Foundations of Natural Language Processing
Lecture 4
Language Models: Evaluation and Smoothing

Alex Lascarides
(Slides based on those from Alex Lascarides, Sharon Goldwater and Philipp Koehn)

24 January 2020

L School of _ e
informatics

Alex Lascarides FNLP lecture 4 24 January 2020

Evaluating a language model

e Intuitively, a trigram model captures more context than a bigram model, so
should be a “better” model.

e That is, it should more accurately predict the probabilities of sentences.

e But how can we measure this?

Alex Lascarides FNLP lecture 4 2

Recap: Language models

e Language models tell us P(@) = P(w; ... w,): How likely to occur is this
sequence of words?

Roughly: Is this sequence of words a “good” one in my language?

e | Ms are used as a component in applications such as speech recognition,
machine translation, and predictive text completion.

e To reduce sparse data, N-gram LMs assume words depend only on a fixed-
length history, even though we know this isn't true.

Alex Lascarides FNLP lecture 4 1

Two types of evaluation in NLP

e Extrinsic: measure performance on a downstream application.

— For LM, plug it into a machine translation/ASR/etc system.
— The most reliable evaluation, but can be time-consuming.
— And of course, we still need an evaluation measure for the downstream

system!
e Intrinsic: design a measure that is inherent to the current task.

— Can be much quicker/easier during development cycle.
— But not always easy to figure out what the right measure is: ideally, one
that correlates well with extrinsic measures.

Let's consider how to define an intrinsic measure for LMs.

Alex Lascarides FNLP lecture 4 3

Entropy

e Definition of the entropy of a random variable X:
H(X) =3, —P(x) log, P(x)
e Intuitively: a measure of uncertainty/disorder

e Also: the expected value of —log, P(X)

Alex Lascarides FNLP lecture 4

Entropy Example
2 equally likely events:

Pla) =05 H(X) = —0.5log, 0.5 — 0.51log, 0.5
P(b) =0.5 = —log,0.5

Alex Lascarides FNLP lecture 4

Entropy Example

One event (outcome)

Pla)=1 H(X)= —1logy1
=0
|f; |
Alex Lascarides FNLP lecture 4
Entropy Example
4 equally likely events:
P(a) H(X)= —0.25log,0.25 — 0.2510g, 0.25
P(b) —0.25log, 0.25 — 0.251og, 0.25
P(e) — —1og,0.25
P(d) 0go U.
=2

Alex Lascarides

FNLP lecture 4

Entropy Example Entropy Example

3 equally likely events and one more 3 equally likely events and one much
likely than the others: more likely than the others:
Pla) = 0.7 Y P(a) = 0.97 g
P(b) =0.1 P(b) = 0.01
P(e) =01 P(c) =0.01
H(X)= —0.7l0og,0.7— 0.1log, 0.1 (c . H(X)= —0.97log,0.97 — 0.01log, 0.01
P(d) =0.1) ? ? P(d) = 0.01) ? ?
—0.1log,0.1 — 0.110g, 0.1 —0.011og, 0.01 —0.011og, 0.01
= —0.71og, 0.7 — 0.31og, 0.1 / l“\ = —0.97log, 0.97 — 0.03 log, 0.01
= —(0.7)(—0.5146) — (0.3)(—3.3219) ["' \ = —(0.97)(—0.04394) — (0.03)(—6.6439)
= 0.36020 4 0.99658 I“\ /f = 0.04262 4 0.19932
= 1.35678 — =0.24194
Alex Lascarides FNLP lecture 4 8 Alex Lascarides FNLP lecture 4 9
TN TN Entropy as y/n questions
| | (“]
\ / \ / How many yes-no questions (bits) do we need to find out the outcome?
H(X)=0 H(X)=1 e Uniform distribution with 2" outcomes: n yes-no questions.
/ \ ,/ o
H(X) =3 H(X) = 1.35678 H(X) =0.24194
Alex Lascarides FNLP lecture 4 10 Alex Lascarides FNLP lecture 4 11

Entropy as encoding sequences

Assume that we want to encode a sequence of events X.

Each event is encoded by a sequence of bits, we want to use as few bits as
possible.

For example

— Coin flip: heads = 0, tails = 1

— 4 equally likely events: a =00, b =01, c=10,d =11

— 3 events, one more likely than others: a =0, b =10, c =11
— Morse code: e has shorter code than g

Average number of bits needed to encode X > entropy of X

Alex Lascarides

FNLP lecture 4 12

Coping with not knowing true probs: Cross-entropy

Our LM estimates the probability of word sequences.

A good model assigns high probability to sequences that actually have high
probability (and low probability to others).

Put another way, our model should have low uncertainty (entropy) about which
word comes next.

Cross entropy measures how close P is to true P:

H(P,P)=Y_—P(x) log, P(z)

Note that cross-entropy > entropy: our model’s uncertainty can be no less
than the true uncertainty.

But still dont know P(z). . .

Alex Lascarides

FNLP lecture 4 14

The Entropy of English

e Given the start of a text, can we guess the next word?

e For humans, the measured entropy is only about 1.3.

— Meaning: on average, given the preceding context, a human would need
only 1.3 y/n questions to determine the next word.

— This is an upper bound on the true entropy, which we can never know
(because we don't know the true probability distribution).

e But what about N-gram models?

Alex Lascarides

FNLP lecture 4 13

Coping with Estimates: Compute per word
cross-entropy

e For wy ... w, with large n, per-word cross-entropy is well approximated by:

1
Hy(wy .. wy) = - log, Pp(wy - .. wy,)

e This is just the average negative log prob our model assigns to each word in
the sequence. (i.e., normalized for sequence length).

e Lower cross-entropy = model is better at predicting next word.

Alex Lascarides

FNLP lecture 4 15

Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I
spent three years before the mast (here, without using end-of sentence padding):
—1(lgo(P (1) + 1go(P(spent|)) + Lg2 (P (three|spent)) + g, (P (years|three))
+ 1g, (P (before|years)) + 1go(P (the|before)) + lg,(P (mast|the)))
(—6.9381 — 11.0546 — 3.1699 — 4.2362 — 5.0 — 2.4426 — 8.4246)
(41.2660)

Bl

~ 6

e Per-word cross-entropy of the unigram model is about 11.

e So, unigram model has about 5 bits more uncertainty per word then bigram
model. But, what does that mean?

Alex Lascarides FNLP lecture 4 16

Perplexity

e LM performance is often reported as perplexity rather than cross-entropy.

e Perplexity is simply 2€ross-entropy

e The average branching factor at each decision point, if our distribution were
uniform.

e So, 6 bits cross-entropy means our model perplexity is 26 = 64: equivalent
uncertainty to a uniform distribution over 64 outcomes.

Perplexity looks different in J&M 3*¢ edition because they don't introduce cross-
entropy, but ignore the difference in exams; I'll accept both!

Alex Lascarides FNLP lecture 4 18

Data compression

the entire sentence in about 42 bits.

A code based on our unigram model would require about 77 bits.

e ASCII uses an average of 24 bits per word (168 bits total)!

elaborated by the field of information theory.

If we designed an optimal code based on our bigram model, we could encode

6*7

11*7

So better language models can also give us better data compression: as

Alex Lascarides

FNLP lecture 4

Interpreting these measures

| measure the cross-entropy of my LM on some corpus as 5.2.

Is that good?

17

Alex Lascarides

FNLP lecture 4

19

Interpreting these measures

| measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

e No way to telll Cross-entropy depends on both the model and the corpus.

— Some language is simply more predictable (e.g. casual speech vs academic
writing).

— So lower cross-entropy could mean the corpus is “easy”, or the model is
good.

e We can only compare different models on the same corpus.

e Should we measure on training data or held-out data? Why?

Alex Lascarides FNLP lecture 4 20

Smoothing

e The flaw of MLE: it estimates probabilities that make the training data
maximally probable, by making everything else (unseen data) minimally
probable.

e Smoothing methods address the problem by stealing probability mass from
seen events and reallocating it to unseen events.

e Lots of different methods, based on different kinds of assumptions. We will
discuss just a few.

Alex Lascarides FNLP lecture 4 22

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same
sentence.

e But I spent three never occurs, so Py g(three | I spent) = 0
e which means the cross-entropy is infinte.

e Basically right: our model says I spent three should never occur, so our model
is infinitely wrong/surprised when it does!

e Even with a unigram model, we will run into words we never saw before. So
even with short N-grams, we need better ways to estimate probabilities from
sparse data.

Alex Lascarides FNLP lecture 4 21

Add-One (Laplace) Smoothing

e Just pretend we saw everything one more time than we did.

C(wi—2, wi—1,w;)

C(’wi_g, Wi — 1)

Py (wi|wi—9, wi—1) =

C(ﬂ)i_g, Wi—1, ’ll)i) +1
C(wi—2,w;—1)

= P+1 (?Ui‘?l/’i_g, 7Ui—1) =

Alex Lascarides FNLP lecture 4 23

Add-One (Laplace) Smoothing

e Just pretend we saw everything one more time than we did.

C(wi—2,wi—1,w;)

C(’IUZ‘_Q, QUi_])

Py (wiwi—g, wi—q) =

C(wi—g, wi—1,w;) +1

= P_A'_l('lUj"lUj_Q, u’i—l) = C(w w)
1—2, Wi—1

e NO! Sum over possible w; (in vocabulary V) must equal 1:

Z P(wi|wi—2,w;—1) = 1

w;eV

e If increasing the numerator, must change denominator too.

Alex Lascarides FNLP lecture 4 24

Add-one example (1)

e Moby Dick has one trigram that begins with T spent (it's I spent in) and the
vocabulary size is 17231.

e Comparison of MLE vs Add-one probability estimates:

| MLE +1 Estimate
P(three | I spent) 0 0.00006
P(in | I spent) 1 0.0001

e P(in|I spent) seems very low, especially since in is a very common word. But
can we find better evidence that this method is flawed?

Alex Lascarides FNLP lecture 4 26

Add-one Smoothing: normalization

O(wi,g, Wi—1, U’z‘) +1 _
C(wi—g, wi—1) +

o We want: 1

w; eV

e Solve for z:

Z (C(?I),L'_Q./ ﬂ)i_],’ll)i) + 1) = C(?I}i_z,/u)i_]> +x

w; eV
Z C(wi—g, wi—1,w;) + Z 1 = Clwi—g,wi—1) +x

w; eV w;, eV
Clwi—z,wi—1) +v = Clwi—g,wi—q) +x

v = T

where v = vocabulary size.

Alex Lascarides FNLP lecture 4 25

Add-one example (2)

e Suppose we have a more common bigram wq, ws that occurs 100 times, 10 of
which are followed by ws.

| MLE +1 Estimate

P(ws|wy, wo) 56 17551
~ (0.0006

e Shows that the very large vocabulary size makes add-one smoothing steal way
too much from seen events.

e In fact, MLE is pretty good for frequent events, so we shouldn’t want to
change these much.

Alex Lascarides FNLP lecture 4 27

Add-a (Lidstone) Smoothing

e We can improve things by adding oo < 1.

C(wi—1,w;) + «

Pyo(wilw;—1) =
ralwilwi-1) C(wi—1) + av

Like Laplace, assumes we know the vocabulary size in advance.

e But if we don't, can just add a single “unknown” (UNK) item, and use this
for all unknown words during testing.

Then: how to choose a?

Alex Lascarides FNLP lecture 4 28

Better smoothing: Good-Turing

e Previous methods changed the denominator, which can have big effects even
on frequent events.

e Good-Turing changes the numerator. Think of it like this:

— MLE divides count ¢ of N-gram by count n of history:

C

Py, = —

— Good-Turing uses adjusted counts ¢* instead:

*

C
Por =—
n

Alex Lascarides FNLP lecture 4 30

Optimizing o (and other model choices)

e Use a three-way data split: training set (80-90%), held-out (or development)
set (5-10%), and test set (5-10%)

— Train model (estimate probabilities) on training set with different values of
@
— Choose the « that minimizes cross-entropy on development set

— Report final results on test set.

e More generally, use dev set for evaluating different models, debugging, and
optimizing choices. Test set simulates deployment, use it only once!

e Avoids overfitting to the training set and even to the test set.

Alex Lascarides FNLP lecture 4 29

Good-Turing in Detail

e Push every probability total down to the count class below.

e Each count is reduced slightly (Zipf): we're discounting!

¢ | N. | P. | Ptotal] | cx | Px. | P x.[total
N

0|No| O B %3)

LN | N e

2| Ny | % 3% ? 2

e c: count

N.: number of different items with count ¢

P.: MLE estimate of prob. of that item

P_[total]: MLE total probability mass for all items with that count.
cx: Good-Turing smoothed version of the count

Px. and P %, [total]: Good-Turing versions of P, and P.[total]

Alex Lascarides FNLP lecture 4 31

Some Observations

Basic idea is to arrange the discounts so that the amount we add to the total
probability in row 0 is matched by all the discounting in the other rows.

Note that we only know Ny if we actually know what's missing.

e And we can't always estimate what words are missing from a corpus.

But for bigrams, we often assume Ny = V2 — N, where V is the different
(observed) words in the corpus.

Alex Lascarides FNLP lecture 4 32

Good-Turing for 2-Grams in Europarl

Count | Count of counts | Adjusted count | Test count

c N, c” te

0 7,514,941,065 0.00015 0.00016
1 1,132,844 0.46539 0.46235
2 263,611 1.40679 1.39946
3 123,615 2.38767 2.34307
4 73,788 3.33753 3.35202
5 49,254 4.36967 4.35234
6 35,869 5.32928 5.33762
8 21,693 7.43798 7.15074
10 14,880 9.31304 9.11927
20 4,546 19.54487 18.95948

t. are average counts of bigrams in test set that occurred ¢ times in corpus: fairly
close to estimate c*.

Alex Lascarides FNLP lecture 4 34

Good-Turing Smoothing: The Formulae

Good-Turing discount depends on (real) adjacent count:

Ck = (C + 1)7NC+1

Ne
e
Px.= § N
o (c+1)7ﬁfgl

N
e Since counts tend to go down as ¢ goes up, the multiplier is < 1.

e The sum of all discounts is &1, We need it to be, given that this is our GT

No
count for row 0!

Alex Lascarides FNLP lecture 4 33

Good-Turing justification: 0-count items

e Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

N
P(unseen) = —
n

This part uses MLE!

e Divide that probability equally amongst all unseen events

P LM = M
GT — 77 =57
NO n NO
Alex Lascarides FNLP lecture 4 35

Good-Turing justification: 1-count items Summary

e Estimate the probability that the next observation was seen once before (i.e., e We can measure the relative goodness of LMs on the same corpus using
will have count 2 once we see it) cross-entropy: how well does the model predict the next word?
2N. i i -
P(once before) = 2 e We need smoothing to deal with unseen N-grams.
n
e Add-1 and Add-« are simple, but not very good.
e Divide that probability equally amongst all 1-count events e Good-Turing is more sophisticated, yields better models, but we'll see even

better methods next time.

2N,
Py = —— 2% = K T 2
o1 N1 n ¢ N1

e Same thing for higher count items

Alex Lascarides FNLP lecture 4 36 Alex Lascarides FNLP lecture 4 37

