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Abstract: Discovered by Haros in 1802, but named after a geologist 14 years
later the properties of the Farey sequence remain a useful tool in mathematical
proof. This paper will introduce the Farey sequence and its basic properties.
Then continue onto many of its applications in the mathematical world. While
the Farey sequence is mostly used in proof. Its properties give way to some
surprising coincidences which generates further curiosity for this unique series
of rational numbers.

1 Introduction to the Farey Sequence

The Farey Sequence, sometimes called the Farey series, is a series of sequences
in which each sequence consists of rational numbers ranging in value from 0 to
1. The first sequence, denoted F1 is simply { 01 ,

1
1}. Then to create the nth row

we look at the (n− 1)st row and between consecutive fractions a
a′ and b

b′ insert

a+ b

a′ + b′
[4].

However the denominator of each term in Fn can be no larger than n. The first
five sequences are:

F1 = {0

1
,

1

1
}

F2 = {0

1
,

1

2
,

1

1
}

F3 = {0

1
,

1

3
,

1

2
,

2

3
,

1

1
}

F4 = {0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1
}

F5 = {0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
}

Note that the terms of each sequence are always increasing in size and are in
simplest terms (gcd(a, b) = 1). The Farey sequence appears in many different
mathematical entities such as lattices and Ford circles. They can also be used to
rationally approximate irrational numbers. I will start this paper by introducing
its founder and some basic qualities of the Farey sequence, then show how the
Farey sequence appears in the mathematical world, and finally end the paper
with how the Farey sequence can be used in rational approximation.

2 A History of the Farey Sequence

The story of the Farey sequence and how it came to be is actually quite comical.
It is named after John Farey, a geologist from England who was the “first” per-
son to note the properties of rational numbers which make up the sequences. In
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October of 1801, Farey was out of a job so he returned to London where he pub-
lished around sixty articles between the years 1804 and 1824 in the magazines
Rees’s Encyclopaedia, The Monthly Magazine, and Philosophical Magazine[5].
One of the only relevant articles he published was in 1816, titled On a curious
property of vulgar fractions. The article consisted of four paragraphs. The first
notes the curious property. The second he defines and states the Farey sequence.
In the third he gives an example of F5. In the final paragraph Farey writes, “I
am not acquainted, whether this curious property of vulgar fractions has been
before pointed out?; or whether it may admit of some easy or general demon-
stration?; which are points on which I should be glad to learn the sentiments of
some of your mathematical readers ...[5]. One of the readers of Farey’s article,
Augustin-Louis Cauchy, provided the proof in one his writings the same year
Farey’s article was released, and since it was believed that Farey was the first
to notice this property the sequence was named after him. Farey in fact was
not the first person to observe the properties of the Farey sequence. Charles
Haros, in 1802 noticed the property and explained how to construct the 99th se-
quence. For these reasons Farey is not looked fondly upon in the mathematical
community, in G H Hardy’s, A mathematicians apology, he writes, “... Farey
is immortal because he failed to understand a theorem which Haros had proved
perfectly fourteen years before ...”[5].

3 Properties of the Farey Sequence

I will now begin to to cover some of the basic properties of the Farey sequence.
These properties will allow us to prove much more powerful things in the fu-
ture. First things first let us start by finding an equation for the length of Fn.
However, before define the equation we must do a quick review of the Euler φ
function.

Definition: The Euler φ function or Euler’s Totient function, written φ(n)
is the number of non-negative integers less than n that are relatively prime to
n. Two integers are relatively prime when their greatest common denominator
is equal to 1. Note that φ(1) = 1[2] as the only number that shares a greatest
common denominator with 1 is 1 itself. Using the Euler φ function we will be
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able to create a formula for the order of Fn. However, before define the equation
we must do a quick review of the Euler φ function.

First, we must note that Fn contains all the terms from the previous sequence
Fn−1. Now we just need to find the additional terms that are new to Fn. Going
back to our definition of the Farey sequences we know that the additional terms
will be of the form m

n . However, if m and n are not relatively prime then the
fraction m

n will have already been contained within the previous sequence. For
example, suppose m = 2 and n = 4. Obviously 2 and 4 and are not relatively
prime, and the fraction 2

4 reduces to 1
2 which first appears in the sequence F2

and every sequence after. Note that the only additional terms added will be
the fractions m

n where m and n are relatively prime. Thus the formula for the
length of the Farey sequences are:

|Fn| = |Fn−1|+ φ(n).

Then using the fact that |F1| = 1 we can finalize our formula as

|Fn| = 1 +

n∑
k=1

φ(k).

While the equation for the order of Fn is fun, it does not actually have any
relevance in the proofs that will be covered in the rest of the paper. I will now
introduce a simple yet very important property of the Farey sequence which can
be used to solve some of the most difficult proofs.

Theorem 1. [4]

If a
b and a′

b′ are consecutive fractions in the in the nth row then a′b−b′a = 1.

Proof: We can prove this inductively. Observe that this is true for n = 1
whose only two fractions are 0

1 and 1
1 .

1 ∗ 1− 0 ∗ 1 = 1.

Now assume that this is true for the (n−1)st row, and note that there are three
possible outcomes for consecutive fractions. They will be either{

a

b
,
a′

b′

}
,

{
a

b
,
a+ a′

b+ b′

}
, or

{
a+ a′

b+ b′
,
a′

b′

}
.

For our first pair of consecutive terms we already know that a′b − b′a = 1.
For the next two we get:

b(a+ a′)− a(b+ b′) = ab+ a′b− ab− b′a = a′b− b′a = 1

a′(b+ b′)− b′(a+ a′) = a′b+ a′b′ − b′a− b′a′ = a′b− b′a = 1

Thus, proven by induction, If a
b and a′

b′ are consecutive fractions in the in
the nth row then a′b− b′a = 1.

5



The greatest use of this property is that we will be able so simplify and
manipulate many complicated equations and end with the result we wanted.
For example, we can use this property to prove another interesting property of
the Farey sequence.

Theorem 2. [4]

If a
b and a′

b′ are consecutive fractions in any row, then among all rational

fractions with value between these two, (a+a′)
(b+b′) is the unique one with smallest

denominator.

Proof:Note that the fraction a+a′

b+b′ will be the first fraction to be inserted

between a
b and a′

b′ in each row of the sequence. The first sequence that the
fraction will appear in will be Fb+b′ . Since the terms of each sequence are listed
in order of size we know:

a

b
<
a+ a′

b+ b′
<
a′

b′
.

Now consider any fraction x
y between a

b and a′

b′ . So

a

b
<
x

y
<
a′

b′
.

From Theorem 1 we know

a′

b′
− a

b
= (

a′

b′
− x

y
) + (

x

y
− a

b
) =

a′y − b′x
b′y

+
bx− ay
by

≥ 1

b′y
+

1

by
=
b+ b′

bb′y
.

Continuing:
b+ b′

bb′y
≤ a′b− ab′

bb′
=

1

bb′

This implies that y ≥ b + b′. If y > b + b′ then x
y does not have least

dominator among fractions between a
b and a′

b′ . From the definition of a Farey
sequence we have a′y − b′x = 1 and bx− ay = 1. Thus, we know

x = a+ a′and y = b+ b′.

Thus, a+a′

b+b′ is the unique rational fraction laying between a
b and a′

b′ .
Using the property from Theorem 1 we can also prove another property

which will eventually lead us to a basic theorem about rational approximation.

Theorem 3. [4]

If a
b and a′

b′ are Farey fractions contained in Fn such that no other Farey
fraction of order n lies between them, then

|a
b
− a+ a′

b+ b′
| = 1

b(b+ b′)
≤ 1

b(n+ 1)
,

and

|a
′

b′
− a+ a′

b+ b′
| = 1

b′(b+ b′)
≤ 1

b′(n+ 1)
[4].
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Proof: Using the property from Theorem 1 we know that:

|a
b
− a+ a′

b+ b′
| = |a(b+ b′)− b(a+ a′)|

b(b+ b′)
=
|ab+ ab′ − ab− ba′|

b(b+ b′)
=

1

b(b+ b′)
.

Then since we know b+ b′ ≥ n+ 1 we can replace

|a
b
− a+ a′

b+ b′
| = 1

b(b+ b′)

with
1

b(b+ b′)
≤ 1

b(n+ 1)

We can repeat these steps to prove the second formula is also true.

4 The Farey Dissection

The Farey dissection is another way to visualize the Farey sequence. First we
must look back at our knowledge of the Real numbers. When asked to visualize
the Real numbers many people will come up with a number line. This is not
a bad way, however a number line can get quite long. Let’s simplify this by
representing the number line with a circle with a circumference of 1. We can do
this by using the function e2πix which maps a circle when x is in the interval
[0, 1). Since the Farey sequence is located between 0 and 1, e2πix serves our
purposes nicely. Even though we are only looking at the interval [0, 1] note that
we can represent all of the real numbers with this circle.Below is a diagram of
our circle representing the continuum with our point at 1

4 .

( 1
4 )

Adding the Farey sequence to this, the figure below is our circle with the
terms of F4 imposed onto it.
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( 0
1 ,

1
1 )

( 1
4 )

( 1
2 )

( 3
4 )

( 1
3 )

( 2
3 )

From here we can take the mediants between each point. Where the mediant
of two fractions a

b and c
d is equal to a+c

b+dFor F4 our mediants would be:

1

5
,

2

7
,

2

5
,

3

5
,

5

7
,

4

5

Note that these mediants do not occur in F4 and some of them do not occur
in F5. If we apply the mediants we can divide the circle up into arcs, which we
will call Farey arcs. Where each arc is bounded by two consecutive mediants.
This means each arc will contain exactly one term of F5. The aggregate of
Farey arcs we call the Farey dissection of the circle [1]. We’ll revisit the Farey
dissection later when we start looking at rational approximation.

5 Lattices and Farey Terms

5.1 What is a Lattice?

First let us define what a lattice is. If you look up lattice in the dictionary you
would find the definition to be “a structure of crossed wooden or metal strips
usually arranged to form a diagonal pattern of open spaces between the strips”,
however if we swing over to the mathematical definition we will see that it is
“a partially ordered set in which every subset containing exactly two elements
has a greatest lower bound or intersection and a least upper bound or union”.
If you need a more visual description imagine a plane with origin point Q, then
add two more points W and E such that Q,W and E are not collinear, or not
on the same line. We can add another point R to complete the parallelogram
QWER. Then produce the sides of QWER, which are QW , WE, ER, and RQ
infinitely and space them all equally from their original lines. The result would
be a plane of equal parralelograms, or a lattice.Furthermore, ”a lattice is a figure
of lines. It defines a figure of points, viz. the system of points of intersection of
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the lines, or lattice points. Such a system we call a point-lattice” [1] . Note that
two different lattices can be define the same point-lattice. For example using
our old lattice. The lattice based on QW and QE is equivalent to the lattice
based on QW and QR. If two lattices determine the same point-lattice then
they are said to be equivalent [1]. Going back to our visual interpretation of a
lattice, we can see that any point of our original points Q,W,E and R could
have been our origin point. Thus, lattices are independent of choice of origin
and are symmetrical about any origin point.

Q

W

E

R

5.2 The Fundamental Lattice

“There exists a lattice which is if formed (when the rectangular coordinate axes
are given) by parallels to the axes at unit distances, dividing the plane into
unit squares” [1]. This is called the fundamental lattice L, and the point-lattice
which it determines, in other words, the ”system of points (x, y) with integral
coordinates, the fundamental point-lattice λ” [1]. Since any point-lattice can be
described as a system of numbers or vectors we know this system s a modulus,
which is a system of numbers such that the sum or difference of any two numbers
in the system will result in another number in the system. With this in mind let
us suppose that our point W and E are the points (x1, y1) and (x2, y2). Thus,
any point in the lattice formed by QW and QE where Q is the origin point will
be

x = mx1 + nx2 and y = my1 + ny2,

where m and n are integers.

5.3 Properties of the Fundamental Lattice

At this point we can define a transformation as

x′ = ax+ by and y′ = cx+ dy,

where a, b, c, d are given integers. So, any given point (x, y) in λ can be trans-
formed into another point (x′, y′) by the transformation we defined above, which
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means λ can transform into itself. If we solve for x and y from the above trans-
formation we get:

x =
dx′ − by′

ad− bc
, y = −cx

′ − ay′

ad− bc
.[1]

Let 4 = ad− bc, and suppose that

4 = ±1.

Then any integral values of x′ and y′ will give integral values of x and y, where an
integral value is a whole number. Also, every lattice point (x′, y′) will correspond
to a lattice point (x, y).

Another way to see this is if λ can be transformed into itself, then every
integral (x′, y′) must give an integral (x, y). We will let (x′, y′) be equal to (1, 0)
or (0, 1). Then

4|a 4 |b 4 |c 4 |d.

From here we know that
42|ad− bc

which leads us to
42|4

Thus, 4 = ±1.

Theorem 4. [1]
Suppose that P and Q are visible points of λ, and that 4 is the area of the

parallelogram J defined by OP and OQ. Then:

(i) if 4 = 1, there is no point of λ inside J;

(ii) if 4 > 1, there is at least one point of λ inside J , and, unless that point
is the intersection of the diagonals of J, at least two, one in each of the triangles
into which J is divided by PG.

Remember that one of the properties of the Farey sequence is that if a
b and

c
d are consecutive terms then

ad− bc = 1.

Also, every term a
b in the Farey sequence is in simplest terms, or (a, b) = 1.

Let’s see if we can make a lattice out of consecutive Farey terms. Let’s use
two terms from F4. Remember that

F4 =

{
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}
.

Let’s choose the terms 1
2 and 1

3 . Lets designate these two terms to be our
vectors, < 1, 3 > and < 1, 2 >.

We can make a matrix , A, out of these two vectors
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[
1 1
2 3

]
.

Finding the determinant we get 3(1) − 2(1) = 1. Since the determinant is
equal to ±1 we know that the inverse of the matrix will be made up of integers.
Where

A−1 =

[
3 −2
−1 1

]
Since the inverse matrix is made up of integers we can transform A into any

combination of integers

[
a
b

]
by multiplying A by a vector[
x
y

]
.

For example if

[
a
b

]
=

[
5
2

]
we can simply calculate[

3 −2
−1 1

]
·
[
5
2

]
=

[
11
−3

]
This means that multiplying A by a vector will yield every possible com-

bination of two integers. Applying this to a lattice, γ, created by these two
vectors means that γ will contain every possible combination of two integers in
the form of points. Also, since the points are integers, this means that every
point is visible. Since every point is visible this means that 4 = ±1.

6 What are Ford Circles?

Ford circles are another mathematical entity in which the Farey sequence appear
in. Like the Farey sequence, Ford circles are a sequence of circles that are all
tangent to each other. Ford circles are created by choosing any two relatively
prime integers, p and q. Then the Ford circle created from these two integers
would be the circle C(p, q) of radius 1

2q2 centered at(
p

q
,± 1

2q2

)
.[6]

We can start making a visual of the Ford circles by starting with integers 0
and 1, the Ford circle C(0, 1) would have radius 1

2 and be centered at (0,± 1
2 ).

We could continue choosing any integers possible and we would quickly end up
with the image below.
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Note that the sequence of Ford circles is infinite, thus the circles continue to
get smaller until they can not be seen by the naked eye.

6.1 Using the Farey Sequence to Prove Tangency

After reading about Ford circles you can immediately see some similarities be-
tween them and the Farey sequence. The first being that p and q are always
relatively prime, while every each term of a Farey sequence consists of the a frac-
tion made from two relatively prime positive integers. Using the Farey sequence
we can prove the tangentiality of the Ford circles.

Proof: [6] Suppose we have two Ford circles C(p, q) and C(p′, q′). First we
will calculate the squared distance between their centers.

d2 =

(
p

q
− p′

q′

)2

+

(
1

2q2
− 1

2q′2

)2

.

Next we will calculate the sum of the two circles radii.

s = r1 + r2 =
1

2q2
+

1

2q′2
.

If we take the difference of d2 and s2 we are left with:

d2 − s2 =
(p′q − pq′)2 − 1

q2q′2
.

From here we can use the fact that if we have two consecutive Farey terms a
b

and c
d then cb− ad = 1. Thus, if (p, q) and (p′, q′) are consecutive Farey terms

then we know that
(p′q − pq′)2 − 1

q2q′2
≥ 1.

Thus, as long as the terms of the Ford circles match the terms of the Farey
sequence, the circles will always be tangent to each other and we can find every
Ford circle by looking at the Farey sequence.
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6.2 Calculating Ford Circles

To demonstrate this I will try my hand at creating the first few Ford circles
made from Farey terms on Tikz.

I will take terms from F3:
We already know that C(0, 1) has radius 1

2 and is centered at (0,± 1
2 .

For C(1, 3) we get that its radius is 1
18 and it is centered at ( 1

3 ,±
1
18 ).

C(1, 2) has radius 1
8 and is centered at (1

2 ,±
1
8 .

C(2, 3) has radius 1
18 and is centered at (2

3 ,±
1
18 ).

Finally, C(1, 1) has radius 1
2 and is centered at (1,± 1

2 ).

7 Rational Approximation of Irrational Num-
bers

For the rest of this paper I will be going over how the Farey sequence can be
utilized in the rational approximation of irrational numbers. Rational approx-
imation of irrational numbers is representing irrational numbers with rational
numbers. For example, there are many ways to represent

√
2. In its decimal

notation we get 1.41421356237..., now we can turn that into a fraction, however
the denominator get quite large rather fast. The goal of rational approximation
of irrational numbers is to represent an irrational number with a fraction with
as small of a denominator as possible. For example, we can represent

√
2 with

the fraction 7
5 . Although 7

5 is not equal to
√

2 it is within fourteen hundredths.
Obviously the larger the denominator gets, the closer we will be able to come,
however we will always strive for the most aesthetically pleasing answer. The
Farey sequence can be used to prove theorems that state how close we can get
to approximating rational numbers with an infinite amount of rational numbers.
As the Farey sequence is mostly used in proofs, the rest of this paper will be
very theorem and proof heavy.

7.1 Theorems

At the beginning of my research I came across a series of theorems that resulted
in a powerful theorem of rational approximation. These proofs to these theorems
incorporate some of the properties of the Farey sequence which was covered at
the beginning of the paper.
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Theorem 5. [4]
If n is a positive integer and x is a real number, there is a fraction a

b such
that 0 ≤ n and ∣∣x− a

b

∣∣ ≤ 1

b(n+ 1)

Proof: Recall Theorem 3 that∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ =
1

b(b+ d)
≤ 1

b(n+ 1)

Now, suppose that a real number x is between frations a
b and a+c

b+d . Then by
Theorem 3, ∣∣∣∣x− a

b

∣∣∣∣ ≤ ∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ ≤ 1

b(n+ 1)

Using theorem 5 we will be able to prove our first proof of rational approxi-
mation.

Theorem 6. [4]
If ξ is a real and irrational number, then there are infinitely many fractions

a
b such that ∣∣∣∣ξ − a

b

∣∣∣∣ < 1

b2

Proof: For any integer n > 0 we can find an an and bn using Theorem 5
where 0 < bn ≤ n and ∣∣∣∣ξ − an

bn

∣∣∣∣ < 1

bn(n+ 1)
.

Now we will assume by way of contradiction that there are only a finite
number of distinct values. If this was true then there would be a value k such
that ∣∣∣∣anbn

∣∣∣∣ ≥ ∣∣∣∣akbk
∣∣∣∣

for all n > 0.
This means that ∣∣∣∣ξ − an

bn

∣∣∣∣ ≥ ∣∣∣∣ξ − ak
bk

∣∣∣∣.
Since ξ is irrational, we know∣∣∣∣ξ − ak

bk

∣∣∣∣ > 0.

This means that we can find a large enough n such that

1

n+ 1
>

∣∣∣∣ξ − ak
bk

∣∣∣∣.
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This leads to the contradiction∣∣∣∣ξ − ak
bk

∣∣∣∣ ≤ ∣∣∣∣ξ − an
bn

∣∣∣∣ ≤ 1

b(n+ 1)
≤ 1

n+ 1
<

∣∣∣∣ξ − ak
bk

∣∣∣∣.
The result of this last proof is quite amazing. If we have a rational number

with a denominator of 10, then we can use that number to be within a hundredth
of an irrational number. If the denominator is increased to 1, 000, then we know
it to be within a millionth of an irrational number.

7.2 Using the Farey Dissection

We left off on the Farey dissection with the introduction of Farey arcs. Remem-
ber that the each Farey arc is bordered by a mediant of each Farey term in the
sequence. For example the mediants of F4 are:

1

5
,

2

7
,

2

5
,

3

5
,

5

7
,

4

5
.

Adding these to our circle with the terms of F4 we get:

As we can see there is one term between each pair of mediants which is
to be expected. Calculating the length of each Farey arc we must find the
difference between consecutive mediants of Farey terms. Suppose a1

b1
, a2b2 and a3

b3
are consecutive Farey terms and . The two mediants of these three terms will
be:

a1 + a2
b1 + b2

,
a2 + a3
b2 + b3

Taking the difference of these two mediants we get:

a2b1 + a3b1 + a3b2 − a1b2 − a1b3 − a2b3
b1b2 + b22 + b1b3 + b2b3

.
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Due to the complications of the answer we can break this into two parts:

a2
b2
− a1 + a2
b1 + b2

=
1

b2(b1 + b2)
and

a2 + a3
b2 + b3

− a2
b2

=
1

b2(b2 + b3)
.

Before going any further let me introduce two theorems which we will use
in the future.

Theorem 7. [1] If n > 1, then no two succesive terms of Fn have the same
denominator.

Proof : We can prove this by way of contradiction. Let a1
b1

and a2
b2

be
successive terms in a Farey sequence. Note that a1 + 1 ≤ a2. Then

a1
b1

<
a1

b1 − 1
<
a1 + 1

b1
≤ a2
b2

is also true. This means that a1
b1−1 is a term in between a1

b1
and a2

b2
, a contradic-

tion. Thus, no two successive terms can have the same denominator.

Theorem 8. [1] If a1
b1

and a2
b2

are two successive terms of Fn, then b1 + b2 > n.

Proof : Observe that the mediant of the two terms is equal to a1+a2
b1+b2

which
lies within the interval (

a1
b1
,
a2
b2

)
.

So if b1 + b2 < n, then a1+a2
b1+b2

would be another Farey term between a1
b1

and a2
b2

and not a mediant.

From these two theorems we get that if a1
b1

and a2
b2

are consecutive farey
terms then:

b1 + b2 < 2n and b1 + b2 > n.

With these last two theorems and the two part equation for the length of a
Farey arc we get another theorem.

Theorem 9. [1]
In the Farey dissection of order n, where n > 1, each part of the arc which

contains the representative of a
b has a length between

1

b(2n− 1)
and

1

n+ 1
.

Finally we can use this to prove another theorem of rational approximation.

Theorem 10. [1]
If ξ is any real number, and n a positive integer, then there is an irreducible

fraction a
b such that

0 < b ≤ n,
∣∣∣∣ξ − a

b

∣∣∣∣ ≤ 1

b(n+ 1)

or ∣∣∣∣ξ − a

b

∣∣∣∣ ≤ 1

b(2n− 1)
.

16



Proof : Suppose that 0 < ξ < 1, this means that ξ will fall within an interval
bounded by two successive fractions of Fn, but more importantly a Farey arc.
Let’s suppose the Farey arc is bounded by a1+a2

b1+b2
and a2+a3

b2+b3
. Then, ξ will be

bounded by either (
a1 + a2
b1 + b2

,
a2
b2

)
or

(
a2
b2
,
a2 + a3
b2 + b3

)
.

This theorem shows us that we can get even closer than 1
b2 to an irrational

number using the Farey sequence. Next we shall look at Hurwitz’s theorem
which is the closest we can approximate an irrational number using rational
approximation.

8 Hurwitz’s Theorem

Hurwitz’s theorem is:

Theorem 11. [4] Given any irrational number ξ, there exists infinitely many
rational numbers h

k such that ∣∣∣∣ξ − h

k

∣∣∣∣ < 1√
5k2

has infinitely many rational solutions p
q .

During my research I came across two methods to solve Hurwitz’s theorem.
One of these methods uses the Farey sequence while the second uses continued
fractions. I will first go over the method that incorporates the Farey sequence
and then introduce continued fractions.

8.1 Proving Hurwitz’s Theorem with the Farey Sequence

Proof:[3] Let’s suppose that ξ ∈ (0, 1). We will show that if a
b < ξ < c

d for two
consecutive Farey fractions from Fn, then one of the three fractions

a

b
,
c

d
,
e

f

satisfies the inequality, where e
f is equal to the mediant a+c

b+d .
Note that as we squeeze ξ between the Farey fractions of Fn we can simply

continue increasing n which gives us infinite fractions that satisfy the inequality.
Now we will prove the inequality by the way of contradiction.

Let’s assume that none of the three fractions satisfy the inequality. This
means that

ξ − a

b
≥ 1√

5b2
, ξ − e

f
≥ 1√

5f2
,
c

d
− ξ ≥ 1√

5d2
.
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Note that we are assuming that ξ lies between e
f and c

d , which makes ξ
negative in the last equation due to applying the absolute values. Also note
that equalities may occur.

Now if we add the first and third inequality, and the second and third in-
equality we are left with the two inequalities

c

d
− a

b
≥ 1√

5

(
1

b2
+

1

d2

)
,
c

d
− e

f
≥ 1√

5

(
1

f2
+

1

d2

)
.

Observe that

c

d
− a

b
=
bc− ad
bd

=
1

bd
,
c

d
− e

f
=
cf − de
df

=
1

df
.

So now we are left with the two inequalities

1

bd
≥ 1√

5

(
1

b2
+

1

d2

)
,

1

df
≥ 1√

5

(
1

f2
+

1

d2

)
.

If we mulitply the first inequality by
√

5b2d2 and the second by
√

5d2f2,
then adding the results we are left with

d
√

5(b+ f) = d
√

5(2b+ d) ≥ b2 + 2d2 + f2 = 2b2 + 3d2 + 2bd,

which is equivalent to

0 ≥ 1

2
((
√

5− 1)d− 2b)2.

This implies that (
√

5− 1)d− 2b = 0, which leads us to

√
5 = 1− 2b

d
.

This means that 2b
d is an irrational number which is a contradiction. Thus,

Hurwitz’s theorem has been proven.

8.2 Continued Fractions

A finite continued fraction can be denoted as < a0, a1, a2, · · ·, an >. This is
equivalent to the fraction

a0 +
1

< a1 + a2 + · · ·an >
[4].

Note that any finite continued fraction can be represented by a rational number,
likewise we can represent any rational number as a finite continued fraction.
Delving into infinite continued fractions we meet with my meager explanation of
what a convergent is and what the nth convergent is. While the nth convergent
is a rational number and is denoted as hn

kn
, the value of any infinite continued

18



fraction is irrational. As the value of n increases, the nth convergent will be
successively closer to the value of its infinite continued fraction, that is∣∣∣∣ξ − hn

kn

∣∣∣∣ < ∣∣∣∣ξ − hn−1
kn−1

∣∣∣∣.
This is why continued fractions are so useful in approximating irrational

numbers. This leads us to a handy theorem.

Theorem 12. [4] Let ξ denote any irrational number. If there is a rational
number r

s with (r, s) = 1 and s ≥ 1 such that∣∣∣∣ξ − r

s

∣∣∣∣ < 1

2s2
,

then r
s is one of the convergents of the simple continued fraction expansion of

ξ.

From this thoerem we are lead to another.

Theorem 13. [4] The nth convergent of 1
x is the reciprical of the (n − 1)st

convergent of x if x is any real number greater than 1.

Proof: Let x =< a0, a1, · · · > and 1
x =< 0, a0, a1, · · · > . If hn

hk
and

h′
n

h′
k

are

the convergents for x and 1
x respectively, then

h′0, h
′
1 = 1, h′2 = a1, h′n = an−1h

′
n−1 + h′n−2

k0 = 1, k1 = a1, kn−1 = an−1kn−2 + kn−3

k′0 = 1, k′1 = a0, k
′
2 = a0a1 + 1, k′n = an−1k

′
n−1 + k′n−2

h0 = a0, h1 = a0a1 + 1, hn−1 = an−1hn−2 + hn−3.

The rest of the theorem can be proven through mathematical induction.

With this brief introduction to continued fractions we are now able to prove
Hurwitz’s theorem.

Proof:[4] For every three consecutive convergents beyond ho

ko
, at least one

will satisfy the inequality we are hoping to prove. Let us define γn by

γn = k3
∣∣∣∣ξ − hn

kn

∣∣∣∣,
so we need to prove that one of γn, γn−1 is less than 1√

5
. Since we know that ξ

will lie between one of these numbers we have∣∣∣∣ξ − hn
kn

∣∣∣∣+

∣∣∣∣ξ − hn−1
kn−1

=

∣∣∣∣hnkn − hn−1
kn−1

∣∣∣∣ =
1

knkn−1
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where the last equality follows from a previous theorem covered in Niven’s book
which I shall revisit next week. If we multiply this by k2nk

2
n−1 we get

γnk
2
n−1 + γn−1k

2
n − knkn−1 = 0.

If we replace n with n+ 1, we have

γn+1k
2
n + γnk

2
n+1 − knkn+1 = 0.

Since we are dealing with an infinite continued fraction it is implied that
kn+1 − kn−1 = an+1kn, thus we have

γ2na
2
n+1 + 2γn(γn−1 − γn+1) = 1− a−2n+1(γn− 1− γn+ 1)2.

The right side of the equation must be less than 1 unless γn−1 = γn+1.
However, this is impossible because if the previous equation is true, then

k2n−1

∣∣∣∣ξ − hn−1
kn−1

∣∣∣∣ = k2n+1

∣∣∣∣ξ − hn+1

kn1

∣∣∣∣.
This is equivalent to

k2n−1

(
ξ − hn−1

kn−1

)
= k2n+1

(
ξ − hn+1

kn+1

)
.

Which implies that ξ is rational since kn−1 6= kn+1, thus γn−1 6= γn+1.
We know that γ2na

2
n+1 + 2γn(γn−1 − γn+1) < 1 from the above equation.

Writing γ for min(γn− 1, γ, γn+ 1), we have

γ2(a2n+1 + 4) ≤ γ2a2n+1 + 2γn(γ2n+1 + γn+1) < 1.

Since an+1 ≥ 1, 5γ2 < 1. Thus we have the desired result,

min(γn− 1, γ, γn+ 1) <
1√
5
.

Hurwitz’s theorem, or 1√
5k2

, is the closest we can approximate with infinite

rational numbers[4]. Once we get closer than 1√
5k2

we begin to only find finite

examples of approximation.

9 Conclusion

It has been a pleasure to work for an extended time with the Farey sequence.If I
had more time to continue researching I would start by continuing to learn more
about continued fractions. With more knowledge I would be able to understand
the theorem and proof that shows that 1√

5k2
is the closest we will ever be

able to infinitely approximate an irrational number. From there on I would
continue to investigate continued fractions uses in rational approximation. At
the beginning I had no idea what I was getting into, but the characteristics of
the Farey sequence are quite charming and I would gladly recommend anyone
to put some time into studying this sequence of numbers that was discovered
by a geologist.
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