= I.,. ORI

N\
usenix \
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

The Ballot is Busted Before the Blockchain:
A Security Analysis of Voatz, the First Internet
Voting Application Used in U.S. Federal Elections

Michael A. Specter, James Koppel, and Daniel Weitzner, MIT

https://www.usenix.org/conference/usenixsecurity20/presentation/specter

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

+

The Ballot is Busted Before the Blockchain:
A Security Analysis of Voatz, the First Internet Voting Application Used in U.S.
Federal Elections™

Michael A. Specter
MIT'

Abstract

In the 2018 midterm elections, West Virginia became the
first state in the U.S. to allow select voters to cast their bal-
lot on a mobile phone via a proprietary app called “Voatz.”
Although there is no public formal description of Voatz’s se-
curity model, the company claims that election security and
integrity are maintained through the use of a permissioned
blockchain, biometrics, a mixnet, and hardware-backed key
storage modules on the user’s device. In this work, we present
the first public security analysis of Voatz, based on a reverse
engineering of their Android application and the minimal
available documentation of the system. We performed a clean-
room reimplementation of Voatz’s server and present an anal-
ysis of the election process as visible from the app itself.

We find that Voatz has vulnerabilities that allow different
kinds of adversaries to alter, stop, or expose a user’s vote,
including a sidechannel attack in which a completely passive
network adversary can potentially recover a user’s secret bal-
lot. We additionally find that Voatz has a number of privacy
issues stemming from their use of third party services for
crucial app functionality. Our findings serve as a concrete
illustration of the common wisdom against Internet voting,
and of the importance of transparency to the legitimacy of
elections. As a result of our work, one county in Washington
has already aborted their use of Voatz in the 2020 primaries.

1 Introduction

In 2018, Voatz, a private Boston-based company, made history
by fielding the first Internet voting app used in high-stakes '

*With appreciation to Barbara Simons [46]

TEECS PhD Candidate, CSAIL, Internet Policy Research Initiative

¥EECS PhD Candidate, CSAIL, Computer Assisted Programming Group

SResearch Scientist, CSAIL, Internet Policy Research Initiative

'We refer to high-stakes elections as those where adversaries are likely
willing to expend resources to alter the course of an election. Certain elections,
like student governments, clubs, and online groups are generally considered
“low stakes,” where federal or municipal elections are “high-stakes.” This is
consistent with the research literature on the subject (see, e.g. [10]).

James Koppel
MIT* MIT®

Daniel Weitzner

U.S. federal elections. Mainly targeting overseas military and
other absentee voters, Voatz has been used in federal, state,
and municipal elections in West Virginia, Denver, Oregon,
and Utah, as well as the 2016 Massachusetts Democratic
Convention and the 2016 Utah Republican Convention [45].
The company has recently closed a $7-million series A [27],
and is on track to be used in the 2020 Primaries.

In this paper, we present the first public security review of
Voatz. We find that Voatz is vulnerable to a number of attacks
that could violate election integrity (summary in Table 1). For
example, we find that an attacker with root access to a voter’s
device can easily evade the system’s defenses (§5.1.1), learn
the user’s choices (even after the event is over), and alter the
user’s vote (§5.1). We further find that their network protocol
can leak details of the user’s vote (§5.3), and, surprisingly,
that the system’s use of the blockchain is unlikely to protect
against server-side attacks (§5.2). We provide an analysis of
these faults, and find that exploitation would be well within
the capacity of a nation-state actor.

While the introduction of Internet voting in the U.S. is
relatively new, the history surrounding electronic only voting
is not. In the wake of counting errors, recount discrepancies,
and uninterpretable ballots wreaking havoc during the 2000
U.S. Presidential race, Congress passed the Help America
Vote Act (HAVA) [59], a bill targeted toward helping states
move away from outdated and problematic punchcard-based
systems. The Election Assistance Commission (EAC), a new
executive agency created by HAVA, was charged with dis-
tributing these funds, and has since provided over $3.3 billion
to various states to help improve election infrastructure [31].

Unfortunately, HAVA lacked stringent guidelines on what
replacement systems were allowed to be purchased. As a
result, many states acquired unvetted electronic-only voting
machines, known as Direct-Recording Electronic (DRE) sys-
tems. Numerous studies have since shown DRE systems are
extremely vulnerable to a wide range of attacks, allowing
adversaries to surreptitiously change the outcome of an elec-
tion [21,22,33,49,77].

Today, we are witnessing similar developments in response

USENIX Association

29th USENIX Security Symposium 1535

Attacker Capability

Adversary

Suppress Ballot Learn Secret Vote Alter Ballot Learn User’s Identity Learn User IP
Passive Network (§5.3) v’ v’
Active Network (§5.3) v’ v’ v’
3rd-Party ID Svc. (§5.4) v’ v’ v’
Root On-Device (§5.1) v’ v’ N v’ v’
Voatz API Server (§5.2) v’ v’ v’ v’ v’

Table 1: Summary of Potential Attacks by Adversary Type: Here we show what kind of adversary is capable of executing what sort of attack;
e.g. a Passive Network adversary is capable of learning a user’s secret ballot, and the user’s IP. Viability of these attacks may be dependent on
the configuration of the particular election, (the ballot style, metadata, etc.), see the relevant section listed for explicit details.

to Russia’s interference in the 2016 U.S. Presidential election.
Bills have been introduced in both the U.S. Senate [48] and
House [70] that aim to provide funding to revamp election
infrastructure. At the same time, there has been renewed inter-
est in cryptography due to recent advances in accountable and
transparent systems such as the blockchain [57], and the pro-
liferation of mobile devices carrying hardware-backed secure
enclaves for cryptographic operations as well as biometrics.

The result is increased speculation about how mobile de-
vices can be used to safely allow for voting over the Internet.
At the time of writing there are at least four companies at-
tempting to offer internet or mobile voting solutions for high-
stakes elections [56], and one 2020 Democratic presidential
candidate has included voting from a mobile device via the
blockchain in his policy plank [11]. To our knowledge, only
Voatz has successfully fielded such a system.

Unfortunately, the public information about Voatz’s system
is incomplete. Voatz’s FAQ [6], blog, and white paper [50]
provide only a vague description of their overall system and
threat model; Voatz claims it leverages some combination of
a permissioned blockchain, biometrics, and hardware-backed
keystores to provide end-to-end encrypted and voter verifi-
able ballots. However, despite calls to release a more detailed
analysis and concerns raised by many in the election security
community [29, 60], as well as elected representatives [63],
Voatz has declined to provide formal details, citing the need
to protect their intellectual property [71]. Worse, when a Uni-
versity of Michigan researcher conducted dynamic analysis
of the Voatz app in 2018, the company treated the researcher
as a malicious actor and reported the incident to authorities.
This resulted in the FBI conducting an investigation against
the researcher [44,47,51,75].

This opaque stance is a threat to the integrity of the elec-
toral process. Given the contentious nature of high-stakes
elections, the stringent security requirements of voting sys-
tems, and the possibility of future interference by foreign
government intelligence agencies, it is crucial that the details
of any fielded election system be analyzable by the public. In
any democracy, the legitimacy of the government relies on
scrutiny and transparency of the democratic process to ensure

that no party or outside actor can unduly alter the outcome.

Methodologically, our analysis was significantly compli-
cated by Voatz’s lack of transparency — to our knowledge, in
previous security reviews of deployed Internet voting systems
(see Switzerland [42], Moscow [37], Estonia [68], and Wash-
ington D.C. [74]), researchers enjoyed significant information
about the voting infrastructure, often including the system’s
design and source code of the system itself.

We were instead forced to adopt a purely black-box
approach, and perform our analysis on a clean-room re-
implementation of the server gained by reverse engineering
Voatz’s publicly available Android application. We show that,
despite the increased effort and risks to validity, our analysis
is sufficient to gain a fair understanding of Voatz’s short-
comings. In particular, we demonstrate that our attacks stand
up against optimistic assumptions for the unknown parts of
Voatz’s infrastructure (see §5).

The rest of the paper is organized as follows: We begin in
§2 with short background on the security requirements of elec-
tions, Voatz’s claims of security, and known work analyzing
Voatz. We continue in §3 by describing our reverse engineer-
ing methodology, and discuss how we minimize threats to
validity. In §4, we illustrate Voatz’s system as discovered in
our methodology, including all parts of the voting process, the
server infrastructure, custom cryptography used, and provide
a brief discussion of factors we were unable to confirm in our
analysis. Next, §5 enumerates the attacks discovered in our
analysis of Voatz. We conclude with a discussion in §6 to pro-
vide lessons learned and recommendations for policymakers
in this space moving forward.

2 Background

In this section we describe some of the security requirements
commonly seen in proposed cryptographic voting systems.
We then discuss the claims made by Voatz, and conclude by
providing an overview of prior analyses of Voatz.

Voting as a research subject in both applied vulnerability
discovery and in cryptography is not new. Below is a short de-
scription of security definitions commonly used in the voting

1536 29th USENIX Security Symposium

USENIX Association

system literature.

Correctness and usability: To ensure the legitimacy of the
election, a voting system must convincingly show that all
eligible votes were cast as intended, collected as cast, and
counted as collected [19].

Receipt Freeness, Privacy, & Coercion Resistance:
Secret-ballot voting systems need to ensure that 1) No voter
is able to prove their selections (Receipt-Freeness), 2) that
no voter’s choices can be surreptitiously released or inferred
(Privacy), and 3) that a voter cannot cooperate with a coercer
to prove the way they voted (Coercion Resistance). These
properties are required to provide an election free from undue
influence: if a voter is able to prove the way they voted, they
can sell their vote, and if a voter’s preferences are leaked or
forced to be revealed, they may suffer harassment and coer-
cion [20, 30].

End-to-End Verifiability: End-to-End Verifiable (E2E-V)
voting systems have the property that voters receive proof that
their selections have been included, unmodified, in the final
tallying of all collected ballots, without the need to trust any
separate authority to do so. There have been research proto-
types developed that provide such guarantees while maintain-
ing coercion resistance, privacy, and receipt freeness using
techniques such as visual cryptography, homomorphic cryp-
tography, invisible ink, and mixnets [17,23,25, 65].

2.1 Voatz’s Claims of Security

Although there is no public, formal description of their system,
Voatz does make a number of claims about their system’s
security properties via their FAQ [6].

Immutability via a permissioned blockchain: Voatz
claims that once a vote has been submitted, Voatz uses
“...blockchain technology to ensure that...votes are verified
and immutably stored on multiple, geographically diverse ver-
ifying servers.” The FAQ goes into further detail, discussing
the provision of tokens for each ballot measure and candidate.

End-to-End vote encryption: Voatz makes multiple refer-
ences to votes themselves being encrypted “end to end.” To
the authors’ knowledge, there is no formal definition of “end
to end vote encryption;” for example, it is unclear where
the “ends” of an end to end encrypted voting scheme are. It
is worth noting that there exist homomorphic cryptography
schemes that tally votes over the vote ciphertexts, so that one
need only decrypt an aggregate vote, maintaining individual
voter privacy [18], but it is unclear from the FAQ if this is
what Voatz intends.

Voter anonymity: Voatz claims that “the identity of the voter
is doubly anonymized” by the smartphone and the blockchain,
and that, “Once submitted, all information is anonymized,
routed via a ‘mixnet’ and posted to the blockchain.”

Device compromise detection: Voatz claims to use multiple
methods to detect if a device has been jailbroken or contains
malware, and that “The Voatz app does not permit a voter to
vote if the operating system has been compromised.”

Voter Verified Audit Trail: Voatz claims that voters receive
a cryptographically-signed digital receipt of their ballot after
their vote has been submitted. The guarantees of such a receipt
are unclear, although, perhaps this is meant to provide similar
guarantees as E2E-V cryptosystems.

2.2 Prior Scrutiny of Voatz

While we are the first to publish an in-depth analysis of

Voatz, others have raised concerns about their system, security
claims, and lack of transparency. Jefferson et al [29] compiled
a long list of unanswered questions about Voatz, including the
app’s use of a third party, Jumio, as an ID verification service.
Several writers observed the election processing and audit of
the Voatz pilot during the 2019 Denver Municipal elections,
and found that the main activity of the audit was to compare a
server-generated PDF of a voter’s ballot with the blockchain
block recording the same [43, 69]. Kevin Beaumont found
what appeared to be several Voatz service-related credentials
on a public Github account [14], and that the Voatz webserver
was running several unpatched services [15]. Voatz responded
citing a report from the Qualys SSL checker as evidence of the
site’s security [55], and later claimed that the insecure server
Beaumont identified was an intentionally-insecure “honeypot
operation" [73]. As a result of this public scrutiny, in Novem-
ber 2019, U.S. Senator Ron Wyden called on the NSA and
DoD to perform an audit of Voatz [63].

3 Experimental Methodology

As performing a security analysis against a running election
server would raise a number of unacceptable legal and ethical
concerns [62], we instead chose to perform all of our analyses
in a “cleanroom” environment, connecting only to our own
servers. Special care was taken to ensure that our static and
dynamic analysis techniques could never interfere with Voatz
or any related services, and we went through great effort so
that nothing was intentionally transmitted to Voatz’s servers.”

To gain a better understanding of Voatz’s infrastructure,
we began by decompiling the most recent version of their
Android® application as found on the Google Play Store as
of January 1, 2020" and iteratively re-implemented a mini-
mal server that performs election processes as visible from
the app itself. This included interactions involved in device

’Indeed, at the time of analysis, Voatz’s servers appeared to be down
when tested with an unmodified app on a supported and up-to-date device.
3We did no analysis on and make no claims about Voatz’s i0S app.
#Version 1.1.60, SHA256
191927a013f6aac094c86392db4ecca825866ae62c6178589c02932563d142¢1

USENIX Association

29th USENIX Security Symposium 1537

registration, voter identification, and vote casting. We used
two devices for our dynamic analysis and development: a
Voatz-supported Pixel 2 XL running Android 9, and a Voatz-
unsupported Xiaomi Mi 4i running the Lineage OS with An-
droid 8, both jailbroken with the Magisk framework [2].

In order to redirect control to our own server, we were
forced to make some small changes to the application’s con-
trol flow. To reduce threats to validity, we limited these mod-
ifications to the minimum necessary in order to redirect all
network communication. We:

1. Disabled certificate pinning and replaced all external
connections to our Own Servers;

2. Disabled the application’s built-in malware and jailbreak
detection. Details are available in §5.1.1; and,

3. Removed additional encryption between the device and
all still active third parties, re-targeted all communica-
tion from these services to our own server, and reimple-
mented the necessary parts of their protocols as well.

While all of this could have been accomplished by stat-
ically modifying the program’s code, we instead opted to
dynamically modify or “hook” relevant parts of the code at
runtime using an Android modding framework. Modifications
therefore required no changes to the application code itself,
only to code running on our test devices, allowing for rapid
development and transparency about what was modified at
each stage of our analysis.

Despite this lengthy description, our codebase is relatively
simple. The on-device hooking code consists of ~500 lines
of Java that leverages the Xposed Framework, a series of
hooking libraries that are well supported and popular in the
Android modding community. Our server implementation is
~1200 lines of code written in Python using the Flask web

framework.
Account
Boot Creation App Usage

Enter E-mail/ l
phone)
2 Login View
¢ Elections
5
Device One-time l l
Handshake Password
1 3
Verify
i |dentiity Vote
. 6 8
Create 8-Digit
PIN
4

Figure 1: Voatz’s workflow as seen from the device.

4 Voatz’s System Design

In this section, we present Voatz’s infrastructure as recovered
through the methodology presented in §3. We begin with

Paper
Copy 8&%
A2
,/‘Auduovs‘\
7/ N
L .

E-mail |
/! “Blockchain Nodes”

Voatz Android
Client

-y

Ballot |
PDF?

Crashlytics

7

Zimperium

Symmetric
Key

H
i
Encrypted
DB

Device Enclave

Figure 2: Dataflow between Voatz components and external ser-
vices. Dashed lines are believed to exist but have not been directly
observed.

an overview of the system §4.1, illustrating the process by
which a user’s device interacts with the app during all stages
of the voting process including Voatz’s custom cryptographic
protocol §4.1.1, user registration and voter verification §4.2,
and vote casting §4.3. Finally, we discuss all non-protocol
device-side defensive measures we discovered §4.4.

4.1 Process Overview

Figure | presents a diagram of the steps that occur in-app
from login to election voting. They are:

1. The device initiates a handshake with the server, creating
a shared key which enables an extra layer of encryption
beyond TLS (Box 1). Communication between the de-
vice and Voatz server is described in §4.1.1.

2. The user creates an account by providing their E-mail
address, phone number, and an 8-digit PIN (Boxes 2-4).

3. The user logs in with this PIN (Box 5).

4. The user verifies their identity, using Voatz’s integration
with a third-party service called Jumio (Box 6). The app
requests a scan of the user’s photo ID, a recording of
their face, and the user’s address, and then sends all of
this information to Jumio’s servers.

5. The user selects from a list of open elections, and then
marks and submits their ballot. Depending on the elec-
tion configuration, Voatz can allow “vote-spoiling," so

3Vote spoiling refers to casting a new vote that invalidates all previously
cast ballots.

1538 29th USENIX Security Symposium

USENIX Association

111

qwertyuiop qwertyuiop
asdfghjk.|I asdf ghj k|

¢ zxcvbnma@ ¢ zxcvbnma@

(a) Initial screen. (b) Email & Phone. (c) OTP.

@ © s

(d) Pin number.

(e) First login. (f) Main screen.

Figure 3: The user registration process, connecting to our server reimplementation.

this process may be repeated prior to the election closing.
(Boxes 7-8)

Communication Figure 2 shows the communication be-
tween components of Voatz and other entities. As we were
only able to directly observe communication involving the
Voatz app, the rest of this diagram is an attempted reconstruc-
tion based on documents released by Voatz [50] and by the
Denver Elections Division [35].

The three primary third-party services used by the Voatz
app are the identify-verification service Jumio, a crash report-
ing service Crashlytics, and a device security service Zim-
perium. Of these, the most significant is Jumio, which Voatz
relies on for ID verification, and to which the app sends sub-
stantial personal information (see §4.2).

4.1.1 Voatz Server Handshake and Protocol

Voatz’s server is implemented as a REST application —
all communication between Voatz’s server and the appli-
cation occur as a series of JSON-encoded HTTPS GET,
PUT, and POST commands. The app’s REST server is
voatzapi.nimsim.com, with voatz.com only used for static
assets such as images and text. All parts of the protocol lever-
age the Android OS’s built-in TLS stack, and uses certificate
pinning to ensure that the incoming certificate is from a par-
ticular issuing Certificate Authority.

Next, on top of TLS, the system performs a “device hand-
shake” with the following steps:

1. The App generates 100 ECDSA SECP256R1 keypairs,
and sends the Server all 100 corresponding public keys.
The device saves only the 57th keypair (PKp,SKp).

2. The Server generates 100 ECDSA SECP256R1 key-
pairs, selects the 57th (PKs,SKy), and performs the rest
of an ECDH key exchange to generate a shared secret
(SKecdh)-

3. The Server generates AES-GCM parameters; a random
AES-GCM 256-bit symmetric key (SK,.s), a random
16-bit nonce (N), and a Tag (T').

4. The Server then sends the device the 100 public keys
generated above, including the PKy as the 57th key and
ECDH-Encrypt(SKecan; SKaes||N||T)

5. Out of the 100 public keys sent by the Server, the
App selects the 57th pubkey (PKjs), and finishes the
ECDH handshake to create the ECDH shared key
SK,cqn- Finally, it decrypts and parses the AES-GCM
parameters(SKes, N, T).

This handshake is performed every time the app is launched
for the first time, and, from this point forward in the app’s
execution, every communication between the App and the
Server is encrypted using the standard AES-GCM algorithm
by way of SK.s, in addition to the encryption provided by
TLS. Note that there is no authentication of the ECDSA keys
by the app, beyond the encapsulating TLS certificates. This
made it very simple to retarget the server — we replaced all
required URLSs in-app to our own and followed the protocol.
Further, this renders the use of the handshake somewhat un-
clear, as it offers no protection against active MITM attacks
over the authentication already provided by TLS.

It also is worth mentioning that all but the 57th keys are
abandoned immediately on the device side — both the extra-
neous secret keys the device generated in the first step and the
public keys it receives from the server. We conclude that this
100-key exchange is likely an attempt at obfuscation, rather
than serving any useful purpose to the security protocol.

4.2 User Registration & ID Verification

After the app has completed the device handshake, the user
can begin the registration process, which can be seen in Fig-
ure 3. Here the user is asked to submit their email and phone
number, and perform a One Time Password operation via

USENIX Association

29th USENIX Security Symposium 1539

923G 9@ P

X Scan document

5 > fussper
o, T Atk CAT

Upload successful

(a) Verification (b) Document se-(c) Picture of an (d) Face “selfie.” (e) Verification suc-

fragment. lect ID.

Cess.

Figure 4: The voter verification process as seen from our experimental environment.

SMS. Finally, the user selects an 8-digit PIN number which
is then sent to the server, and used extensively in user authen-
tication.

If the user has a fingerprint registered with their device,
they are given the option to “enroll” their fingerprint as an al-
ternative authentication mechanism. Effectively, this works by
storing the PIN on-disk, encrypted using a key biometrically
tied to the user’s fingerprint via the Android Keystore.

The Android Keystore is a system service that, if used
correctly,will perform various cryptographic operations on
behalf of the application, on application-level data, without
exposing the requisite key material to the application’s host
memory.® Further, when supported by the device’s hardware,
these device-level keys are stored in the manufacturer’s pro-
tected hardware, and can be made to require the user to enter
in their device password or fingerprint before they are used.

After registration, the user is asked to log in via the PIN
(or fingerprint decryption of the PIN). In addition to the PIN,
there are four pieces of information sent to the server to au-
thenticate the user at log in: a unique device ID generated via
Android’s ANDROID_ID system,7 a customer ID number,
a “nextKey” value, and an “auditToken”. The nextKey and
auditToken are originally received from the API server, are
never modified except when updated by the server, and do not
appear to be used in any device-side cryptography. How these
authentication parameters are stored is explored in §4.4.

After authentication, the user may still need to provide
some proof of identity, which requires visiting the verification
menu from the main screen (Figure 4a). When the user selects
the identity option, the app launches Jumio’s sub-activity to
select a document type (Figure 4b). The user is prompted to
take a photo of their ID or Passport (4c), and to take a selfie
photo (4d), after which a dialog prompts the user for their
registered voting address (not pictured). The app then uploads

6See Android’s Keystore documentation for details [12].
7See [13] for more information about Android’s local device UUIDs.

data to Jumio’s server, including the user’s photo, the voter’s
name, address, and photo ID (46).8 Finally, after receiving a
response from Jumio’s server, the app sends a subset of the
user’s data to Voatz’s server as well.

It is worth noting that the small, translucent logo in the
bottom right corner of the photos taken during this process
(Figures 4c, 4d) appears to be the only in-app indication to
the user that Jumio exists, and the only way a user would be
aware that this data is sent to a 3rd party.

4.3 Vote Casting

After the user is verified, the app queries the server for con-
figuration data relating to what events the voter is allowed to
participate in, activating a menu for the user to select from
available events (see Figure 5). This configuration data in-
cludes all events to which the voter has access, those events’
ballots, each ballot’s particular questions, and the options
available for those questions.

The voter begins by selecting an event (52), and is then
able to view questions associated with these particular events,
select responses (or no response at all, depending on the event
configuration), and submit their response to the server. At the
point of submission, the user is again asked to decrypt their
PIN (5e), which is used as a final authentication mechanism
before the ballot is submitted to the server.

It is important to note that the vote is not submitted directly
to any blockchain-like system, and is instead submitted via
this API server. Additionally, although the user is asked to
authenticate before submission, beyond the MAC associated
with the AES-GCM algorithm and enclosing TLS session, the
text of the vote itself is not otherwise signed. The only indica-
tion of blockchain-like tokens being submitted or exchanged

8 Furthermore, Jumio itself has disclosed that it uses a third party, Facetec,
to help analyze the video selfies [7]. As we do not have visibility into their ser-
vices, we cannot confirm whether or not Jumio actually transmits information
to Facetec-controlled servers.

1540 29th USENIX Security Symposium

USENIX Association

<« Ballot

Denver Municipal Election

2016 DENVER PRIMARY

This is event is amazing.

LONG DESCRIPTION!

(b) Ballot. (¢) Question.

(a) Event selection.

(d) Review.

You Voted!

(e) Submission. (f) PIN Decryption. (g) Success.

Figure 5: The voting process as seen in a mock election we created for this experiment.

is the “auditToken”, but this string is never altered by the app,
and appears to be a single, static value. Figure 10 shows the
entirety of what is sent to the server, AES-GCM encrypted,
after a user submits their vote.

4.4 Device-Side Defensive Measures

In the process of performing our analysis we discovered that
Voatz employs a number of obfuscation techniques, leverages
a third party virus scanning service, and uses an on-device
encrypted database to protect locally stored sensitive data.

On-disk encrypted database: After the registration has
been completed, the user’s login credentials (the nextKey,
auditToken, and customer ID number), as well as the voter’s
entire vote history, are locally stored in an encrypted database
using the Realm database framework [4]. When Voatz’s app
attempts to query the database, the Keystore asks the user to
authenticate via a fingerprint or PIN (see Figure 5f), before
performing the required operations.

The key for the database is linked directly to the user’s PIN;
specifically, the system runs PBKDF2 with SHA1 over the
PIN to generate the key. Recall that this allows the system
to use a fingerprint as an alternative method of decrypting
the database — At log in, the app can authenticate via the
fingerprint to decrypt the PIN, or use the PIN directly to
decrypt the database and gain access to the rest of the app.

Third-party Malware Detection (Zimperium): Voatz
leverages a third-party antivirus solution called Zimperium.
At initialization time, the Voatz app loads Zimperium’s code
as a separate service and registers a series of callbacks that
will alert the API Server if Zimperium detects a threat. This
message includes the details of the threat, the user ID, and
device ID, and the IP address of the offending device.
Zimperium’s scans include (but are not limited to) known
exploit proofs of concept, known malware, and indicators

that the user has installed known superuser tools indicative
of a rooted / jailbroken device. Additionally, Zimperium will
trigger callbacks if the user appears to have enabled Android’s
local debugging features such as remote adb debugging.

Partial Code Obfuscation and Packing: Without the de-
veloper taking extra precautions, Android apps may be read-
ily unpacked and decompiled to near the original source via
easy to use tools such as APKTool [1] and JADX [66]. How-
ever, much of the Voatz app is obfuscated using a packer that
presents several barriers to analysis.

First, many of the classes and function names were re-
named to random Unicode strings. Beyond making the re-
sulting decompilation more difficult to read, this obfuscation
also caused APKTool to crash, while JADX successfully com-
pleted decompilation, but left many of the resource files (in-
cluding application strings and images) unreadable. Voatz’s
app also contained a few zip files that appear to perform a
zip bomb attack [34], which defeats some implementations
of unzip. Finally, all included 3rd-party native libraries for
ARM failed to open in our version of IDA, although it is un-
clear if this was an active defensive measure as they were
successfully disassembled using Ghidra.

We were able to defeat the obfuscation by intensive manual
analysis and, in some cases, were aided in recovering the
original variable names by the app itself. First, the app uses
many libraries which internally depend on Java reflection,
rendering the obfuscator unable to rename any classes or
methods referenced in this way. Second, the app and some of
its libraries are written in Kotlin. While some Kotlin idioms
do not decompile easily to Java, the use of Kotlin overall
aids reverse-engineering — the Kotlin compiler inserts many
runtime checks into the code, each including a string with an
error message to display in case of failure. The class, function,
and variable names are often stored in these strings.

USENIX Association

29th USENIX Security Symposium 1541

String Obfuscation To further complicate static analysis,
the strings that control cryptographic parameters of the device
handshake (e.g. “AES-GCM?”) are obfuscated with an XOR-
based scheme and then automatically deobfuscated at runtime.
As the strings hidden in this way include error messages
generated by the Kotlin compiler, this appears to be the result
of an automated tool that had been enabled for only these
particular methods.

4.5 Unconfirmed Portions of the Process

As we lack access to Voatz’s servers and deliberately avoided
any interaction with them, there are unfortunately a few in-
stances where we are unable to confirm how certain third-
party actors in the system behave.

Zimperium execution confirmation: Zimperium may
communicate back to its own servers confirming that the
service is running, and then communicate if Zimperium is
active directly to Voatz. To the best of our knowledge, there
is no public documentation that suggests this is how Zim-
perium works, and we find no indication from the callbacks
associated with Zimperium that this is occurring, see §5.1.1.

Jumio voter confirmation: Jumio’s documentation dis-
cusses at length the optional ability to communicate with
Jumio’s servers for out-of-band verification of a user. Since
this is well a documented feature of the system, we assume
that Voatz’s API server receives confirmation directly from
Jumio’s servers for ID verification.

Ballot Receipts and the Blockchain: According to a Voatz
whitepaper, votes are recorded on a 32-node permissioned
blockchain spread across multiple Amazon AWS and Mi-
crosoft Azure datacenters [35]. Footage of the audit of the
2019 Denver Municipal elections shows that the auditing
process consists of manually inspecting blockchain blocks
indicating transactions, obtaining several fields including a
hash of the voter’s choices. The auditor then manually com-
pares the hash via a lookup table to a PDF displaying the
voter’s choices. These PDFs are allegedly also printed out
by the election authority as a paper record, and are redacted
versions of the receipt E-mailed to voters. While we know
that, in the Denver election, many voters manually replied to
indicate that they received a receipt, there is no evidence that
Voatz can automatically verify receipt delivery [43].

In our exploration of the code, we find no indication that
the app receives or validates any record that has been authen-
ticated to, or stored in, any form of a blockchain. We further
found no reference to hash chains, transparency logs, or other
cryptographic proofs of inclusion. We conclude that any use
of a blockchain by Voatz likely takes place purely on the
backend, or in the receipt stage via the use of some other
mechanism.

The only references to voter receipts in-app come from a
dialog that requests a passcode from the server, and an (ap-
parently unimplemented) QR code reader. The text of the
voter receipt dialog appears to confirm that ballot receipts
are indeed sent to the voter via email, and encrypted with the
server-provided password (see Figure 0). Voatz’s QR code
reader has functional code for an out-of-band method of re-
ceiving organization IDs, which allows the voter to participate
in particular events, and a largely unimplemented stub for ver-
ifying a vote — attempting to scan a QR code that would
start the process of vote verification will result in the “not yet
supported” message presented in Figure 6.

735 G O @P -

1052 G 9 @P -

TURN ON FLASHLIGHT

& Ballot Receipt Password

Ready to verify your vote?

VOTE_VERIFICATIONis not yet supported.

QRSc:

Figure 6: Left: the password request screen. Right: the
QR code capture screen; note the popup indicating that the
VOTE_VERIFICATION QR code type is unimplemented.

S Analysis and Attacks

In this section, we explore various attacks assuming the role
of an adversary that has control over particular parts of the
election system. This includes three adversaries with various
levels of access to individual parts of the overall infrastruc-
ture:

1. An attacker that has control of a user’s device,
2. An attacker that has control over Voatz’s API server, and

3. A network adversary that can intercept network activity
between voter’s device and the API server, but has no
further access.

We believe these adversaries to be credible given the high-
stakes nature of the elections in which Voatz is intended to be
used, and the resources of the associated attackers. Gaining
root control of a user’s device can happen through any number
of means requiring various levels of skill — via malware, an

1542 29th USENIX Security Symposium

USENIX Association

intimate partner or spouse, as part of a border crossing, etc.
Network adversaries could come in similarly many forms,
including those that exploit a user’s home router (which are
notoriously insecure [39,40]), the unencrypted coffee shop
wifl a user attempts to vote from, or the user’s ISP.
Including Voatz’s API server in this analysis is useful for
a number of reasons. While accessing Voatz’s server may
be more difficult than the user’s device and/or the network
infrastructure between the server and the user, if the use of
Voatz were to be raised to the point that their userbase may
alter the outcome of an election, it is not impossible for them
to be the target of nation-states, at which point, it is also not
outside of the realm of possibility that intelligence agencies
would expend considerable resources, leveraging undisclosed
0-day vulnerabilities, espionage, coercion, or physical attacks,
to gain access to crucial systems or key material. Further, a key
promise of the blockchain is that it provides an environment
where the voter and election authority may trust the system,
rather than Voatz, that the election was conducted correctly.

Assumptions & Threats to Validity As we lack concrete
implementation details about the server infrastructure or back-
end, we cannot make assumptions about what Voatz logs
to their blockchain, the operational security of their servers,
blockchain, or cryptographic keys used.

To limit risks to validity, our analysis will make no assump-
tions about the state of the server beyond what we can glean
from the app itself, and we will assume that all interactions, in-
cluding all cryptographic activities as seen from the device in
§4.1.1, are logged to the blockchain, and that these blockchain
records are secure, monitored, and immutable. This includes
all ciphertexts in the protocol, as well as any randomness used
in the algorithms.

Note that this is an optimistic analysis of the use of the
blockchain in this system. It is unlikely that every interaction
is stored via the blockchain, and Voatz’s documentation of the
West Virginia election indicates that the verifying servers are
split equally between Amazon AWS and Microsoft’s Azure

— indicating that their scheme is vulnerable to Microsoft or
Amazon surreptitiously adding resources and executing a 51%
attack, or performing a selfish mining attack that requires only
1/3 of the compute power [32].

Nonetheless, we focus on what is provable given our lim-
ited access to the system, and show that this analysis is suffi-
cient to demonstrate a number of significant attacks.

5.1 Client-Side Attacks

We find that an attacker with root privileges on the device can
disable Voatz’s host-based protections, and therefore stealthily
control the user’s vote, expose her private ballot, and exfiltrate
the user’s PIN and other data used to authenticate to the server.

argClass = loadClass("com.zimperium.DetectionCallback");

findAndHookMethod ("com.zimperium.ZDetection", loader,
"addDetectionCallback", argClass, new XC_MethodHook () {
void beforeHookedMethod (MethodHookParam p) {
p.setResult (null);
}
Hi

Figure 7: Simplified code to disable the Zimperium security SDK.

5.1.1 Defeating Host-based Malware Detection

The Zimperium SDK included within Voatz is set to detect
debugging and other attempts to modify the app, and to collect
intelligence on any malware it finds. By default, it would have
detected our security analysis, prevented the app from running
normally, and alerted the API server of our actions.

As mentioned in §4.4, Zimperium communicates with the
Voatz app, and ultimately with Voatz’s API server, via a set of
callbacks initiated when the app loads. Defeating Zimperium
was therefore as simple as overriding its entry points to pre-
vent the SDK from executing. The hooking utilities provided
by the Xposed Framework allow us to divert control flow with
minimal effort — Figure 7 shows the code to disable one of
its two entry points; in total, disabling Zimperium required
four lines of code, and is imperceptible to the user.

We assume that there is no out-of-band communication
between Zimperium and Voatz, and find no indication in either
Zimperium’s documentation or in our analysis of the app that
this service exists. If such communication does exist, it would
only marginally increase the effort required to defeat it; one
would need to hook other parts of Zimperium that perform
detection, or communicate with their server directly.

5.1.2 Full control over the user, on or off device

Once host-based malware detection has been neutralized, an
attacker with root privileges has the ability to completely
control the user’s actions and view of the app, as well as leak
the user’s ballot decisions and personal information.

Stealing User Authentication Data: Despite being en-
crypted with keys that leverage the Android Keystore, the
user’s PIN and other login information are not stored in pro-
tected storage, and do pass through the application’s memory.
Exfiltrating these key pieces of information would allow a
remote attacker to impersonate the user to Voatz’s servers
directly, even off-device.

We find that an attacker with root access to the device can
surreptitiously steal the PIN and the rest of Voatz’s authen-
tication data. In the process of performing our analysis, we
developed a tool that intercepts and logs all communication
between the device and the server before it is encrypted with
SK,es, as well as before data is encrypted and stored in the

USENIX Association

29th USENIX Security Symposium 1543

local database. This allowed us to see, in plaintext, both the
user’s raw PIN and other authentication data. While our proof
of concept stops at logging this information via Android’s
system debug features (adb logcat), it would be trivial to
broadcast these requests over the network, modify them, or
stop them from occurring at all.

An attacker need not necessarily wait until the user decides
to vote — offline attacks against Voatz’s scheme are also
entirely possible. Recall that the database requires only the
user’s PIN to unlock, and in no way limits the number of times
this PIN might be attempted. Worse, the app artificially limits
the PIN to exactly 8 numeric characters, meaning that there
are only 100,000,000 possible PINs.” A brute force attack can
therefore easily rediscover the PIN by repeatedly generating
keys and attempting to decrypt the database, recovering the
PIN, login information, and vote history of the user all at
once. '

Such a brute force attack can be performed fairly rapidly.
Note that an attacker need not do this on-device, as the en-
crypted database file can be exported. We implemented a
prototype of this attack and confirmed that an attacker can
brute-force the key in roughly two days on a 3.1GHz 2017
MacBook Pro. We conclude that such a threat is viable, par-
ticularly if the same installation of Voatz will be used across
multiple elections.

Stealth UI Modification Attack: It is straightforward to
modify the app so that it submits any attacker-desired vote,
yet presents the same UI as if the app recorded the user’s
submission. If the election configuration allows vote-spoiling,
there is also a variant of this attack previously demonstrated
on the Estonian e-voting system: allow the user to vote nor-
mally, but change the vote once the user closes the app [68].
Similarly, the attacker could stealthily suppress voter’s
choices if they select an undesired candidate, but continue to
show the verification dialog as if the vote had successfully
been cast. To the election authority, this might be indistin-
guishable from the voter failing to submit a ballot. To the
voter, this is indistinguishable from correctly voting, at least
until the authority releases voter records for that election.'’

5.2 Server Attacks

We find that, assuming the optimistic use of the blockchain
discussed in the threat model, Voatz’s server is still capable of
surreptitiously violating user privacy, altering the user’s vote,
and controlling the outcome of the election.

In particular, we find that the protocol discussed in §4.1.1
provides no guarantees against the API server actively alter-

9Voatz also forbids PINs containing 3 consecutive identical digits, which
eliminates ~5% of these.

10A salt is also required to unlock the database. This is stored on disk,
unencrypted, in the app’s shared preferences file.

UFor U.S. elections, public records often list which voters participated.

ing, viewing, or inventing communication from the device; the
server can execute an active MITM attack between the user
device and whatever blockchain or mixnet mechanism exists
on the other end. Note that there is no other cryptographic
operation performed between the device and the server at any
point other than the AES encryption, including any sort of
cryptographic signing by the device or the device’s Keystore.
If the server performs these cryptographic operations itself
— that SK, is available to the server — it can decrypt the
user’s ballot before it is submitted to any external log and
convincingly re-encrypt any value to be sent to the log.

Even if SK,., is not available to the server — for example,
if all cryptographic operations are performed in a Hardware
Security Module (HSM) — it must then at least have access
to the unencrypted TLS stream, and so it is still possible for
the server to execute an active MITM attack.

Recall there is no public key authentication performed as
a part of the device handshake, and there is no proof or veri-
fication by the device that these interactions are ever logged
on the blockchain. The server can therefore terminate the
connection before the HSM and arbitrarily impersonate the
user’s device by, e.g., replaying the entire device handshake
and all future communication back through the HSM to the
blockchain.'? Note that, given these attacks, it is unclear if
there exists a scheme in which a receipt can convincingly
prove that the correct vote was logged.

5.3 Network Adversary

124 G 9 @ P own

<« Contest 10f 1 Choice = {
" choiceDetails ": {"imageUrl":SHORT_IMG,

"webUrl":SHORT_IMG},

ICIPAL ELECTION

THIS IS A DESCRIPTION OF THE EVENT
STATEMENT SUMMARY

"nonSelectable ": False
1
Choice? = {

" choiceDetails ": { "imageUrl’:
LONG DESCRIPTION! LONG_IMG_URL, "webUrl" :

LONG_IMG_URL},
= "choiceld":"2",
ﬁ ® " description ":"Long Description !"
o " description 1":"See? It”s super long.
sfalajsdB88++* 11 RSKAR REALLLY long.111111",
" description 2": "EPICALLY

Next) LOOOOOOOO0O000ONG...."
"isWriteIn": False,
"nonSelectable ": False

}

H SHORT ®

00f 1 Answered

< o []

(a) Question. (b) Corresponding JSON.

Figure 8: Voting sidechannel attack explained.

12Perhaps this hypothetical HSM also contains the TLS keys required
to terminate the connection, and performs all cryptographic operations in
the enclave. However, all communication is encrypted with SK,, including
those that require queries against databases of users, it is therefore unclear
that this is the case, but, even so, the server is capable of performing a number
of attacks on the user. See §5.3.

1544 29th USENIX Security Symposium

USENIX Association

Size of TLS Packets From Voatz App to the API Server
2000 - BN Short Candidate

Long Candidate

=)
S
3

1500

1338

;)
Q
S

%3
=3
S

a7s ars,

352352 343 343 351350

Encrypted TLS Packet Size (bytes)
: B
=] (=]

S}
G
S

o

) < wn ©
Packet Order Observed

Figure 9: TLS encrypted packet lengths immediately after a user
submits a vote, in order sent. Note the size of the “short” and “long”
candidate in packet 1.

We find that an adversary with the ability to view the user’s
network activity, without access to any key material, can
still infer how the user voted. Specifically, in this section
we demonstrate that the app leaks the length of the plain-
text, which can allow an attacker to learn, at minimum, which
candidate the user voted for.

The vulnerability stems from the way in which a ballot
is submitted to the server after a user is done selecting their
options. As shown in Figure 10, the “choices” list in a vote
submission contains only the options selected by the user,
and includes with that choice the entirety of the metadata
provided by the server about that candidate. This, in turn,
causes the length of the ciphertext to vary widely depending
on the choices of the voter.

Figure 8b shows the differences in metadata sent to and
from the server between the two candidates as displayed in-
app in Figure 8a. Note that the URLs and other metadata
provided are also potentially variable length, and the length
of the URL is completely imperceptible to the user.

We verified this vulnerability by setting up a proxy between
our app and our API server and recording all communication
via tcpdump. We then used the app to participate in an elec-
tion twice, once voting for the “short” candidate and once for
the “long” candidate. Figure 9 shows the resulting ciphertext
sizes in bytes (specifically, the TLS Application Data field’s
length per packet) in both runs — in both cases the second
packet (packet #1) corresponds to the actual vote submission,
where the rest are other miscellaneous protocol queries in-
volved in vote casting and user maintenance. The length of
this packet clearly leaks which candidate was selected, is eas-
ily distinguishable from other packets in the protocol, and,
importantly, its size is unaffected by any parameters that vary
by user."”

It is worth noting that, ironically, Voatz’s additional cryp-

13The size of the ciphertext will not vary depending on the user, but may
vary minimally depending on the phone’s TLS implementation.

tography exacerbates this vulnerability. In Voatz’s implemen-
tation, data is gzip-compressed at the application layer prior to
being encrypted via TLS, which could have offered some pri-
vacy, assuming the compression alone was enough to hide the
size differences between plaintexts. Because Voatz encrypts
outgoing data before the system applies gzip, and compress-
ing an already encrypted payload will not reduce its size, this
step is rendered immaterial and the length of the final packet’s
ciphertext is kept proportional to the size of the plaintext.
The result is that (although the figures presented here do in-
tentionally add text to exaggerate the affect for pedagogical
purposes), a modest few bytes’ difference can be significant
enough to determine the voter’s preferences.

For this attack to work, we make the following two assump-
tions:

1. The attacker can learn the ballot options presented (per-
haps by themselves voting and gaining access to the
JSON representation of the ballot options).

2. The server does not somehow send the ballot options to
the device padded to be of equal length.

The first assumption is likely not an issue given the attacks
presented in §5.1. For example, an attacker need only be a
registered voter, have previously exploited a registered voter’s
device and witnessed their ballot options, or otherwise moni-
tored a voter casting a ballot in a particular way and recorded
the result.

The second assumption is also a likely to hold, as we find
no evidence that the app is defending against this attack —
there is no code to remove extraneous symbols or whitespace
from ballot questions before they are presented, and other
transactions that involve sensitive user information are fully
generated device-side and independent of the server (like
the user’s name, age, and location), and are also not padded.
Finally, if this assumption does not hold, a limited version of
the attack is still viable: if the user selects no candidate and
skips the question completely, the device sends the server an
empty list.

Note that this sidechannel allows the attacker to detect the
voter’s intent before the ballot arrives at the server. If the
attacker is in a position to block packets on their way to the
server, (as, for example, an ISP or network owner would), the
adversary could intentionally drop this packet and adaptively
stop the voter from submitting their ballot. To the user, this
would look like a service interruption on Voatz’s end, and
may degrade the experience enough to stop the voter from
casting their ballot at all.

5.4 Other Observations and Weaknesses

Privacy and geostrategic concerns: The Voatz app is in-
credibly privacy invasive. Information sent to Voatz and/or
third parties associated with this service include the user’s

USENIX Association

29th USENIX Security Symposium 1545

email, physical address, exact birth date, IP address, a current
photo of themselves, their device’s model and OS version,
and preferred language. The app also requests permissions
to read the user’s GPS upon first login, though we have not
identified what exactly the app does with this information.
Finally, Voatz makes extensive use of third party code (see
Appendix B); Voatz includes over 22 libraries provided by 20
different vendors.

One of the reported uses of Voatz’s software is overseas
military voters, indicating that information leaked about its
users could also potentially provide adversaries with informa-
tion about U.S. military deployments. Note that the voter’s IP
address alone can carry information about the user’s location
— s0 Jumio, Crashlytics, and Zimperium can therefore infer
troop deployments.

Susceptibility to Coercion: As mentioned in 4.2, the app
never requires the voter to re-enter their PIN at log-in after
registration, and does not appear to show the user if a bal-
lot has been re-voted or spoiled. This indicates that the app
leaves users vulnerable to coercion attacks. Consider a voter
asleep or otherwise incapacitated. Assuming the attacker has
physical access to the device and user, and that the device is
unlockable via the user’s fingerprint, an attacker would eas-
ily have the ability to cast a vote on behalf of the user. This
threat model is very relevant in the case of intimate partner
abuse [28, 54].

5.5 Voter Verified Receipt

From what can be discerned from the available documentation
and the app’s code, it is very unclear what guarantees Voatz’s
receipt provides. Outside of the password request feature
mentioned in §4.3, there is no mention of the receipt in the
app or its binary, and it does not appear that the app provides
any method of verifying that the ballot was counted in the
blockchain of record — or, beyond Voatz’s documentation,
that any such blockchain exists.

It is further unclear if Voatz’s system is E2E-V. To the
authors’ knowledge, E2E-V systems in the research literature
usually require a voter to visit a polling place and use a paper
ballot (e.g. Scantegrity [25] and StarVote [16]), an out-of-band
communication before or after the election (see, e.g., code
voting [24] and Remotegrity [76]), or a means of performing
cryptographic challenges at submission time (see Helios [10]).
Assuming that the PDF sent to the user contains no running
code, how the system could possibly achieve E2E-V would be
difficult to ascertain, and, while Voatz’s FAQ appears to tout
voter verifiability, it does not explicitly claim to be E2E-V.

In any event, there are significant practical challenges in
providing such receipts. In the case that the app did present
some sort of concrete cryptographic verification without E2E-
V, this could allow the user to prove the way they voted —
violating the requirements of receipt freeness and coercion

resistance. If the receipt arrives as an encrypted PDF, it is
unclear how Voatz can prove to the user that the encrypted
PDF actually came from Voatz, and, if it is verified in-app,
how one would protect the verification process from the Ul
modification attacks presented in §5.

Finally, there are significant usability concerns of the re-
ceipt that require analysis — What remediation does a user
have if the submitted ballot and receipt do not match? How
does a user know when to expect a receipt? If the receipt
is sent or delayed until post-certification of the election, is
there no remediation of a mistake? How does one incentivize
voters to perform the challenges required for the verification
system to be effective? We further note that many of these
questions are rooted in open research problems in the E2E-V
space [20].

Transparency in design here would help elections officials
and voters understand these tradeoffs, and without further
information, a full analysis of these receipts is not possible.

6 Discussion & Conclusion

Responsible Disclosure: Given the heightened sensitivity
surrounding election security issues, and due to concerns of
potential retaliation, we chose to alert the U.S. Department of
Homeland Security (DHS) and anonymously coordinate dis-
closure through their Cybersecurity and Infrastructure Secu-
rity Agency (CISA). Before publicly announcing our findings,
we received confirmation from the vendor, and, while they
disputed the severity of the issues, they appeared to confirm
the existence of the side channel vulnerability, and the PIN
entropy issues.'* We also spoke directly with affected election
officials in an effort to reduce the potential for harming any
election processes.

Bug Bounties as a Transparency and Auditing Tool: As
previously mentioned, we analyzed the most recent version
of the app available in the Google Play store as of January 1,
2020. Voatz also provides a “bug bounty” version of the app
via a third party service called HackerOne [5]. The company
touts the bug bounty as evidence of Voatz’s commitment to
independent audits, as well as “community vetting” of the
product [6]. We chose not to examine this version of the app
for several reasons.

First, evaluating the bounty app alone would introduce
additional threats to validity, and as the differences between
this version and the ones that have been fielded are unclear,
we chose to err on the side of realism. Worse, all apps are
independently randomly obfuscated such that static analysis
of each requires a lengthy manual deobfuscation process, so

14The vendor shared additional information, but, as those details were part
of confidential communications in the vulnerability disclosure process, they
are not included in this paper. Nothing provided by the vendor contradicts
the factual findings in this paper.

1546 29th USENIX Security Symposium

USENIX Association

repeating this work on a second app represents significant
additional effort.

Second, crucially, the bounty does not provide any addi-
tional helpful insight into Voatz’s server infrastructure, nor
does it provide any source or binary for the API server to test
against. Indeed, when the decision to analyze the live app was
made, both Voatz’s bug bounty app and the Google Play app
failed to connect.

Finally, the terms of the bug bounty contain untenable re-
strictions that hinder an open dialog about the system. For
example, the bug bounty excludes both MITM attacks and
attacks requiring physical access to the device. This physical
access restriction could be read to exclude all of our on-device
attacks — To simulate an attacker with access to a remote root-
level vulnerability, we used a manual jail-breaking technique
which happens to require physical access. The MITM restric-
tion would similarly put the sidechannel attack, as well as
the analysis of an adversary that controls Voatz’s API server,
explicitly out of scope. Worse, the bug bounty, in coordina-
tion with their “responsible disclosure policy,” also denies
researchers safe harbor unless they wait to disclose their find-
ings until some arbitrary time that Voatz decrees the bug fix
to be fully deployed [8].

In short, the bug bounty appears to restrict the researcher
from disclosure, fails to provide adequate resources for anal-
ysis, and arbitrarily considers whole classes of realistic vul-
nerabilities outside of the scope of the exercise. We conclude
that the bug bounty is not particularly relevant for allowing
researchers to vet, audit, or improve the system’s security, and
serves as an example of how such engagements may not be as
effective as one may hope. If the goal is to maximize the util-
ity of audits and increase transparency through a bug bounty,
vendors could provide source code for both the server and
client, publish full system implementation and operational
details, and explicitly free researchers to divulge their findings
after the industry-standard 90 days, or, at the very least, on a
fixed, publicly-available time schedule.

A Note on the Importance of Transparency: The lack of
public source and incomplete documentation exacerbate many
of the security and information privacy risks documented in
this paper, and serve as an example of the importance of
transparency in election software. While we had to expend
considerable time and effort to deobfuscate Voatz’s app and
make the results accessible for analysis, the flaws themselves
are hardly novel — sidechannel attacks are well known in
the cryptographic engineering and research literature, and
many of the other issues appear to be the result of poor design
and nonstandard implementation. Open access to their code,
system design, and running test implementations would have
likely revealed these flaws rapidly and encouraged Voatz to
fix them, or at least dissuade election officials from putting
the voting public at risk.

It is also clear that Voatz’s lack of transparency did not sig-

nificantly hinder our ability to discover the flaws presented in
this paper, and will similarly fail to prevent a well-resourced
adversary from doing the same. In our analysis, we never
intentionally connected to Voatz’s servers, and retargeted all
communication (including Crashlytics, Jumio, and Voatz’s
API server) to our own infrastructure both to avoid disrupt-
ing their systems and to comply with the law. Criminals or
foreign intelligence agencies, on the other hand, are not con-
strained to follow U.S. law and would likely have no qualms
about disrupting normal operations, including by connecting
to Voatz’s servers or attacking Voatz directly. Such adversaries
will therefore have an easier time discovering exploitable vul-
nerabilities, and are more free to explore flaws we were unable
to investigate; it is possible that Voatz’s backend, server infras-
tructure, blockchain implementation, and other parts of their
service have issues that are impossible to analyze without
further access.

Finally, the lack of explicit disclosure specifying exactly
what voter information is collected, how it is used, how long
it will be retained, and what third parties may have access
constitutes a sharp deviation from privacy best practices, and
is an especially concerning omission given the sensitivity of
voting information. As mentioned in §4.2, the only notifica-
tion to the user that Jumio exists is the faint logo placed in the
lower right corner of the app’s photo screen, and we found
no user-accessible indication that Zimperium or Crashlytics
are used at all. While the privacy policy does state that Voatz
“may transfer Personal Information to third parties for the
purpose of providing the Services,” it never discloses what
information or to whom. Without knowledge of where their
personal information is going, there can be no informed con-
sent — as it stands, even the most diligent and privacy-focused
individual is likely to misunderstand and assume that their
data, particularly their ID information, is only being shared
with Voatz.

While Voatz does have a privacy policy, its lack of trans-
parency on important privacy practices such as third-party
data sharing leaves voter data unprotected. Beyond serving as
a notice to consumers, privacy policies are a critical part of
the privacy protection framework, especially in jurisdictions
such as the United States that lack comprehensive privacy
laws; individual commercial privacy is generally protected
in the U.S. only if companies make concrete commitments
in their stated privacy policies [67]. For example, because
Voatz does not place any explicit data retention time limits
on Jumio in a publicly-visible privacy policy, users are at risk
of having sensitive election-related information held indefi-
nitely. Barring local statutory restrictions and/or contractual
obligations unknown to the authors, the lack of a concrete
privacy policy renders Voatz and their partners unaccountable
for such privacy failures, and makes it unclear if Voatz can use
the information outside of the context of the election itself.

USENIX Association

29th USENIX Security Symposium 1547

Conclusion: Beginning with West Virginia, Utah, and Col-
orado, the U.S. has ventured down the path of Internet voting.
Despite the concern expressed by experts, one company has
sold the promise of secure mobile voting, using biometrics,
blockchain, and hardware-backed cryptography.

Yet our analysis has shown that this application is not se-
cure. A passive network adversary can discover a user’s vote,
and an active one can disrupt transmission in response. An
attacker that controls a user’s device also controls their vote,
easily brushing aside the app’s built-in countermeasures. And
our analysis of the protocol shows that one who controls the
server likely has full power to observe, alter, and add votes as
they please.

A natural question may be why such a service was fielded
in the first place. Speaking to the Harvard Business Review,
Voatz backer and political philanthropist Bradley Tusk stated:

It’s not that the cybersecurity people are bad people
per se. I think it’s that they are solving for one
situation, and I am solving for another. They want
zero technology risk in any way, shape, or form. [...]
I am solving for the problem of turnout. [73]

While we appreciate and share Tusk’s desire to increase
voter participation, we do not agree that the security risks
in this domain are negligible; we believe that the issues pre-
sented in this work outweigh the potential gains in turnout.'”
As we have shown in this paper, vulnerabilities in Voatz and
the problems caused by a lack of transparency are very real,
the choice here is not about turnout, but about an adversary
controlling the election result and a loss of voter privacy, im-
pugning the integrity of the election.

Given the severity of failings discussed in this paper, the
lack of transparency, the risks to voter privacy, and the trivial
nature of the attacks, we suggest that any near-future plans
to use this app for high-stakes elections be abandoned. We
further recommend that any future designs for voting systems
(and related systems such as e-pollbooks) be made public,
and that their details, source, threat model, as well as social
and human processes be available for public scrutiny.

Note that all attacks presented in this paper are viable re-
gardless of the app’s purported use of a blockchain, biomet-
rics, hardware-backed enclaves, and mixnets. We join other
researchers in remaining skeptical of the security provided
by blockchain-based solutions to voting [29,41,60], and of
internet voting in general [58], and believe that this serves
as an object lesson in security — that the purported use of a
series of tools does not indicate that a solution provides any
real guarantees of security.

It remains unclear if any electronic-only mobile or Inter-
net voting system can practically overcome the stringent se-
curity requirements on election systems. Indeed, this work

S1ndeed, it is unclear if mobile and internet voting actually increases voter
turnout. A study from Switzerland [38] finds, somewhat surprisingly, no
statistically significant increase in voter participation.

adds to the litany of serious flaws discovered in electronic-
only approaches, and supports the conclusion that the current
standard — software independent [61] systems using voter-
verified paper ballots and Risk Limiting Audits [52] — remain
the most secure option. It is the burden of the developer to
prove that their system is as secure as these well-vetted meth-
ods, to both the public and the security community, before
it can be trusted as a crucial component in the democratic
process.

Postscript

A preprint of this paper was publicly disseminated on Febru-
ary 13th, 2020 and covered in press reports [64]. As a result
of our findings, Mason County, Washington, announced it
would discontinue using Voatz, followed quickly by West
Virginia [26].

Instead of addressing the vulnerabilities reported in this
paper, Voatz responded by attacking the credibility of this
analysis. In both a public press call [9] and in a blog post en-
titled ““Voatz Response to Researchers’ Flawed Report,” [72]
company officials downplayed the severity of the findings, im-
pugned our intent as well as this paper’s overall methodology,
and claimed that we examined an outdated version of the app
— but oddly never denied the findings themselves.

On March 13, 2020, Trail of Bits, a third-party security firm,
released a document detailing a white-box security analysis
of Voatz [3]. Their analysis cites this paper, confirms the ve-
racity and severity of all findings reported here, and explicitly
contradicts Voatz’s criticism — supporting our methodology
as an industry-standard process and affirming that there were
no security relevant differences between the app we examined
and the internal master. Trail of Bits also confirmed that the
server-side code contained further vulnerabilities opaque to
us (finding 48 issues in total) and that Voatz’s protocol is not
E2E-V, found no evidence of the mixnet claimed by Voatz,
and reported that Zimperium was entirely disabled in at least
one of their most recent pilots. Finally, HackerOne has since
removed Voatz’s bug bounty from their platform — a company
first — citing concerns around Voatz’s apparent inability to
interact in good-faith with security researchers [53].

Despite the findings of the Trail of Bits audit (funded by
Voatz) Voatz’s CEO continues to publicly deny the veracity
of our findings, claiming that “there are like so many errors in
the MIT report, that it’s just really really hard to accept that
report” [36].

Acknowledgments

We are eternally thankful for the team at the BU/MIT Tech-
nology Law Clinic led by Andy Sellars, Tiffany C. Li, and
students John Dugger, Quinn Heath, and Eric Pfauth. Without
this fantastic team’s advice, patience, and effort, this paper

1548 29th USENIX Security Symposium

USENIX Association

would never have been released. We would further like to
thank Matt Blaze, Matt Green, Joseph Kiniry, Barbara Si-
mons, David Jefferson, Neha Narula, Sunoo Park, Ron Rivest,
Charles Stewart, and Gerry Sussman for providing feedback
and insight.

Michael Specter and Danny Weitzner are supported, in part,
by the MIT Internet Policy Research Initiative, and Specter
is further supported by the Google’s Android Security and
Prlvacy REsearch (ASPIRE) fellowship. James Koppel was
supported by Toyota Research Institute.

References
[1] Apktool. ibotpeaches.github.io/Apktool.
[2] Magisk manager. https://magiskmanager.com/.

[3] Our Full Report on the Voatz Mobile Voting Platform |
Trail of Bits Blog. https://blog.trailofbits.com/
2020/03/13/our-full-report-on-the-voatz-
mobile-voting-platform/.

[4] Realm. https://realm.io/.

[5] Voatz - Bug Bounty Program. https://hackerone.
com/voatz.

[6] Voatz FAQ. https://voatz.com/faqg.html [https:
//perma.cc/FBQ8-N875].

[7] Stay Secure with Jumio’s Certified 3D Liveness De-
tection. https://www.jumio.com/about/press-
releases/3d-liveness—detection/, 2018.

[8] Voatz Security Issue Disclosure Policy. https://blog.
voatz.com/?p=1278, August 2018. Library Catalog:
blog.voatz.com Section: Technology.

[9] Voatz Open Press Call Transcribed from February 13,
2020, February 2020. Library Catalog: blog.voatz.com
Section: US.

[10] Ben Adida. Helios: Web-based Open-Audit Voting. In
USENIX security symposium, volume 17, pages 335—
348, 2008.

[11] Andrew Yang. Modernize Voting. https://www.
yang2020.com/policies/modernize-voting/.

[12] Android. Android keystore system. https:
//developer.android.com/training/articles/
keystore.

[13] Android. Settings.Secure | Android Develop-
ers. https://developer.android.com/reference/
android/provider/Settings.Secure.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

Kevin Beaumont. Somebody sent me a link
to another Github account, with the author name
listed at Voatz. It has hardcoded username and
passwords. https://twitter.com/GossiTheDog/
status/1026904510386585600, August 2018.

Kevin Beaumont. The Voatz website is running on a box
with out of date SSH, Apache (multiple CVSS 9+), PHP
etc. https://twitter.com/GossiTheDog/status/
1026607447996354561, August 2018.

Susan Bell, Josh Benaloh, Michael D. Byrne, Dana De-
Beauvoir, Bryce Eakin, Philip Kortum, Neal McBurnett,
Olivier Pereira, Philip B. Stark, and Dan S. Wallach.
STAR-Vote: A secure, transparent, auditable, and reli-
able voting system. In 2013 Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 13), 2013.

Susan Bell, Josh Benaloh, Michael D Byrne, Dana De-
Beauvoir, Bryce Eakin, Philip Kortum, Neal McBurnett,
Olivier Pereira, Philip B Stark, Dan S Wallach, et al.
Star-vote: A secure, transparent, auditable, and reliable
voting system. In 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/-
WOTE 13), 2013.

Josh Benaloh. Simple Verifiable Elections. EVT, 6:5-5,
2006.

Josh Benaloh. Ballot Casting Assurance via Voter-
Initiated Poll Station Auditing. EVT, 7:14—14, 2007.

Matthew Bernhard, Josh Benaloh, J. Alex Halderman,
Ronald L. Rivest, Peter YA Ryan, Philip B. Stark,
Vanessa Teague, Poorvi L. Vora, and Dan S. Wallach.
Public evidence from secret ballots. In International
Joint Conference on Electronic Voting, pages 84—109.
Springer, 2017.

Matt Blaze, Jake Braun, and Cambridge Global Advi-
sors. DEFCON 25 Voting Machine Hacking Village.
Proceedings of DEFCON, Washington DC, pages 1-18,
2017.

Joseph A. Calandrino, Ariel J. Feldman, J. Alex Halder-
man, David Wagner, Harlan Yu, and William P. Zeller.
Source code review of the Diebold voting system. Uni-
versity of California, Berkeley under contract to the Cal-
ifornia Secretary of State, 2007.

D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security Privacy, 2(1):38-47, January
2004.

David Chaum. Surevote: technical overview. In
Proceedings of the workshop on trustworthy elections
(WOTE’01), 2001.

USENIX Association

29th USENIX Security Symposium 1549

ibotpeaches.github.io/Apktool
https://magiskmanager.com/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://blog.trailofbits.com/2020/03/13/our-full-report-on-the-voatz-mobile-voting-platform/
https://realm.io/
https://hackerone.com/voatz
https://hackerone.com/voatz
https://voatz.com/faq.html
https://perma.cc/FBQ8-N875
https://perma.cc/FBQ8-N875
https://www.jumio.com/about/press-releases/3d-liveness-detection/
https://www.jumio.com/about/press-releases/3d-liveness-detection/
https://blog.voatz.com/?p=1278
https://blog.voatz.com/?p=1278
https://www.yang2020.com/policies/modernize-voting/
https://www.yang2020.com/policies/modernize-voting/
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/provider/Settings.Secure
https://developer.android.com/reference/android/provider/Settings.Secure
https://twitter.com/GossiTheDog/status/1026904510386585600
https://twitter.com/GossiTheDog/status/1026904510386585600
https://twitter.com/GossiTheDog/status/1026607447996354561
https://twitter.com/GossiTheDog/status/1026607447996354561

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

David Chaum, Richard Carback, Jeremy Clark, Alek-
sander Essex, Stefan Popoveniuc, Ronald L Rivest, Pe-
ter YA Ryan, Emily Shen, and Alan T Sherman. Scant-
egrity II: End-to-End Verifiability for Optical Scan Elec-
tion Systems using Invisible Ink Confirmation Codes.
EVT, 8:1-13, 2008.

Kevin Collier. West Virginia backtracks on using smart-
phone voting app in state primary. Library Catalog:
www.nbcnews.com.

Connie Loizos. Voatz has raised $7 million in Se-
ries A funding for its mobile voting technology, June
2019. http://social.techcrunch.com/2019/06/
06/voatz/.

Sunny Consolvo. Privacy and Security Practices of
Individuals Coping with Intimate Partner Abuse. 2017.

David Jefferson, Duncan Buell, Kevin Skoglund,
Joe Kiniry, and Joshua Greenbaum. What We
Don’t Know About the Voatz “Blockchain”
Internet Voting System. https://cse.sc.
edu/~buell/blockchain-papers/documents/
WhatWeDontKnowAbouttheVoatz_Blockchain_
.pdf, May 2019.

S. Delaune, S. Kremer, and M. Ryan. Coercion-
resistance and receipt-freeness in electronic voting. In
19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 12 pp.—42, July 2006. ISSN: 2377-
5459.

Election Assistance Commission. EAC Releases
Annual Grant Expenditure Report, August 2017.
https://www.eac.gov/news/2017/08/16/eac-
releases-annual-grant-expenditure-report.

Ittay Eyal and Emin Giin Sirer. Majority is not enough:
Bitcoin mining is vulnerable. In International confer-
ence on financial cryptography and data security, pages
436-454. Springer, 2014.

Ariel J. Feldman, J. Alex Halderman, and Edward W.
Felten. Security analysis of the Diebold AccuVote-TS
voting machine. 2006.

David Fifield. A better zip bomb. In /3th USENIX
Workshop on Offensive Technologies (WOOT 19), 2019.

Forrest Centi. The denver mobile voting pilot: A
report. https://cyber-center.org/wp-content/
uploads/2019/08/Mobile-Voting-Audit-Report-
on-the-Denver-County-Pilots-FINAL.pdf, 2018.

Lorenzo Emanuel Maiberg Franceschi-Bicchierai, Ja-
son Koebler. A Mobile Voting App That’s Already in
Use Is Filled With Critical Flaws, March 2020. Library
Catalog: www.vice.com.

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Pierrick Gaudry. Breaking the encryption scheme of
the Moscow internet voting system. arXiv preprint
arXiv:1908.05127, 2019. https://arxiv.orqg/pdf/
1908.05127.pdf.

Micha Germann and Uwe Serdiilt. Internet voting and
turnout: Evidence from switzerland. Electoral Studies,
47:1-12, 2017.

Dan Goodin. FBI tells router users to reboot
now to kill malware infecting 500k devices.
https://arstechnica.com/information-
technology/2018/05/fbi-tells-router-users-
to-reboot-now-to-kill-malware-infecting-
500k-devices/, May 2018.

Dan Goodin. Mass router hack exposes mil-
lions of devices to potent NSA exploit, November
2018. https://arstechnica.com/information-
technology/2018/11/mass-router-hack-
exposes-millions-of-devices-to-potent-
nsa-exploit/.

Rachel Goodman and J. Alex Halderman. In-
ternet Voting Is Happening Now and it Could
Destroy Our Elections, January 2020. https:
//slate.com/technology/2020/01/internet-
voting-could-destroy-our-elections.html.

Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. How not to prove your election out-
come. In 41st IEEE Symposium on Security and Privacy,
2019.

Harvie Branscomb. Denver voatz on cell phones —
initial review. http://electionquality.com/2019/
05/denver-voatz-1/, May 2019.

Jed Pressgrove. The Hack Attempt Against Voatz ‘Not
Close,” Officials Say. https://www.govtech.com/
security/The-Hack-Attempt-Against-Voatz-
Not-Close-Officials-Say.html, October 2019.

Jen Kirby. West Virginia is testing a mobile voting app
for the midterms. What could go wrong? https://www.
vox.com/2018/8/17/17661876/west-virginia-

voatz-voting-app-election-security, August

2018.

Douglas Jones and Barbara Simons. Broken ballots: Will
your vote count? CSLI Publications Stanford, 2012.

Kevin Collier. FBI is investigating alleged hacking at-
tempt into mobile voting app. https://www.cnn.com/
2019/10/01/politics/fbi-hacking-attempt-
alleged-mobile-voting-app-voatz/index.html,
October 2019.

1550 29th USENIX Security Symposium

USENIX Association

http://social.techcrunch.com/2019/06/06/voatz/
http://social.techcrunch.com/2019/06/06/voatz/
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://cse.sc.edu/~buell/blockchain-papers/documents/WhatWeDontKnowAbouttheVoatz_Blockchain_.pdf
https://www.eac.gov/news/2017/08/16/eac-releases-annual-grant-expenditure-report
https://www.eac.gov/news/2017/08/16/eac-releases-annual-grant-expenditure-report
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://cyber-center.org/wp-content/uploads/2019/08/Mobile-Voting-Audit-Report-on-the-Denver-County-Pilots-FINAL.pdf
https://arxiv.org/pdf/1908.05127.pdf
https://arxiv.org/pdf/1908.05127.pdf
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/05/fbi-tells-router-users-to-reboot-now-to-kill-malware-infecting-500k-devices/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://arstechnica.com/information-technology/2018/11/mass-router-hack-exposes-millions-of-devices-to-potent-nsa-exploit/
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
https://slate.com/technology/2020/01/internet-voting-could-destroy-our-elections.html
http://electionquality.com/2019/05/denver-voatz-1/
http://electionquality.com/2019/05/denver-voatz-1/
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.govtech.com/security/The-Hack-Attempt-Against-Voatz-Not-Close-Officials-Say.html
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.vox.com/2018/8/17/17661876/west-virginia-voatz-voting-app-election-security
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html
https://www.cnn.com/2019/10/01/politics/fbi-hacking-attempt-alleged-mobile-voting-app-voatz/index.html

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Amy Klobuchar. S.1540 - 116th Congress
(2019-2020): Election Security Act of 2019, May
2019. https://www.congress.gov/bill/116th-
congress/senate-bill/1540/text.

Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
and Dan S. Wallach. Analysis of an electronic voting
system. In IEEE Symposium on Security and Privacy,
2004. Proceedings. 2004, pages 27-40. IEEE, 2004.

Larry Moore and Nimit Sawhney. UNDER THE HOOD
The West Virginia Mobile Voting Pilot, 2019. https:
//www.nass.org/sites/default/files/2019~
02/white-paper-voatz-nass-winterl9.pdf.

Liat Weinstein. University of michigan stu-
dents implicated in potential voting app hack.
https://www.michigandaily.com/section/news-
briefs/university-michigan-students-

implicated-potential-voting-app-hack, 2019.

Mark Lindeman and Philip B. Stark. A gentle introduc-
tion to risk-limiting audits. IEEE Security & Privacy,
10(5):42-49, 2012.

Sean Lyngaas. HackerOne cuts ties with mobile voting
firm Voatz after it clashed with researchers, March 2020.

Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F. Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when
coping with intimate partner abuse. In Proceedings of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, pages 2189-2201. ACM, 2017.

Maya Kosoff. “A Horrifically Bad Idea”: Smartphone
Voting is Coming, Just in Time for the Midterms.
https://www.vanityfair.com/news/2018/08/
smartphone-voting-is-coming-just-in-time-
for-midterms-voatz, 2018.

Lucas Mearian. Why blockchain-based voting
could threaten democracy. Computerworld, August
2019. https://www.computerworld.com/article/
3430697/why-blockchain-could-be-a-threat-
to-democracy.html.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

Engineering National Academies of Sciences and
Medicine. Securing the Vote: Protecting American
Democracy. The National Academies Press, Washing-
ton, DC, 2018.

Robert W. Ney. H.R.3295 - 107th Congress (2001-
2002): Help America Vote Act of 2002, October

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

2002. https://www.congress.gov/bill/107th-
congress/house-bi11/3295.

Sunoo Park, Michael Specter, Neha Narula, and
Ronald L. Rivest. Going from bad to worse: from inter-
net voting to blockchain voting. (DRAFT).

Ronald L. Rivest. On the notion of ‘software indepen-
dence’in voting systems. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 366(1881):3759-3767, 2008.

David G. Robinson and J. Alex Halderman. Ethical
issues in e-voting security analysis. In International
Conference on Financial Cryptography and Data Secu-
rity, pages 119—130. Springer, 2011.

Ron Wyden. Sen. Ron Wyden (D-Ore.) Letter
Regarding Voatz. https://www.washingtonpost.
com/context/sen-ron-wyden-d-ore-letter—
regarding-voatz/e%9e6dd4f-1752-4c46-8e37-
08a0£21dd042/, November 2019.

Matthew Rosenberg. Voting on your phone: New elec-
tions app ignites security debate.

Peter YA Ryan, David Bismark, James Heather, Steve
Schneider, and Zhe Xia. Prét a voter: a voter-verifiable
voting system. IEEFE transactions on information foren-

sics and security, 4(4):662-673, 2009.

skylot. skylot/jadx, January 2020. https://github.
com/skylot/jadx.

Daniel J Solove and Woodrow Hartzog. The ftc and the
new common law of privacy. Colum. L. Rev., 114:583,
2014.

Drew Springall, Travis Finkenauer, Zakir Durumeric,
Jason Kitcat, Harri Hursti, Margaret MacAlpine, and
J. Alex Halderman. Security analysis of the Estonian
internet voting system. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, pages 703-715. ACM, 2014.

Steven Rosenfeld. Counting Voatz: Inside
America’s Most Radical Voting Technology.
https://www.nationalmemo.com/counting-
voatz-inside-americas-most-radical-voting-
technology/, May 2019.

Bennie G. Thompson. H.R.2660 - 116th Congress
(2019-2020): Election Security Act of 2019, June
2019. https://www.congress.gov/bill/116th-
congress/house-bil11/2660/text.

Voatz. Statement on Sen. Wyden’s Letter, November
2019. https://blog.voatz.com/?p=1133.

USENIX Association

29th USENIX Security Symposium 1551

https://www.congress.gov/bill/116th-congress/senate-bill/1540/text
https://www.congress.gov/bill/116th-congress/senate-bill/1540/text
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.nass.org/sites/default/files/2019-02/white-paper-voatz-nass-winter19.pdf
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.michigandaily.com/section/news-briefs/university-michigan-students-implicated-potential-voting-app-hack
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.vanityfair.com/news/2018/08/smartphone-voting-is-coming-just-in-time-for-midterms-voatz
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.computerworld.com/article/3430697/why-blockchain-could-be-a-threat-to-democracy.html
https://www.congress.gov/bill/107th-congress/house-bill/3295
https://www.congress.gov/bill/107th-congress/house-bill/3295
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://www.washingtonpost.com/context/sen-ron-wyden-d-ore-letter-regarding-voatz/e9e6dd4f-1752-4c46-8e37-08a0f21dd042/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.nationalmemo.com/counting-voatz-inside-americas-most-radical-voting-technology/
https://www.congress.gov/bill/116th-congress/house-bill/2660/text
https://www.congress.gov/bill/116th-congress/house-bill/2660/text
https://blog.voatz.com/?p=1133

[72] Voatz. Voatz Response to Researchers’ Flawed Report.
https://blog.voatz.com/?p=1209, February 2020.

{ "voteData": |
"summary": "Best cat?",

" questionld": "1"

1
2
3
[73] Mitchell Weiss and Maddy Halyard. Voatz. Harvard > "iSRCVFlg’ fale
N N "isRCV": false ,
Business Review, 2019. Case Study. I " description 1": "bogus desc”,
"statements ": |

9 {

[74] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex 10 “summary": "Statement Summary”,
Halderman. Attacking the Washington, DC Internet 13 eroton 3+ *Desnpion. 3
voting system. In International Conference on Finan- |3 e
cial Cryptography and Data Security, pages 114-128. |2 e s bit Iy /56D,
Springer, 2012. ig L"WebUr]": "hitps : / bit . ly/36DIbC4"

19 " choiceld":

[75] Yael Grauer. Safe Harbor, or Thrown to the Sharks by 29 , descipion
Voatz? https://magazine.cointelegraph.com/ z deeron
2020/02/07/safe-harbor-or-thrown-to-the- 1 N
sharks —by—voat z /, February 2020. 26 " .dcscriplil)n 1": "This is a sub—description”,

27 " description ": "This is a description of the event",
oy - . . . 28 "maxSelect":
[76] Filip Zagoérski, Richard T. Carback, David Chaum, 29 "gender”: "F",
. 30 " description 2": " Description 2",
Jeremy Clark, Aleksander Essex, and Poorvi L. Vora. 3 i Sttement Disic
Remotegrity: Design and use of an end-to-end verifi- % !
able remote voting system. In International Conference 3% ¢ descrption 3 "bogus dese”,
) . 3 description 2": "bogus desc",
on Applied Cryptography and Network Security, pages %g | descipton " Thogus desc”
441-457. Springer, 2013. 38
39 "auditToken": "SomeAuditTokenValue",
40 "controlNumber": "1"

[77] Kim Zetter. Virginia Finally Drops America’s *Worst ﬂ ewstomerd':
Voting Machines’. Wired, August 2015. https:
//www.wired.com/2015/08/virginia-finally-
drops-americas-worst-voting-machines/. Figure 10: The above is the entirety of the decrypted payload

for a vote submission in our synthetic election.

A Example JSON for a Vote Submission

Figure 10 contains the entirety of the decrypted payload for e Facebook’s SoLoader & Fresco
a vote submission and parameters returned in our synthetic o Keepsafe’s relinker
election. e Samsung’s knox libraries
e Microblink’s data capture libraries
. . . o Takisoft’s Preference Manager
B List of Third Parties Used e MichaelRocks libphonenumber https://github.com/
. . . . MichaelRocks/libph ber- id
Voatz makes extensive use of third-party libraries from at renasihoc s/1ibp onelnum e.r androl
e ReactiveX http://reactivex.io/

least 20 different vendors. We have not confirmed that all of
these libraries are actively used by the app. Further, a large
swath of Voatz’s code is obfuscated, so there may be further
libraries used that we are unaware of.

e Relex CircleIndicator https://github.com/
ongakuer/CircleIndicator

e zhanghai material progressbar https://github.com/
zhanghai/MaterialProgressBar

* qulo . e JetBrains Anko https://github.com/Kotlin/anko
e Zimperium

e Joda.time https://www. joda.org/joda-time/
e Amazon AWS o . .
e Realm DB e Jake Wharton’s Timber logging https://github.com/
e Google Firebase / Crashlytics, gson, protobufs, zxking JakeWharton/timber
e Square OKHTTP & Retrofit . Chn/sJinX slcalhféaplhlyl font hkllaranes https://github.
e Datatheorem’s TrustKit com/Chrisjenx/Lalllgraphy

1552 29th USENIX Security Symposium USENIX Association

https://blog.voatz.com/?p=1209
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://magazine.cointelegraph.com/2020/02/07/safe-harbor-or-thrown-to-the-sharks-by-voatz/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://www.wired.com/2015/08/virginia-finally-drops-americas-worst-voting-machines/
https://github.com/MichaelRocks/libphonenumber-android
https://github.com/MichaelRocks/libphonenumber-android
http://reactivex.io/
https://github.com/ongakuer/CircleIndicator
https://github.com/ongakuer/CircleIndicator
https://github.com/zhanghai/MaterialProgressBar
https://github.com/zhanghai/MaterialProgressBar
https://github.com/Kotlin/anko
https://www.joda.org/joda-time/
https://github.com/JakeWharton/timber
https://github.com/JakeWharton/timber
https://github.com/chrisjenx/Calligraphy
https://github.com/chrisjenx/Calligraphy

	Introduction
	Background
	Voatz's Claims of Security
	Prior Scrutiny of Voatz

	Experimental Methodology
	Voatz's System Design
	Process Overview
	Voatz Server Handshake and Protocol

	User Registration & ID Verification
	Vote Casting
	Device-Side Defensive Measures
	Unconfirmed Portions of the Process

	Analysis and Attacks
	Client-Side Attacks
	Defeating Host-based Malware Detection
	Full control over the user, on or off device

	Server Attacks
	Network Adversary
	Other Observations and Weaknesses
	Voter Verified Receipt

	Discussion & Conclusion
	Example JSON for a Vote Submission
	List of Third Parties Used

