BACON: A PRODUCTION SYSTEM
THAT DISCOVERS EMPIRICAL LAWS

Patrick W. Langley
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Introduction

In recent years researchers have produced
a number of programs capable of scientific-like
behavior. Each of the systems, DENDRAL(Feigen-
baum and Lederberg, 1971), meta-DENDRAL(Buchan-
an, Feigenbaum and Sridharan, 1972), MYCIN
(Davis, Buchanan and Shortliffe, 1975) and AM
(Lenat, 1976) could arrive at rules that ex-
plained observed data. In this paper | discuss
another system, BACON, which discovers simple
empirical laws like those found by early
physicists.

Task Environment

BACON's task environment is an artificial
two-dimensional universe in which labeled ob-
jects interact. The program has direct access
to a set of primitive attributes (such as the
x-coordinate, color and velocity) specified by
the programmer. The values of these attributes
change across objects and across time according
to a set of laws determined by the programmer.
Such a law might be that the third differential
of each object's distance from the center of
the universe is a constant (with a different
constant for each object).

Program Structure

BACON is implemnted in the production
sytem language OPS (Forgy and McDermott, 1976).
The production system framework's advantage in
this task is that it allows one to write a small
set of general "regularity detectors". These
search in parallel through the data the program
has collected (in the form of attribute-object-
time-value 4-tuples) and which are still in
working memory. If one of the described regu-
larities is present in the data, it "leaps out"
at the system and appropriate action is taken.
If the regularity is a constancy, a generaliz-
ation across the relevant dimension (time,
objects, or both) is made and tested. If the
value of an attribute consistently increases or
decreases over time, a new attribute defined in
terms of the old attribute's change over time
is constructed (e.g., acceleration is construct-
ed from velocity) and considered further. If
the value of one attribute goes up as the value
of another goes down, a new attribute defined
as their product is considered. Eventually, a
higher level attribute employing all the attri-
butes mentioned in the programmer's law is con-
structed and discovered to have a constant
value; this is BACON's version of the law.

Along the way, whenever some generalization
about the value of an attribute is confirmed,
BACON adds productions that enable prediction of
the value and, if the attribute is nonprimitive,
prediction of some of its component's values In
terms of other component's values. The system
can also qualify its hypotheses. If counterex-
amples are found to a generalization, restrict-

ions can be added in the form of exceptions if

the generalization was across objects and in the

form of exceptions and upper and lower bounds if
the generalization was across time. In fact,
once an hypothesis is formed, it is never re-
jected. It is always stored in the permanent
production memory, though perhaps in greatly
qualified form.

Initially, the data collection process is
unintelligent. Attributes are generated ran-
domly and their values examined across a number
of objects and times. However, once regulari-
ties have been detected, these regularities
serve to direct the search.

Conclusions

In summary, BACON discovers empirical laws
by using two complementary techniques. The
first is the detection of regularities in data,
for which production system formalisms seem
ideally suited. This technique leads to useful
generalizations, but it also directs the second
technique, the construction of new attributes
in terms of more primitive ones. Together the
two lead the search for more data which could
lead to further generalizations.

As implemented, BACON has a number of lim-
itations as a law discoverer. First, it cannot
formulate conditional laws, in which the cond-
itions are restrictions on the values of related
attributes; however, it seems plausible that the
regularity detection technique could be used
here as well. Second, the system has special
knowledge that time and objects are useful dim-
ensions to generalize over; a more general dis-
covery program would be able to do without such
help. Finally, the current system cannot deal
with noise in its data; however, a minor change
in the OPS pattern matching routine for numbers
would deal with this. In conclusion, although
the present system has some drawbacks, it seems
easily extendable and shows promise of more
interesting things to come.

References

Buchanan, B.C., Feigenbaum, E.B, and Sridharan.
Heuristic theory formation.In D.Michie (ed.),
Machine Intelligence 7. New York: American
Elsevier Publishing Co.,1972,pp.267-290.

Davis, R., Buchanan, B. and Shortliffe, E.
Production rules as a representation for a
knowledge-based representation program.
Stanford AT Laboratory Memo AIM-266, 1975.

Feigenbaum, E.B. and Lederberg, J. On generality
and problem solving: A case study using the
DENDRAL program. In B.Meltzer and D.Michie
(eds.), Machine Intelligence 6. New York:
American Elsevier Publishing Co., 1971,
pp.165-190.

Forgy, C. and McDermott, J. OPS Manual.
Pittsburgh, Pa.: Carnegie-Mellon University,
Department of Computer Science, 1976.

Lenat, D.B. AM: An artificial intelligence
approach to discovery in mathematics as
heuristic search. Unpublished doctoral
dissertation, Department of Computer Science,
Stanford University, 1976.

ionOwl erlfre Acq.-3: Langley



