libpcap installed. We
are only going to concern ourselves with Ethernet datalink layer.. so if you are using some funky
network card like token ring... then you are on your own as to finding your way around the datalink
headers. Finally, all source in this section was written and tested on linux, kernel 2.2.14, while it should
be mostly portable (hehe) I can't guarantee that it will compile or run on other operating systems. You
are going to want to run as root so be careful and be sure not to break your box in the meantime. Oh, and
though I have tested and run all the code presented in this tutorial with no problems, I am NOT
responsible if your shit breaks and has to be quarantined by the health department... aka play at your
own risk.... (*eerie ghost sound*)

Intro: Well here it is, the beginning of my packet capture tutorial a la libpcap. Inevitably the questions
will arise.. "what the hell is packet capture?!" or "Who is libpcap!?" ... so I guess I'll start off by
answering these questions...

Packet Capture, simply means to "grab packets".
"Gee thanks Martin :-P"..you blurt.
No, really, all we are trying to do here is to get access to the underlying facility provided by the
operating system so we can grab packets in their raw form. For example, assume your ethercard
picks up a packet from the network. Once the packet is handed off to the OS, the OS must
determine what type of packet it is, to do so it strips off the Ethernet header of the packet and
looks at the next layer. Perhaps it is an ip packet... well the OS must now strip of the IP header
and determine which type of IP packet it is. Finally, lets say it is determined that the packet is a
UDP packet, the UDP header is stripped off and the packet payload is handed over to the
application that the packet is sent for (notice this is an GROSSLY oversimplified version of what
really goes on, but I trying to illustrate a point). Packet capture allows us to intercept any packet
that is seen by the network device, and grab it in its entirety headers and all! Regardless of which
port is being sent to, or even which HOST! for that matter!!!

Page 1 of 4libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section1.html

libpcap "provides implementation-independent access to the underlying packet capture facility
provided by the operating system" (Stevens, UNP page. 707). So pretty much, libpcap is the
library we are going to use to grab packets from the network card directly. Let me quickly note
that there are other ways of doing this, including BPF (Berkeley Packet Filter), DLPI (Data Link
Provider Interface) and SOCKET_PACKET type sockets (Linux only).

Getting Started Well there is an awful lot to cover.. so lets just get familiar with libpcap. Like I stated
before, all the code in this section is assuming that you are sitting on an Ethernet. If this is not the case,
then the tutorial basics are still pertinent, but the code presented later on involving decoding the Ethernet
header obviously isn't :-(*sorry*. Allright... crack your knuckles *crunch* and lets get ready to code our
FIRST LIBPCAP PROGRAM!!!!. Go ahead and copy the following program into your favorite editor
(which should be vim if you have any sense :-) save, and compile with...

%>gcc ldev.c -lpcap

/* ldev.c
 Martin Casado

 To compile:
 >gcc ldev.c -lpcap

 Looks for an interface, and lists the network ip
 and mask associated with that interface.
*/
#include <stdio.h>
#include <stdlib.h>
#include <pcap.h> /* GIMME a libpcap plz! */
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char **argv)
{
 char *dev; /* name of the device to use */
 char *net; /* dot notation of the network address */
 char *mask;/* dot notation of the network mask */
 int ret; /* return code */
 char errbuf[PCAP_ERRBUF_SIZE];
 bpf_u_int32 netp; /* ip */
 bpf_u_int32 maskp;/* subnet mask */
 struct in_addr addr;

 /* ask pcap to find a valid device for use to sniff on */
 dev = pcap_lookupdev(errbuf);

 /* error checking */
 if(dev == NULL)
 {
 printf("%s\n",errbuf);
 exit(1);
 }

 /* print out device name */
 printf("DEV: %s\n",dev);

Page 2 of 4libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section1.html

 /* ask pcap for the network address and mask of the device */
 ret = pcap_lookupnet(dev,&netp,&maskp,errbuf);

 if(ret == -1)
 {
 printf("%s\n",errbuf);
 exit(1);
 }

 /* get the network address in a human readable form */
 addr.s_addr = netp;
 net = inet_ntoa(addr);

 if(net == NULL)/* thanks Scott :-P */
 {
 perror("inet_ntoa");
 exit(1);
 }

 printf("NET: %s\n",net);

 /* do the same as above for the device's mask */
 addr.s_addr = maskp;
 mask = inet_ntoa(addr);

 if(mask == NULL)
 {
 perror("inet_ntoa");
 exit(1);
 }

 printf("MASK: %s\n",mask);

 return 0;
}

Did you run the program? If not, run it :-) Assuming it compiled, and ran correctly your output should
be something like...

DEV: eth0
NET: 192.168.12.0
MASK: 255.255.255.0

Now if your DEV is not eth0, or eth1 or eth followed by some number then we are going to have
problems because this document is geared toward sniffing ethernet packets. Obviously the NET and
MASK numbers will be different than the ones I posted, however the actual values are not important to
this discussion.

"So what did we just do?", you ask. Well, we just asked libpcap to give us some specs on an interface to
listen on.
"Whats an interface?"
Just think of an interface as your computers hardware connection to whatever network your computer is
connected to. In Unix, eth0 denotes the first ethernet card in your computer this is the network interface

Page 3 of 4libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section1.html

that I am going to use to demonstrate libpcap. All you really have to be concerned with right now is that
we grabbed the device name "eth0", since this is what we have to pass to libpcap to tell where to grab
packets from. The NET and MASK are simply the network number and mask associated with the card
which are for informative purposes only. There are much better ways to enumerate and list the
specifications of the system interfaces than going through libpcap which I'll hopefully write about
someday :-).

Allright, by now you should know how to write, run and compile a libpcap program, grab the name of
the interface card we are going to capture packets from, and have a basic understanding of what we are
doing. Next, we'll grab our very first packet.. WohoO!!!

[Socket Home] [Next]

Page 4 of 4libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section1.html

Capturing Our First Packet

(P.S. Hey peeps, sorry this was such a long time coming... graduating and getting a job is a major pain in the
ass... as things settle down I will certainly have more time to work on this :-) :-) :-))

Well now we sort of know the nature of packet capture, we have identified that we do in fact have an interface
to pull things from, how about we go ahead and grab a packet!
"Just give me the damn example and let me hack...", you cry
Very well..... Here you go.. download from here.. testpcap1.c or just cut and paste below.

/***
* file: testpcap1.c
* Date: Thu Mar 08 17:14:36 MST 2001
* Author: Martin Casado
* Location: LAX Airport (hehe)
*
* Simple single packet capture program
***/
#include <stdio.h>
#include <stdlib.h>
#include <pcap.h> /* if this gives you an error try pcap/pcap.h */
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netinet/if_ether.h> /* includes net/ethernet.h */

int main(int argc, char **argv)
{
 int i;
 char *dev;
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_t* descr;
 const u_char *packet;
 struct pcap_pkthdr hdr; /* pcap.h */
 struct ether_header *eptr; /* net/ethernet.h */

 u_char *ptr; /* printing out hardware header info */

 /* grab a device to peak into... */
 dev = pcap_lookupdev(errbuf);

 if(dev == NULL)
 {
 printf("%s\n",errbuf);
 exit(1);
 }

 printf("DEV: %s\n",dev);

 /* open the device for sniffing.

 pcap_t *pcap_open_live(char *device,int snaplen, int prmisc,int to_ms,
 char *ebuf)

 snaplen - maximum size of packets to capture in bytes
 promisc - set card in promiscuous mode?
 to_ms - time to wait for packets in miliseconds before read
 times out
 errbuf - if something happens, place error string here

Page 1 of 5libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section2.html

 Note if you change "prmisc" param to anything other than zero, you will
 get all packets your device sees, whether they are intendeed for you or
 not!! Be sure you know the rules of the network you are running on
 before you set your card in promiscuous mode!! */

 descr = pcap_open_live(dev,BUFSIZ,0,-1,errbuf);

 if(descr == NULL)
 {
 printf("pcap_open_live(): %s\n",errbuf);
 exit(1);
 }

 /*
 grab a packet from descr (yay!)
 u_char *pcap_next(pcap_t *p,struct pcap_pkthdr *h)
 so just pass in the descriptor we got from
 our call to pcap_open_live and an allocated
 struct pcap_pkthdr */

 packet = pcap_next(descr,&hdr);

 if(packet == NULL)
 {/* dinna work *sob* */
 printf("Didn't grab packet\n");
 exit(1);
 }

 /* struct pcap_pkthdr {
 struct timeval ts; time stamp
 bpf_u_int32 caplen; length of portion present
 bpf_u_int32; lebgth this packet (off wire)
 }
 */

 printf("Grabbed packet of length %d\n",hdr.len);
 printf("Recieved at %s\n",ctime((const time_t*)&hdr.ts.tv_sec));
 printf("Ethernet address length is %d\n",ETHER_HDR_LEN);

 /* lets start with the ether header... */
 eptr = (struct ether_header *) packet;

 /* Do a couple of checks to see what packet type we have..*/
 if (ntohs (eptr->ether_type) == ETHERTYPE_IP)
 {
 printf("Ethernet type hex:%x dec:%d is an IP packet\n",
 ntohs(eptr->ether_type),
 ntohs(eptr->ether_type));
 }else if (ntohs (eptr->ether_type) == ETHERTYPE_ARP)
 {
 printf("Ethernet type hex:%x dec:%d is an ARP packet\n",
 ntohs(eptr->ether_type),
 ntohs(eptr->ether_type));
 }else {
 printf("Ethernet type %x not IP", ntohs(eptr->ether_type));
 exit(1);
 }

 /* THANK YOU RICHARD STEVENS!!! RIP*/
 ptr = eptr->ether_dhost;
 i = ETHER_ADDR_LEN;
 printf(" Destination Address: ");
 do{

Page 2 of 5libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section2.html

 printf("%s%x",(i == ETHER_ADDR_LEN) ? " " : ":",*ptr++);
 }while(--i>0);
 printf("\n");

 ptr = eptr->ether_shost;
 i = ETHER_ADDR_LEN;
 printf(" Source Address: ");
 do{
 printf("%s%x",(i == ETHER_ADDR_LEN) ? " " : ":",*ptr++);
 }while(--i>0);
 printf("\n");

 return 0;
}

Well, that wasn't too bad was it?! Lets give her a test run ..

[root@pepe libpcap]# ./a.out
DEV: eth0
Grabbed packet of length 76
Recieved at time..... Mon Mar 12 22:23:29 2001

Ethernet address length is 14
Ethernet type hex:800 dec:2048 is an IP packet
 Destination Address: 0:20:78:d1:e8:1
 Source Address: 0:a0:cc:56:c2:91
[root@pepe libpcap]#

After typing a.out I jumped into another terminal and tried to ping www.google.com. The output captured the
ICMP packet used to ping www.google.com. If you don't know exactly what goes on under the covers of a
network you may be curios how the computer obtained the destination ethernet address. Aha! You don't actually
think that the destination address of the ethernet packet is the same as the machine at www.google.com do you!?

"..uhhh of course not",you stammer
The destination address is most likely your gateway... aka the computer that ties your network to the internet.
The packet must first find its way to your gateway which will then forward it to a router or make its own routing
decisions as to where the packet should go next. Lets do a quick sanity check to see if we in fact are sending to
the router.... ho hum!! You can use the route command to get your gateways IP.

[root@pepe libpcap]# /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

and then use the arpcommand to get the cached ethernet address...

[root@pepe libpcap]# /sbin/arp
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 00:20:78:D1:E8:01 C eth0

If your gateway is not in your arp cache, try and telnet to it, and then retry the arp command. Hey, by the way,
this could certainly be the long, painful, bloody, ignorant way of getting the gateway hardware address but I
couldn't think of another way...

Notice that my gateway's address matches the destination address of the packet that I captured. All packets
leaving my machine that are not sent to a machine on my network must go through the gateway. Alas!!!! We
have still not answered the question... "how did my computer know the gateway hardware address"? Let me

Page 3 of 5libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section2.html

then digress for a moment. My computer knows the IP address of the gateway and is certainly savy enough to
send outbound packets to it. As you can see from the handy-dandy arp command there is an internal table (the
arp cache) which maps IP addresses to hardware addresses. "AAAUUGHH!!! BUT HOW DID IT CONSTUCT
THE ARP CACHE!!!!", you scream!

Hardware addresses on ethernet are obtained using the Address Resolution Protocol or ARP. ARP is is
described in RFC826 which can be found... Here! Pretty much what happenes is when you send a packet, the
kernel first checks the arp cache to see if you already have the hardware address for the higher level destination
address. If not, the kernel sends an arp request which is of type... ETHERTYPE_ARP which is defined in
net/ethernet.h as follows.

#define ETHERTYPE_ARP 0x0806 /* Address resolution */

On recieveing the arp packet, the machine with the high level address (in my case the gateway) will reply with
an arp reply, basically saying.. I DO! send it here! Shall we test it out?! (to bad... I'm gonna do it anyways :-P)

[root@pepe libpcap]# /sbin/arp -n # look at arp cache
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 00:20:78:D1:E8:01 C eth0

[root@pepe libpcap]# /sbin/arp -n -d 192.168.1.1 #delete gateqay entrance
[root@pepe libpcap]# /sbin/arp -n #make sure gateway hardware addy is empty
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 (incomplete) eth0
[root@pepe libpcap]# ./a.out
DEV: eth0
Grabbed packet of length 42
Recieved at time..... Tue Mar 13 00:36:49 2001

Ethernet address length is 14
Ethernet type hex:806 dec:2054 is an ARP packet
 Destination Address: ff:ff:ff:ff:ff:ff
 Source Address: 0:a0:cc:56:c2:91
[root@pepe libpcap]#echo YAY

So as you can see, once the hardware address was removed the the cache, my computer needed to send an arp
request to broadcast (i.e. ff:ff:ff:ff:ff:ff) looking for the owner of the higher level address, in this case IP
192.168.1.1. What do you think would happen if you cleared your arp cache and modified testpcap1.c to capture
2 packets?! Hey I know why don't you try it :-P~~~~

Lets now disect the packet by checking out <net/ethernet.h> right now we are not concerned with the network or
transport protocol, we just want to peer into the ethernet headers.... Lets say that we are runnig at 10Mb/s...

/* 10Mb/s ethernet header */
struct ether_header
{
 u_int8_t ether_dhost[ETH_ALEN]; /* destination eth addr */
 u_int8_t ether_shost[ETH_ALEN]; /* source ether addr */
 u_int16_t ether_type; /* packet type ID field */
} __attribute__ ((__packed__));

So it looks like the first ETH_ALEN bytes are the destination ethernet address (look at linux/if_ether.h for the
definition of ETH_ALEN :-) of the packet (presumedly your machine). The next ETH_ALEN bytes are the
source. Finally, the last word is the packet type. Here are the protocol ID's on my machine from net/ethernet.h

/* Ethernet protocol ID's */
#define ETHERTYPE_PUP 0x0200 /* Xerox PUP */
#define ETHERTYPE_IP 0x0800 /* IP */
#define ETHERTYPE_ARP 0x0806 /* Address resolution */

Page 4 of 5libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section2.html

#define ETHERTYPE_REVARP 0x8035 /* Reverse ARP */

For the purpose of this tutorial I will be focusing on IP and perhaps a little bit on ARP... the truth is I have no
idea what the hell Xerox PUP is.

Ack! Allright so where are we now? We know the most basic of methods for grabbing a packet. We covered
how hardware addresses are resolved and what a basic ethernet packet looks like. Still we are using a sad, sad
1% of the functionality of libpcap, and we haven't even begun to peer into the packets themselves (other than the
hardware headers) so much to do and so little time :-) As you can probably tell by now, it would be near
impossible to do any real protocol analysis with a program that simply captures one packet at a time. What we
really want to do is write a simple packet capturing engine that will nab as many packets as possible while
filtering out those we dont want. In the next section we will construct a simple packet capturing engine which
will aid us in packet dissection (eww, that kinda sounds gross) later on.

[prev] [socket home] [next]

Page 5 of 5libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section2.html

Writing a Basic Packet Capture Engine

Hi :-), this section consists of a discussion on how to write a simple packet capture engine. The goal is to demonstrate methods of capturing and filtering multiple packets to
aid in packet analysis. All the juicy info on disecting IP packets and forging new ones are reserved for later sections.. Yes I can see your dissapointment, but you must admit
that a program that captures a single packet at a time is pretty much useless.

Consider the following pcap method:

int pcap_loop(pcap_t *p, int cnt, pcap_handler callback, u_char *user)

We will use this to provide the core functionality of our engine. When pcap_loop(..) is called it will grab cnt packets (it will loop infinitely when cnt is -1) and pass them to
the callback function which is of type pcap_handler.. and what is pcap handler?? well lets go to the handy dandy header file..

typedef void (*pcap_handler)(u_char *, const struct pcap_pkthdr *, const u_char *);

We are interested in arguments 2 and 3, the pcap packet header and a const u_char consisting of the packet.

So for just a primer, lets write a q&d program that will loop and get n packets, then exit.

Download testpcap2.c Here or just cut and paste from below

/**
* file: testpcap2.c
* date: 2001-Mar-14 12:14:19 AM
* Author: Martin Casado
* Last Modified:2001-Mar-14 12:14:11 AM
*
* Description: Q&D proggy to demonstrate the use of pcap_loop
*
**/

#include <pcap.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netinet/if_ether.h>

/* callback function that is passed to pcap_loop(..) and called each time
 * a packet is recieved */
void my_callback(u_char *useless,const struct pcap_pkthdr* pkthdr,const u_char*
 packet)
{
 static int count = 1;
 fprintf(stdout,"%d, ",count);
 if(count == 4)
 fprintf(stdout,"Come on baby sayyy you love me!!! ");
 if(count == 7)
 fprintf(stdout,"Tiiimmmeesss!! ");
 fflush(stdout);
 count++;
}

int main(int argc,char **argv)
{
 int i;
 char *dev;
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_t* descr;
 const u_char *packet;
 struct pcap_pkthdr hdr; /* pcap.h */
 struct ether_header *eptr; /* net/ethernet.h */

 if(argc != 2){ fprintf(stdout,"Usage: %s numpackets\n",argv[0]);return 0;}

 /* grab a device to peak into... */
 dev = pcap_lookupdev(errbuf);
 if(dev == NULL)
 { printf("%s\n",errbuf); exit(1); }
 /* open device for reading */
 descr = pcap_open_live(dev,BUFSIZ,0,-1,errbuf);
 if(descr == NULL)
 { printf("pcap_open_live(): %s\n",errbuf); exit(1); }

 /* allright here we call pcap_loop(..) and pass in our callback function */
 /* int pcap_loop(pcap_t *p, int cnt, pcap_handler callback, u_char *user)*/
 /* If you are wondering what the user argument is all about, so am I!! */
 pcap_loop(descr,atoi(argv[1]),my_callback,NULL);

 fprintf(stdout,"\nDone processing packets... wheew!\n");
 return 0;
}

Allright then, lets give her a whirl!

[root@pepe libpcap]# gcc testpcap2.c -lpcap
[root@pepe libpcap]# ./a.out 7
 1, 2, 3, 4, Come on baby sayyy you love me!!! 5, 6, 7, Tiiimmmeesss!!
Done processing packets... wheew!

Page 1 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

[root@pepe libpcap]#

So as you can see, my_callback(...) was actually called 7 times before exiting. If you are testing your program by pinging an external machine the packets come slow enough
to see them arrive in real time.. cooolll! Ohh THE RAWWW POWER!!!! So at the most primitive level we could certainly put all of our packet analysis code in my_callback
(..) and call it is done deal. But as good little coders we certainly aren't satisfied with such an easy and straightforward solution! The first problem is that pcap_loop(..) blocks
indefinatly if no packet can be read. While this may be the desired behaviour it would be nice to timeout on the reads. Remember way back when we talked about
pcap_open_live(..)? One of the arguments you can specify is a timeout value in miliseconds. pcap_loop actually ignores this argument, but pcap_dispatch(..) doesn't! So if
we want our main looping mechanism to time-out replace pcap_loop() with pcap_dispatch(). Here is a description of pcap_dispatch(..) shamelessly stripped from the man
page

pcap_dispatch() is used to collect and process packets. cnt specifies the maximum number of packets to process before returning. A cnt of -1 processes all the packets received
in one buffer. A cnt of 0 processes all packets until an error occurs, EOF is reached, or the read times out (when doing live reads and a non-zero read timeout is specified).
callback specifies a routine to be called with three arguments: a u_char pointer which is passed in from pcap_dispatch(), a pointer to the pcap_pkthdr struct (which precede the
actual network headers and data), and a u_char pointer to the packet data. The number of packets read is returned. Zero is returned when EOF is reached in a ``savefile.'' A
return of -1 indicates an error in which case pcap_perror() or pcap_geterr() may be used to display the error text.

In many applications using packet capture, you are not going to be interested in every packet on your network. Take the following scenario. Little Johny just bought the
coolest new internet game to hit the markets. Little Johny wants to be the first kid to hack up a bot for the game, but unlike all other little kiddies, Johny is going to write his
own packet capture engine instead of using something canned. Little Johnny notices that when the game starts up and he connects to the server.. it is connecting to
216.148.0.87 on port 26112. What should little Johnny do to only capture packets with destination of 216.148.0.87 port 26112? Enter... pcap_compile(..) and pcap_setfilter
(...) !!!

Now in all actuality we could certainly read in all packets and sort threw them one by one to pick out the subset we are interested in. However, given heavy traffic this could
be expensive!! luckily libpcap provides an interface where you can specify exactly which packets you are interested in. In brief, to do this you need to pass a filter program as
a string to pcap_compile() and then set it as a filter.... the problem is that the pcap man page doesn't provide any detail of what the filter program should look like (at least
mine doesn't). Is all lost!? No! because we have the handy dandy program tcpdump and its man page. You should have tcpdump already installed on your machine (which
tcpdump) but if you don't I highly suggest you put it on. Tcpdump is pretty much a program wrapper of libpcap, in fact it is so similar¸ it accepts filter programs from the
command line! Aha! a reference. The tcpdump man page explicitly describes the syntax and semantics of the filter language, which is (of course) pretty straight forward. Here
are the pertinent sections from my man pages... note that when referring to "the expression" it is talking about the progrm

 The expression consists of one or more primitives. Primitives usu
 ally consist of an id (name or number) preceded by one or more
 qualifiers. There are three different kinds of qualifier:

 type qualifiers say what kind of thing the id name or number
 refers to. Possible types are host, net and port. E.g.,
 `host foo', `net 128.3', `port 20'. If there is no type
 qualifier, host is assumed.

 dir qualifiers specify a particular transfer direction to and/or
 from id. Possible directions are src, dst, src or dst and
 src and dst. E.g., `src foo', `dst net 128.3', `src or dst
 port ftp-data'. If there is no dir qualifier, src or dst is
 assumed. For `null' link layers (i.e. point to point proto
 cols such as slip) the inbound and outbound qualifiers can
 be used to specify a desired direction.

 proto qualifiers restrict the match to a particular protocol.
 Possible protos are: ether, fddi, ip, arp, rarp, decnet,
 lat, sca, moprc, mopdl, tcp and udp. E.g., `ether src foo',
 `arp net 128.3', `tcp port 21'. If there is no proto quali
 fier, all protocols consistent with the type are assumed.
 E.g., `src foo' means `(ip or arp or rarp) src foo' (except
 the latter is not legal syntax), `net bar' means `(ip or arp
 or rarp) net bar' and `port 53' means `(tcp or udp) port
 53'.

 In addition to the above, there are some special `primitive' key
 words that don't follow the pattern: gateway, broadcast, less,
 greater and arithmetic expressions. All of these are described
 below.

 More complex filter expressions are built up by using the words
 and, or and not to combine primitives. E.g., `host foo and not
 port ftp and not port ftp-data'. To save typing, identical quali
 fier lists can be omitted. E.g., `tcp dst port ftp or ftp-data or
 domain' is exactly the same as `tcp dst port ftp or tcp dst port
 ftp-data or tcp dst port domain'.

 Allowable primitives are:

 dst host host
 True if the IP destination field of the packet is host,
 which may be either an address or a name.

 src host host
 True if the IP source field of the packet is host.

 host host
 True if either the IP source or destination of the packet is
 host. Any of the above host expressions can be prepended
 with the keywords, ip, arp, or rarp as in:
 ip host host
 which is equivalent to:
 ether proto \ip and host host
 If host is a name with multiple IP addresses, each address
 will be checked for a match.

 ether dst ehost
 True if the ethernet destination address is ehost. Ehost
 may be either a name from /etc/ethers or a number (see

Page 2 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

 ethers(3N) for numeric format).

 ether src ehost
 True if the ethernet source address is ehost.

 ether host ehost
 True if either the ethernet source or destination address is
 ehost.

 gateway host
 True if the packet used host as a gateway. I.e., the ether
 net source or destination address was host but neither the
 IP source nor the IP destination was host. Host must be a
 name and must be found in both /etc/hosts and /etc/ethers.
 (An equivalent expression is
 ether host ehost and not host host
 which can be used with either names or numbers for host /
 ehost.)

 dst net net
 True if the IP destination address of the packet has a net
 work number of net. Net may be either a name from /etc/net
 works or a network number (see networks(4) for details).

 src net net
 True if the IP source address of the packet has a network
 number of net.

 net net
 True if either the IP source or destination address of the
 packet has a network number of net.

 net net mask mask
 True if the IP address matches net with the specific net
 mask. May be qualified with src or dst.

 net net/len
 True if the IP address matches net a netmask len bits wide.
 May be qualified with src or dst.

 dst port port
 True if the packet is ip/tcp or ip/udp and has a destination
 port value of port. The port can be a number or a name used
 in /etc/services (see tcp(4P) and udp(4P)). If a name is
 used, both the port number and protocol are checked. If a
 number or ambiguous name is used, only the port number is
 checked (e.g., dst port 513 will print both tcp/login traf
 fic and udp/who traffic, and port domain will print both
 tcp/domain and udp/domain traffic).

 src port port
 True if the packet has a source port value of port.

 port port
 True if either the source or destination port of the packet
 is port. Any of the above port expressions can be prepended
 with the keywords, tcp or udp, as in:
 tcp src port port
 which matches only tcp packets whose source port is port.

 less length
 True if the packet has a length less than or equal to
 length. This is equivalent to:
 len <= length.

 greater length
 True if the packet has a length greater than or equal to
 length. This is equivalent to:
 len >= length.

 ip proto protocol
 True if the packet is an ip packet (see ip(4P)) of protocol
 type protocol. Protocol can be a number or one of the names
 icmp, igrp, udp, nd, or tcp. Note that the identifiers tcp,
 udp, and icmp are also keywords and must be escaped via
 backslash (\), which is \\ in the C-shell.

 ether broadcast
 True if the packet is an ethernet broadcast packet. The
 ether keyword is optional.

 ip broadcast
 True if the packet is an IP broadcast packet. It checks for
 both the all-zeroes and all-ones broadcast conventions, and
 looks up the local subnet mask.

 ether multicast
 True if the packet is an ethernet multicast packet. The
 ether keyword is optional. This is shorthand for `ether[0]
 & 1 != 0'.

 ip multicast
 True if the packet is an IP multicast packet.

 ether proto protocol
 True if the packet is of ether type protocol. Protocol can
 be a number or a name like ip, arp, or rarp. Note these
 identifiers are also keywords and must be escaped via back
 slash (\). [In the case of FDDI (e.g., `fddi protocol
 arp'), the protocol identification comes from the 802.2 Log

Page 3 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

 ical Link Control (LLC) header, which is usually layered on
 top of the FDDI header. Tcpdump assumes, when filtering on
 the protocol identifier, that all FDDI packets include an
 LLC header, and that the LLC header is in so-called SNAP
 format.]

 ip, arp, rarp, decnet
 Abbreviations for:
 ether proto p where p is one of the above protocols.

 tcp, udp, icmp
 Abbreviations for:
 ip proto p
 where p is one of the above protocols.

 expr relop expr
 True if the relation holds, where relop is one of >,
 <, >=, <=, =, !=, and expr is an arithmetic
 expression composed of integer constants (expressed in
 standard C syntax), the nor mal binary operators [+, -,
 *, /, &, |], a length operator, and special packet
 data accessors. To access data inside the packet, use the
 following syntax: proto [expr : size] Proto is one of
 ether, fddi, ip, arp, rarp, tcp, udp, or icmp, and
 indicates the protocol layer for the index opera tion.
 The byte offset, relative to the indicated protocol
 layer, is given by expr. Size is optional and indicates
 the number of bytes in the field of interest; it can be
 either one, two, or four, and defaults to one. The
 length opera tor, indicated by the keyword len, gives the
 length of the packet.

 For example, `ether[0] & 1 != 0' catches all multicast traf
 fic. The expression `ip[0] & 0xf != 5' catches all IP pack
 ets with options. The expression `ip[6:2] & 0x1fff = 0'
 catches only unfragmented datagrams and frag zero of frag
 mented datagrams. This check is implicitly applied to the
 tcp and udp index operations. For instance, tcp[0] always
 means the first byte of the TCP header, and never means the
 first byte of an intervening fragment.

 Primitives may be combined using:

 A parenthesized group of primitives and operators (parenthe
 ses are special to the Shell and must be escaped).

 Negation (`!' or `not').

 Concatenation (`&&' or `and').

 Alternation (`||' or `or').

 Negation has highest precedence. Alternation and concatenation
 have equal precedence and associate left to right. Note that
 explicit and tokens, not juxtaposition, are now required for con
 catenation.

 If an identifier is given without a keyword, the most recent key
 word is assumed. For example,
 not host vs and ace
 is short for
 not host vs and host ace
 which should not be confused with
 not (host vs or ace)

 Expression arguments can be passed to tcpdump as either a single
 argument or as multiple arguments, whichever is more convenient.
 Generally, if the expression contains Shell metacharacters, it is
 easier to pass it as a single, quoted argument. Multiple arguments
 are concatenated with spaces before being parsed.

EXAMPLES
 To print all packets arriving at or departing from sundown:
 tcpdump host sundown

 To print traffic between helios and either hot or ace:
 tcpdump host helios and \(hot or ace \)

 To print all IP packets between ace and any host except helios:
 tcpdump ip host ace and not helios

 To print all traffic between local hosts and hosts at Berkeley:
 tcpdump net ucb-ether

 To print all ftp traffic through internet gateway snup: (note that the
 expression is quoted to prevent the shell from (mis-)interpreting the
 parentheses):
 tcpdump 'gateway snup and (port ftp or ftp-data)'

 To print traffic neither sourced from nor destined for local hosts (if you
 gateway to one other net, this stuff should never make it onto your local
 net).
 tcpdump ip and not net localnet

 To print the start and end packets (the SYN and FIN packets) of each TCP
 conversation that involves a non-local host.
 tcpdump 'tcp[13] & 3 != 0 and not src and dst net localnet'

 To print IP packets longer than 576 bytes sent through gateway snup:
 tcpdump 'gateway snup and ip[2:2] > 576'

Page 4 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

 To print IP broadcast or multicast packets that were not sent via ethernet
 broadcast or multicast:
 tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'

 To print all ICMP packets that are not echo requests/replies (i.e., not
 ping packets):
 tcpdump 'icmp[0] != 8 and icmp[0] != 0"

Ok, so that is a lot of info (and probably more than we need) but it gives us a starting point. So lets give this a shot... on my network I have a linux box and a windoze machine
connected to a non switched hub. Therefore, if I place my ethernet card in promiscuous mode on my linux machine I should be able to see all traffic going to (and coming
from) my windows machine. So lets see if the examples from the man page will work if directly fed to pcap_compile..

Consider the following program... (download here)

/**
* file: testpcap3.c
* date: Sat Apr 07 23:23:02 PDT 2001
* Author: Martin Casado
* Last Modified:2001-Apr-07 11:23:05 PM
*
* Investigate using filter programs with pcap_compile() and
* pcap_setfilter()
*
**/

#include <pcap.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netinet/if_ether.h>

/* just print a count every time we have a packet... */
void my_callback(u_char *useless,const struct pcap_pkthdr* pkthdr,const u_char*
 packet)
{
 static int count = 1;
 fprintf(stdout,"%d, ",count);
 fflush(stdout);
 count++;
}

int main(int argc,char **argv)
{
 int i;
 char *dev;
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_t* descr;
 const u_char *packet;
 struct pcap_pkthdr hdr; /* pcap.h */
 struct ether_header *eptr; /* net/ethernet.h */
 struct bpf_program fp; /* hold compiled program */
 bpf_u_int32 maskp; /* subnet mask */
 bpf_u_int32 netp; /* ip */

 if(argc != 2){ fprintf(stdout,"Usage: %s \"filter program\"\n"
 ,argv[0]);return 0;}

 /* grab a device to peak into... */
 dev = pcap_lookupdev(errbuf);
 if(dev == NULL)
 { fprintf(stderr,"%s\n",errbuf); exit(1); }

 /* ask pcap for the network address and mask of the device */
 pcap_lookupnet(dev,&netp,&maskp,errbuf);

 /* open device for reading this time lets set it in promiscuous
 * mode so we can monitor traffic to another machine */
 descr = pcap_open_live(dev,BUFSIZ,1,-1,errbuf);
 if(descr == NULL)
 { printf("pcap_open_live(): %s\n",errbuf); exit(1); }

 /* Lets try and compile the program.. non-optimized */
 if(pcap_compile(descr,&fp,argv[1],0,netp) == -1)
 { fprintf(stderr,"Error calling pcap_compile\n"); exit(1); }

 /* set the compiled program as the filter */
 if(pcap_setfilter(descr,&fp) == -1)
 { fprintf(stderr,"Error setting filter\n"); exit(1); }

 /* ... and loop */
 pcap_loop(descr,-1,my_callback,NULL);

 return 0;
}

So, this program accepts a string from the user, (similar to tcpdump) compiles it and sets it as a filter. Lets go ahead and try it with an example similar to the one in the
tcpdump examples..

[root@localhost libpcap]# gcc testpcap3.c -lpcap
[root@localhost libpcap]# ./a.out "host www.google.com"
(** try and ping www.slashdot.org ... nothing **)
(** try and ping www.google.com **)

Page 5 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

1, 2, 3, 4, 5, 6,
(** hurray! **)

It looks like our filter program worked!!! Lets try to see if we can capture packets from a different machine on the same network.... how about my windows machine when it
connects to battle.net..

[root@localhost libpcap]# ./a.out "src 192.168.1.104"
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 3

Yes yes!!! we are getting very close to actually having some power, but first we need to find out how to look inside the packets and pull out information. At last! the next
section will delve into disecting packets so we can really analyze what is going on in our networks!!

[prev] [socket home] [next]

Page 6 of 6libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section3.html

Packet Analysis

Aha, finally it is time to start using our newly obtained Jedi skills! (wheee!!) This section will focus on
peaking into the packets to extract the information (which is what we wanted to begin with). First off we
must arm ourselves! Go ahead and get all the relevent RFC's. Lets start off with RFC 791 (IP) RFC 768
(UDP) RFC 826 (ARP) RFC 792 (ICMPv4) and of course RFC 793 (TCPv4) The truth is, once you
have these files you dont really need me *sigh* but then again... why right your own code when you can
just copy mine! hehe

I would highly recommend you use another packet sniffer to double check your programs... tcpdump
will do just fine, and ethereal just kicks ass, you can get either (and more!!) at
http://www.tcpdump.org/related.html. Both of these programs are capable of analyzing all fields of a
packet, plus the data. Sure we could use them instead of creating our own... but what fun would that be?

I would prefer not to have to rewrite the main body of the program for each new example like I have
done previously. Instead I am going to use the same main program and only post the callback function
which gets passed to the pcap_loop() or pcap_dispatch() function. Below is a copy of the main program
I intend on using (nothing special), go ahead and cut and paste it or download it here.

/**
* file: pcap_main.c
* date: Tue Jun 19 20:07:49 PDT 2001
* Author: Martin Casado
* Last Modified:2001-Jun-23 12:55:45 PM
*
* Description:
* main program to test different call back functions
* to pcap_loop();
*
* Compile with:
* gcc -Wall -pedantic pcap_main.c -lpcap (-o foo_err_something)
*
* Usage:
* a.out (# of packets) "filter string"
*
**/

#include <pcap.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netinet/if_ether.h>
#include <net/ethernet.h>
#include <netinet/ether.h>

/*
 * workhorse function, we will be modifying this function
 */
void my_callback(u_char *args,const struct pcap_pkthdr* pkthdr,c
u_char*

Page 1 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

 packet)
{
}

int main(int argc,char **argv)
{
 char *dev;
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_t* de
 struct bpf_program fp; /* hold compiled program */
 bpf_u_int32 maskp; /* subnet mask */
 bpf_u_int32 netp; /* ip */
 u_char* args = NULL;

 /* Options must be passed in as a string because I am lazy */
 if(argc < 2){
 fprintf(stdout,"Usage: %s numpackets \"options\"\n",argv[0]);
 return 0;
 }

 /* grab a device to peak into... */
 dev = pcap_lookupdev(errbuf);
 if(dev == NULL)
 { printf("%s\n",errbuf); exit(1); }

 /* ask pcap for the network address and mask of the device */
 pcap_lookupnet(dev,&netp,&maskp,errbuf);

 /* open device for reading. NOTE: defaulting to
 * promiscuous mode*/
 descr = pcap_open_live(dev,BUFSIZ,1,-1,errbuf);
 if(descr == NULL)
 { printf("pcap_open_live(): %s\n",errbuf); exit(1); }

 if(argc > 2)
 {
 /* Lets try and compile the program.. non-optimized */
 if(pcap_compile(descr,&fp,argv[2],0,netp) ==
 { fprintf(stderr,"Error calling pcap_compile\n"); exit(1); }

 /* set the compiled program as the filter */
 if(pcap_setfilter(descr,&fp) == -1)
 { fprintf(stderr,"Error setting filter\n"); exit(1); }
 }

 /* ... and loop */
 pcap_loop(descr,atoi(argv[1]),my_callback,args);

 fprintf(stdout,"\nfinished\n");
 return 0;
}

I will be using the above program and merely replacing the callback function my_callback for demo
programs in this section. You may have noticed that I am passing in a u_char* (currently NULL) to
pcap_loop(). Zhifang Wang, was kind enough to point out that this is passed back into the callback
function as the first argument. We will use this later to communicate with the callback function without

Page 2 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

using yucky globals. Ok ok ok, enough startup stuff, lets go going!! I know, I know, you want to get
right into reading the bodies of TCP packets... (don't we all?) But we'll get there eventually... First things
first... the ethernet header.

"Didn't we already do this", you ask. Sure... sort of, but we didn't spend much time on it so lets just get
this out of the way. Looking at the datalink header isn't all too exciting, but it certainly is something we
want to stick in our toolkit so we will gloss over the important stuff and continue on. The most
important element of the ether header to us is the ether type. Remember struct ether_header from
net/ethernet.h? just so you don't have to click back, here it is again whith the definition of an
ether_addr.

/* This is a name for the 48 bit ethernet address available on many
 systems. */
struct ether_addr
{
 u_int8_t ether_addr_octet[ETH_ALEN];
} __attribute__ ((__packed__));

/* 10Mb/s ethernet header */
struct ether_header
{
 u_int8_t ether_dhost[ETH_ALEN]; /* destination eth addr */
 u_int8_t ether_shost[ETH_ALEN]; /* source ether addr */
 u_int16_t ether_type; /* packet type ID field */
} __attribute__ ((__packed__));

Fortunatly (at least in Linux) netinet/ether.h provides us with some fuzzy routines to convert ethernet
headers to readable ascii and back..

/* Convert 48 bit Ethernet ADDRess to ASCII. */
extern char *ether_ntoa (__const struct ether_addr *__addr) __THROW;
extern char *ether_ntoa_r (__const struct ether_addr *__addr, char *__buf)
 __THROW;

/* Convert ASCII string S to 48 bit Ethernet address. */
extern struct ether_addr *ether_aton (__const char *__asc) __THROW;
extern struct ether_addr *ether_aton_r (__const char *__asc,
 struct ether_addr *__addr) __THROW;

as well as ethernet address to HOSTNAME resolution (that should ring a bell.. :-)

/* Map HOSTNAME to 48 bit Ethernet address. */
extern int ether_hostton (__const char *__hostname, struct ether_addr *__addr)
 __THROW;

Previously I pasted some code shamelessly stolen from Steven's source code to print out the ethernet
header, from now on we take the easy route. Here is a straightforward callback function to handle
ethernet headers, print out the source and destination addresses and handle the type.

u_int16_t handle_ethernet
 (u_char *args,const struct pcap_pkthdr* pkthdr,const u_char*
 packet);

/* looking at ethernet headers */

Page 3 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

void my_callback(u_char *args,const struct pcap_pkthdr* pkthdr,const u_char*
 packet)
{
 u_int16_t type = handle_ethernet(args,pkthdr,packet);

 if(type == ETHERTYPE_IP)
 {/* handle IP packet */
 }else if(type == ETHERTYPE_ARP)
 {/* handle arp packet */
 }
 else if(type == ETHERTYPE_REVARP)
 {/* handle reverse arp packet */
 }/* ignorw */
}

u_int16_t handle_ethernet
 (u_char *args,const struct pcap_pkthdr* pkthdr,const u_char*
 packet)
{
 struct ether_header *eptr; /* net/ethernet.h */

 /* lets start with the ether header... */
 eptr = (struct ether_header *) packet;

 fprintf(stdout,"ethernet header source: %s"
 ,ether_ntoa(eptr->ether_shost));
 fprintf(stdout," destination: %s "
 ,ether_ntoa(eptr->ether_dhost));

 /* check to see if we have an ip packet */
 if (ntohs (eptr->ether_type) == ETHERTYPE_IP)
 {
 fprintf(stdout,"(IP)");
 }else if (ntohs (eptr->ether_type) == ETHERTYPE_ARP)
 {
 fprintf(stdout,"(ARP)");
 }else if (ntohs (eptr->ether_type) == ETHERTYPE_REVARP)
 {
 fprintf(stdout,"(RARP)");
 }else {
 fprintf(stdout,"(?)");
 exit(1);
 }
 fprintf(stdout,"\n");

 return eptr->ether_type;
}

You can download the full code here.

Whew! Ok got that out of the way, currently we have a relatively simple framework to print out an
ethernet header (if we want) and then handle the type. Lets start by looking at the IP header.

IP:
OK lets wip out our handy dandy RFC's (791 in this case) and take a look at what it has to say about IP
headers... here is a copy of the section which decsribes the header.

Page 4 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

3.1 Internet Header Format

 A summary of the contents of the internet header follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

 Example Internet Datagram Header

 Figure 4.

 Note that each tick mark represents one bit position.

Now lets peak at netinet/ip.h

struct ip
 {
#if __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int ip_hl:4; /* header length */
 unsigned int ip_v:4; /* version */
#endif
#if __BYTE_ORDER == __BIG_ENDIAN
 unsigned int ip_v:4; /* version */
 unsigned int ip_hl:4; /* header length */
#endif
 u_int8_t ip_tos; /* type of service */
 u_short ip_len; /* total length */
 u_short ip_id; /* identification */
 u_short ip_off; /* fragment offset field */
#define IP_RF 0x8000 /* reserved fragment flag */
#define IP_DF 0x4000 /* dont fragment flag */
#define IP_MF 0x2000 /* more fragments flag */
#define IP_OFFMASK 0x1fff /* mask for fragmenting bits */
 u_int8_t ip_ttl; /* time to live */
 u_int8_t ip_p; /* protocol */
 u_short ip_sum; /* checksum */
 struct in_addr ip_src, ip_dst; /* source and dest address */
 };

Cool, they seem to match up perfectly.... this of course would be fine to use, but I prefer to follow the
tcpdump method of handling the version and header length.

struct my_ip
 u_int8_t ip_vhl; /* header length, version */
#define IP_V(ip) (((ip)->ip_vhl & 0xf0) >> 4)

Page 5 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

#define IP_HL(ip) ((ip)->ip_vhl & 0x0f)
 u_int8_t ip_tos; /* type of service */
 u_int16_t ip_len; /* total length */
 u_int16_t ip_id; /* identification */
 u_int16_t ip_off; /* fragment offset field */
#define IP_DF 0x4000 /* dont fragment flag */
#define IP_MF 0x2000 /* more fragments flag */
#define IP_OFFMASK 0x1fff /* mask for fragmenting bits */
 u_int8_t ip_ttl; /* time to live */
 u_int8_t ip_p; /* protocol */
 u_int16_t ip_sum; /* checksum */
 struct in_addr ip_src,ip_dst; /* source and dest address */
};

Lets take a first stab at peaking into the IP header... consider the following function (full source here).

u_char* handle_IP
 (u_char *args,const struct pcap_pkthdr* pkthdr,const u_char*
 packet)
{
 const struct my_ip* ip;
 u_int length = pkthdr-&len;
 u_int hlen,off,version;
 int i;

 int len;

 /* jump pass the ethernet header */
 ip = (struct my_ip*)(packet + sizeof(struct ether_header));
 length -= sizeof(struct ether_header);

 /* check to see we have a packet of valid length */
 if (length < sizeof(struct my_ip))
 {
 printf("truncated ip %d",length);
 return NULL;
 }

 len = ntohs(ip->ip_len);
 hlen = IP_HL(ip); /* header length */
 version = IP_V(ip);/* ip version */

 /* check version */
 if(version != 4)
 {
 fprintf(stdout,"Unknown version %d\n",version);
 return NULL;
 }

 /* check header length */
 if(hlen < 5)
 {
 fprintf(stdout,"bad-hlen %d \n",hlen);
 }

 /* see if we have as much packet as we should */
 if(length < len)
 printf("\ntruncated IP - %d bytes missing\n",len - length);

Page 6 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

 /* Check to see if we have the first fragment */
 off = ntohs(ip->ip_off);
 if((off &apm; 0x1fff) == 0)/* aka no 1's in first 13 bits */
 {/* print SOURCE DESTINATION hlen version len offset */
 fprintf(stdout,"IP: ");
 fprintf(stdout,"%s ",
 inet_ntoa(ip->ip_src));
 fprintf(stdout,"%s %d %d %d %d\n",
 inet_ntoa(ip->ip_dst),
 hlen,version,len,off);
 }

 return NULL;
}

Given a clean arp cache this is what the output looks like on my machine, when I try to telnet to
134.114.90.1...

[root@localhost libpcap]# ./a.out 5
ETH: 0:10:a4:8b:d3:b4 ff:ff:ff:ff:ff:ff (ARP) 42
ETH: 0:20:78:d1:e8:1 0:10:a4:8b:d3:b4 (ARP) 60
ETH: 0:10:a4:8b:d3:b4 0:20:78:d1:e8:1 (IP) 74
IP: 192.168.1.100 134.114.90.1 5 4 60 16384
ETH: 0:20:78:d1:e8:1 0:10:a4:8b:d3:b4 (IP) 60
IP: 134.114.90.1 192.168.1.100 5 4 40 0

Lets try and reconstruct the conversation shall we?

my computer: Who has the gateways IP (192.168.1.100)?
ETH: 0:10:a4:8b:d3:b4 ff:ff:ff:ff:ff:ff (ARP) 42
gateway: I do!!
ETH: 0:20:78:d1:e8:1 0:10:a4:8b:d3:b4 (ARP) 60
my computer(through gateway): Hello Mr. 134.114.90.1 can we talk?
ETH: 0:10:a4:8b:d3:b4 0:20:78:d1:e8:1 (IP) 74 IP: 192.168.1.100 134.114.90.1 5 4 60 16384
134.114.90.1: No, piss off, I'm not listening
ETH: 0:20:78:d1:e8:1 0:10:a4:8b:d3:b4 (IP) 60 IP: 134.114.90.1 192.168.1.100 5 4 40 0

I have admittedly skipped TONS of information in a rush to provide you with code to display the IP
header (thats all you really wanted anyways wasn't it :-). That said, if you are lost don't worry, I will
slow down and attempt to describe what exactly is going on. All that you really need to know up to this
point is..

All packets are sent via ethernet
The ethernet header defines the protocol type of the packet it is carrying
IP is one of these types (as well as ARP and RARP)
The IP header is confusing as all hell

So before getting too far into packet dissection it would probably benefit us to regress a bit and talk
about IP...
"awww but.... that sounds boring!",you say. Well if you are really anxious I would suggest you grab the
tcpdump source and take a look at the following methods ... :-)

ether_if_print (print-ether.c)

Page 7 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

ip_print (print-ip.c)
tcp_print (print-tcp.c)
udp_print (print-udp.c)

I've also found the sniffit source to be a great read.

Note to self... Insert comprehensive, enlightening IP discussion here :-) :-)

--------%< ----------------- to be continued.....

[prev] [socket home] [next]

Page 8 of 8libpcap packet capture tutorial

3/20/2008http://www.cet.nau.edu/~mc8/Socket/Tutorials/section4.html

