login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 439 results found. page 1 2 3 4 5 6 7 8 9 10 ... 44
     Sort: relevance | references | number | modified | created      Format: long | short | data
A354163 Index of A354162(n) in A090252. +0
0
15, 29, 59, 63, 65, 121, 131, 193, 239, 241, 243, 255, 257, 265, 387, 479, 483, 487, 489, 515, 527, 529, 531, 775, 777, 959, 961, 967, 969, 977, 979, 1023, 1031, 1055, 1059, 1063, 1143, 1551, 1553, 1555, 1921, 1923, 1935, 1937, 1939, 1951, 1953, 1955, 1959, 1961, 2047, 2063, 2064, 2111, 2113, 2119, 2127, 2288, 3073, 3105, 3107, 3111, 3113, 3839 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..64.

CROSSREFS

Cf. A090252, A354159, A354160, A354161, A354162.

KEYWORD

nonn,new

AUTHOR

N. J. A. Sloane, May 30 2022

STATUS

approved

A354162 Products of exactly two distinct odd primes in A090252, in order of appearance. +0
0
21, 55, 85, 57, 161, 319, 217, 481, 205, 731, 517, 159, 1121, 1403, 871, 355, 1241, 869, 2407, 1691, 413, 3007, 2323, 1391, 4033, 565, 5207, 2227, 5891, 6533, 4321, 453, 1007, 623, 4867, 2231, 6161, 2119, 11189, 6401, 12709, 7421, 2159, 9563, 8213, 1507, 15247, 9259, 4031, 12367, 597, 2869, 11183, 1561, 13393, 7099, 3611, 14213, 24823 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..59.

CROSSREFS

Cf. A090252, A354159, A354160, A354161, A354163.

KEYWORD

nonn,new

AUTHOR

N. J. A. Sloane, May 30 2022

STATUS

approved

A354161 Index of A354160(n) in A090252. +0
0
15, 29, 47, 59, 63, 65, 121, 131, 193, 239, 241, 243, 255, 257, 265, 387, 479, 483, 487, 489, 515, 527, 529, 531, 767, 775, 777, 959, 961, 967, 969, 977, 979, 1023, 1031, 1055, 1059, 1063, 1143, 1551, 1553, 1555, 1921, 1923, 1935, 1937, 1939, 1951, 1953, 1955, 1959, 1961, 2047, 2063, 2064, 2111, 2113, 2119, 2127, 2288, 3071, 3073, 3105, 3107 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..64.

CROSSREFS

Cf. A090252, A354159, A354160, A354162, A354163.

KEYWORD

nonn,new

AUTHOR

N. J. A. Sloane, May 30 2022

STATUS

approved

A354160 Products of exactly two distinct primes in A090252, in order of appearance. +0
0
21, 55, 26, 85, 57, 161, 319, 217, 481, 205, 731, 517, 159, 1121, 1403, 871, 355, 1241, 869, 2407, 1691, 413, 3007, 2323, 206, 1391, 4033, 565, 5207, 2227, 5891, 6533, 4321, 453, 1007, 623, 4867, 2231, 6161, 2119, 11189, 6401, 12709, 7421, 2159, 9563, 8213, 1507, 15247, 9259, 4031, 12367, 597, 2869, 11183, 1561, 13393, 7099, 3611, 14213, 478, 24823 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..62.

CROSSREFS

Cf. A090252, A354159, A354161, A354162, A354163.

KEYWORD

nonn,new

AUTHOR

N. J. A. Sloane, May 30 2022

STATUS

approved

A354490 T(w,h) with 2 <= h <= w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at integer coordinates, where T(w,h) is a triangle read by rows. +0
0
0, 0, 0, 0, 1, 0, 1, 3, 1, 0, 0, 3, 3, 4, 4, 3, 6, 6, 6, 12, 0, 2, 6, 7, 9, 15, 13, 6, 6, 10, 12, 12, 30, 18, 27, 8, 4, 11, 11, 12, 24, 25, 33, 41, 18, 10, 17, 21, 17, 36, 24, 35, 32, 38, 0, 8, 17, 19, 21, 51, 43, 65, 84, 87, 57, 62, 15, 24, 31, 25, 49, 31, 48, 45, 53, 33, 76, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,8

COMMENTS

The integer coordinates of the 4 vertices of the quadrilateral are (x1,0), (w,y2), (x3,h), (0,y4), 0 < x1, x3 < w, 0 < y2, y4 < h, such that the 6 distances between the 4 vertices are distinct.

The relationship to A353532 is that the number of lattice points n X m is used there, while here the side lengths of the lattice rectangle w = n - 1 and h = m - 1 are used.

LINKS

Table of n, a(n) for n=2..79.

Hugo Pfoertner, PARI program to print sequence terms.

EXAMPLE

The triangle begins, with corresponding terms of A353532 shown in parenthesis:

   \ d 2       3       4        5        6        7        8       9

  w \---------------------------------------------------------------------

  2 |  0 ( 0)  |       |        |        |        |        |       |

  3 |  0 ( 0)  0 ( 0)  |        |        |        |        |       |

  4 |  0 ( 0)  1 ( 3)  0 (  1)  |        |        |        |       |

  5 |  1 ( 1)  3 ( 7)  1 ( 12)  0 ( 11)  |        |        |       |

  6 |  0 ( 1)  3 (11)  3 ( 26)  4 ( 52)  4 ( 40)  |        |       |

  7 |  3 ( 4)  6 (23)  6 ( 50)  6 ( 94) 12 (147)  0 (105)  |       |

  8 |  2 ( 4)  6 (30)  7 ( 69)  9 (127) 15 (198) 13 (301)  6 (190) |

  9 |  6 (10) 10 (49) 12 (103) 12 (192) 30 (302) 18 (444) 27 (583) 8 (379)

.

Only 1 = T(4,3) of the 3 = T_a353532(5,4) quadrilaterals has diagonals AC, BD whose intersection point S has integer coordinates:

.

   3 | . C . . .     3 | . C . . .     3 | . . C . .

   2 | . . . . .     2 | . . . . B     2 | . . . . B

   1 | D S . . B     1 | D . . . .     1 | D . . . .

   0 | . A . . .     0 | . A . . .     0 | . A . . .

   y /----------     y /----------     y /----------

     x 0 1 2 3 4       x 0 1 2 3 4       x 0 1 2 3 4

        S=(1,1)          S=(1,5/4)     S=(16/11,15/11)

.

T(5,2) = T_a353532(6,3) = 1:

.

   2 | . . . C . .

   1 | D . S . . B

   0 | . A . . . .

   y /------------

     x 0 1 2 3 4 5

        S=(2,1)

.

T(5,3) = 3 of the T_a353532(6,4) = 7 intersection points S of the diagonals AC, BD have integer coordinates:

.

  3 | . C . . . .   3 | . C . . . .   3 | . . C . . .   3 | . . . C . .

  2 | . . . . . .   2 | . . . . . B   2 | . . . . . .   2 | D . . . . .

  1 | D S . . . B   1 | D . . . . .   1 | D . . . . B   1 | . . . . . B

  0 | . A . . . .   0 | . A . . . .   0 | . A . . . .   0 | . A . . . .

  y /------------   y /------------   y /------------   y /------------

    x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5

       S=(1,1)           S=(1,6/5)         S=(4/3,1)     S=(35/17,27/17)

.

  3 | . . . . C .   3 | . . C . . .   3 | . . C . . .

  2 | . . . . . .   2 | . . . . . .   2 | . . . . . B

  1 | D . S . . B   1 | D . S . . B   1 | D . . . . .

  0 | . A . . . .   0 | . . A . . .   0 | . . A . . .

  y /------------   y /------------   y /------------

    x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5

       S=(2,1)           S=(2,1)           S=(2,7/5)

PROG

(PARI) see link. The program a354490 (w1, w2) prints the terms for the rows w1 .. w2. An auxiliary function sinter is defined to determine the rational intersection point of the diagonals.

CROSSREFS

Cf. A353532, A353533, A354488.

A354491 is the diagonal of the triangle.

KEYWORD

nonn,tabl,new

AUTHOR

Hugo Pfoertner, May 30 2022

STATUS

approved

A353845 Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton. +0
2
1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

LINKS

Table of n, a(n) for n=0..60.

Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)

EXAMPLE

The a(1) = 1 through a(8) = 8 partitions:

  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)

       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)

                    (211)            (222)                (422)

                    (1111)           (3111)               (2222)

                                     (111111)             (4211)

                                                          (41111)

                                                          (221111)

                                                          (11111111)

For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).

MATHEMATICA

Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&, #, !UnsameQ@@#&]]<=1&]], {n, 0, 30}]

CROSSREFS

Dominated by A018818 (partitions into divisors).

The version for compositions is A353858.

A275870 counts collapsible partitions, ranked by A300273.

A304442 counts partitions with all equal run-sums, ranked by A353833.

A325268 counts partitions by omicron, rank statistic A304465.

A353832 represents the operation of taking run-sums of a partition.

A353837 counts partitions with all distinct run-sums, ranked by A353838.

A353840-A353846 pertain to partition run-sum trajectory.

A353847-A353859 pertain to composition run-sum trajectory.

A353864 counts rucksack partitions, ranked by A353866.

Cf. A000041, A008284, A181819, A225485, A325239, A325277, A325280, A326370, A353834, A353839, A353865.

KEYWORD

nonn,new

AUTHOR

Gus Wiseman, May 26 2022

STATUS

approved

A353846 Triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory of length k. +0
14
1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 1, 0, 0, 0, 0, 5, 9, 1, 0, 0, 0, 0, 0, 6, 11, 4, 1, 0, 0, 0, 0, 0, 8, 20, 2, 0, 0, 0, 0, 0, 0, 0, 10, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 12, 37, 6, 1, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking run-sums (or condensations) until a strict partition is reached. For example, the trajectory of (2,1,1) is (2,1,1) -> (2,2) -> (4).

Also the number of integer partitions of n with Kimberling's depth statistic (see A237685, A237750) equal to k-1.

LINKS

Table of n, a(n) for n=0..77.

EXAMPLE

Triangle begins:

   1

   0   1

   0   1   1

   0   2   1   0

   0   2   2   1   0

   0   3   4   0   0   0

   0   4   6   1   0   0   0

   0   5   9   1   0   0   0   0

   0   6  11   4   1   0   0   0   0

   0   8  20   2   0   0   0   0   0   0

   0  10  25   7   0   0   0   0   0   0   0

   0  12  37   6   1   0   0   0   0   0   0   0

   0  15  47  13   2   0   0   0   0   0   0   0   0

   0  18  67  15   1   0   0   0   0   0   0   0   0   0

   0  22  85  25   3   0   0   0   0   0   0   0   0   0   0

   0  27 122  26   1   0   0   0   0   0   0   0   0   0   0   0

For example, row n = 8 counts the following partitions (empty columns indicated by dots):

.  (8)    (44)        (422)     (4211)  .  .  .  .

   (53)   (332)       (32111)

   (62)   (611)       (41111)

   (71)   (2222)      (221111)

   (431)  (3221)

   (521)  (3311)

          (5111)

          (22211)

          (311111)

          (2111111)

          (11111111)

MATHEMATICA

rsn[y_]:=If[y=={}, {}, NestWhileList[Reverse[Sort[Total/@ Split[Sort[#]]]]&, y, !UnsameQ@@#&]];

Table[Length[Select[IntegerPartitions[n], Length[rsn[#]]==k&]], {n, 0, 15}, {k, 0, n}]

CROSSREFS

Row-sums are A000041.

Column k = 1 is A000009.

Column k = 2 is A237685.

Column k = 3 is A237750.

The version for run-lengths instead of run-sums is A225485 or A325280.

This statistic (trajectory length) is ranked by A353841 and A326371.

The version for compositions is A353859, see also A353847-A353858.

A005811 counts runs in binary expansion.

A275870 counts collapsible partitions, ranked by A300273.

A304442 counts partitions with all equal run-sums, ranked by A353833.

A353832 represents the operation of taking run-sums of a partition

A353836 counts partitions by number of distinct run-sums.

A353838 ranks partitions with all distinct run-sums, counted by A353837.

A353840-A353846 pertain to partition run-sum trajectory.

A353845 counts partitions whose run-sum trajectory ends in a singleton.

Cf. A008284, A047966, A181819, A325239, A325277, A353834, A353865.

KEYWORD

nonn,tabl,new

AUTHOR

Gus Wiseman, May 26 2022

STATUS

approved

A352460 Triangle read by rows: T(n,k), 2 <= k < n is the number of n-element k-ary unlabeled rooted trees where a subtree consisting of h + 1 nodes has exactly min{h,k} subtrees. +0
0
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 1, 1, 9, 6, 5, 3, 2, 1, 1, 13, 10, 6, 5, 3, 2, 1, 1, 23, 15, 10, 7, 5, 3, 2, 1, 1, 35, 24, 14, 10, 7, 5, 3, 2, 1, 1, 61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1, 98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

3,4

LINKS

Table of n, a(n) for n=3..80.

EXAMPLE

Triangle begins:

    1;

    1,  1;

    2,  1,  1;

    2,  2,  1,  1;

    4,  3,  2,  1,  1;

    5,  4,  3,  2,  1,  1;

    9,  6,  5,  3,  2,  1, 1;

   13, 10,  6,  5,  3,  2, 1, 1;

   23, 15, 10,  7,  5,  3, 2, 1, 1;

   35, 24, 14, 10,  7,  5, 3, 2, 1, 1;

   61, 39, 23, 14, 11,  7, 5, 3, 2, 1, 1;

   98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1;

In particular, the rooted trees counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:

  ---------

    o   o

     \ /

      o

  ----------------------

    o       |

    |       |

    o   o   |   o  o  o

     \ /    |    \ | /

      o     |      o

  ------------------------------------------------------

    o   o        o   o   |   o         |

     \ /         |   |   |   |         |

      o   o      o   o   |   o  o  o   |   o  o   o  o

       \ /        \ /    |    \ | /    |    \  \ /  /

        o          o     |      o      |        o

CROSSREFS

Cf. A000081, A000598, A001190, A292556, A299038.

KEYWORD

nonn,tabl,new

AUTHOR

Salah Uddin Mohammad, Mar 17 2022

STATUS

approved

A354567 a(n) is the least number k such that P(k)^n | k and P(k+1)^n | (k+1), where P(k) = A006530(k) is the largest prime dividing k, or -1 if no such k exists. +0
0
1, 8, 6859, 11859210 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(1) = 1 since P(1) = 1 by convention. Without this convention we would have a(1) = 2.

a(5) <= 437489361912143559513287483711091603378 (De Koninck, 2009).

LINKS

Table of n, a(n) for n=1..4.

Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 173, entry 6859.

Jean-Marie De Koninck and Matthieu Moineau, Consecutive Integers Divisible by a Power of their Largest Prime Factor, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.

EXAMPLE

a(2) = 8 since 8 = 2^3, P(8) = 2 and 2^2|8, 9 = 3^2, P(9) = 3 and 3^2 | 9, and 8 is the least number with this property.

a(3) = 6859 since 6859 = 19^3, P(6859) = 19 and 19^3 | 6859, 6860 = 2^2 * 5 * 7^3, P(6860) = 7 and 7^3 | 6860, and 6859 is the least number with this property.

CROSSREFS

Cf. A006530, A071178, A354558, A354562.

KEYWORD

nonn,more,bref,new

AUTHOR

Amiram Eldar, May 30 2022

STATUS

approved

A354566 Numbers k such that P(k)^4 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k. +0
0
101250, 11859210, 23049600, 32580250, 131545575, 162364824, 969697050, 1176565754, 1271688417, 1612089680, 1862719859, 2409451520, 2441023914, 3182903731, 3697778084, 4010283270, 4329214629, 6666661950, 6932744126, 7739389944, 9188994752, 11717364285, 17306002674 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

De Koninck and Moineau (2018) proved that this sequence is infinite assuming the Bunyakovsky conjecture.

REFERENCES

Jean-Marie De Koninck and Nicolas Doyon, The Life of Primes in 37 Episodes, American Mathematical Society, 2021, p. 232.

LINKS

Table of n, a(n) for n=1..23.

Jean-Marie De Koninck and Matthieu Moineau, Consecutive Integers Divisible by a Power of their Largest Prime Factor, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.

Eric Weisstein's World of Mathematics, Bouniakowsky Conjecture.

Wikipedia, Bunyakovsky conjecture.

EXAMPLE

101250 = 2 * 3^4 * 5^4 is a term since P(101250) = 5 and 5^4 | 101250, 101251 = 19 * 73^2, P(101251) = 73, and 73^2 | 101251.

MATHEMATICA

p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[3*10^7], p[#] > 3 && p[# + 1] > 1 &]

PROG

(Python)

from sympy import factorint

def c(n, e): f = factorint(n); return f[max(f)] >= e

def ok(n): return n > 1 and c(n, 4) and c(n+1, 2)

print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022

CROSSREFS

Subsequence of A070003, A354558 and A354564.

Cf. A006530, A071178, A354565.

KEYWORD

nonn,new

AUTHOR

Amiram Eldar, May 30 2022

STATUS

approved

page 1 2 3 4 5 6 7 8 9 10 ... 44

Search completed in 0.116 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 06:02 EDT 2022. Contains 354166 sequences. (Running on oeis4.)