In this article, I would like to describe how we’ve tackled the named entity recognition (aka NER) issue at Sber with the help of advanced AI techniques. It is one of many natural language processing (NLP) tasks that allows you to automatically extract data from unstructured text. This includes monetary values, dates, or names, surnames and positions.
Just imagine countless textual documents even a medium-sized organisation deals with on a daily basis, let alone huge corporations. Take Sber, for example: it is the largest financial institution in Russia, Central and Eastern Europe that has about 16,500 offices with over 250,000 employees, 137 million retail and 1.1 million corporate clients in 22 countries. As you can imagine, with such an enormous scale, the company collaborates with hundreds of suppliers, contractors and other counterparties, which implies thousands of contracts. For instance, the estimated number of legal documents to be processed in 2022 has been over 65,000, each of them consisting of 30 pages on average. During the lifecycle of a contract, a contract usually updated with 3 to 5 additional agreements. On top of this, a contract is accompanied by various source documents describing transactions. And in the PDF format, too.
Previously, the processing duty befell our service centre’s employees who checked whether payment details in a bill match those in the contract and then sent the document to the Accounting Department where an accountant double-checked everything. This is quite a long journey to a payment, right?