
Reference Architecture

High Performance Open
Source Database Architecture
rENIAC Data Engine for Cassandra NoSQL
on Dell EMC Infrastructure

Abstract
This document evaluates the performance advantages of running an Apache®
Cassandra® NoSQL database using rENIAC’s hardware acceleration framework
on Dell EMC PowerEdge R740 servers with Intel® Xeon® Scalable processors and
Arria® 10 GX FPGAs. This reference architecture demonstrates how rENIAC Data
Engine (rDE) improves throughput and reduces latency for existing databases.

August 2020

High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

2	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with
respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness
for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective
owners. July 2020

Table of Contents
Executive summary . . 1

Why . 1
What . 1
How . 1

Application data growth has outpaced Moore’s Law 1
Data volume increase in customer-facing applications 1

Traditional methods to support data growth 2
The Cassandra example . 2

Why is it still hard to process so much data? 3
Tuning open source databases for maximum performance . . . 5
rENIAC Data Engine deployed as data proxy for scaling
Cassandra read performance 6
Summary: The benefits of a finely tuned
database cluster . 8
Leveraging the power of FPGAs 8

How does the Data Engine work? 9
Why Intel FPGAs . 10

Real-time use cases for rENIAC Data Engine 11
User profile stores . 11
Recommendation engines 12
Product catalogs . 12
Fraud prevention . 12
Artificial intelligence and machine learning 13

Reference benchmarking of rENIAC Data Engine with
Cassandra NoSQL . 13

Performance metrics . 14

Results summary . 15

1	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

Executive summary
WHY
Data is growing exponentially and continues to put a massive burden on existing
infrastructure. In a time when Moore’s Law is breaking down, the demand for
higher data processing performance in the data center continues to grow. The
enterprise can no longer count on the typical performance CAGR that has been
traditionally available with each new release of CPUs. To meet the performance
demands, the industry has started to adopt a more heterogeneous approach
to computing by leveraging accelerators such as FPGAs. However, with more
sophisticated architectures comes added complexity. This is the reason why Dell
Technologies, rENIAC® and Intel have teamed up to offer a solution that adds
significant performance to Apache Cassandra databases while removing the
complexity of standing up a complete solution from scratch.

WHAT
In this solution, the Dell EMC PowerEdge R740 servers provide a perfect balance
of accelerator cards, storage and compute resources optimized for workload
acceleration. rENIAC’s Data Engine accelerates Apache® Cassandra® databases
by leveraging Intel Programmable Acceleration Cards and the Acceleration
Stack for Intel Xeon® Scalable processors with Intel Programmable Acceleration
Card (PAC) with Arria® 10 GX FPGAs. The solution from rENIAC built on Dell
EMC servers with Intel accelerators offers seamless integration with improved
performance, while enabling portability across multiple Intel FPGA platforms and
Dell EMC server configurations.

HOW
Dell EMC, Intel and rENIAC bring together an acceleration solution that solves
many of the bandwidth and latency problems that plague Cassandra NoSQL
databases. Intel FPGA PAC cards are available with in a variety of Dell EMC
PowerEdge servers and have been thoroughly tested and validated, providing
a solid foundation to run the entire rENIAC stack. This allows organizations
to easily integrate the complete solution with the peace of mind that they are
running on highly optimized and fully validated configurations, enabling them
to focus on the business problems that matter most to them while drastically
reducing risk.

Application data growth has outpaced
Moore’s Law
DATA VOLUME INCREASE IN CUSTOMER-FACING APPLICATIONS
In this data-centric age, massive and ever-increasing amounts of data are
gathered, decomposed, merged, analyzed, correlated, trended, personalized,
anonymized and presented.

Data growth is especially fast and unbounded when related to customer-facing
applications. This is due to a combination of an increasing number of customers
over time multiplied by increasing data per customer.

2	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

At the same time, business success is often a function of application decision
response times. This is occurring at a rate that Moore’s Law cannot keep up with.
Hardware is becoming increasingly complicated and costly as engineers and
architects continue to try to keep up with increasing real-time demands.

As business success is often a function of application decision response times,
innovative organizations are driving success by efficiently dealing with ever-
increasing data volumes and application usage.

Traditional methods to support data growth
Database architectures and techniques have been evolving in an attempt to meet
the needs of today’s applications that involve large numbers of users, huge and
ever-increasing amounts of data, and stringent latency requirements. The details
vary by database type and data model, but most architectures involve creating
clusters of database nodes to spread the user demand for data evenly and
avoid a specific node becoming overloaded and, consequently, delivering poor
performance. NoSQL, SQL, key value, in memory, cache and graph databases
are all available as open source solutions based on their strengths and use cases
in which they perform best.

That sounds good, but in practice, a lot of money and energy can be spent
deploying these architectures only to achieve poor and ever-degrading
performance at scale.

THE CASSANDRA EXAMPLE
Take the NoSQL database Cassandra as an example. Cassandra was
architected for performance-at-scale via a powerful distributed architecture.
Cassandra implements a method for striping data across nodes with the ability
for clients to “learn” where data exists to direct read requests to the appropriate
server nodes serving the desired data. In theory, this allows many compute
nodes to perform efficiently as a single virtual cluster to service user requests.

However, as Cassandra has been deployed for several years in performance-
sensitive, data-centric applications, a few consistent observations can be made:

•	 Data always increases. As the amount of data increases, the clusters keep
getting larger and larger, with no end in sight. This results in more hardware
costs to deploy more nodes, more administrative costs to manage the nodes
and continuous manual tuning of data partitioning algorithms. This means
that clusters can become 1,000s of nodes large in the attempt to meet
performance demands.

•	 Even if you build nodes on top of the fastest (and most expensive) server, it
remains difficult or impossible to meet predictable/deterministic millisecond
(ms) or sub ms response time service level agreements (SLA) obligations
at peak load.

3	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

•	 The process for partitioning data across many nodes with the goal of
achieving better throughput and latency can be time consuming and inexact.
If you accidently create “hot spots” of data so that data requests are not
evenly spread across the nodes, you can harm performance no matter how
little data supported per node. As data grows and as user patterns evolve,
the data partitioning approach that worked well yesterday may not work
nearly as well today.

As a result, managers of Cassandra clusters may have to make tradeoffs
between latency, equipment costs, and the time required to continually try to
squeeze out more performance from a moving target. Cassandra specialists or
experts who have spent years learning the intricacies of this particular database
are hired to keep up with the consistent tuning and optimization requirements,
and even then, these problems persist. And that is for Cassandra, which is
distributed, built to scale and always on; the situation can be even worse for
other databases.

Why is it still hard to process so much data?
Modern databases are built to use commodity hardware efficiently, specifically
input/output (I/O) and processing components. They are designed to rely on
horizontal scaling to scale (query) throughput while ensuring commonality in
all of the nodes in the cluster. Large scale data-centric environments often
have applications with read/write ratios ranging anywhere from 5:1 to 500:1,
exacerbating this inefficiency.

What we are observing here is not a weakness in the databases themselves.
The problem is that databases perform functions — in fact the most common and
performance sensitive functions — that do not execute well on a standard CPU-
only server. Traditional CPU architectures maximize instructions executed per
clock cycle (IPC). The techniques used to achieve high IPC — caching of code
and data, deep pipelines, register renaming, and branch prediction; all contribute
to good performance for the background tasks that databases execute. This
means that the inability to process so much data in real time is a reflection of the
limitations of the underlying traditional server architecture.

At rENIAC, we profiled different, commonly used modern databases —
MongoDB®, RocksDB®, Cassandra®, and HBase® to understand I/O and
processing behavior. We found three areas where databases struggle and end
up consuming a disproportionate amount of CPU resources, namely:

•	 Storage I/O

•	 Network I/O

•	 Computational complexity

4	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

Figure 1 and Figure 2 break down the CPU usage of Cassandra for both read-
heavy and write-heavy workloads to illustrate that inefficiencies are easily
recognized on both ends of the spectrum.

Figure 1 shows a summary of CPU cycles spent on open source databases for a
typical read-heavy workload. In an architecture where the database is accessing
flash memory and database logic is a crucial operation, significant CPU resources
are required just to keep up with a fast flash storage drive — 35% of the CPU
usage profile in this workload goes to storage I/O alone. Similarly, with network
I/O, 25% of the CPU usage profile is consumed, driven by the overhead of
networking (TCP/IP) for a standard 10Gbps network interface. Together, storage
and network I/O consume 60% of CPU usage; add in compression and 70% of
CPU resources are spent on operational activities.

Figure 2 shows a summary of where CPU cycles are spent on open source
databases for a typical write-heavy workload. Modern databases rely on
computationally complex functions such as compression, encryption, and
compaction, which add to computational load. It has been well established that
both compression and encryption are computationally expensive, and it is even
prohibitive for CPUs to carry out these functions. For a write heavy workload,
compaction and compression/decompression together account for almost 64% of
the total CPU cycles.

In summary, our profile showed that combination of system compute tasks and
I/O operations consume up to 92% of the total CPU cycles.

These research findings point to two main points:

1.	 Standard open source database software has reached an optimization
threshold through the use of general-purpose CPUs and SSDs, where
data growth has outpaced the ability to process it within SLA (service level
agreement) windows to meet target latency requirements.

2.	 An advancement in data workload acceleration is required and can be
achieved through software-hardware optimization.

Networking
26%

35%10%

Others

StorageCompression

29%

Figure 1. CPU usage: Read-heavy workload

Networking
18%

40%

24%

Others

Compaction

10%
StorageCompression

8%

Figure 2. CPU usage: Write-heavy workload

5	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

These inherent inefficiencies mean a lot of CPU cores are required to handle
some basic functions, particularly as data scales. Data-centric database
workloads, no matter how efficiently coded, perform badly on traditional compute-
optimized environments.

One of the real core functions that a database is intended to execute is read
servicing, but, in databases like Cassandra, they are not optimized to do so
despite being used in read-heavy use cases. Now, with the rise of read-intensive
workloads used across industries like finance, ecommerce and security like
user profile stores, recommendation engines, fraud prevention, and AI or ML
modeling, enhanced read performance is critical. Many IT personnel refer to the
issue as the “read problem.” Often, a cache or in-memory database solution is
added in front of a persistent database like Cassandra in an effort to combat
the read problem, but the same issues of speed and scale persist with this
architecture. Many different database types may also be employed to handle
different data workloads and models, but also often require a caching layer.

In the rest of this document, we use the “read problem” to demonstrate how an
approach that combines hardware and software, like rENIAC Data Engine, can
help organizations to achieve performance and latency requirements for use
cases like those just mentioned using Cassandra as the database of example.

Tuning open source databases for maximum
performance
If the performance of databases is being negatively affected by a traditional CPU
infrastructure for the most common and the most user-perceptible task (read);
why not relegate that task to something much more efficient at executing it?

rENIAC Data Engine tunes the read inefficiency inherent to open source
databases to increase overall throughput and significantly reduce latency. One
method of doing so is through the use of commercially available FPGAs, like
those available from Intel, that are programmed to provide hardware assist for
many of the functions associated with servicing read requests. It turns out that
such an optimized platform can result in performance 10x times more efficient
than a traditional CPU server platform. Data Throughput Comparison

Standard Database Server
0

20,000

40,000

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

rENIAC Data Engine

60,000

80,000

100,000

120,000

140,000

Over 10x more efÞcient

Figure 3. Data Throughput Comparison

6	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

A small number of rENIAC server nodes can handle a volume of requests
that may have required hundreds of standard database nodes to handle; all
while delivering dramatically lower and more deterministic latency. Built on
a proxy-based architecture, rENIAC can be deployed with no changes to
existing database software or application architecture and provide immediate
performance improvements.

rENIAC Data Engine deployed as data proxy
for scaling Cassandra read performance
A transparent proxy is one method to deploy rENIAC Data Engine that allows for
immediate acceleration of existing database clusters with no changes to existing
software or application code. We will focus on this deployment method for the
majority of the paper, but additional deployment models are listed below.

A high-performance database cluster can be created via a proxy-based
architecture, with standard database nodes front-ended by a small number of
rENIAC Data Engine (rDE) nodes that caches data in terabytes per node using
SSDs. In a proxy-based architecture, reads are serviced by the optimized rDE
node, writes and other background management tasks are passed to the back-
end database all without requiring any changes to application software.

The results can be astounding. When a Data Engine or Engines are added to an
existing cluster, two things immediately occur:

1.	 Users experience predictably low latency, even at high loads.
2.	 The CPU utilization of the back-end database nodes reduces from

4x-8x, which in turn leads to faster writes, faster compaction, and faster
compression.

Data Acceleration
Read Processing

Proxy-Based High Performance Data Cluster

Data Management
Wirte Processing

Database Cluster

Figure 4. High Level Overview

Data Acceleration
Read Processing

Data Acceleration
Write Processing

7	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

The advantage related to offloading the back-end database nodes can be leveraged in a variety of beneficial ways:

•	 The treadmill of continually adding nodes and re-partitioning data can be halted.

•	 Back-end services such as compaction, analytics, reporting, and back-up can be scheduled more frequently with no
impact on user performance.

•	 Individual node scale and cost and can be reduced.

•	 Overall node count can be reduced to serve the same volume of transactions and data capacity, thus reducing overall
cost and complexity.

The two other methods for deploying rENIAC Data Engine that provide substantial efficiency gains for CPU usage,
performance and latency are:

Up to 4.7x
more efÞcient

use of CPU
resources

Figure 5. The Data Engine nodes free up database node resources so they can perform their essential tasks faster and more often.

rENIAC as a Data Cache rENIAC as a Storage Engine

rENIAC as a Data Cache provides:

•	 Managed data access and retrieval at the client level for
higher performance and flexibility

•	 Application or client server level updates to eliminate
consistency or replication errors

•	 Multi TB data sets of access on a single node

rENIAC as a Storage Engine provides:

•	 Offloading of operationally-intensive workloads like
data flushing, that normally hits the disk

•	 Write acceleration through compaction and
automated key-value-store-like write automation

•	 Decrease in CPU usage and disk hits

8	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

Summary: The benefits of a finely tuned
database cluster
A rENIAC-enabled, finely tuned database architecture supports massive growth
of data and users via a small and cost-effective footprint while delivering low
latency at scale; all with no changes required to present databases. Huge
performance, direct cost, space, power, and administrative overhead benefits can
be achieved. Those benefits to the data architecture are:

The cluster is supercharged. Both read and write maximum capacity are
immediately increased. Predictable sub-millisecond latency is achieved even at
heavy load. Additional capacity can easily be achieved by adding another Data
Engine. Compaction and other back-end functions are accelerated. SLAs are
attainable under all conditions, including windows of peak or intense traffic.

The cluster is right-sized. If a user already has a large cluster, “right” might
mean capping the node count for now and forever, adding new data onto existing
nodes. For a new cluster, “right” might mean only deploying a few nodes as
driven by the needs for peak write performance.

The cluster operations are simplified. No time, effort, and expertise are
required any more to execute and continually re-execute data partitioning. Back-
end operations don’t have to be scheduled for off-peak times. Far less expertise
is needed in general to plan and manage the cluster.

The cluster is both past and future-proofed. No database modifications
are needed. You don’t need to move away from your existing SQL or NoSQL
database.

Leveraging the power of FPGAs
Performance scaling in CPUs has been curtailed for many years now. Achieving
2x performance every 18 months just by switching to the latest and greatest
CPU isn’t an option anymore. FPGAs, however, have been riding the Moore’s
law while escaping the effects of breakdown of Dennard scaling. In addition,
most FPGA designs tend to rely on spatial computing architecture utilizing
micro-architectures that use custom memory architecture with dedicated
interconnection topologies at much lower frequency compared to conventional
CPU-based architectures.

In the past, FPGAs have been used to great advantage to scale networking (e.g.,
network switches and routers) as well as Flash controllers. The Internet would
not be the Internet of today without hardware acceleration that has overcome the
limitations of standard CPU architectures.

Modern FPGAs with much larger capacities enable augmentation of data
acceleration functions such as storage I/O and network I/O, creating an efficient
implementation architecture for data platforms such as database, search, and
analytics.

rENIAC Data Engine (rDE) is available in a version that leverages FPGAs for
both on premises and cloud-based deployments. For efficient read operation of
database, rDE is deployed as a proxy between a database client and database

9	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

node, caching the data in (Flash) storage that is accessible by the FPGA
hardware that has been programmed to execute repetitive functions in hardware
for which CPUs are highly inefficient. It responds to queries by serving data either
from its local storage or fetching it from the back-end database when the data
does not exist in the local storage. This ensures that read requests are serviced
with predictable sub-second latency and allows rDE to achieve throughputs much
higher than a standard database cluster.

HOW DOES THE DATA ENGINE WORK?
The figure below shows a high level architecture of the FPGA-based rENIAC
Data Engine. It is a hardware-software architecture involving components running
on CPU as well as components relying on FPGA acceleration. The Data Engine
is designed to support multiple databases and solve various data operations
using hardware-software optimization techniques.

The main components of rDE are described below:

Storage Engine — rENIAC’s Storage Engine is a key-value store in FPGA with a
C/C++ API in host software. The storage engine is data model aware. It reads the
schema and maps the data model onto the key-value store to mimic a columnar
storage layout (as found in NoSQL databases).

WE HAVE SEEN THIS BEFORE
The concept of using hardware assist to perform
repetitive tasks for which CPUs are not optimal is not
a new one. There are many examples of how such
architectural function partitioning has been leveraged in
the past. You use one every day — the Internet.

Back in the late 1980s, LANs struggled to run at 4-5
Mbps and WAN connections were considered fast if

they ran at 1.5 Mbps. At that time, all packet processing
functions were executed by software running on
standard CPUs. Then the FPGA, ASIC and network
processor revolution started and now 30 years later local
area networks run at >1 Gbps, and 10 Gbps and 100
Gbps WAN pipes are common.

Hardware assist can change the world.

Figure 6. High Level Product Architecture

10	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

Network Engine — rENIAC’s network engine is a TCP/IP acceleration engine that
supports TCP, IP, ARP, DHCP, and ICMP protocols implemented in FPGA and is
interoperable with Linux in client and server configurations. This also implements
acceleration of clustering specific to a database.

Compute Engine — Compute engines are a collection of acceleration engines
implemented in FPGA that can be enabled for each instance of rDE to enable
additional computational features such as Compression, Decompression, Encryption
and Decryption. An option to connect to off-the-shelf AI inference engine also exists.

rENIAC’s Data Engine provides FPGA acceleration of data platforms without DB or
DevOps engineers needing to know about programming FPGAs. It provides greatly
enhanced performance with zero. The result is reduced server node creep, reduced
CAPEX and OPEX, sub-millisecond latency, and predictable SLAs.

WHY INTEL FPGAS
FPGA (Field Programmable Gate Arrays) allow a blank slate to build the solution that
fits the problem best instead of fitting a solution into a predefined architecture. FPGAs
provide flexibility for system architects searching for competitive accelerators that
also support differentiating customization. Due to their configurability and hardware
processing, FPGAs enable parallel processing as well as low latency, deterministic
responses. FPGAs have been recognized for their increasing role in solving
performance and analytical problems in data centers.

The Intel® Programmable Accelerator Card (PAC) features an Intel® Arria® 10 GX
FPGA, an industry-leading programmable logic built on 20 nm process technology,
integrating a rich feature set of embedded peripherals, embedded high-speed
transceivers, hard memory controllers and IP protocol controllers. Variable-precision
digital signal processing (DSP) blocks integrated with hardened floating point (IEEE
754-compliant) enable Intel Arria 10 FPGAs to deliver floating point performance
of up to 1.5 TFLOPS. Arria® 10 FPGAs have a comprehensive set of power-saving
features. Combined, these features allow developers to build a versatile set of
acceleration solutions.

This PAC acceleration card for data centers offers both inline and lookaside
acceleration. It provides the performance and versatility of FPGA acceleration. The
card can be deployed in a variety of Dell EMC PowerEdge servers with its 1/2 length,
single-slot form factor, low-power dissipation, and passive heat sink. The Intel PAC
with Intel Arria 10 GX FPGA can be implemented in many market segments, such as
big data analytics, artificial intelligence, genomics, video transcoding, cybersecurity,
and financial trading. To help protect systems from FPGA-hosted security exploits,
the Intel PAC with Intel Arria 10 GX FPGA features a Root-of-Trust device that
enables more secure loading of authorized workloads and board updates and
enforces policies to help prevent unauthorized access to critical board interfaces and
flash memory.

The Intel PAC with Intel Arria 10 GX FPGA is one of several platforms supported by the
Acceleration Stack for Intel® Xeon® CPUs with FPGAs. This acceleration stack provides
a common developer interface for both application and accelerator function developers,
and includes drivers, application programming interfaces (APIs), and an FPGA interface
manager. Together with acceleration libraries and development tools, the acceleration
stack saves developer’s time and enables code re-use across multiple Intel FPGA
platforms.

11	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

The Intel Acceleration Stack for Intel Xeon CPU with FPGAs is a robust collection of
software, firmware, and tools designed and distributed by Intel to make it easier to
develop and deploy Intel FPGAs for workload optimization in the data center. The
Intel Acceleration Stack for Intel Xeon CPU with FPGAs provides multiple benefits to
design engineers, such as saving time, enabling code re-use, and enabling the first
common developer interface.

FPGAs are an essential technology to meet demanding high-performance
requirements, but software is needed to take advantage of their benefits without
changing existing applications. rENIAC leverages the power and flexibility of Intel
FPGA platforms in Dell EMC PowerEdge servers by providing software solutions
that override (i.e., bypass) traditional CPU data flow to accelerate data and traffic
without requiring changes to the application software. The result is predictable
workload performance for private and public clouds running critical NoSQL
workloads — without requiring knowledge on designing with or programming
FPGAs.

Real-time use cases for rENIAC Data Engine

USER PROFILE STORES
Cassandra, along with other databases, is often used in “Personalization
Stacks”1, where user information must be looked up and analyzed quickly in
order to take action at click rates, as a user connects to or browses a site.

For popular ecommerce and financial sites with large numbers of users, the
amount of users, records, and stored data can be very large, and continually
grow as the user base expands. But performance remains critical because if
users can’t log in quickly, they rapidly move on to other sites.

This is an ideal use case for rENIAC Data Engines to create a high performance
architecture that maintains low latency and stabilizes back-end costs even as
data continually grows.

1	 User Profile Reference Architecture, Spotify blog “Personalization at Spotify Using Cassandra.”

Apache Kafka
Log Events

HDFS
Events &

Entity
Metadata

Apache Storm
Real Time

Computation

Apache Cassandra
Entity Metadata

Store

Apache Cassandra
User ProÞle Store

Apache
Crunch
Batch

Computation

Figure 7. User Profile Store

https://labs.spotify.com/2015/01/09/personalization-at-spotify-using-cassandra

12	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

RECOMMENDATION ENGINES
Similar to the User Profile Store use case above, specific user information, which
can be nuanced and based on continually increasing amounts of data, must
be accessed and analyzed quickly in order to provide appropriate and valuable
recommendations to that user. Low latency to ensure user satisfaction is a critical
requirement while at the same time minimizing and stabilizing back-end costs.
Typically found in ecommerce sites, this is another ideal use case for the rENIAC
Data Engine.

PRODUCT CATALOGS
Responding with relevant and exact search results at the time of customer query
plays a huge part of online shopping customer experience alongside inventory
and availability, checkout and payment processing.

By accelerating product catalog results to instant real-time levels and pairing
those results with data points like location, user profile and recommendation
engines, ecommerce and retail businesses can increase cart size and revenue,
which makes it an ideal use case for rENIAC Data Engine.

FRAUD PREVENTION
Fraud prevention comes in many forms. One, related to credit card transactions,
looks at every transaction and compares it to past transactions from a specific
consumer based on parameters such as store, geography, amount, frequency, etc.

Scale is imperative for this use case as credit card companies have many users,
and the more past transactions that are analyzed, the better the fraud prevention.
A high performing database like Cassandra combined with the rENIAC Data
Engine meets the needs for this use case.2

2	 Fraud Detection and Prevention Reference Architecture, adapted from the OpenCredo blog “Data Analytics Using
Cassandra and Spark.”

Website Product
Catalog

Category

ProductReview Inventory

Figure 8. Product Catalog

https://opencredo.com/blogs/data-analytics-using-cassandra-and-spark/
https://opencredo.com/blogs/data-analytics-using-cassandra-and-spark/

13	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
Artificial intelligence and machine learning are excellent use cases for rENIAC Data
Engine as they often require rapid computation on large amounts of data to meet user
expectations. Whenever a NoSQL or SQL database is involved in the storage, management
and real-time access of the operational data, rDE can be implemented to improve read data
access by 10x while also increasing hot data storage by an order of magnitude to multiple
terabytes. If online or real-time machine learning is required to improve recommendation
engines or personalization, for example, both processing capability and large volumes of
data need to be at the ready. Such situations occur widely, in finance, gaming, healthcare,
energy, ecommerce and retail, autonomous or assisting driving, manufacturing and IoT.

Reference benchmarking of rENIAC Data Engine
with Cassandra NoSQL

Bank
Transaction

API

Customer UI
API

Cassandra

UserProÞle
Table

Cassandra

Transactions
Table Apache

Spark

Fraud
detection

and balance
update

Cassandra

UserBalance
Table

Last Geo
Check In

Figure 9. Fraud Prevention

14	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

The configuration for benchmark data is 2-3-3 [2 client nodes, 3x rDE nodes, 3x
servers], Dell EMC PowerEdge servers connected with a PowerConnect switch,
with 28 application threads and 4k payloads, running Cassandra-stress.

The benchmark data was obtained by comparing baseline performance of
Apache Cassandra 3.11.4 against rENIAC deployed as a cache (100:0,
read:write) and with rENIAC acting as a data proxy (80:20, read:write) with
Cassandra as the persistent database.

PERFORMANCE METRICS
We observed two major improvements in rENIAC’s performance over baseline,
specifically throughput per second (TPS) and latency. The full performance
results are shown in the two tables below.

When rENIAC is serving all read requests and acting as a highly optimized
cache, the following performance improvements can be realized:

•	 10x (or higher) throughput, i.e., operations per second — in this test, rDE was
10.66x more performant than Cassandra alone at serving read requests

•	 Consistent sub ms latency — in this test, rDE was serving reads at sub ms
latencies, only crossing over the 1ms mark at p99.9 latency

•	 18x (or greater) p95 latency gain — in this test, rDE was 18.4x faster at
serving requests at p95

Baseline
Cassandra

rENIAC Data
Engine GAIN

Total TPS 14,752 62,823 4.3x

Ave p95 9.0 2.2 4.1x

mean (ms) 3.8 0.9 4.2x

p95 (ms) 17.9 4.3 4.1x

p99 (ms) 28.8 14.0 2.1x

p99.9 (ms) 350.8 101.7 3.4x

max (ms) 2580.5 1417.7 1.8x

Table 2. 80:20 (read:write) benchmark results — rENIAC deployed as a proxy - 4k payloads

Baseline
Cassandra

rENIAC Data
Engine GAIN

Operating rate (Ops/sec) 12,562 133,915 10.7x

Latency mean (ms) 4.4 0.4 11.0x

Latency median (ms) 3.4 0.4 8.5x

p95 latency (ms) 9.2 0.5 18.4x

p99 latency (ms) 14.5 0.6 24.2x

p99.9 latency (ms) 166.0 1.1 150.9x

Latency max (ms) 1097.9 29.9 36.7x

Table 1. 100:0 (read:write) benchmark results — rENIAC Data Engine (rDE) deployed as a cache - 4k payloads

15	 High Performance Open Source Database Architecture
© 2020 Dell Inc. or its subsidiaries.

When rENIAC is acting as a proxy for mixed workloads, the following
performance improvements can be realized:

•	 4x (or higher) throughput, i.e., operations per second — in this test, rDE
was 4.3x more performant than Cassandra alone at serving read and write
requests

•	 Mean sub ms latency — in this test, rDEs mean latency is 0.85ms, a 4.2x
improvement over baseline Cassandra

•	 4x (or greater) p95 latency gain — in this test, rDE was 4.1x faster at serving
requests at p95

Results summary
When addressing the read inefficiency in an open source database, whether
deployed as a proxy, a cache, or both, rENIAC provides significant performance
improvements in the form of throughput (up to 10.66x) and latency (up to
15x) when measured against the database alone, like Cassandra. These
improvements provide users with the following benefits:

•	 Consistent SLA achievement — predictable sub ms latency means fewer
timeouts, spikes and satisfied end users as SLAs are consistently met.

•	 Operationalization of data in real time — higher throughput and lower
latency means larger data sets can be operationalized in real time instead
of waiting to process offline. This gives ML models rapid learning cycles
and provides end users with accurate and personalized recommendations
instantly, which increases revenue.

•	 Increased headroom or reduction in cost and complexity — getting
10x more out of existing infrastructure means greater CPU headroom,
which can be used to add features or create additional revenue-generating
applications. If cost reduction is a goal, these performance improvements
enable customers to maintain existing infrastructure and achieve business
and technical goals without continuously adding new servers or hardware.

To learn more, visit delltechnologies.com/referencearchitectures

http://DellTechnologies.com

	Executive summary
	Why
	What
	How

	Application data growth has outpaced Moore’s Law
	Data volume increase in customer-facing applications

	Traditional methods to support data growth
	The Cassandra example

	Why is it still hard to process so much data?
	Tuning open source databases for maximum performance
	rENIAC Data Engine deployed as data proxy for scaling Cassandra read performance
	Summary: The benefits of a finely tuned
database cluster
	Leveraging the power of FPGAs
	How does the Data Engine work?
	Why Intel FPGAs

	Real-time use cases for rENIAC Data Engine
	User profile stores
	Recommendation engines
	Product catalogs
	Fraud prevention
	Artificial intelligence and machine learning

	Reference benchmarking of rENIAC Data Engine with Cassandra NoSQL
	Performance metrics

	Results summary

