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At first glance the stuff of partitions seems like
child’s play:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Therefore, there are 5 partitions of the number 4.
But (as happens in number theory) the seemingly
simple business of counting the ways to break a
number into parts leads quickly to some difficult
and beautiful problems. Partitions play important
roles in such diverse areas of mathematics as 
combinatorics, Lie theory, representation theory,
mathematical physics, and the theory of special
functions, but we shall concentrate here on 
their role in number theory (for which [A] is the
standard reference).

In the Beginning, There Was Euler…
A partition of the natural number n is any nonin-
creasing sequence of natural numbers whose sum
is n (by convention, we agree that p(0) = 1). The
number of partitions of n is denoted by p(n). Eighty
years ago Percy Alexander MacMahon, a major in
the British Royal Artillery and a master calculator,

computed the values of p(n) for all n up to 200.
He found that

p(200) = 3,972,999,029,388,

and he did not count the partitions one-by-one:

200 = 199 + 1 = 198 + 2

= 198 + 1 + 1 = 197 + 3 = . . . . . . . . . . . . . . . .

Instead, MacMahon employed classical formal
power series identities due to Euler.

To develop Euler’s recurrence, we begin with the
elementary fact that if |x| < 1, then

1
1− x = 1 + x + x2 + x3 + x4 + . . . .

Using this, Euler noticed that when we expand the
infinite product

∞∏
n=1

1
1− xn = (1 + x + x2 + x3 + . . . )

× (1 + x2 + x4 + . . . )
× (1 + x3 + x6 + . . . ) . . . ,

the coefficient of xn is equal to p(n) (think of the
first factor as counting the number of 1’s in a par-
tition, the second as counting the number of 2’s,
and so on). In other words, we have the generat-
ing function

∞∑
n=0

p(n)xn =
∞∏
n=1

1
1− xn

= 1 + x + 2x2 + 3x3 + 5x4 + . . . .

Moreover, Euler observed that the reciprocal of
this infinite product satisfies a beautiful identity
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(also known as Euler’s Pentagonal Number Theo-
rem):

∞∏
n=1

(1− xn) =
∞∑

k=−∞
(−1)kx(3k2+k)/2

= 1− x− x2 + x5 + x7 − x12 − . . . .
These two identities show that
 ∞∑
n=0

p(n)xn



×
(
1− x− x2 + x5 + x7 − x12 − . . .

)
= 1,

which in turn implies, for positive integers n, that

p(n) = p(n− 1) + p(n− 2)

− p(n− 5)− p(n− 7) + p(n− 12) + . . . .

This recurrence enabled MacMahon to perform his
massive calculation.

Hardy-Ramanujan-Rademacher
Asymptotic Formula for p(n)
It is natural to ask about the size of p(n). The an-
swer to this question is given by a remarkable as-
ymptotic formula, discovered by G. H. Hardy and
Ramanujan in 1917 and perfected by Hans
Rademacher two decades later. This formula is so
accurate that it can actually be used to compute
individual values of p(n); Hardy called it “one of
the rare formulae which are both asymptotic and
exact.” It stands out further in importance since
it marks the birth of the circle method, which has
grown into one of the most powerful tools in an-
alytic number theory.

Here we introduce Rademacher’s result. He de-
fined explicit functions Tq(n) such that for all nwe
have

p(n) =
∞∑
q=1

Tq(n).

The functions Tq(n) are too complicated to write
down here, but we mention that T1(n) alone yields
the asymptotic formula

p(n) ∼ 1
4n
√

3
eπ
√

2n/3.

(In their original work, Hardy and Ramanujan used
slightly different functions in place of the Tq(n).
As a result, their analogue of the series 

∑∞
q=1 Tq(n)

was divergent, although still useful.) Moreover,
Rademacher computed precisely the error incurred
by truncating this series after Q terms. In partic-
ular, there exist explicit constants A and B such
that ∣∣∣∣∣∣p(n)−

A
√
n∑

q=1

Tq(n)

∣∣∣∣∣∣ <
B
n1/4 .

Since p(n) is an integer, this determines the exact
value of p(n) for large n. The rate at which

Rademacher’s series converges is remarkable; for
example, the first eight terms give the approxi-
mation

p(200) ≈ 3,972,999,029,388.004

(compare with the exact value computed by
MacMahon).

To implement the circle method requires a 
detailed study of the analytic behavior of the 
generating function for p(n). Recall that we have

F (x) :=
∞∑
n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

This is an analytic function on the domain |x| < 1.
A natural starting point is Cauchy’s Theorem,
which gives

p(n) =
1

2πi

∫
C

F (x)
xn+1 dx,

where C is any simple closed counterclockwise
contour around the origin. One would hope to 
adjust the contour in relation to the singularities
of F (x) in order to obtain as much information as
possible about the integral. But consider for a mo-
ment these singularities; they occur at every root
of unity, forming an impenetrable barrier on the
unit circle. In our favor, however, it can be shown
that the size of F (x) near a primitive q-th root of
unity diminishes rapidly as q increases; moreover
the behavior of F (x) near each root of unity can be
described with precision. Indeed, with an appro-
priate choice of C , the contribution to the integral
from all of the primitive q-th roots of unity can be
calculated quite precisely. The main contribution
is the function Tq(n); a detailed analysis of the 
errors involved yields the complete formula.

The circle method has been of extraordinary im-
portance over the last eighty years. It has played
a fundamental role in additive number theory (in
Waring type problems, for instance), analysis, and
even the computation of black hole entropies.

Ramanujan’s Congruences
After a moment’s reflection on the combinatorial
definition of the partition function, we have no 
particular reason to believe that it possesses any
interesting arithmetic properties (the analytic 
formula of the last section certainly does nothing
to change this opinion). There is nothing, for 
example, which would lead us to think that 
p(n) should exhibit a preference to be even 
rather than odd. A natural suspicion, therefore,
might be that the values of p(n) are distributed
evenly modulo 2. A quick computation of the 
first 10,000 values confirms this suspicion: of
these 10,000 values, exactly 4,996 are even 
and 5,004 are odd. This pattern continues with 
2 replaced by 3: of the first 10,000 values, 3,313;
3,325; and 3,362 (in each case almost exactly 
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one-third) are congruent respectively to 0, 1, and
2 modulo 3. When we replace 3 by 5, however,
something quite different happens: we discover
that 3,611 (many more than the expected 
one-fifth) of the first 10,000 values of p(n) are 
divisible by 5. What is the explanation for this
aberration?

The answer must have been clear to Ramanu-
jan when he saw MacMahon’s table of values of
p(n). So Ramanujan would have seen something
like the following.

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

What is striking, of course, is that every entry in
the last column is a multiple of 5. This phenome-
non, which persists, explains the apparent aber-
ration above and was the first of Ramanujan’s
ground-breaking discoveries on the arithmetic of
p(n). Here is his own account.

I have proved a number of arithmetic
properties of p(n)…in particular that

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7).

…I have since found another method
which enables me to prove all of these
properties and a variety of others, of
which the most striking is

p(11n + 6) ≡ 0 (mod 11).

There are corresponding properties in
which the moduli are powers of  5,7 , or
11…. It appears that there are no
equally simple properties for any 
moduli involving primes other than
these three.

Ramanujan proved these congruences in a 
series of papers (the proofs of the congruences

modulo 5 and 7 are quite ingenious but are not 
terribly difficult, while the proof of the congruence
modulo 11 is much harder). In these same 
papers he sketched proofs of extensions of 
these congruences. For example, we have

p(25n + 24) ≡ 0 (mod 25),
p(49n + 47) ≡ 0 (mod 49).

Ramanujan noticed the beginnings of other 
patterns in these first 200 values:

p(116) ≡ 0 (mod 121), p(99) ≡ 0 (mod 125).

From such scant evidence he made the following
conjecture:

If δ = 5a7b11c and 24λ ≡ 1 (mod δ),
then p(δn + λ) ≡ 0 (mod δ).

When δ = 125, for example, we have λ = 99. So 
Ramanujan’s conjecture is that

p(125n + 99) ≡ 0 (mod 125).

We note that the general conjecture follows easily
from the cases when the moduli are powers of 5,
7, or 11.

It is remarkable that Ramanujan was able to 
formulate a general conjecture based on such 
little evidence and therefore unsurprising that 
the conjecture was not quite correct (in the 1930s
Chowla and Gupta discovered the counterexample
p(243) 
≡ 0 (mod 73) ). Much to Ramanujan’s 
credit, however, a slightly modified version of 
his conjecture is indeed true; in particular, we 
now know the following:

If δ = 5a7b11c and 24λ ≡ 1 (mod δ),

then p(δn + λ) ≡ 0 (mod 5a7�
b
2 �+111c ).

The task of assigning credit for the proofs of
these conjectures when the modulus is a power of
5 or 7 poses an interesting historical challenge.
Typically, the proofs have been attributed to 
G. N. Watson. Recently, however, the nature of 
Ramanujan’s own contributions [R] has been 
greatly clarified. Indeed, a complete outline of the
proof modulo powers of 5 and a much rougher
sketch for powers of 7 (so rough that it did not yet
reveal his error in the statement of the conjec-
ture) are given by Ramanujan in a long manuscript
which he wrote in the three years preceding his
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death. In typical fashion, Ramanujan provides in
neither case complete details for all of his asser-
tions. This manuscript was apparently in Watson’s
possession from 1928 until his death in 1965. 
Indeed, a copy of the manuscript in Watson’s 
handwriting (the whereabouts of the original is
unknown) resides in the library of Oxford’s Math-
ematical Institute. In any event, it seems clear 
that Ramanujan deserves more credit than he 
has historically been granted for these cases. By
contrast, the case of powers of 11 is much more
difficult; the first published proof of Ramanujan’s
conjectures in this case was given by A. O. L. Atkin
in 1967.

Dyson’s Rank and Crank
The celebrated physicist Freeman Dyson, when he
was a college student in 1944, initiated an impor-
tant subject in partition theory by discovering a 
delightfully simple phenomenon which appeared
to explain why

p(5n + 4) ≡ 0 (mod 5)

and

p(7n + 5) ≡ 0 (mod 7).

Dyson defined the rank of a partition to be the
largest summand minus the number of summands.
Here, for example, are the partitions of 4 and their
ranks:

Partition Rank
4 4− 1 ≡ 3 (mod 5),

3 + 1 3− 2 ≡ 1 (mod 5),
2 + 2 2− 2 ≡ 0 (mod 5),

2 + 1 + 1 2− 3 ≡ 4 (mod 5),
1 + 1 + 1 + 1 1− 4 ≡ 2 (mod 5).

Notice that the ranks of these partitions repre-
sent each residue class modulo 5 exactly once.
After computing many more examples, Dyson 
observed that, without exception, numbers of the
form 5n + 4 (respectively 7n + 5) have the property
that their ranks modulo 5 (respectively modulo 7)
are equally distributed. More precisely, if
0 ≤m < M are integers and R(N,m,M) denotes
the number of partitions of N with rank congru-
ent to m (mod M) , then Dyson conjectured that

R(5n + 4,m,5) =
1
5
· p(5n + 4) for 0 ≤m ≤ 4,

R(7n + 5,m,7) =
1
7
· p(7n + 5) for 0 ≤m ≤ 6.

The truth of these conjectures would provide a
simple and elegant combinatorial explanation for
Ramanujan’s congruences. Dyson’s speculation
was confirmed ten years later by Atkin and
H. P. F. Swinnerton-Dyer in a wonderful paper
which combines classical combinatorial argu-
ments with techniques from the theory of mod-
ular functions.

Unfortunately, Dyson’s rank does not seem
to enjoy such simple properties for primes other
than 5 and 7. However, he conjectured the 
existence of another natural statistic, the crank,
which explains the congruence

p(11n + 6) ≡ 0 (mod 11).

In the late 1980s George E. Andrews and Frank 
Garvan found such a crank [A-G], [G]. Further 
work of Garvan, Dongsu Kim, and Dennis Stan-
ton [G-K-S] has produced, for the congruences
with moduli 5, 7, 11, and 25, combinatorial in-
terpretations which are rooted in the modular
representation theory of the symmetric group.

Atkin’s Examples
We return to Ramanujan’s intuition that there 
are no simple arithmetic properties for p(n)
when the modulus involves primes greater than
11. Ramanujan seems to have been correct in this
claim; no new congruence as simple as the 
originals has ever been found (although it has 
not been proved that none exists). The 1960s, 
however, witnessed tantalizing discoveries of 
further examples (notably by Atkin, Newman, 
and O’Brien). Atkin, for example, found elegant 
infinite families of congruences modulo 5, 7, and
13 which are quite different from those previ-
ously known. A simple example of these is the
congruence

p(113 · 13n + 237) ≡ 0 (mod 13).

Atkin also gave more examples, though not so
systematic, with moduli 17, 19, 23, 29, and 31.

Atkin obtains these results via a detailed
study of modular functions. Since these lie at the
heart of the proofs of the congruences we have
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seen so far, we will give a brief description here.
Let SL2(Z) be the set of 2× 2 integer matrices with
determinant equal to 1. Then, if N is an integer,
define the congruence subgroup Γ0(N) by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

An element γ =
(
a b
c d

)
acts on the upper half-plane

H of complex numbers via the linear fractional
transformation γz = az+b

cz+d . By definition, a modular
function on Γ0(N) is a function f on H which 
satisfies f (γz) = f (z) for all γ ∈ Γ0(N) and which 
in addition is meromorphic on H and “at the 
cusps”. When N is small, the field of these functions
is relatively simple; therefore, given several func-
tions in such a field, one expects to find nontrivial
relations among them. If the right functions are in-
volved, then such a relation may give information
about values of p(n). For Atkin’s examples when
$ = 5, 7, or 13, the relevant function fields have a
single generator; this is responsible for the infinite
families of congruences. As $ increases, however,
things rapidly become more complicated. Atkin’s
work is interesting for another reason: it marks an
early use of sophisticated computers in mathemat-
ics. As he says, “It is often more difficult to 
discover results in this subject than to prove 
them, and an informed search on the machine may
enable one to find out precisely what happens.”

A Problem of Erdős
Even after all of the beautiful discoveries described
above, the general arithmetic properties of p(n)
must seem rather mysterious. Indeed, we have
said nothing for any prime modulus $ greater than
31, let alone for a general prime modulus. In this
context we mention a conjecture of Erdős from the
1980s.

If $ is a prime, then there exists an n
such that p(n) ≡ 0 (mod $).

If we reflect on this conjecture for a moment, we
are struck by its weakness: it asserts only that
every prime divides at least one value of the 
partition function. On the other hand, (until very
recently) the known results were even weaker; the
best was a theorem of Schinzel and Wirsing, who
proved the existence of a constant c such that, for
large X, the number of primes $ < X for which
Erdős’s conjecture is true is ≥ c log logX .

Recent Developments
In the past several years our understanding of the
arithmetic of p(n) has increased dramatically. All
of the advances have arisen from a single source:
the fact that values of the partition function are
intimately related to the arithmetic of modular
forms. Modular forms have historically played a

large role in number theory; their importance, of
course, has been underscored by their central po-
sition in the proof of Fermat’s Last Theorem. The
crux of Wiles’ proof is to show that elliptic curves
are “modular”; in other words, their arithmetic is
dictated in part by certain modular forms to which
they are related. What has been learned recently
is that the partition function does not escape the
web of modularity; its arithmetic, too, is intimately
connected to the behavior of a certain family of
modular forms. This connection has allowed the
application of deep methods of Deligne, Serre, and
Shimura to the study of p(n). These theories (some
of the most powerful of the last half-century) have
important ramifications for p(n); in particular,
properly applied, they imply that p(n) satisfies lin-
ear congruences for every prime $ ≥ 5. We shall
discuss in more detail how modular forms enter
the picture in the next section; let us first indicate
what they enable us to prove.

The second author (inspired by some formulae
of Ramanujan) was the first to notice these con-
nections; as a result [O] he proved the following:

For any prime $ ≥ 5, there exist
inf initely many congruences of the form

p(An + B) ≡ 0 (mod $).

(We note that if the arithmetic progression An + B
gives rise to such a congruence, then so do any of
its infinitely many subprogressions; we do not
count these as new when we speak of “infinitely
many congruences”.) Shortly thereafter the first au-
thor [Ahl] extended this result by showing that the
prime $ may in fact be replaced by an arbitrary
prime power $k; from this it can be shown that $
may in fact be replaced by any modulus M which
is coprime to 6. An immediate consequence of
these results is the following:

If $ ≥ 5 is prime, then a positive
proportion of natural numbers n

have p(n) ≡ 0 (mod $).

This provides a very convincing proof of the 
conjecture of Erdős mentioned above.

More recently, the two authors [Ahl-O] have
shown that congruences for p(n) are even more
widespread than these theorems indicate. To 
explain this, let us return to Ramanujan’s original
results:

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),
p(11n + 6) ≡ 0 (mod 11).

As Ramanujan’s conjectures indicate, these 
results may be written in a unified way. Namely,
let λ$ denote the inverse of 24 modulo $ (in other
words, 24λ$ ≡ 1 (mod $) ). Then they assume the
following form:
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If $ = 5,7, or 11, then p($n + λ$) ≡ 0 (mod $).

Now, for any prime $ ≥ 5 and any exponent k , 
the results above guarantee the existence of 
infinitely many progressions An + B such that
p(An + B) ≡ 0 (mod $k) . An important feature 
of the method used to prove the theorems above
is that in every case, the progression An + B which
it produces is a subprogression of $n + λ$ (in other
words, $ | A and B ≡ λ$ (mod $)). As an example,
one of the simplest congruences guaranteed by 
this theorem is

p(594 · 13n + 111247) ≡ 0 (mod 13);

in this case we have 111247 ≡ 1/24 (mod 13).
What the authors have shown recently is that

congruences are not confined to this single pro-
gression modulo $ . In fact, we now know that if
$ ≥ 5 is prime and k is any exponent, then infinitely
many congruences p(An + B) ≡ 0 (mod $k) exist
within each of ($ + 1)/2 progressions modulo $ . 
In other words, for each prime, slightly more than
half of such progressions contain congruences.
When $ = 11, for example, the relevant progressions
are

11n + 1, 11n + 2, 11n + 3,
11n + 5, 11n + 6, 11n + 8.

Of these, only Ramanujan’s own 11n + 6 had been
distinguished by the previous theory. The latest 
result provides a theoretical framework which 
explains every known partition function congru-
ence.

Modular Forms
We will try to indicate briefly how the theory of
modular forms can be applied to the study of p(n)
in order to yield the results of the preceding sec-
tion. At the heart of the matter are the generating
function

∞∑
n=0

p(n)xn =
∞∏
n=1

1
1− xn

and Dedekind’s eta function

η(z) = x1/24
∞∏
n=1

(1− xn) (here x := e2πiz).

Combining the last two formulae gives

1/η(24z) =
∞∑

n=−1

p
(
n + 1
24

)
xn = x−1 + x23 + . . . .

Loosely speaking, a modular form of weight k
on the subgroup Γ0(N) is a function f on the upper
half-plane H which satisfies a transformation prop-
erty of the form

f
(az + b
cz + d

)
= (cz + d)kf (z) for all

(
a b
c d

)
∈ Γ0(N).

In addition, f is required to be meromorphic on H
and at the cusps; if f is also holomorphic on H and
vanishes at the cusps, then we call f a cusp form.
We allow k to be an integer or half an integer (extra
care must be taken in the latter case); note that the
modular functions introduced above are just mod-
ular forms of weight zero. Every modular form
f (z) has a Fourier expansion in powers of x = e2πiz;
if f is a cusp form, then this expansion takes the
form

f (z) =
∞∑
n=1

af (n)xn.

When the weight k of a cusp form is integral,
then the theory of Deligne and Serre is available
for the study of the Fourier coefficients af. In par-
ticular, there is a natural family of operators (the
so-called Hecke operators) that act on spaces of
modular forms. If f is a normalized eigenform for
this family, then Serre conjectured and Deligne
proved the existence of a representation

ρf : Gal(Q/Q) → GL2(K)

(for some field K) such that for all but finitely
many primes Q we have

Trace(ρf (FrobQ)) = af (Q).

Here FrobQ denotes a Frobenius element at the
prime Q . This result is extraordinarily powerful;
it allows us to study the Fourier coefficients of mod-
ular forms using the structure of Galois groups.

If the weight k of a cusp form is half-integral,
then we do not have the results of Deligne and Serre
at our disposal. There is, however, a correspon-
dence due to Shimura between cusp forms of half
integral weight and certain forms of integral weight;
the Shimura correspondence is quite explicit and
commutes in the best possible way with the action
of the Hecke operators on the respective spaces.

We saw above that the expansion

1/η(24z) =
∞∑

n=−1

p
(
n + 1
24

)
xn = x−1 + x23 + . . .

contains every value of the partition function. Now
1/η(24z) is a modular form on Γ0(576). However,
it has two major deficiencies: the weight is −1/2,
and it has a pole at every cusp. So none of the the-
ories above seem to apply. It turns out, however,
that starting with this expansion, one can con-
struct half-integral weight cusp forms which still
preserve much information about the values of p(n)
modulo powers of primes. From these cusp forms
the theory of Deligne and Serre, filtered through
Shimura’s correspondence, yields the results of
the preceding section.

L-Functions and Arithmetic
Since modular forms play such an important role
in partition congruences, it is natural to suspect
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that there may be deeper connections between
partitions and “modular” objects. As it turns out,
this is indeed the case.

To motivate the connection, consider the fol-
lowing classical Diophantine question (already of
interest to ancient Greek and Arab scholars):

Which integers D are areas of right
tr iangles with rational number sidelengths?

Such numbers D are known as congruent numbers.
Simple arguments show that a number D is con-
gruent precisely when there are infinitely many 
rational points (x, y) on the elliptic curve

ED : y2 = x3 −D2x.

How does one determine whether such a curve
has infinitely many points? The Birch and 
Swinnerton-Dyer Conjecture, one of the main 
outstanding conjectures in number theory (and a
million-dollar Clay Mathematics Institute prob-
lem), provides the solution.

Let L(ED, s) denote the Hasse-Weil L-function 
attached to ED; this is an analytic function whose
definition depends on the behavior of ED modulo
primes p. For the congruent number problem the
conjecture implies that

L(ED,1) = 0 ⇐⇒ D is congruent.

In addition, the conjecture gives a precise formula
dictating the analytic behavior of L(ED, s) at s = 1.
For instance, if L(ED,1) 
= 0, then the conjecture 
asserts that

L(ED,1) = ΩD · #X(ED).

Here ΩD is an explicit transcendental number, and
X(ED) is the Tate-Shafarevich group of ED. (The
Tate-Shafarevich group is a certain Galois 
cohomology group which measures the extent to
which the local-global principle fails for ED.)

In the early 1980s Jerrold Tunnell, using the
works of Shimura and Waldspurger (see [K] for a
good account), constructed two modular forms 
of weight 3/2 whose coefficients “interpolate” the
square roots of the L(ED,1) . Together with the
Birch and Swinnerton-Dyer Conjecture, these 
modular forms provide a complete solution to 
the congruent number problem.

Recently, Li Guo and the second author [G-O]
have shown that if 13 ≤ $ ≤ 31 is prime, then 
certain half-integral weight modular forms 
whose coefficients interpolate values of p(n)
modulo $ behave in a manner somewhat similar
to Tunnell’s modular forms. In particular, they
showed that there are modular motivesMD,$ (these
may be viewed as analogs of elliptic curves) whose
L-functions L(MD,$, s) have the property that the
square roots of L(MD,$, ($− 3)/2) are related in a
predictable way to the coefficients of these 
modular forms. The truth of the Bloch-Kato 

Conjecture (a vast generalization of the Birch and
Swinnerton-Dyer Conjecture) then implies that

L(MD,$, ($− 3)/2) = ΩD,$ · #X(MD,$).

Assuming the Bloch-Kato Conjecture, it can be
shown, for many n, that

p(n) ≡ 0 (mod $) =⇒ #X(MD,$) ≡ 0 (mod $),

where D depends on n. These two conditions are
probably equivalent, and so it is likely that the 
divisibility of p(n) often dictates the presence of
elements of order $ in these Tate-Shafarevich
groups. So, perhaps surprisingly, it seems that
congruences like Ramanujan’s are connected to
some highly abstract creations of modern number
theory.

The Future?
The beginnings of the partition function are 
extraordinarily humble; after all, what could be 
simpler than addition and counting? Despite its
humble start, the history of the partition function
includes connections to many central areas of
number theory, from the work of Euler to the 
birth of the circle method to the modern theory of
modular forms and L-functions. It will be quite 
interesting to see what further connections the
future will reveal.
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Institut Mittag-Leffler. The photograph of
H. Rademacher was provided by Bruce Berndt.
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