
Foundations of Natural Language Processing
Lecture 4

Language Models: Evaluation and Smoothing

Alex Lascarides
(Slides based on those from Alex Lascarides, Sharon Goldwater and Philipp Koehn)

24 January 2020

Alex Lascarides FNLP lecture 4 24 January 2020

Recap: Language models

• Language models tell us P (~w) = P (w1 . . . wn): How likely to occur is this
sequence of words?

Roughly: Is this sequence of words a “good” one in my language?

• LMs are used as a component in applications such as speech recognition,
machine translation, and predictive text completion.

• To reduce sparse data, N-gram LMs assume words depend only on a fixed-
length history, even though we know this isn’t true.

Alex Lascarides FNLP lecture 4 1

Evaluating a language model

• Intuitively, a trigram model captures more context than a bigram model, so
should be a “better” model.

• That is, it should more accurately predict the probabilities of sentences.

• But how can we measure this?

Alex Lascarides FNLP lecture 4 2

Two types of evaluation in NLP

• Extrinsic: measure performance on a downstream application.

– For LM, plug it into a machine translation/ASR/etc system.
– The most reliable evaluation, but can be time-consuming.
– And of course, we still need an evaluation measure for the downstream

system!

• Intrinsic: design a measure that is inherent to the current task.

– Can be much quicker/easier during development cycle.
– But not always easy to figure out what the right measure is: ideally, one

that correlates well with extrinsic measures.

Let’s consider how to define an intrinsic measure for LMs.

Alex Lascarides FNLP lecture 4 3

Entropy

• Definition of the entropy of a random variable X:

H(X) =
∑
x−P (x) log2P (x)

• Intuitively: a measure of uncertainty/disorder

• Also: the expected value of − log2P (X)

Alex Lascarides FNLP lecture 4 4

Entropy Example

P (a) = 1

One event (outcome)

H(X) = − 1 log2 1

= 0

Alex Lascarides FNLP lecture 4 5

Entropy Example

P (a) = 0.5
P (b) = 0.5

2 equally likely events:

H(X) = − 0.5 log2 0.5− 0.5 log2 0.5

= − log2 0.5

= 1

Alex Lascarides FNLP lecture 4 6

Entropy Example

P (a) = 0.25
P (b) = 0.25
P (c) = 0.25
P (d) = 0.25

4 equally likely events:

H(X) = − 0.25 log2 0.25− 0.25 log2 0.25

− 0.25 log2 0.25− 0.25 log2 0.25

= − log2 0.25

= 2

Alex Lascarides FNLP lecture 4 7

Entropy Example

P (a) = 0.7
P (b) = 0.1
P (c) = 0.1
P (d) = 0.1

3 equally likely events and one more
likely than the others:

H(X) = − 0.7 log2 0.7− 0.1 log2 0.1

− 0.1 log2 0.1− 0.1 log2 0.1

= − 0.7 log2 0.7− 0.3 log2 0.1

= − (0.7)(−0.5146)− (0.3)(−3.3219)
= 0.36020 + 0.99658

= 1.35678

Alex Lascarides FNLP lecture 4 8

Entropy Example

P (a) = 0.97
P (b) = 0.01
P (c) = 0.01
P (d) = 0.01

3 equally likely events and one much
more likely than the others:

H(X) = − 0.97 log2 0.97− 0.01 log2 0.01

− 0.01 log2 0.01− 0.01 log2 0.01

= − 0.97 log2 0.97− 0.03 log2 0.01

= − (0.97)(−0.04394)− (0.03)(−6.6439)
= 0.04262 + 0.19932

= 0.24194

Alex Lascarides FNLP lecture 4 9

H(X) = 0 H(X) = 1 H(X) = 2

H(X) = 3 H(X) = 1.35678 H(X) = 0.24194

Alex Lascarides FNLP lecture 4 10

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

• Uniform distribution with 2n outcomes: n yes-no questions.

Alex Lascarides FNLP lecture 4 11

Entropy as encoding sequences

• Assume that we want to encode a sequence of events X.

• Each event is encoded by a sequence of bits, we want to use as few bits as
possible.

• For example

– Coin flip: heads = 0, tails = 1
– 4 equally likely events: a = 00, b = 01, c = 10, d = 11
– 3 events, one more likely than others: a = 0, b = 10, c = 11
– Morse code: e has shorter code than q

• Average number of bits needed to encode X ≥ entropy of X

Alex Lascarides FNLP lecture 4 12

The Entropy of English

• Given the start of a text, can we guess the next word?

• For humans, the measured entropy is only about 1.3.

– Meaning: on average, given the preceding context, a human would need
only 1.3 y/n questions to determine the next word.

– This is an upper bound on the true entropy, which we can never know
(because we don’t know the true probability distribution).

• But what about N -gram models?

Alex Lascarides FNLP lecture 4 13

Coping with not knowing true probs: Cross-entropy

• Our LM estimates the probability of word sequences.

• A good model assigns high probability to sequences that actually have high
probability (and low probability to others).

• Put another way, our model should have low uncertainty (entropy) about which
word comes next.

• Cross entropy measures how close P̂ is to true P :

H(P, P̂) =
∑
x−P (x) log2 P̂ (x)

• Note that cross-entropy ≥ entropy: our model’s uncertainty can be no less
than the true uncertainty.

• But still dont know P (x). . .

Alex Lascarides FNLP lecture 4 14

Coping with Estimates: Compute per word
cross-entropy

• For w1 . . . wn with large n, per-word cross-entropy is well approximated by:

HM(w1 . . . wn) = −
1

n
log2PM(w1 . . . wn)

• This is just the average negative log prob our model assigns to each word in
the sequence. (i.e., normalized for sequence length).

• Lower cross-entropy ⇒ model is better at predicting next word.

Alex Lascarides FNLP lecture 4 15

Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I
spent three years before the mast (here, without using end-of sentence padding):

−1
7(lg2(P (I)) + lg2(P (spent|I)) + lg2(P (three|spent)) + lg2(P (years|three))

+ lg2(P (before|years)) + lg2(P (the|before)) + lg2(P (mast|the)))

= −1
7(−6.9381− 11.0546− 3.1699− 4.2362− 5.0− 2.4426− 8.4246)

= −1
7(41.2660)

≈ 6

• Per-word cross-entropy of the unigram model is about 11.

• So, unigram model has about 5 bits more uncertainty per word then bigram
model. But, what does that mean?

Alex Lascarides FNLP lecture 4 16

Data compression

• If we designed an optimal code based on our bigram model, we could encode
the entire sentence in about 42 bits. 6*7

• A code based on our unigram model would require about 77 bits. 11*7

• ASCII uses an average of 24 bits per word (168 bits total)!

• So better language models can also give us better data compression: as
elaborated by the field of information theory.

Alex Lascarides FNLP lecture 4 17

Perplexity

• LM performance is often reported as perplexity rather than cross-entropy.

• Perplexity is simply 2cross-entropy

• The average branching factor at each decision point, if our distribution were
uniform.

• So, 6 bits cross-entropy means our model perplexity is 26 = 64: equivalent
uncertainty to a uniform distribution over 64 outcomes.

Perplexity looks different in J&M 3rd edition because they don’t introduce cross-
entropy, but ignore the difference in exams; I’ll accept both!

Alex Lascarides FNLP lecture 4 18

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

Alex Lascarides FNLP lecture 4 19

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

• No way to tell! Cross-entropy depends on both the model and the corpus.

– Some language is simply more predictable (e.g. casual speech vs academic
writing).

– So lower cross-entropy could mean the corpus is “easy”, or the model is
good.

• We can only compare different models on the same corpus.

• Should we measure on training data or held-out data? Why?

Alex Lascarides FNLP lecture 4 20

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same
sentence.

• But I spent three never occurs, so PMLE(three | I spent) = 0

• which means the cross-entropy is infinte.

• Basically right: our model says I spent three should never occur, so our model
is infinitely wrong/surprised when it does!

• Even with a unigram model, we will run into words we never saw before. So
even with short N -grams, we need better ways to estimate probabilities from
sparse data.

Alex Lascarides FNLP lecture 4 21

Smoothing

• The flaw of MLE: it estimates probabilities that make the training data
maximally probable, by making everything else (unseen data) minimally
probable.

• Smoothing methods address the problem by stealing probability mass from
seen events and reallocating it to unseen events.

• Lots of different methods, based on different kinds of assumptions. We will
discuss just a few.

Alex Lascarides FNLP lecture 4 22

Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PML(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)
C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

Alex Lascarides FNLP lecture 4 23

Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PML(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)
C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

• NO! Sum over possible wi (in vocabulary V) must equal 1:

∑

wi∈V
P (wi|wi−2, wi−1) = 1

• If increasing the numerator, must change denominator too.

Alex Lascarides FNLP lecture 4 24

Add-one Smoothing: normalization

• We want:
∑

wi∈V

C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1) + x
= 1

• Solve for x:

∑

wi∈V
(C(wi−2, wi−1, wi) + 1) = C(wi−2, wi−1) + x

∑

wi∈V
C(wi−2, wi−1, wi) +

∑

wi∈V
1 = C(wi−2, wi−1) + x

C(wi−2, wi−1) + v = C(wi−2, wi−1) + x

v = x

where v = vocabulary size.

Alex Lascarides FNLP lecture 4 25

Add-one example (1)

• Moby Dick has one trigram that begins with I spent (it’s I spent in) and the
vocabulary size is 17231.

• Comparison of MLE vs Add-one probability estimates:

MLE +1 Estimate

P̂ (three | I spent) 0 0.00006

P̂ (in | I spent) 1 0.0001

• P̂ (in|I spent) seems very low, especially since in is a very common word. But
can we find better evidence that this method is flawed?

Alex Lascarides FNLP lecture 4 26

Add-one example (2)

• Suppose we have a more common bigram w1, w2 that occurs 100 times, 10 of
which are followed by w3.

MLE +1 Estimate

P̂ (w3|w1, w2)
10
100

11
17331

≈ 0.0006

• Shows that the very large vocabulary size makes add-one smoothing steal way
too much from seen events.

• In fact, MLE is pretty good for frequent events, so we shouldn’t want to
change these much.

Alex Lascarides FNLP lecture 4 27

Add-α (Lidstone) Smoothing

• We can improve things by adding α < 1.

P+α(wi|wi−1) =
C(wi−1, wi) + α

C(wi−1) + αv

• Like Laplace, assumes we know the vocabulary size in advance.

• But if we don’t, can just add a single “unknown” (UNK) item, and use this
for all unknown words during testing.

• Then: how to choose α?

Alex Lascarides FNLP lecture 4 28

Optimizing α (and other model choices)

• Use a three-way data split: training set (80-90%), held-out (or development)
set (5-10%), and test set (5-10%)

– Train model (estimate probabilities) on training set with different values of
α

– Choose the α that minimizes cross-entropy on development set

– Report final results on test set.

• More generally, use dev set for evaluating different models, debugging, and
optimizing choices. Test set simulates deployment, use it only once!

• Avoids overfitting to the training set and even to the test set.

Alex Lascarides FNLP lecture 4 29

Better smoothing: Good-Turing

• Previous methods changed the denominator, which can have big effects even
on frequent events.

• Good-Turing changes the numerator. Think of it like this:

– MLE divides count c of N -gram by count n of history:

PML =
c

n

– Good-Turing uses adjusted counts c∗ instead:

PGT =
c∗

n

Alex Lascarides FNLP lecture 4 30

Good-Turing in Detail

• Push every probability total down to the count class below.

• Each count is reduced slightly (Zipf): we’re discounting!

c Nc Pc Pc[total] c∗ P∗c P ∗c [total]

0 N0 0 0 N1
N0

N1
N0
N

N1
N

1 N1
1
N

N1
N 2N2

N1

2
N2
N1
N

2N2
N

2 N2
2
N

2N2
N 3N3

N2

3
N3
N2
N

3N3
N

• c: count
Nc: number of different items with count c
Pc: MLE estimate of prob. of that item
Pc[total]: MLE total probability mass for all items with that count.
c∗: Good-Turing smoothed version of the count
P∗c and P ∗c [total]: Good-Turing versions of Pc and Pc[total]

Alex Lascarides FNLP lecture 4 31

Some Observations

• Basic idea is to arrange the discounts so that the amount we add to the total
probability in row 0 is matched by all the discounting in the other rows.

• Note that we only know N0 if we actually know what’s missing.

• And we can’t always estimate what words are missing from a corpus.

• But for bigrams, we often assume N0 = V 2 − N , where V is the different
(observed) words in the corpus.

Alex Lascarides FNLP lecture 4 32

Good-Turing Smoothing: The Formulae

Good-Turing discount depends on (real) adjacent count:

c∗ = (c+ 1)
Nc+1
Nc

P∗c = c∗
N

=
(c+1)

Nc+1
Nc

N

• Since counts tend to go down as c goes up, the multiplier is < 1.

• The sum of all discounts is N1
N0

. We need it to be, given that this is our GT
count for row 0!

Alex Lascarides FNLP lecture 4 33

Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count

c Nc c∗ tc
0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

tc are average counts of bigrams in test set that occurred c times in corpus: fairly
close to estimate c∗.

Alex Lascarides FNLP lecture 4 34

Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

P (unseen) =
N1

n

This part uses MLE!

• Divide that probability equally amongst all unseen events

PGT =
1

N0

N1

n
⇒ c∗ =

N1

N0

Alex Lascarides FNLP lecture 4 35

Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e.,
will have count 2 once we see it)

P (once before) =
2N2

n

• Divide that probability equally amongst all 1-count events

PGT =
1

N1

2N2

n
⇒ c∗ =

2N2

N1

• Same thing for higher count items

Alex Lascarides FNLP lecture 4 36

Summary

• We can measure the relative goodness of LMs on the same corpus using
cross-entropy: how well does the model predict the next word?

• We need smoothing to deal with unseen N -grams.

• Add-1 and Add-α are simple, but not very good.

• Good-Turing is more sophisticated, yields better models, but we’ll see even
better methods next time.

Alex Lascarides FNLP lecture 4 37

