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Abstract: Farey sequence is a part of Number theory, it has always made everyone attracted by its pattern. As 
interesting as its pattern it has interesting results and applications also. In this article, some results related to Farey 
Sequence, rational approximation of real number by Hurwitz theorem with the help of Farey sequence and use of 
approximation of rational numbers in clock making by Stern Brocot tree are to be discussed. 
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I. INTRODUCTION 

The Farey sequence has crucial values in different and advanced branches of number theory. The Farey 
sequence of order n is the sequence of all reduced fractions between 0 and 1 with denominator less than 
or equal to n, arranged in order of increasing size [3]. The Farey Sequence, sometimes called the Farey 
series, is a series of sequences in which, each sequence consists of rational numbers ranging in value from 
0 to 1 [7]. Origin of the name of Farey sequence from the list of simple or vulgar fraction is quite 
interesting. The sequence is named after John Farey, who thought that he was the first person to note the 
properties of this sequence. He note some results of sequences of rational numbers. 

Farey published many articles between 1804 to1824 in different magazines like Rees’s Encyclopedia, 
The Monthly Magazine, and Philosophical Magazine [7]. But article on the curious property of vulgar 
fractions was similar to previously discovered works. This article included of four criterias. The first 
notes the curious property. The second included definition and statement on the Farey sequence. In the 
third he gave an example of 5th order of Farey sequence. In the end, he wrote, "I am not acquainted, 
whether this curious property of vulgar fractions has been before pointed out?; or whether it may admit of 
some easy or general demonstration?; which are points on which I should be glad to learn the sentiments 
of some of your mathematical readers ..."[7] 

John Farey’s note was then republished in the French magazine "Bulletin de la Soci´et´e Philomatique" 
[10]. One of the readers of Farey’s article, Augustin-Louis Cauchy, provided the proof that mediant 
property holds (crediting John Farey) in one his writings the same year Farey’s article was released, and 
since it was believed that Farey was the first to notice this property the sequence was named after him [7]. 
But in 1802, Charles Haros explained the construction of the 99 th Farey sequence using mediant property 
and also provided some important results related to sequence [3]. For these reasons Farey was not looked 
fondly upon in the mathematical community, in G H Hardy’s, A mathematicians apology, he writes, "... 
Farey is immortal because he failed to understand a theorem which Haros had proved perfectly fourteen 
years before ..." [11]. 

 Pattern of Farey Sequence can be visualized geometrically with the help of Ford circles which is 

named on L.R. Ford. Ford circle is defined as: For every proper fraction 
a

b
  where gcd( , ) 1a b   , there 

exists a Ford Circle a

b

C  which is tangent to the x axis at the point ,0
a

b
 
 
 

 with 
2

1
,
2

a
centre

b b
 
 
 

 and 
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2

1

2
radius

b
   [8]. It helps to represent the concept of mediant and the patterns associated with Farey 

fractions [8]. 
Stern Brocot tree was invented independently but it has similar properties as of Farey sequence which 

is formed by the mediant property of the fractions. Farey sequence is between 0 to 1 but Stern Brocot tree 
is from 0 to infinity [3].  

 

II. FAREY SEQUENCE AND RESULTS 

 

Definition 2.1: [1]  Farey sequence of order n 

A Sequence of all proper fraction and reduced fraction between 0 to 1 arranged in increasing order of 
size with the denominator less than or equal to n is said to be a Farey sequence of order 𝑛. 

Farey sequence of order 𝑛 is denoted by nF .  

For example:  

Farey sequence of order 1 : 
0

1
and 

1

1
.  

Farey sequence of order 2 : 
0

1
, 

1

2
and 

1

1
.  

Farey sequence of order 3 : 
0

1
, 

1

3
, 

1

2
, 

2

3
 and 

1

1
.  

Farey sequence of order 4 : 
0

1
,
1

4
,
1

3
,
2

3
, 

1

2
, 

3

4
and 

1

1
.  

 
                                                 Table 1: Tabular form of Farey sequence is as follows [1]:  

                                    
଴

ଵ
                                                                                     ଵ

ଵ
  

                                    
଴

ଵ
                                            ଵ

ଶ
                                       ଵ

ଵ
  

                                    
଴

ଵ
                   ଵ

ଷ
                       ଵ

ଶ
                 ଶ

ଷ
                     ଵ

 ଵ
  

                                    
଴

ଵ
         ଵ

ସ
        ଵ

ଷ
                       ଵ

ଶ
                 ଶ

ଷ
         ଷ

ସ
           ଵ

 ଵ
  

                                    
଴

ଵ
    ଵ

ହ
   ଵ

ସ
        ଵ

ଷ
           ଶ

ହ
          ଵ

ଶ
        ଷ

ହ
        ଶ

ଷ
         ଷ

ସ
    ସ

ହ
    ଵ

 ଵ
  

   

Definition 2.2: [1] Mediant property of Farey sequence 

If 
a

b
 and 

c

d  
are any two consecutive fractions in thn order of Farey sequence then 

e a c a b

f b d c d


  


 in between

a

b
 and 

c

d
 if 1b d n    in ( 1)thn   order of Farey sequence [1] . 

 

Theorem 2.1: [1] If 
a

b
 and 

c

d
 are simultaneous fractions then | | 1bc ad  . 

Proof : This result can be proved by induction. 
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For 𝑘 = 1, 1(1) 0(1) 1  . So, it is true for 𝑘 = 1. 

Let 
a

b
 and 

c

d
are consecutive fraction in Farey sequence of order 𝑘 = 𝑛 − 1 is true so, |𝑏𝑐 − 𝑎𝑑| = 1.  

Now there are two possibilities for 𝑘 = 𝑛, either 
a

b
 and 

c

d
 are consecutive fraction or 

a

b
,

a c

b d




 and 

c

d
 are consecutive fraction. 

If 
a

b
,

a c

b d




 and 
c

d
are consecutive fraction then, 

( ) ( ) 1b a c a b d ba bc ab ad bc ad            

or ( ) ( ) 1b d c a c d bc dc ad cd bc ad           

Hence proved.  

Corollary 2.1: [1] Every fraction 
a

b
 in table 1 is in reduced form. In other words gcd( , ) 1a b  . 

Proo f: Let n N   and 
a

b
 be a fraction in the thn row. 

To prove this result by using diophantine equation,
 

1qx py   which has the solution if and only if  

gcd( , ) 1p q  , 

Let 
a

b
 and 

c

d
 be the two consecutive fractions in thn  row. 

By the result, | | 1bc ad  . 
Comparing with the diophantine equation, 
gcd( , ) 1a b   or gcd( , ) 1c d  .  

Theorem 2.2: [1] Let , ,
a c e

b d f
 be any three consecutive fractions in the Farey sequence of order 𝑛. Prove 

that 
c a e

d b f





.  

Proof : Using mathematical  induction, 

It is true for 1n   and 2n  . 

Assume the statement is true for n = k and let , ,
a c e

b d f
 be any three consecutive fractions in the Farey 

sequence of order 1k   . 

If 
c

d
 is in the Farey sequence of order 1k   but was not in the Farey sequence of order 𝑘, then by 

construction of the Farey sequence,  have 
c a e

d b f





. So now assume 

c

d
 is also in the Farey sequence of 

order k .  
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Let , ,
p c r

q d s
 be consecutive fractions in the Farey sequence of order k . There are four possibilities 

now: 

(1) 
a p

b q
  and

  

e r

f s
  

(2) 
a c p

b d q





 and 

e r

f s
  

(3) 
a c p

b d q





 and  

e c r

f d s




  
 

(4) 
a p

b q
 and 

e c r

f d s





. 

Let 
c

d
 . 

By the induction hypothesis, 
p r

q s
 



 

For case (1), it is done by the induction hypothesis.
 
 

For case (2),  ( ) ( )c p r q q s d q s         
 
. 

For case (3),   
2 ( ) 2 ( ) (2 ( )) ( )c p c r c p r d q s d q s d q d s                   . 

For case (4), there is a simmilar condition as in case (2), so it is done. 
For proving the edge cases, when the middle Farey fraction is an integer, it succes to show that in the 

Farey sequence of order 𝑛, the term to the immediate right of 
0

1
, say 

g

h
when added to the term to the 

immediate left of 
1

1
 gives 1. 

This can also be proved by induction on n . This is clear for 1n   and 2n  . Assume that for n k   

result is true and let 
g

h
 be the term to the immediate right of 

0

1
 in the Farey sequence of order k . 

Then the term to the immediate left of 
1

1
 is 

h g

h


 by the induction hypothesis. If 1 1f k   , then 

the terms to the immediate right of 
0

1
 and to the immediate left of  

1

1
 remain unchanged from order 𝑛 to 

order 1n  . 

If 1 1f k   , then in the Farey sequence of order 1k  , the term to the immediate right of 
0

1
 

becomes 
1

g

h 
 and the term to the immediate left of  

1

1
 becomes 

1 ( 1)
1

1 1 1

h g h g g

h h h

   
  

  
and 

the proof is done by induction.  
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Results 2.1 

1. Let ,
a c

b d
 be any consecutive fractions in the Farey sequence of order n  then 1b d n    

[1]. 

2. If  0 ,gcd( , ) 1a b a b   , then the fraction 
a

b
 appears in the thb  and all later rows.[1] 

3. Let ,
a c

b d
 be any consecutive fractions of 

1

2
 in the Farey sequence of order n  then 

1
1 2

2

n
b d

     
 

, b is the greatest odd integer  n  and a c b   [1]. 

4. Farey length: 1| | | | ( )n nF F n  [2]. 

5. Asymptotic behaviour of Farey sequence is : 
2

2

3
| |n

n
F


  [2]. 

By using above results of Farey sequence another properties can be proved which will eventually lead 
us to a basic theorems about rational approximation. 

Theorem 2.3: [1] If ,
a c

b d
 are Farey fractions of order n  such that no other Farey fraction of order n  

lies between them, then 
1 1

( ) ( 1)

a a c

b b d b b d b n


  

  
 and 

1 1

( ) ( 1)

c a c

d b d d b d d n


  

  
 . 

Proof : By using the result 2.1 (1), If ,
a c

b d
 are consecutive then | | 1cb ad   and 1b d n   , 

 
| |

( )

a a c ad bc

b b d b b d

 
 

 
 

 
1

( 1)

a a c

b b d b n


  

 
 

1

( )

a a c

b b d b b d


  

 
 

Similarly, 
1 1

( ) ( 1)

c a c

d b d d b d d n


  

  
. 

Theorem 2.4: [1] If n  is a positive integer and x  is a real, there is a rational number 
a

b
 such that 

0 b n   and 
1

( 1)

a
x

b b n
 


. 

Proof : For some Farey fractions 
a

b
and 

c

d
, the number x  will lie between or on, and so by 

interchanging 
a

b
 and 

c

d
 if necessary,  x  lies in the closed interval between 

a

b
 and 

a c

b d




. 
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a c a c

x
b d b d


   


 

By Theorem 2.3 , If 
a

b
and 

c

d
are Farey fractions of order n  such that no other Farey fraction of order 

n  lies between them, then
1 1

( ) ( 1)

a a c

b b d b b d b n


  

  
 and 

1 1

( ) ( 1)

c a c

d b d d b d d n


  

  
. 

1

( 1)

a c a c
x

b d b d d n


    

 
. 

Theorem 2.5: [1] If   is a real and irrational, there are infinitely many distinct rational numbers 
a

b
 

such that 
2

1a
x

b b
  . 

Proof: For each = 1,2,3. .. the value of 𝑎௡ and 𝑏௡  can be obtained. If n  is a positive integer and   is a 

real, there is a rational number 
a

b
 such that 0 b n   and 

1

( 1)

a
x

b b n
 


, such that 0 nb n   and 

2

1 1

( 1)n n

a

b b n b
   


. 

Many of the n

n

a

b
 may be equal to each other, but there will be infinitely many distinct ones. For, if 

there were not infinitely many distinct ones, there would be only a finite number of distinct values 

taken by n

n

a

b
  for some n , say n k . 

Here |𝜉 −
௔೙

௕೙
| ≥ |𝜉 −

௔ೖ

௕ೖ
| for all 1,2,3...n   but 0n

n

a

b
   since 𝜉 is irrational, and so sufficiently 

large n  can be obtained such that,  
1

1
k

k

a

n b
 


. 

This leads to contradiction so , 

1 1

( 1) 1
k n k

k n n k

a a a

b b b n n b
        

 
. 

The condition that   be irrational is necessary in the theorem . 

For if x is any rational number, say, , 0
r

x s
s

  . 

If 
a

b
 is any fraction such that ,

a r
b s

b s
  , then 
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2

| | 1 1r a rb as

s b sb sb b


    . 

Hence, all the fraction 
a

b
, 0b  , satisfying 

2

1a
x

b b
   have denominators b s , and there can only 

be a finite number of such fractions. 
Corollary 2.2: [1] If x  and y  are positive integers then not both of the inequalities 

2 2

1 1 1 1

5xy x y

 
  

 
and 

2 2

1 1 1 1

( ) 5 ( )x x y x x y

 
    

can hold.  

Proof : The two inequalities can be written as, 
2 2 2 25 , 5 ( ) ( )y x x x y x y x      . 

Adding these inequalities, 2 2 25(2 ) 3 2xy x x xy y    . 

So, 2 22 2( 5 1) (3 5) 0y xy x     . 

Now multiplying this by 2 ,  
2 2 24 4( 5 1) (5 2 5 1) 0, (2 ( 5 1) ) 0y xy x y x         . 

This is impossible for positive integers x  and y  because 5  is irrational. 

Hurwitz Theorem 2.6: [1] [2] Given any irrational number  , there are infinitely many different 

rational numbers  
h

k
 such that 

2

1

5

h

k k
   . 

Proof: Let n  be a positive integer. There exist any two consecutive fractions 
a

b
 and 

c

d
 in the Farey 

sequence of order n , such that  
a

b

c

d
  . 

To show at least one of the three fractions 
a

b
,

c

d
, 

a c

b d




can serve as 
h

k
. 

Suppose this is not so either 
a c

b d
 



 or  

a c

b d
 



. 

If  
a c

b d
 



,  

2 2 2

1 1 1
; ;

5 ( ) 5 5

a a c c

b b d db b d d
  
      

 
. 

Adding inequalities, 
2 2 2 2

1 1 1 1
;

5 5 ( ) 5 5

c a a c a

d b b d bb d b d b


     

 
. 

Hence, 
2 2

1 1 1 1

5

cb ad c a

bd bd d b b d

       
 

 and  

2 2

1 ( ) ( ) 1 1 1

( ) ( ) ( )5

a c b a b d

b b d b b d b b d

   
      

. 
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These two inequalities contradict Corollary 2.2 . So one of 
a

b
,

c

d
, 

a c

b d




can serve as 
h

k
. 

If  
a c

b d
 



 ,  

2 2 2

1 1 1
; ;

5 ( ) 5 5

a a c c

b b d db b d d
  
     

 
. 

Adding above inequalities, 
2 2 2 2

1 1 1 1
;

5 5 ( ) 5 5

c a c a c

d b d b db d b d d


     

 
. 

Hence,  
2 2

1 1 1 1

5bd b d
   
 

and 
2 2

1 1 1 1

( ) ( )5d b d b b d

 
    

.  

Again with same contradiction to Corollary 2.2. 

Let 
a c

b d
    , by Theorem 2.4 , 

1 1 2 2

( 1) ( 1) 1

h c a c a c a c a

k d b d b d b d b d n b n n n
  

           
    

. 

To show there are infinitely many 
h

k
 , suppose 

x

y
 which satisfies this condition then, 

x

y
   is 

positive and 
2

n
x
y






. 

2

1

h x

k n y
     


. 

Hence, there are infinitely many 
h

k
such that for any rational numbers there exist another which is 

closer to   . 

 Corollary 2.3: [1] [2] The constant  5  in the Hurwitz theorem is the best possible or The theorem 

does not hold if  5  is replaced by any larger value. 

Proof : To show that result does not hold if  5  is replaced by any larger value find any  .  

Let us take 
1 5

2
 
 .                 (1) 

21 5
( ) 1

2
x x x x

 
      

 
                              (2) 

For integers ,p q  with 0q  , 
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then, 
1 5

5
2

p p p p

q q q q
  

   
          

.  

2

2
5 1

p p p p

q q q q
        . 

2 2
2

1
5 | |

p p
p pq q

q q q
        .                                                                                        (3) 

Since both   and 5   are irrational the LHS of above is not zero. 

As 2 2| | 1p pq q   , 
2

1
5

p p

q q q
     .                           (4) 

Now, suppose an infinite sequence of rational numbers , 0j
j

j

p
q

q
 , and the positive real number 𝑚 

such that 
2

1

j

p

q mq
  .                                                     (5) 

Then 
1 1

j j j
j j

q p q
mq mq

     and this shows that there are only a finite number of jp  

corresponding to each value of jq  . 

Therefore, jq  as j  . 

Also, by (4), (5) and the triangle inequality   

2 2 2

1 1 1
5 5

j j j

p p

q q q mq mq
 

 
       

 
. 

So,  
2

1

5j

m
mq




. 

2

1
5

5lim
j j

m
mq

  


 

Hence proved. 
 

III. STERN BROCOT TREE 

 

    Stern Brocot tree is an extension of a Farey sequence on real line to infinity. The construction of the 

Stern-Brocot tree begins with the two fractions 
0

1
 and 

1

0
. It is useful to think of here 

1

0
 as 

representing infinity. Now, adding the terms by the mediant property 
1

1
 is obtained. For the next step of 
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tree add 
1

0
 and 

1

1
 to get 

1

2
; And add 

1

1
 and 

1

0
to get 

2

1
. In similar way proceed by adding the terms 

to get tree which is shown in Fig. 3.1 .[1] 
 

  

 
Fig. 3.1 Stern Brocot tree. 

 

Properties3.1  
 

1. Every positive rational number appears in the Stern-Brocot tree [5]. 
2. A rational number appears in the Stern-Brocot tree only one time.  

This is because the rationals added to the  tree are always between consecutive numbers that 
are already in the Stern-Brocot tree [5]. 

3. The rational numbers always appear in simplest form [5]. 
4. By using Stern Brocot tree one can represent any real number x by a string, either finite or 

infinite, of L’s and R’s.  

Begin with 
1

1
 , check wether the number is on the left or right of 

1

1
. Mark L for left and R for right . 

Repeat the process and mark  L or R. A finite string for rational number and infinite string for a 
irrational number is obtained [5]. 

Example 3.1: 2.7182818...e   
    Table 2: L's and R's string for e.  

R   2/1   2.0000000... 
RR   3/1  3.0000000... 

RRL   5/2  2.5000000... 
RRLR   8/3   2.6666666... 

RRLRR   11/4   2.7500000... 
RRLRRL   19/7   2.7142857... 

...   ...   ...  
RRLRRLRLLLL   106/39   2.7179487... 

...   ...   ...  
 

 So, ...e RRLRRLRLLLL  . In this manner, any ratioal or irrational number can represented in form of 
L and R stirng. This will help in approximation of rational number in clock making.  
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IV.  CLOCK MAKING USING STERN BROCOT TREE  

There are many parts in any clock but here the main focus is on the formation of gears and shafts which 
are use to speed up or slow down the motion of the wheels.  

Suppose a small wheel with 10 teeth and bigger wheel with 50 teeth then for one rotation of bigger 

wheel the smaller one have to rotate 5 times. So the ratio between the two wheels is 
1

5
. In similar manner  

a gear train is obtaied by factorizing the number. For example, if the ratio of  
6

25
  then we a gear train 

can be made which forms the same ratio by 
2 3

5 5




 . 

So, to make clock for a tropical year which has 365 days, 5 hours and 49 minutes and other hand which 

completes one rotation per day, by converting into minutes it has a ratio of 
720

525949
, but here the 

problem arises that it has no factors, the denominator number is prime [5]. Which means that without any 
factor the number of teeth of wheel cannot be reduced by gear train. To understand the solution to this 
problem let us take an example which shows to approximate the rational numbers by using Stern Brocot 
tree [5].  

Approximate 
13

47
 with 

p

q
 , which says that constructing a small wheel with p teeth on the shaft and 

letting it turn a wheel with q  teeth. The small wheel makes a revolution every 13 minutes. This means 

that the wheel makes a revolution every 
13q

p
  minutes. 

So the error obtained is : 
13 13 47

47
q q p

p p


  . 

Let the number be 
13

47
 and it lies between 

1

4
 and 

1

3
.  Put values from top if value is positive and from 

bottom if value is negative as shown in table. Adding the latest value from the last columns of  p and q to 
the top columns find the value of r and repeate the process till value of  r  equals to 0 that is same as 
finding L's and R's string step by step in Stern Brocot tree.  

 
                                    Table 3: As the value is negative insert at the bottom of the table. 

p   q   r =13q-47p 
   
     
     
   
   
     
     

1  3   -8  
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                                                Table 4: As the value is positive insert at the top of the table . 

p   q   r =13q-47p 
1  4   +5 
   
     
     
     
     
     

1  3   -8  
 

                            Table 5: Insert the values in table at top and bottom accordingly for the positive and negative values.  
p   q   r = 13q-47p 
1  4   +5 
3  11   +2  
     
   
     
     

2  7   -3  
1  3   -8  

  
Table 6: Final calculation for approximation. 

p   q   r =13q-47p 
1  4   +5 
3  11   +2 
8  29   +1 

13  47   0  
5  18   -1 
2  7   -3 
1  3   -8 

 
  

 Here table shows that 
8

29
 and 

5

18
 are the closest approximation. Hence 

13

47
 can be  

approximated by 
8

29
 with error of  

1

8
 more or 

5

18
where it is 

1

5
 minute less. 

Now calculating approximation for a tropical year. 

As from above example, approximating  
720

525949
 with 

p

q
,  

 

the obtaied error  is :   
720 525949

720 525949
q q p

p p


  . 
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Table 7: Calculation for approximation of tropical year clock. 

p   q   720q-525949p 
0  1   720 
1  0  - 525949 
1 1   -525229 
1 2  -524509  
... ... ... 
... ...  ...  

163  119069  -7  
196  143175   -4  

 
  

So, 
196

143175
  can be approximated for 

720

525949
 . Hence a clock with 4 stage gear train can be 

made by this approximated value
196 3 25 23 83

143175 2 2 7 7

  


  
 [4]. 

And the error in seconds can be calcuated by : 

196 720
60 1.2244...

143175 525949
   
 

 

The last wheel completes a rotation in 
4

196
 minutes less than a tropical mean year and is almost 

1.22  second less over one tropical year which shows it is a quite good approximation. So with the help of 
Stern-Brocot tree and the mediant property of the Farey sequence a better rational approximation of gear 
ratios can be obtained  in the clock making [4]. 
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