
ptsecurity.com

Vulnerabilities
and threats in
mobile banking

https://www.ptsecurity.com/

Contents

About the research	 3

Executive summary	 4

Client-side vulnerabilities 	 5

Server-side application vulnerabilities	 11

What users should know	 13

Conclusion	 14

2

About the research
In 2019, we chose 14 fully featured mobile banking applications (client + server) for

our research. Criteria for inclusion were:

	� Both Android and iOS clients were available and analyzed for the bank in question.

	� The bank application had been downloaded from official app stores (Google

Play and Apple's App Store) more than 500,000 times.

	� System owners agreed to use of security assessment results for research purposes.

The security level of each application was assessed manually, using black-, gray-,

or white-box methods with the assistance of automated tools. Black-box testing

means looking at an application from the perspective of an external attacker who

has no prior knowledge of the application. Gray-box testing is similar to black-box

testing, except that the attacker is a user who has some privileges. White-box test-

ing refers to security analysis that makes use of all relevant information about the

application, including its source code.

This report summarizes client- and server-side vulnerabilities in mobile banking

applications related to faults in application code, client–server interaction, and im-

plementation of security mechanisms. Other common security weaknesses, such

as failure to manage software updates, are not considered here. Vulnerability risk

was assessed based on the impact of a potential attack on user data and the ap-

plication itself, taking feasibility into account. When grading each vulnerability, we

made a qualitative assessment and assigned high, medium, or low risk.

7
banks
Android clients
iOS clients
servers

57% 43%

Black and gray box

White box

Figure 1. Testing methods used (percentage of applications)

3

Executive summary
None of the tested mobile banking applications has an acceptable level of

protection.

Client side

The client side refers to a mobile banking application installed on the user's device.

	� In 13 out of 14 applications, attackers can access user data from the client side.

	� 76 percent of mobile banking vulnerabilities can be exploited without physical

access to the device.

	� More than a third of vulnerabilities can be exploited without administrator

(jailbreak or root) rights.

Server side

The server side is a web application that interacts with the mobile client over the

Internet by means of a special application programming interface (API).

	� Server sides contain 54 percent of all vulnerabilities we found.

	� On average, each mobile bank has 23 server-side vulnerabilities.

	� Half of mobile banks are vulnerable to fraud and theft of funds.

	� At five out of seven banks, hackers can steal user credentials. At one third of

banks, card information is at risk.

4

Client-side vulnerabilities

iOS client applications contain fewer vulnerabilities than their Android counter-

parts. No flaws in iOS banking apps were worse than "medium" in severity. By

comparison, 29 percent of Android apps contain high-risk vulnerabilities.

47% 53%

iOS

Android

Figure 2. Level of protection of client applications (number of applications)

Figure 4. Vulnerabilities by severity

Figure 3. Percentage of vulnerabilities in Android vs. iOS clients

1

Below average

Low

13

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

40% 57%3%

37% 63%

Android

iOS

High Medium Low

Figure 5. Average number of vulnerabilities per application

0 1 2 3 4 5 6 7 8 9 10

Android

iOS

8,3

7,4

None of the tested clients

has an acceptable level

of protection

5

The most dangerous vulnerabilities we found are in Android applications and

involve insecure deeplink handling. Deep linking is used differently on iOS and

Android: developers on Android have more freedom of implementation. This ex-

plains the larger number of vulnerabilities in Android applications compared to

iOS. However, this does not mean that iOS developers are immune. Mobile banking

security depends above all on a Secure Software Development Lifecycle (SSDL).

Our research demonstrates that insufficient code protection leaves banks vulnera-

ble to source code analysis. To exploit vulnerabilities in code, all attackers need is

to download the application from Google Play or the App Store and then decom-

pile it.

Lack of obfuscation allows attackers to analyze the code and find important data,

such as:

	� Testing-related usernames and passwords

	� Encryption keys and parameters from which keys can be derived

	� Salts for hashing and encryption

Attackers can then use this information to obtain credentials and access web serv-

ers. What's more, hackers can analyze the application algorithm and exploit flaws

in business logic. Competitors may also want to know how the application is de-

signed in order to copy new features for their own products.

Figure 6. Vulnerabilities by type

100%
of mobile banking
clients contain
vulnerabilities in their
code. For example:

	� Code is not obfuscated.

	� Protection against
code injection and
repackaging is absent.

	� Code contains names
of classes and methods.

More features,
more risks

15%11%

43%

7%

8%

6%

10%

Insecure Data Transfer

Logout Flaws

Unsafe Interprocess
(Intercomponent)
Communication

Other

Insecure Data Display

Insecure Data Storage

Application Source
Code Vulnerabilities

6

Figure 7. Top 10 mobile banking vulnerabilities (number of applications affected)

Figure 8. Decompiled executable files before and after character removal

6

6

6

5

4

No Certificate Pinning
(or Poor Implementation)

Insecure Deeplink
and app-url Handling

Insecure Connection
Implementation

Data Stored in Cleartext

Storage of Authentication
Data, Keys, and Tokens

in Application Code

14

14

14

11

9

No Protection from Code
Injection and Repackaging

Automatic Screenshot Saving

Names of Classes
and Methods in Code

No Obfuscation

Logout Flaws

Tip for developers

Use obfuscation to make it difficult for attackers to read and analyze code. One

example of code obfuscation is to remove characters at compile time. Names of

classes and methods in the source are replaced by random or single-letter names.

Developers can use special software, such as ProGuard for Android or Sirius

Obfuscator and SwiftShield for iOS.

7

To exploit some client-side vulnerabilities, all an attacker would need to do is

convince the victim to install a malicious app, perhaps with the help of phishing.

Insecure deeplink handling is a critical vulnerability with the potential to cause fi-

nancial losses for banks. For example, one banking application failed to filter deep

linking URLs. The problem is that embedded WebView components can load ar-

bitrary links. So attackers could take advantage of this by loading a link to a web

page containing malicious code and interact with the JavaScript interfaces availa-

ble in those WebView components. Positive Technologies experts developed test

scripts and demonstrated SMS interception. They were able to obtain card num-

bers by manipulating the ability to scan bank cards using the on-board camera or

via NFC. Attackers can display a malicious page in the application's interface and

prompt to scan a card. For the user, everything looks like a regular banking trans-

action, except that criminals (and not the bank) will be the ones receiving the data.

of vulnerabilities can

be exploited without

physical access

of vulnerabilities can

be exploited without

jailbreaking or rooting

76% 37%

Figure 9. Prerequisites for vulnerability exploitation

67%
of attacks against
individuals in Q4
2019 involved social
engineering

Figure 10. Card scan manipulation

Scan using the camera

 Scan via NFC

Scan via NFC

 CANCEL

8

https://www.ptsecurity.com/ww-en/analytics/cybersecurity-threatscape-2019-q4/
https://www.ptsecurity.com/ww-en/analytics/cybersecurity-threatscape-2019-q4/

Tip for developers

Deep linking creates another point of entry for attackers. Remember that all pa-

rameters passed using deep linking come from an insecure source, so verify and

filter them before passing them to source code methods.

11 out of 14 mobile banks allow automatic screenshot capture, a feature that

helps to quickly view recently used programs. But screenshots may contain sensi-

tive data such as card information and account balances.

The client-side file system of almost half of applications contains unencrypted

sensitive information. To access this data, attackers need root or jailbreak rights.

Rooting or jailbreaking the device can be done with physical access or remotely by

means of malware. In one mobile banking application, our experts found card bal-

ance statements stored on the phone. Another application went so far as to save

the user's PIN code, allowing attackers to access the user's account.

Deep linking is a technology that allows users to navigate between applications

(or sections within an application) to a specific location using special links, similar

to hyperlinks in web applications.

Figure 11. Disclosed information (number of applications affected)

11

6

4

Credentials

Screenshots

Personal data

Tip for developers

Store as little data on user devices as possible. Request data from the server only

as needed by the application and delete it when finished. Encrypt sensitive infor-

mation stored on the device and ensure that encryption keys are securely man-

aged. To protect data from screenshots, use a special background image to block

out app screens containing sensitive information.

43%
of applications
store important
data on the phone
in cleartext

9

Only one of the tested mobile banks did not contain vulnerabilities allowing at-

tackers to access user data. 13 out of 14 applications were vulnerable to man-in-

the-middle attacks due to a lack of certificate pinning to validate SSL certificates,

issues with connection implementation, and use of insecure external object refer-

ences. If successful, attackers can access sensitive user data, as well as read and

tamper with data transferred between the server and the client application.

Lo

Figure 12. Top three mobile banking threats (number of applications affected)

10

Server-side application

vulnerabilities
More than half of mobile banks contain high-risk server-side vulnerabilities. Overall,

not a single server side had a security level better than "medium." Three had a se-

curity level that was "low," and one "extremely low."

42% 52%6%

Low

Medium

High

28%

34%

36%2%

Information Disclosure

Other

Flawed Authentication/
Authorization

Vulnerabilities allowing
attacks against clients

Figure 13. Vulnerabilities by severity

Figure 14. Vulnerabilities by type

23

server-side
vulnerabilities
exist in each mobile
bank on average

Figure 15. Top five server-side vulnerabilities (number of servers affected)

6

5

5

3

3

Insufficient
Authentication/

Authorization

Business Logic Errors

Application Identification

Password Brute Force

Cross-Site Scripting (XSS)

Most bruteforce vulnerabilities are caused by flaws in the one-time password (OTP)

mechanism. The most common problem is that a password remains valid even if

the number of password input attempts is exceeded. Attackers can access the

user's account and take advantage of OTP flaws to impersonate the user in various

transactions, including transferring funds.

11

Three out of seven mobile banks contain server-side vulnerabilities in business

logic. In most cases, these vulnerabilities impact functionality directly useful for

fraud attempts. Business logic errors may cause significant losses to banks and

even lead to legal complications.

Tip for developers

Apply SSDL and integrate assessment of code security

as early as possible in the development process.

Figure 16. Mobile banking threats (number of servers affected)

5

5

5

4

3

Attacks on application users

Unauthorized application access,
disclosure or interception of credentials,

user impersonation

Unauthorized access to user data

Unauthorized access to application

Fraud, theft of funds

Five out of seven mobile banks have server-side vulnerabilities that hackers can ex-

ploit against users. For example, insufficient extension checking of uploaded files

in one mobile application allows attackers to upload malicious executable files to

the server. If a bank employee ran such a file, a malicious script could run and steal

data from the server, for example.

Unauthorized access to applications usually results from authentication and au-

thorization flaws. For example, attackers can bruteforce a user's password during

authentication and access the victim's account. Next, if attackers succeed in by-

passing one-time password protection by exploiting OTP flaws, they can imper-

sonate the victim.

User credentials proved to be the most vulnerable prey: mobile banking usernames

and passwords are jeopardized on the server side of five mobile banks. Personal

data can fall into the hands of attackers in more than half of the mobile apps.

This information may include usernames, account balances, transfer confirmations,

card limits, and the phone number associated with a victim's card.

Card information is
at risk at two out of
seven mobile banks

Figure 17. Disclosed information (number of application servers)

5

4

4

3

2

Credentials

User identifiers

Personal data

App configuration and
other technical information

Card information

When exploited, mobile

banking vulnerabilities

yield information that

can be used for fraud

and other attacks on

banks and their clients

12

What users should know
All mobile banking applications have security flaws. Our research shows that Android

apps are more vulnerable than iOS ones. The vulnerabilities that hackers exploit for

fraud and theft are usually the result of coding errors. Avoiding such flaws should be

top priority for developers. However, many vulnerabilities cannot be exploited with-

out user interaction. Some attacks require physical access to the device.

Rooting (Android) or jailbreaking (iOS) a device, or not setting a PIN code to un-

lock the phone, gives attackers more leverage to conduct malicious actions.

Tip for users

Do not jailbreak or root your device. This opens up access to the device file system

and disables data protection mechanisms. Set a PIN code to unlock your device.

This limits attackers' options even if they have physical access to your phone.

Some attacks require user interaction in the form of clicking a link, installing mal-

ware, or entering data on a fake web page.

Tip for users

Do not open links sent by strangers via SMS or chat. Never sideload applications

from unofficial sources. Download applications only from official stores like Google

Play and the App Store. When deciding what to download, pay attention to infor-

mation on the app developer and the number of downloads.

Vulnerabilities can also reside in the mobile OS itself. But Google and Apple con-

stantly update their software and release security patches. Users should remember

that vulnerabilities become public after fixes are released. Hackers can make use of

this to attack devices that don't have the latest updates installed.

Tip for users

Always install the latest updates for your OS and mobile applications.

13

Vulnerabilities-mobile-banks-2020_A4.ENG.0002.02

Conclusion
None of the tested mobile banking applications has an acceptable level of security.

Banks are not protected from reverse engineering of their mobile apps. Moreover,

they give short shrift to source code protection, store sensitive data on mobile de-

vices in cleartext, and make errors allowing hackers to bypass authentication and

authorization mechanisms and bruteforce user credentials.

As shown here, mobile banking applications contain flaws that can lead to the

following consequences:

	� Breaches of sensitive user information, including personal data and card details

	� Unauthorized access to the application

	� Fraud and theft of funds

Securing data and funds is not just the job of developers; users, too, play a vital

role in keeping themselves safe. Most attacks are impossible without user inter-

action. In 87 percent of cases, user interaction is required for a vulnerability to

be exploited. By jailbreaking or rooting, sideloading applications from unofficial

sources, visiting suspicious websites, and following dodgy links from SMS and chat

messages, users actually help hackers and put their data at risk.

We continue to urge that banks do a better job of emphasizing application security

throughout both design and development. Source code is rife with issues, making

it vital to revisit development approaches at all stages of the application lifecycle

in order to avoid security gaps and ensure strong implementation of SSDL prac-

tices. Some vulnerabilities, especially those related to application logic, are impos-

sible to predict. This is why we also recommend thoroughly testing applications

and their security mechanisms, with proper attention paid to source code analysis.

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance manage-
ment, incident and threat analysis, and application protection. Commitment to clients and research has earned Positive Tech-
nologies a reputation as one of the foremost authorities on Industrial Control System, Banking, Telecom, Web Application, and
ERP security, supported by recognition from the analyst community. Learn more about Positive Technologies at ptsecurity.com.

About
Positive Technologies

© 2020 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trade-
marks of Positive Technologies. All other trademarks mentioned herein are the property of their respective owners.

ptsecurity.com
info@ptsecurity.com

mailto:info%40ptsecurity.com?subject=

	About the research
	Executive summary
	Client-side vulnerabilities
	Server-side application vulnerabilities
	What users should know
	Conclusion

