
[GSoC’21]Irdest Android Client-Blog IV

(A Work Report)

Ayush Shrivastava | Katharina Fey

Saturday 21st August 2021

Prelude

Hi super happy to see you here! It has been an exciting and productive summer
from which I learnt a bunch of new stuff and irdest plus GitLab have been
gracious on me. The project went through many ups and downs but we made
our way fixing the bugs and making things work as expected. I hope I’ll be
able to convey some information of the work done by me on a piece of this
magnificent software over the course of the summer. Let’s begin!

Irdest!?

Okay, so first things first. Let me introduce you with Irdest and what it does
to make sure we are on the same page and [irde.st] doesn’t sound completely
(we)ird to you, and then we’ll progress on the title afterwards. First, I’ll try
explaining it in a single line,

”Irdest... is a beast!”
Okay no jokes this time(that was no joke btw), going to explanation for real xD,
[irde.st] is a software suite that allows users to create an internet-independent,
decentralized & ad-hoc wireless mesh network. It removes all the dependencies
of a user from a specific service and enables users to create a local network mesh
of their own. It does not expose data or information of the user. Even the IPs of
the peers present in the mesh are not known, they communicate via routers and
the entire communication is end-to-end encrypted between the users, thereby
increasing privacy in user data. As of now, Irdest supports various functionali-
ties to users like sharing files over the network created, call between users, and
messaging.

A Gist

This summer was focused on building the FFI Layer to implement the features
supported by the library in the upstream. So if you have been following the
initial three posts by me on the same topic, then you must be aware of the
fact that the biggest challenge being encountered is compiling library properly
and linking it to the application in the compile time itself. Apart from this,
considerable challenges were about maintaining the robust CI which makes sure
we don’t break stuff at any point of development process, and the very sensitive

1

https://irde.st
https://irde.st

FFI layer. We got through these challenges and finally implemented some of
the upstream features in the application, but not all. Because with this sophis-
ticated setting of the components we need to move forward carefully in order
to not break stuff, and with limited time in our hands we decided to implement
some of the very basic features in the application and write an unbreakable CI
for them, from which we can make use of the build artifacts and can keep track
where things break.

Work Done

Without going into too much depth of the concepts/thought process and dis-
cussion, let’s quickly touch upon the work done in the course of this summer of
code. You can refer to the previous posts if find yourself interested in detailings
of the changes made/steps taken and why and stuff like that.

Compiling the Rust Library

The very first thing I did as a part of the summer of code was fixing the rust
library compilation. Initially, the rust library was broken due to the massive
refactor and some portion of the huge codebase being left. Due to compilation
errors in the rust library(and I being beginner to Rust back then) it took some
time to fix the errors, refactor the remaining portion of code accordingly and
make it build green. As soon as the rust library was up, the target was to make
the application compile and link the library to the application in the compile
time. With all these changes being made, a challenge was to write CI for all
this cross-compilation setting, which I had never done before.

Writing the CI

Writing the CI for android components including our FFI bridge wasn’t that
tricky, but it did require some good knowledge of cross-compilation, Cargo and
obviously android :P. But we ended up implementing that too, and with the
current state of CI, nothing can break easily and we have awesome and strict
checks that compile the components as per the need. We made use of GitLab’s
one of the greatest and finest works, which is their CI, how they organize and
define Pipelines, Jobs, triggering mechanisms and artifacts handling in subse-
quent and post Jobs. We combined the power of GitLab CI and our own custom
docker image [irdest-android-build-env] . This made our CI run lightning fast,
Jobs that took 11mins to run without any Hi-Fi image being used now finished
in 3 to 4 minutes, this was a huge gain and we were able to optimize our CI runs
even more via redefining Pipelines, Jobs flow and via introducing the concept
of Child Pipelines, another great piece of work by GitLab.

Implementing Features Supported by Library

After all this CI and basic stuff being done, we moved ahead with implementing
the functions supported by our rust library in the application. So I implemented
the login and registration features, both in the single MR and due to very less

2

https://hub.docker.com/r/irdest/android-build-env

time left in hands, I had to make major UI changes in the same MR, thereby in-
creasing its size, the UI changes were not stellar, but they made the application
layouts very responsive and with almost zero dimension hardcodings, every-
thing works like springs, other ones get adjusted automatically, if the change is
observed/experienced by any one of all present(for a particular layout).

Some UI Fixes

Also there was a very nasty UI bug that I can remember of, in the Login/Registration
screen, in which the screen got split into two components, the login one and the
registration one, so in this I setup the optimal fragment transactions and cre-
ated an abstract layout in the root screen which is empty by default and sets
the desired layout file as per the requirements, e.g., it shows the Registration
one if clicked on registration button and similar for the others.

Codebase Modernization

In the final days, we moved towards modernizing the application codebase via
following some best practices in it and removing the old/deprecated ones :P but
sadly this couldn’t be merged because of the changes made in the NDK v23
API, which made our cross-compiler plugin incompatible with the project and
thereby leading to CI failures, although all of this has now been fixed locally
at my own fork, but we wish to implement a stable and elegant solution af-
ter pondering on the problem for some time. So, along the lines for codebase
modernization, the opened MRs included the migration from ol’ school Groovy
Gradle files for dependency management to human readable Kotlin DSLs, along
with some tool version bumps(out of which one was our NDK which I bumped
to v23 from v21 xD, yeah I can see ’ya a bit sad, it hurts ;() and some changes
in Kotlin scripts we were able to compile the library directly from the Android
Studio itself, which previously was a great PITA and we had to manually com-
pile the library. The next MR targeted the migration from legacy view scans to
ViewBinding, increasing the application performance!

Ah, I am not going to list all the MRs opened by me in the summer here,
but if interested you can give ’em a look here:
[we/irdest/merge requests?author=s-ayush2903]

Futher Possible Improvements

Well there are really a bunch of improvements that can be made in the existing
codebase! Let me help you think of few:

• Writing Unit tests for the features implemented by far

• Writing Instrumented tests for UI flow implemented by far

• Making the application support many/some more functions that the li-
brary supports

• Running instrumentation tests on CI

• Fixing the NDK v23 incompatibility with our cross-compiler plugin
The last entry was a joke, ignore it xD

3

https://git.irde.st/we/irdest/-/merge_requests?scope=all&state=all&author_username=s-ayush2903

Acknowledgements :)

Well we finally arrive here. A huge thanks to my amazing mentor,
Spacekookie <3, who was always there to help me out when stuck and shared
their valued thoughts on what directions we need to take for the project. Discus-
sions with them have always been super super insightful and let me ponder for
a while about their thought process in figuring out the solutions. A big thanks
to you again! Nextly, this project would never have been possible without the
organization Freifunk where I got accepted as a GSoC’21 student to work on
one of their project. It was a truly amazing experience where I learnt a lot of
new stuff and met people having same interests, which made the project and
discussions more involved, productive and helpful. Thanks to all. Although I’m
a bit disappointed about the very limited time we had to work on the project
and couldn’t make it to the level we thought at a point of time. But anyways,
super happy after working on Irdest!

If you’re interested in the project, you may find following useful, where I
discussed about the tech involved, in detail:

• #1 Overview blog – [@LATEX] | [@freifunk-blog]

• #2 Phase I report – [@LATEX] | [@freifunk-blog]

• #3 Phase II report – [@LATEX] | [@freifunk-blog]

Cheers, until next time we meet!

∼Ayush Shrivastava /

4

https://git.irde.st/s-ayush2903/gsoc-resources/-/raw/dev/Blogs/initBlog.pdf
https://blog.freifunk.net/2021/06/07/gsoc21-irdest-android-client-overview/
https://git.irde.st/s-ayush2903/gsoc-resources/-/raw/master/Blogs/irdest-official-blog-ii.pdf
https://blog.freifunk.net/2021/07/12/gsoc21-irdest-android-client-coding-phase-i/
https://git.irde.st/s-ayush2903/gsoc-resources/-/raw/dev/Blogs/irdest-official-blog-iii.pdf
https://blog.freifunk.net/2021/08/21/gsoc21-irdest-android-client-coding-phase-ii/

