## Recap: Language models

# Foundations of Natural Language Processing Lecture 4 <br> Language Models: Evaluation and Smoothing 

## Alex Lascarides

(Slides based on those from Alex Lascarides, Sharon Goldwater and Philipp Koehn) 24 January 2020

## informatics

- Language models tell us $P(\vec{w})=P\left(w_{1} \ldots w_{n}\right)$ : How likely to occur is this sequence of words?

Roughly: Is this sequence of words a "good" one in my language?

- LMs are used as a component in applications such as speech recognition, machine translation, and predictive text completion.
- To reduce sparse data, N -gram LMs assume words depend only on a fixedlength history, even though we know this isn't true.


## Evaluating a language model

- Intuitively, a trigram model captures more context than a bigram model, so
should be a "better" model.
- That is, it should more accurately predict the probabilities of sentences.
- But how can we measure this?
$\overline{\text { Alex Lascarides } \quad \text { FNLP lecture 4 _ _ } 24 \text { January 2020 }}$
$\overline{\text { Alex Lascarides }}$
FNLP lecture 4


## Two types of evaluation in NLP

- Extrinsic: measure performance on a downstream application.
- For LM, plug it into a machine translation/ASR/etc system
- The most reliable evaluation, but can be time-consuming
- And of course, we still need an evaluation measure for the downstream system!
- Intrinsic: design a measure that is inherent to the current task.
- Can be much quicker/easier during development cycle.
- But not always easy to figure out what the right measure is: ideally, one that correlates well with extrinsic measures.

Let's consider how to define an intrinsic measure for LMs

## Entropy

- Definition of the entropy of a random variable $X$ :

$$
H(X)=\sum_{x}-P(x) \log _{2} P(x)
$$

- Intuitively: a measure of uncertainty/disorder
- Also: the expected value of $-\log _{2} P(X)$


## Entropy Example

$P(a)=0.5$
$P(b)=0.5$

$$
\begin{aligned}
H(X) & =-0.5 \log _{2} 0.5-0.5 \log _{2} 0.5 \\
& =-\log _{2} 0.5 \\
& =1
\end{aligned}
$$

## Entropy Example

One event (outcome)

$$
P(a)=1
$$

$$
\begin{aligned}
H(X) & =-1 \log _{2} 1 \\
& =0
\end{aligned}
$$



## Entropy Example

$$
\begin{aligned}
& P(a)=0.25 \\
& P(b)=0.25 \\
& P(c)=0.25 \\
& P(d)=0.25
\end{aligned}
$$

4 equally likely events:

$$
\begin{aligned}
H(X)= & -0.25 \log _{2} 0.25-0.25 \log _{2} 0.25 \\
& -0.25 \log _{2} 0.25-0.25 \log _{2} 0.25 \\
= & -\log _{2} 0.25 \\
= & 2
\end{aligned}
$$



## Entropy Example

$P(a)=0.7$
$P(b)=0.1$
$P(c)=0.1$
$P(d)=0.1$


3 equally likely events and one more likely than the others:

$$
\begin{aligned}
H(X)= & -0.7 \log _{2} 0.7-0.1 \log _{2} 0.1 \\
& -0.1 \log _{2} 0.1-0.1 \log _{2} 0.1 \\
= & -0.7 \log _{2} 0.7-0.3 \log _{2} 0.1 \\
= & -(0.7)(-0.5146)-(0.3)(-3.3219) \\
= & 0.36020+0.99658 \\
= & 1.35678
\end{aligned}
$$

## Entropy Example

3 equally likely events and one much more likely than the others:

$$
\begin{aligned}
H(X)= & -0.97 \log _{2} 0.97-0.01 \log _{2} 0.01 \\
& -0.01 \log _{2} 0.01-0.01 \log _{2} 0.01 \\
= & -0.97 \log _{2} 0.97-0.03 \log _{2} 0.01 \\
= & -(0.97)(-0.04394)-(0.03)(-6.6439) \\
= & 0.04262+0.19932 \\
= & 0.24194
\end{aligned}
$$


$H(X)=0$

$H(X)=3$

$H(X)=1$

$H(X)=1.35678$

$H(X)=0.24194$

$$
P(a)=0.97
$$

$$
P(b)=0.01
$$

$$
P(c)=0.01
$$

$$
P(d)=0.01
$$



## Entropy as $\mathrm{y} / \mathrm{n}$ questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with $2^{n}$ outcomes: $n$ yes-no questions.
- Assume that we want to encode a sequence of events $X$.
- Each event is encoded by a sequence of bits, we want to use as few bits as possible.
- For example
- Coin flip: heads $=0$, tails $=1$
- 4 equally likely events: $a=00, b=01, c=10, d=11$
- 3 events, one more likely than others: $a=0, b=10, c=11$
- Morse code: $e$ has shorter code than $q$
- Average number of bits needed to encode $X \geq$ entropy of $X$



## Coping with not knowing true probs: Cross-entropy

- Our LM estimates the probability of word sequences.
- A good model assigns high probability to sequences that actually have high probability (and low probability to others).
- Put another way, our model should have low uncertainty (entropy) about which word comes next.
- Cross entropy measures how close $\hat{P}$ is to true $P$ : $H(P, \hat{P})=\sum_{x}-P(x) \log _{2} \hat{P}(x)$
- Note that cross-entropy $\geq$ entropy: our model's uncertainty can be no less than the true uncertainty.
- But still dont know $P(x)$. .
- Given the start of a text, can we guess the next word?
- For humans, the measured entropy is only about 1.3.
- Meaning: on average, given the preceding context, a human would need only $1.3 \mathrm{y} / \mathrm{n}$ questions to determine the next word.
- This is an upper bound on the true entropy, which we can never know (because we don't know the true probability distribution).
- But what about $N$-gram models?


## Coping with Estimates: Compute per word cross-entropy

- For $w_{1} \ldots w_{n}$ with large $n$, per-word cross-entropy is well approximated by:

$$
H_{M}\left(w_{1} \ldots w_{n}\right)=-\frac{1}{n} \log _{2} P_{M}\left(w_{1} \ldots w_{n}\right)
$$

- This is just the average negative log prob our model assigns to each word in the sequence. (i.e., normalized for sequence length).
- Lower cross-entropy $\Rightarrow$ model is better at predicting next word.


## Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I spent three years before the mast (here, without using end-of sentence padding):

```
    -\frac{1}{7}( lg}\mp@subsup{\operatorname{lg}}{2}{}(P(I))+\mp@subsup{\operatorname{lg}}{2}{}(P(\mathrm{ spent }/I))+l\mp@subsup{g}{2}{}(P(\mathrm{ three|spent )})+\mp@subsup{\operatorname{lg}}{2}{}(P(\mathrm{ years|three })
```



```
= - 
= - 青( 41.2660)
\approx 6
```

- Per-word cross-entropy of the unigram model is about 11 .
- So, unigram model has about 5 bits more uncertainty per word then bigram model. But, what does that mean?



## Perplexity

- LM performance is often reported as perplexity rather than cross-entropy.
- Perplexity is simply $2^{\text {cross-entropy }}$
- The average branching factor at each decision point, if our distribution were uniform.
- So, 6 bits cross-entropy means our model perplexity is $2^{6}=64$ : equivalent uncertainty to a uniform distribution over 64 outcomes.

Perplexity looks different in J\&M 3 ${ }^{\text {rd }}$ edition because they don't introduce crossentropy, but ignore the difference in exams; I'll accept both!

- If we designed an optimal code based on our bigram model, we could encode the entire sentence in about 42 bits.
- A code based on our unigram model would require about 77 bits.
- ASCII uses an average of 24 bits per word (168 bits total)!
- So better language models can also give us better data compression: elaborated by the field of information theory.


## Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

## Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

- No way to tell! Cross-entropy depends on both the model and the corpus.
- Some language is simply more predictable (e.g. casual speech vs academic writing).
- So lower cross-entropy could mean the corpus is "easy", or the model is good.
- We can only compare different models on the same corpus.
- Should we measure on training data or held-out data? Why?


## Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

$$
\begin{aligned}
P_{\mathrm{ML}}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)} \\
\Rightarrow \quad P_{+1}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)}
\end{aligned}
$$

## Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

$$
\left.\begin{array}{rl}
P_{\mathrm{ML}}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)} \\
\Rightarrow \quad & P_{+1}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
\end{array}\right) \frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)}
$$

- NO! Sum over possible $w_{i}$ (in vocabulary $V$ ) must equal 1 :

$$
\sum_{w_{i} \in V} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=1
$$

- If increasing the numerator, must change denominator too.

| Alex Lascarides | FNLP lecture 4 | 24 |
| :--- | :--- | :--- |

## Add-one example (1)

- Moby Dick has one trigram that begins with I spent (it's I spent in) and the vocabulary size is 17231.
- Comparison of MLE vs Add-one probability estimates:

|  | MLE | +1 Estimate |
| :--- | ---: | ---: |
| $\hat{P}($ three $\mid$ I spent $)$ | 0 | 0.00006 |
| $\hat{P}($ in $\mid$ I spent $)$ | 1 | 0.0001 |

- $\hat{P}$ (in $\mid I$ spent) seems very low, especially since in is a very common word. But can we find better evidence that this method is flawed?
- We want:

$$
\sum_{w_{i} \in V} \frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)+x}=1
$$

- Solve for $x$ :

$$
\begin{aligned}
\sum_{w_{i} \in V}\left(C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1\right) & =C\left(w_{i-2}, w_{i-1}\right)+x \\
\sum_{w_{i} \in V} C\left(w_{i-2}, w_{i-1}, w_{i}\right)+\sum_{w_{i} \in V} 1 & =C\left(w_{i-2}, w_{i-1}\right)+x \\
C\left(w_{i-2}, w_{i-1}\right)+v & =C\left(w_{i-2}, w_{i-1}\right)+x \\
v & =x
\end{aligned}
$$

where $v=$ vocabulary size .

## Add-one example (2)

- Suppose we have a more common bigram $w_{1}, w_{2}$ that occurs 100 times, 10 of which are followed by $w_{3}$.

|  | MLE | +1 Estimate |
| :--- | :---: | ---: |
| $\hat{P}\left(w_{3} \mid w_{1}, w_{2}\right)$ | $\frac{10}{100}$ | $\frac{11}{17331}$ |
|  |  | $\approx 0.0006$ |

- Shows that the very large vocabulary size makes add-one smoothing steal way too much from seen events.
- In fact, MLE is pretty good for frequent events, so we shouldn't want to change these much.


## Add- $\alpha$ (Lidstone) Smoothing

- We can improve things by adding $\alpha<1$.

$$
P_{+\alpha}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)+\alpha}{C\left(w_{i-1}\right)+\alpha v}
$$

- Like Laplace, assumes we know the vocabulary size in advance.
- But if we don't, can just add a single "unknown" (UNK) item, and use this for all unknown words during testing.
- Then: how to choose $\alpha$ ?


## Good-Turing in Detail

- Push every probability total down to the count class below.
- Each count is reduced slightly (Zipf): we're discounting!

| $c$ | $N_{c}$ | $P_{c}$ | $P_{c}[$ total $]$ | $c *$ | $P *_{c}$ | $P *_{c}[$ total $]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $N_{0}$ | 0 | 0 | $\frac{N_{1}}{N_{0}}$ | $\frac{N_{1}}{N}$ | $\frac{N_{1}}{N}$ |
| 1 | $N_{1}$ | $\frac{1}{N}$ | $\frac{N_{1}}{N}$ | $2 \frac{N_{2}}{N_{1}}$ | $\frac{2 N_{2}}{N}$ | $\frac{2 N_{2}}{N}$ |
| 2 | $N_{2}$ | $\frac{2}{N}$ | $\frac{2 N_{2}}{N}$ | $3 \frac{N_{3}}{N_{2}}$ | $\frac{3 N_{3}}{N}$ | $\frac{3 N_{3}}{N}$ |

- c: count
$N_{c}$ : number of different items with count $c$
$P_{c}$ : MLE estimate of prob. of that item
$P_{c}[t o t a l]$ : MLE total probability mass for all items with that count.
$c *$ : Good-Turing smoothed version of the count
$P *_{c}$ and $P *_{c}[$ totala $]$ Good-Turing versions of $P_{c}$ and $P_{c}[$ total $]$


## Some Observations

## Good-Turing Smoothing: The Formulae

- Basic idea is to arrange the discounts so that the amount we add to the total probability in row 0 is matched by all the discounting in the other rows.
- Note that we only know $N_{0}$ if we actually know what's missing.
- And we can't always estimate what words are missing from a corpus.
- But for bigrams, we often assume $N_{0}=V^{2}-N$, where $V$ is the different (observed) words in the corpus.


## Good-Turing justification: 0-count items

- Estimate the probability that the next observation is previously unseen (i.e., will have count 1 once we see it)

$$
P(\text { unseen })=\frac{N_{1}}{n}
$$

This part uses MLE!

- Divide that probability equally amongst all unseen events

$$
P_{\mathrm{GT}}=\frac{1}{N_{0}} \frac{N_{1}}{n} \quad \Rightarrow \quad c^{*}=\frac{N_{1}}{N_{0}}
$$

## Good-Turing justification: 1-count items

- Estimate the probability that the next observation was seen once before (i.e., will have count 2 once we see it)

$$
P(\text { once before })=\frac{2 N_{2}}{n}
$$

- Divide that probability equally amongst all 1-count events

$$
P_{\mathrm{GT}}=\frac{1}{N_{1}} \frac{2 N_{2}}{n} \quad \Rightarrow \quad c^{*}=\frac{2 N_{2}}{N_{1}}
$$

- Same thing for higher count items

