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Abstract— In recent years, digital cameras have become 

the dominant image capturing devices. They are now 

commonly included in other digital devices such as mobile 

phones and PDAs, and have become steadily cheaper, more 

complex and powerful. In such devices, in order to keep costs 

down, only incomplete color information is recorded at each 

pixel location. Interpolating a full three-color image by 

estimating the missing component is called demosaicing. 

Clearly, the quality of this reconstruction is of crucial 

importance for the overall image quality experienced by the 

end-user. It influences sharpening perception, texture details, 

grain, color artifacts, signal to noise ratio and processing 

time. Hand-held devices suffer from inefficient demosaicing 

induced by their power limitations and their architectural 

constraints. In this paper we propose a new demosaicing 

algorithm delivering high image quality while keeping a 

computational complexity compatible with hand-held devices. 

Images quality and computational complexity are compared to 

the state of the art. An implementation of our algorithm on a 

common multimedia processor is presented and highlights the 

real time performance of our proposed algorithm
1
. 

 
Index Terms — photography, single sensor devices, imaging. 

I. INTRODUCTION 

Digital cameras are now commonly included in many 

digital devices such as mobile phones, PDAs, and are 

becoming steadily cheaper, more complex and powerful. In 

such devices, a single CCD (Charge Coupled Device) or 

CMOS (Complementary Metal Oxide Semiconductor) sensor 

is used to convert incident light into electric signal (see Fig. 

1). Both CCD and CMOS sensors do not significantly 

differentiate light wavelengths during photons counting and 

are consequently color insensitive. To introduce color 

sensitivity, a color filter array, made up with the three additive 

primary colors (red, green, and blue) mosaic is superimposed 

on the sensor. Several mosaic schemes have been proposed, 

the most popular has been proposed by Bayer in [1], as shown 

on Fig. 1. The Bayer mosaic uses twice as many green 

elements as red or blue in an attempt to mimic the human 

eye’s greater sensibility to green light. Thus, the sensor gets 

solely one-third of color information coming from the scene 

image, the remaining two-thirds have to be estimated to 

produce a full color image. This is done with a demosaicing 

algorithm. This step is of crucial importance for image quality. 

It influences sharpening, structure details, grain, color 

artifacts, signal to noise ratio and processing time. Since the 
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emergence of hand-held single sensor devices, industry 

showed much interest towards this subject, and many 

demosaicing algorithms have been proposed, requiring various 

amounts of computing power and providing various levels of 

image quality. Recent and thorough literature overviews are 

presented in [2]-[3]-[4]. Demosaicing can be applied during 

normal camera processing operations or offline for cameras 

capable of producing raw data. In common compact devices, 

raw data is not available to end-users, who only have access to 

images after they have been processed by the camera’s 

internal logic units. When choosing the demosaicing algorithm 

for embedded solution, one needs to consider devices 

architecture and power limitations as well. This generally 

leads to the use of low-complexity algorithms, associated with 

relatively weak image quality, instead of more powerful 

solutions available.  

In this paper, we propose a new demosaicing algorithm, 

which we call GEDI (for Green Edge Directed Interpolation) 

delivering best-of-class image quality, while keeping a 

computational complexity compatible with hand-held camera 

devices. The paper is organized as follow; in section II, we 

present the main digital photography imaging pipeline; in 

section III, we present the problem of demosaicing and the 

state of the art; in section IV we present a novel edge 

directions estimator, GED (for Green Edge Direction); in 

section V, we propose a method for correcting wrong 

estimation directions, which we call LMDC ( for Local 

Majority Direction Choice); in section VI we present a new 

way to reduce demosaicing color artifacts using the bilateral 

filter; in section VII we resume the GEDI demosaicing 

algorithms steps, in VIII and IX, we compare both produced 

image quality and computational complexity of GEDI to the 

most used literature algorithms; in section X we exhibit the 

real-time performance of GEDI on a current DSP
2
. 

II. DIGITAL PHOTOGRAPHY IMAGING OVERVIEW 

As Costantini shows in [5], a digital image is the result of 

three main steps, let’s see the general block diagram of a 

common digital photography system in Fig. 1. First, the 

optical image is formed through the lenses system, it includes 

main control devices, such as automatic gain control (AGC), 

auto focus and auto exposure circuitry. Then, the light signal 

is converted into electric current trough the digital sensor, 

including analog to digital conversion (ADC). Finally, the 

digital step is completed with digital image processing 

operations trough the embedded architecture, including 

demosaicing, white balance, noise removal, contrast, 

brightness and gamma adaptations, etc. The output image is 

sent to the baseband for storage or to the interface for 

visualization. Demosaicing appears usually as the first image 
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processing task, occurring immediately after sensor output. It 

determines the input image quality of the processing chain and 

is of crucial importance for the output image quality. In the 

following section we present the literature related to 

demosaicing algorithms. 

III. INTRODUCTION TO DEMOSAICING 

Since the 1980s, many research works were proposed 

regarding Bayer mosaic interpolation, from simple to 

advanced methods [2]-[3]-[4]. In this section, we present non-

exhaustively the main demosaicing algorithm principles. 

Generally, because of its better resolution, the green 

channel is interpolated first, the red and blue channels are 

deduced from it. An efficient way to interpolate red and blue 

channels from the green one is the Constant Hue Interpolation 

(CHI) method, proposed by Cok in [6]. The intuitive idea is 

that hue information varies little across an object surface. It 

follows that for an (R,G,B) color vector, the ratios R/G, B/G 

varies slowly in a real image. In spite of the non-linear sensors 

response, the channels differences R-=(R-G) and B-=(B-G) 

also varies slowly in a digital photography image. Following 

this idea, the CHI algorithm is performed in four steps: (1) 

interpolate the green channel; (2) calculate the difference 

channels R- and B- at red and blue filters locations; (3) 

bilinearly interpolate R- and B- channels (as from Cock’s 

assumption, hue contains few high spatial frequencies, and the 

bilinear interpolation does not induce significant loss of 

information); (4) add the green channel to the interpolated 

difference channels R- and B- to compute the red and blue 

output channels. Using this method, the high spatial 

frequencie informations of the green channel are injected in 

the red and the blue channels. Various algorithms use this 

technique, for instance [7]-[8]-[9]-[10]-[11]-[12]-[13]-[14]. 

The most basic idea to estimate the missing green 

components is to use the bilinear interpolation, which exhibits 

many defects such as blur, moiré and false colors, related to 

the Shannon-Nyquist limitation theorem. Improved isotropic 

interpolation algorithms have been developed using optimal 

weights, based on mean square error minimization, as propose 

Crane in [15] and Malvar in [16]. In spite of their ability to 

reduce bilinear defects, such algorithms do not deliver 

sufficient image quality because of their lack of dependence to 

the image content.  

In [7], Kimmel proposes an adaptive weighted average 

algorithm considering local image details. The weights are 

calculated as the photometric dependence of the bilateral filter 

proposed by Tomasi in [17]. The same approach is used by 

Ramanath in [18]. This approach reduces blur and moiré 

effects significantly. However, it needs to be iterated several 

times to yield effective color artifacts reduction. Moreover, the 

weights calculation is a source of important computational 

complexity. 

Another idea is to interpolate missing color components 

following details directions, consequently avoiding blur, moiré 

and color artifacts simultaneously. Based on the fact that the 

visual world is mainly composed of horizontal and vertical 

directions, it was demonstrated that, using an efficient details 

directions estimator, an excellent image quality could be 

produce using solely these two basics interpolation directions 

(see [2]-[3]-[8]). Various details directions estimators have 

been proposed in the literature. In [9], Hibbard proposes to 

compare vertical and horizontal green gradients. In [19], 

Laroche compares red and blue second order gradients. 

Hamilton in [20] improves the estimator resolution by 

fusionning Hibbard and Prescott estimators. He also proposes 

to improve green pixels interpolations by reducing color 

artifacts and moiré effects, using red and blue correction terms 

as in (1). We use the notations of Fig. 2, where G3 is the 

missing green pixel at the R3 position. 
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In [8], Hirakawa proposes local homogeneity classifiers. This 

algorithm consists of interpolating full color image versions in 

both horizontal and vertical directions. Images are then 

converted from RGB to CIELab space. After color space 

conversion, local homogeneity maps are calculated using 

luminance and chrominance measures of closeness. Finally, 

the pixel value in either the vertical or horizontal interpolated 

image that exhibits the most homogeneous local neighborhood 

is chosen for the output image. 

In [21], Alleyson proposes a new method for color  

demosaicing based on a mathematical model of spatial color 

multiplexing. He demonstrate that a one-color per pixel image 

Fig. 1 . General block diagram of a digital camera system. 



 

can be written as the sum of luminance and chrominance. In  

case  of  a  regular  arrangement  of  colors,  such  as  with  the 

Bayer CFA, luminance and chrominance are well localized in 

the spatial frequency domain.  

In [22], Gunturk, based on the work of Glotzbach in [23], 

proposes to take efficiently advantage of the existing inter-

channel correlation, trought an alternating projections scheme. 

The algorithm forces similar high-frequencies characteristics 

on the green, red and blue channels. 

Demosaicing could also be interpreted as an image 

formation inverse problem. Proposed algorithms account for 

the transformations performed by color filters, lens distortions, 

and sensor noise and determined the most likely output image, 

given the measured CFA image [4]-[24]. 

In this paper we propose a new demosaicing algorithm 

based on details directed interpolations. We propose a novel 

details directions estimator. This new estimator is coupled 

with a local majority direction choice algorithm that corrects 

possible wrong choices (interpreted as noise) by changing 

them to the local majority choice. Finally we propose a new 

algorithm to reduce color interpolation artifacts based on the 

bilateral filter [17]. 

IV. GREEN EDGE DIRECTED ESTIMATOR 

Directed algorithms exhibit a good compromise between 

image quality and computational complexity. The popular 

method of Hamilton [20] and Hirakawa [8] share many 

similarities. Their only significant difference is in the way of 

estimating the interpolation direction. This difference 

determines their output image quality, which is proportional to 

their computational complexity. The quality varies from low 

to high as complexity varies in the same way. The first kind of 

algorithm is well adapted to hand-held devices but not the 

second. Taking as a starting point these two algorithms we 

seek to propose a new one, exhibiting the image quality 

achieved by Hirakawa while keeping a low computational 

complexity, allowing the association of high image quality 

demosaicing with handheld devices capabilities. 

As it was discussed in section III, Hamilton proposes to 

perform gradient calculations on the Bayer mosaic to estimate 

interpolation directions while Hirakawa uses the full image 

color reconstruction with a complex selection criterion. We 

propose a new estimator based on gradient calculations in the 

green channel, we call it GED (for Green Edge Directed). 

Consider Gv(.) the vertical interpolated green channel and 

Gh(.) the horizontal interpolated green channel, interpolated as 

Hamilton propose in [20], using the second order gradient 

correction terms described in section III. Consider the 

coordinates (i,j) ϵ X, where X is a set of 2-D pixel positions 

and G(.) is the output green channel. The GED estimator is 

expressed in (2), where ΔhG(i,j) and ΔhG(i,j) are respectively 

defined in (3) and (4). 
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Fig. 3b shows the sub-sampled Bayer sequence of image in 

Fig. 3a, selected to contain both horizontal and vertical 

features. Fig. 3c and Fig. 3d respectively shows the results of 

the green channel horizontal interpolation and the color output 

image after CHI. We observe that horizontal details are 

interpolated in the correct direction while vertical details are 

interpolated in the wrong direction, together with associated 

color artifacts. Fig. 3e and Fig. 3f respectively shows the 

results of the green channel vertical interpolation and the color 

output image after CHI. Conversely to the horizontal 

interpolation cases, the vertical details are interpolated 

effectively while the horizontal details are full of artifacts. 

Looking at Fig. 3 and using the preceding notations, Fig. 3c 

corresponds to Gh(.) and Fig. 3e corresponds to Gv(.). By 

looking at Fig. 3c and Fig. 3e we can consider that the 

horizontal interpolation cancels the vertical details and 

strengthens the horizontal details. Conversely the vertical 

interpolation cancels the horizontal details and strengthens the 

vertical details. Exploring this property we deduce the relation 

(5) for (i,j) ϵ X, where X is a vertical details area, and the 

relation (6) for (i,j) ϵ X, where X is an horizontal details area. 

Looking now at the classifier condition in (2) we see that this 

behavior allows us to choose the corresponding interpolation 

direction. 
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Due to classifiers limitations, closeness between image details 

and sensors resolution and noise perturbations, it is effectively 

impossible to avoid incorrect direction decisions, introducing 

color artifacts. In the following section, we propose an 

algorithm to estimate and correct interpolation directions. 

Fig.  2. Bayer matrix numbering. 



 

V. LOCAL MAJORITARY DIRECTION CHOICE (LMDC) 

CORRECTION METHOD 

Incorrect direction choices are introduced by classifiers 

precision weakness when using edge directed algorithms (see 

section III). These errors decrease image quality by 

introducing color artifacts and labyrinth-like structures. 

Examples are shown in Fig. 4b and Fig. 4f. We propose to 

estimate and correct these interpolation direction decisions by 

measuring the local majority direction choice (LMDC). If the 

direction choice of the current point is different to the LMDC, 

it is corrected to be homogeneous with its neighbors; else the 

original direction is kept. This method is based on the 

assumption that in real images details directions are 

continuous. If an interpolation direction is isolated, it is highly 

probable that this direction is false. The LMDC can be 

estimated using different window sizes and forms. Fig. 4 

shows two examples of false interpolation correction using the 

LMDC method, while using Hamilton and Prescott 

demosaicing algorithms. Our proposal allows correcting an 

important number of false interpolations and increases the 

visual image quality by reducing color artifacts and labyrinth-

like structures. Using a square window of size (n×n) the 

complexity introduced in term of number of operations is 

(n
2
+1) additions and 1 comparison per pixel, resulting in an 

improved image quality yet with a small complexity 

contribution. However, even with perfect interpolation 

direction choice there would be color artifacts inherent to 

interpolation. We now propose a new method for reducing 

such artifacts, based on the bilateral filter. 

VI. BILATERAL ARTIFACTS REDUCTION FILTER 

Even a perfect demosaicing algorithm would yield color 

artifacts. These artifacts appear when image details are close 

to the sensor resolution. They are due to non-compliance with 

the conditions of the Nyquist-Shannon sampling theorem. A 

method to reduce color artifacts is proposed in [25], which 

consists of reducing color variations at an object surface by 

applying a median filter on the R- and B- difference channels. 

Generally, three iterations are necessary for effective artifacts 

reductions. Using a median function leads to a significant 

increase in algorithmic complexity, while limiting artifacts 

reductions due to the non convergence of the median filter. 

We show that better results can be obtained using adaptive 

mean weighted filters. In this section, we propose to study the 

filtering behavior of the mean and the bilateral filters [17] on 

the R- and B- difference planes. For the tests we used a square 

kernel of size (5×5). Fig. 5 shows visual results examples and 

comparisons between, median, mean and bilateral filters. 

Fig. 5c, shows that the mean filter effectively erases color 

artifacts; however it also reduces color saturation. In Fig. 5g 

we observe that the mean filter spreads colors beyond the 

objects border (at the edge of the bloom). In contrast, as 

shown on Fig. 5d, the bilateral filter removes color artifacts 

better than the median filter. In Fig. 5h, the bilateral filter 

retains good color separations at object edges. We observe that 

the bilateral filter retains the good artifacts removing 

performances of the mean filter while keeping the objects edge 

separation property of the median filter. Table I shows the 

computational complexities of the studied algorithms. We 

conclude that using a bilateral filtering on the R- and B-
 

difference planes increases the image quality while still 

keeping the computational complexity low. 

 
TABLE I 

ARTIFACTS REDUCTION ALGORITHMS COMPUTATIONAL COMPLEXITIES 

 

Algorithms 
Fixed 

Multiplications 
Additions Comparisons 

Median n x n 0 2 2n ×  
2 4n n+ ×  

Mean n x n 1 2 1n −  0 

Bilateral n x n 2 1n +  
2 1n −  0 

VII. COMPLETE ALGORITHM 

Associating the local direction estimator GED with the 

LMDC correction, we prpose a new edge directed 

demosaicing algorithm wich we call GEDI for Green Edge 

Directed Interpolation. It is as follows. 

 

 
           (a) Original image                        (b) Bayer sample                               (c) Gh (horizontal interpolation)       (d) Gh + CHI 

 

 
      (e) Gv (vertical interpolation)           (f) Gv + CHI                                       (g) GED criterion                             (h) GED + CHI 

 

Fig. 3. Illustration of the GED classifier behavior. 



 

1) Horizontaly and verticaly interpolate the green channel 

using the second order gradient correction of the red and blue 

channels as proposes Hamilton in [20]. 

2) Estimate local directions using the GED estimator as 

proposed in section IV. 

3) Correct false estimated directions using the LMDC method 

as proposed in section V. 

4) Interpolate red and blue channels using the CHI method. 

5) Reduce color artefacts using the bilateral filter as proposed 

in section VI. 

VIII. IMAGE QUALITY ASSESSMENT 

Finding a consistent way to estimate image quality is a 

recurring problem in image processing. An important number 

of demosaicing algorithms are present in the literature and we 

need objective measures to quantify the performances of the 

different methods. It is generally agreed that current image 

measures cannot effectively quantify the perceptual quality of 

images obtained from a restoration or a reconstruction process 

[26]-[27]-[28]. 

However, a global quantification can be obtained by 

combining subjective visual image quality assessments and the 

mean square error calculation between the original and the 

demosaiced image. Equation (7) shows the mean square error 

function, where X represents a set of 2-D pixels positions, v(x) 

is the estimated pixel and u(x) is the original pixel at the x 

position. As proposes Li in [26], the measure’s quantitative 

power can be improved by performing separate MSE 

calculations over edges on the one hand, and smooth regions 

on the other. 
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In this section, we compare the image quality obtained with 

  
 (a) Original image                    (b) Median 

  
 (c) Mean                                   (d) Bilateral 

  
 (e) Original image                    (f) Median 

  
 (g) Mean                                        (h) Bilateral 

Fig. 5. Results of different filters applied on the difference planes R- 

           and B-. 

  
(a) Hamilton decision choice     (b) Hamilton 

  
(c) LMDC correction                 (d) Hamilton with LMDC 

  
(e)  Prescott decision choice        (f)  Prescott 

  
(g) LMDC correction                    (h) Prescott  with  LMDC 

 

Fig. 4. Examples of results obtained with the LMDC method. 
 



 

our algorithm with that obtained using other demosaicing 

algorithms. For the comparison we use both the subjective 

criterion of visual appreciation, and the objective criterion of 

MSE calculation. The MSE is measured in both smooth and 

edge regions as well as in the overall image. We also measure 

the MSE in the red, green and blue plane separately. For the 

measure we use 24 reference images. These images were 

scanned at 3 color samples per pixel from film original. Color 

information is spatially sub-sampled to obtain images 

consisting of only one color per pixel, in agreement with the 

Bayer color filter arrangement. 

A. Visual quality 

Here we focus on the visual image subjective appreciation. 

We compare the demosaicing visual qualities of the different 

algorithms using the popular “lighthouse” image commonly 

referenced to evaluate demosaicing resolution. Fig. 6 shows 

the results produced by the implemented algorithms on a 

problematic image subset. We can see that GEDI produces 

comparable image quality to Hirakawa’s method. Incorrect 

interpolation directions, moiré effects and color artifacts were 

almost completely absent. We compare also the image quality 

obtained with a real raw camera. For the experiments we used 

a consumer-level camera for which RAW data is available. 

We imaged a professional sharpness indicator target. Fig. 7 

shows the results of different demosaicing algorithms on the 

same image subset. Fig. 7a is the original raw image. By 

looking at these results, we note that the bilinear interpolation 

completely erases the concentric circles visible on the original 

raw image. All algorithms results, except Hirakawa’s and 

GEDI, induce moiré effects. The Hirakawa and Hamilton 

algorithms introduce incorrect direction interpolations. The 

Gunturk, Malvar, Alleyson and Kimmel methods also create 

zippering effects. GEDI clearly produces the better result. 

Moiré effects, incorrect interpolation direction choice and 

zippering effects appear completely absent. 

B. Mean Square Error Calculation 

In this section, we present the results of the mean square 

error average difference between the demosaiced images and 

the original images using a database of 24 reference images. 

Table II shows the results of the MSE measure on smooth 

and edge regions and on the overall image. Looking at this 

table, we can observe that the GEDI algorithm yields MSE 

results very close to Hirakawa’s. We can also note the good 

performances of the Gunturk algorithm. However, as we have 

seen before, this algorithm tends to induces color artifacts, 

moiré and zippering effects. Table III shows the results of the 

MSE measure on red, green and blue channels. As in table II 

this table highlights the good performances of our proposal. 

Fig. 8 shows the graphic results of the Table III. 

In this section, we have shown that our demosaicing 

algorithm proposition outputs quality results at least 

equivalent to some of the best algorithms present in the 

literature. In the following section, we compare the algorithms 

computational complexity. 

 
TABLE II 

MEAN SQUARE ERROR CALCULATION ON EDGE REGIONS, SMOOTH REGIONS 

AND OVERALL IMAGE OVER 24 REFERENCE IMAGES 

Algorithms Edge regions 
Smooth 

regions 
Overall 

Bilinear 3x3 168.06 23.07 47.86 

Malvar 56.70 8.23 17.97 

Alleyson 58.34 8.43 19.30 

Kimmel 48.48 8.56 16.37 

Hibbard 44.66 7.55 14.74 

Hamilton 38.21 6.95 13.06 

Hirakawa 31.53 5.90 11.34 

GEDI 32.91 5.73 11.30 

Gunturk 25.26 4.42 8.84 

    
                (a)  Original image                        (b) Bilinear                                       (c)  Malvar                                       (d) Alleyson 

    
              (e) Hamilton                                      (f) Kimmel                                       (g) Gunturk                                     (h) Hirakawa 

 
                                                                                                      (i) GEDI 

Fig. 6.    Visual comparison of GEDI with common demosaicing algorithms.  

 



 

 

TABLE III 

MEAN SQUARE ERROR CALCULATION ON RED, GREEN AND BLUE CHANNELS 

OVER 24 REFERENCE IMAGES 

Algorithms Red channel Green channel Blue channel 

Bilinear 3x3 44.25 52.23 47.11 

Malvar 20.36 8.38 25.17 

Alleyson 19.36 16.38 22.17 

Kimmel 17.52 12.53 19.05 

Hibbard 14 11.53 16.87 

Hamilton 12.94 10.53 15.70 

Hirakawa 11.96 8.07 14 

GEDI 11.29 8.69 13.94 

Gunturk 9.41 5.69 11.41 
 

Fig. 8. MSE comparison on red, green and blue channels. 

 

    
      (a) Raw image                                     (b) Bilinear                                           (c) Hamilton                                        (d) Alleyson 

    
      (d) Malvar                                           (e) Gunturk                                          (f)Kimmel                                             (g)Hirakawa 

 
                                                                                                 (h) GEDI 

 

Fig. 7. Comparison of the visual quality obtained with different existing demosaicing methods. 



 

IX. COMPUTATIONAL COMPLEXITY 

 In this section, we compare the computational complexity 

of the demosaicing algorithms. Table IV shows the 

computational complexity of each studied algorithm by 

counting the number of operations per pixel. Fixed 

multiplication means multiplication by a fixed coefficient, 

which can be hard-coded with cumulative shift/adds. Table V 

shows the detailed counting of operations at each step the 

GEDI algorithm. In table IV, we can see that compared to 

Hirakawa and Gunturk, GEDI has a very low computational 

complexity comparable to the fastest algorithm such as 

Hamilton, Malvar, Alleyson and Bilinear. As we have shown 

in section VIII, this computational reduction is obtained 

without sacrificing image quality. 

We conclude that our demosaicing algorithm proposal 

maintains or improves image quality while keeping 

computations low. In the following section we compare the 

performances of the GEDI, Hamilton and Hirakawa algorithm 

on a current DSP. 

 
TABLE IV 

ALGORITHMS COMPUTATIONAL COMPLEXITY COMPARISON 

 

TABLE V 

GEDI DETAILED COMPUTATIONAL COMPLEXITY 

X.  SIMULATION AND COMPARISON ON DSP 

We have implemented and simulated the Hamilton, 

Hirakawa and GEDI demosaicing algorithms on a typical mid-

range media processor in use at the time of writing [29]. Each 

algorithm has been optimized (loop unrolling, separability, 

utilization of look up tables and custom DSP operation). A 

complete optimization procedure of the Hirakawa algorithm 

dedicated to the chosen processor is described in [30]. For the 

simulations we consider VGA resolution, a typical video 

resolution in embedded camera. The results are shown in 

section IX-B. 

The simulations were done with images at VGA resolution 

using a processor running at 350MHz clock frequency. In Fig. 

9 we can see the results of the simulation given in frames per 

second (fps). We can see that Hamilton and GEDI can be run 

on VGA video sequences at over 25 frames per second (fps). 

We also note that with 50.54 fps GEDI runs 1/3 as slow as 

Hamilton (74.73 fps). We observe that Hirakawa cannot 

process videos at VGA resolution, as it only runs at 7.64 fps. 

These results show that by using the GEDI algorithm it is 

possible to improve image quality demosacing while keeping 

real time processing on embedded multimedia devices. 

 
Fig.  9.    Frame per second comparison computing for a VGA resolution     

image on a current DSP.  

XI. CONCLUSION 

In this paper, a green edge directed demosaicing algorithm 

was presented. We propose a novel estimator wich we name 

GED to estimate local details directions, using gradient 

measures in the vertical and the horizontal interpolated green 

channel. We developed an improved a method to detect and 

correct false interpolation directions, wich we call LMDC. We 

showed that bilateral filtering provided better results than 

gradient on the R- and B- difference channels to suppress color 

artifacts. Experimental data demonstrates the good 

performances of our algorithm. We also exhibited the real 

time performance of our algorithm on a typical current 

multimedia processor. 
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