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Abstract. Dynamical algebraic combinatorics studies
actions on objects important in algebraic combinator-
ics, with particular focus on actions with surprisingly
nice properties. We discuss recent research in this
emerging area, including actions on order ideals and
tableaux that exhibit the cyclic sieving, homomesy, and
resonance phenomena.

Dynamical Algebraic Combinatorics

Mathematical inquiry often begins with the study of ob-
jects (numbers, shapes, variables, matrices, ideals, metric
spaces, ...) and the question, “What are the objects like?”
It then moves to the study of actions (functions, rotations,
reflections, multiplication, derivatives, shifts, ...) and the
question, “How do the objects behave?” The study of
actions in various mathematical contexts has been ex-
tremely fruitful, consider the study of metric spaces
through the lens of dynamical systems or the study of
symmetries arising from group actions. For objects and
actions arising from algebraic combinatorics, we call this
study dynamical algebraic combinatorics.

Let g be a bijective action on a finite set X. Such an
action breaks the space X into orbits. Often, the study
of the orbits of g provides insight into the structure
of the objects in X, revealing hidden symmetries and
connections. One typically first seeks to understand the
order n of the action and then finds interesting properties
the action exhibits. One surprisingly ubiquitous property

Jessica Striker is assistant professor of mathematics at North
Dakota State University. Her e-mail address is jessica.striker
@ndsu.edu.

Her work is partially supported by National Security Agency
Grant H98230-15-1-0041.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOLI: http://dx.doi.org/10.1090/noti1 539

JUNE/JULY 2017

is the cyclic sieving phenomenon [ReStWh04], which occurs
when the evaluation of a generating function for X at the
primitive nth root of unity €4 (where € = ¢*™/™) counts
the number of elements of X fixed under g“.

For example, let X be the set of binary words composed
of two zeros and two ones. Let g be the cyclic shift that
acts by moving the first digit to the end of the word. Each
word has four digits, so g is of order four. Consider the
inversion number statistic inv(w) of w € X, which equals
the number of pairs (i, j) with i < j such that the ith digit
of w is 1 and the jth digit is 0. See Figure 1 for the orbits
of X under g and the inversion numbers of each binary
word.

0011 0110 g
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Figure 1. The orbits of binary words of length four
with two ones under a cyclic shift; the inversion
numbers corresponding to the binary words are
shown in red.

The inversion number statistic determines the gener-
ating function

1) X@=> q™™ =1+qg+2q¢*+3*+4q"

weX

Since g is of order four, € = e?™/4 = i. One may check

using Figure 1 and (1) that X(i?) equals the number
of elements of X fixed by g9, thus this is an instance
of the cyclic sieving phenomenon. For example, X (i') =
1+i+2i2+3+i* =1+4i+2(-1)+(—i)+1 = 0,and zero
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Figure 2. An order ideal in the product of chains poset 3 X 4 and its image under rowmotion. The red paths are
boundary paths that divide the order ideal from the rest of the poset; the binary words corresponding to these

paths are shown beneath.

elements of X are fixed under g'. X(i®) = X(-1) = 2,
and two elements are fixed under g°.

Another interesting property actions in dynamical
algebraic combinatorics often exhibit is the homomesy
phenomenon [PrRol5], in which the average value of a
statistic on every g-orbit equals the global average value
of that statistic. Each orbit in Figure 1 has an average
inversion number of 2. Thus, the inversion number
statistic on X is homomesic with respect to g. Note
that both cyclic sieving and homomesy still hold in the
more general case in which X is the set of binary words
of length n with k ones [ReStWh04], [PrRo15].

In Figure 1, our action was visibly cyclic, so its order
was clear from the definition. In the coming sections, we
discuss more complicated combinatorial actions whose
orders are difficult to predict. We will see examples in
which an action g on a large combinatorial set X has a
relatively small order; this indicates the elements of X
have hidden cyclic symmetry such that g is a rotation in
disguise. We will also see examples in which g is not of
small order, but rather exhibits resonance, meaning that
g maps to an underlying cyclic action with small order.
We discuss examples of such actions on order ideals and
tableaux and then give a surprising relation between them,
which we found via this study of dynamics.

Rowmotion on Order Ideals
As our first example, let our set X be the order ideals of
a poset.

Definition 1. A poset is a partially ordered set. The set
of order ideals J(P) of a poset P is the set of all subsets
I < Psuchthatify €land z <y, thenz € I.

Specifically, we will take X to be the set of order ideals
J(P) for P the product of chains poset a X b. That is,
for a natural number a, a = {1,2,...,a} and the product
partial order on a X b is (x,y) < (x’,y’) if and only if
x < x" and y < y’. See Figure 2 for an example. An easy
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Figure 3. Rowmotion from Figure 2 computed by
toggling rows from top to bottom. The elements that
are being toggled at each step are shown in red, and
at any step in which the toggles act nontrivially, the
order ideal resulting from those toggles is shown.

counting argument shows the number of order ideals in
J(a X b) is given by the binomial coefficient (¢?), since
these order ideals are in bijection with binary words with
a zeros and b ones via the boundary path that separates

VOLUME 64, NUMBER 6



Promotion

I Cyclic shift

1001101

0011011

Figure 4. An order ideal in J(3 X 4) and its image under promotion. Promotion acts as a cyclic shift on the

binary word corresponding to the boundary path.

the order ideal from the rest of the poset (where a one
indicates an up-step and a zero indicates a down-step);
see Figure 2.

Our action g will be the following; see Figure 2.

Definition 2. Let P be a poset, and letI € J(P). Then row-
motion on [ is the order ideal generated by the minimal
elements of P\I.

The order of rowmotion on general posets is neither
well behaved nor predictable. But on J(a X b) its order is,
surprisingly, much smaller than (9}?).

Theorem 3 ([BrSc74]). The order of rowmotion on J(aXb)
isa+b.

To see why the order of a global action such as
rowmotion is surprisingly small, it often helps to interpret
the action as a composition of local involutions and work
within the group generated by those involutions. In the
case of rowmotion, we call this group the toggle group.

Definition 4. For each element e € P define its toggle
te - J(P) — J(P) as follows.

Tu{e} ifedTandIU {e} € J(P)
te.(I) = 1I\{e} ifeeland I\{e} € J(P)
I otherwise

The toggle group T (J(P)) is the subgroup of the symmet-
ric group Sjp) generated by {te}ecp-

Theorem 5 ([CaFo95]). Given any poset P, rowmotion is
the toggle group element that toggles the elements of P
from top to bottom (in the reverse order of any linear ex-
tension).

For example, in Figure 3, we recompute rowmotion on
the order ideal from Figure 2 by toggling from top to
bottom by rows.

In joint work with Nathan Williams, we found a toggle
group action conjugate to rowmotion, which we called
promotion, defined for J(a X b) as toggling the elements
from left to right (we will soon make this more precise). We
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showed rowmotion and promotion are conjugate actions
in the toggle group of any ranked poset; this implies they
are equivariant, or have the same orbit structure.

Theorem 6 ([StWil2]). In any ranked poset, there is an
equivariant bijection between the order ideals under row-
motion (toggle top to bottom by rows) and promotion (tog-
gle left to right by columns).

By the bijection to binary words, promotion on J(a X b)
is a cyclic shift of a binary word of length a + b; each
toggle swaps adjacent letters, resulting in the first letter
swapping all the way through the word to the end; see
Figure 4. Therefore, by the above theorem, the cyclicnature
of promotion on J(a X b) gives a satisfying explanation
for the order of rowmotion on J(a X b). Furthermore,
since binary words under a cyclic shift exhibit the cyclic
sieving phenomenon (as discussed in Section 1), so does
rowmotion on J(a X b).

Corollary 7 ([StWil2]). There is an equivariant bijection
between the order ideals of a X b under rowmotion and
binary words of length a + b with b ones under rotation.
The cyclic sieving phenomenon follows.

Rowmotion on these order ideals also exhibits the
homomesy phenomenon.

Theorem 8 ([PrRo15]). The order ideal cardinality statis-
tic in J(a X b) exhibits homomesy (orbit-average = global-
average) with respect to rowmotion or promotion.

It is natural to ask whether similar results hold on
posets constructed as products of more than two chains.

Theorem 9 ([CaFo95]). The order of rowmotion on J(a X
bx2)isa+b+1.

Again, as a corollary of Theorem 6, we used the toggle
group to explain this result by showing promotion on
J(aXbXx2)isacyclic action on combinatorial objects in
bijection with these order ideals, which also exhibit the
cyclic sieving phenomenon; see Figure 5.
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Figure 5. An order ideal in J(4 X 3 X 2) and its image under promotion, along with the boundary paths for each
layer and the corresponding boundary path matrices, which transform via the parenthesizations shown to the
given noncrossing partitions. Promotion on J(a X b X 2) rotates the corresponding noncrossing partition.

Theorem 10 ([StWil2]). There is an equivariant bijection
between J(a X b X 2) under rowmotion and noncrossing
partitions of a+b + 1 into b + 1 blocks under rotation. The
cyclic sieving phenomenon follows.

Homomesy also holds in this case.

Theorem 11 ([Vol7]). The order ideal cardinality statistic
in J(a X b X 2) exhibits homomesy with respect to rowmo-
tion or promotion.

The above theorems may lead one to guess that
rowmotion on J(aX b X c) isof ordera+ b +c —1 and
exhibits the cyclic sieving and homomesy phenomena.
This is not true in general. For example, when a = b =
¢ = 3, the order of rowmotion is 8, but the generating
functionno longer exhibits the cyclic sieving phenomenon.
For a = b = 3, ¢ = 4, the cardinality statistic is no
longer homomesic. When a = b = ¢ = 4, the order of
rowmotionisnota+b+c—1 = 11, but rather 33. Similar
computations for many other values of a, b, c show that
the orbits of rowmotion on J(a X b X ¢) are each of
cardinality a multiple of a divisor of a + b + ¢ — 1. This
is an admittedly fuzzy notion, which we will make more
precise in the last section of this article. But first, we move
to our second example of an action on standard Young
tableaux.
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Promotion on Standard Young Tableaux

As our second example, let our set X be composed of the
following well-loved objects in algebraic combinatorics
and representation theory.

Definition 12. A standard Young tableau of partition
shape A is a bijective filling of A with the numbers
{1,2,...,n}, where n is the number of boxes in A, such
that labels strictly increase from left to right across
rows and from top to bottom down columns. Let SYT (A)
denote the set of standard Young tableaux of shape A.

See Figures 6 and 7 for examples of tableaux in
SYT (HHH) =SYT(2X5).SYT(A) is enumerated by the
famous Frame-Robinson-Thrall hook formula: [T,ea ﬁ)’()
where x ranges over all boxes in the diagram of A. h(x) is
the hook number of x, that is, the number of boxes in A
in the same row as x and to its right, plus the number of
boxes in the same column as x and below, plus one (for x
itself).

Our action g will be M.-P. Schiitzenberger’s promotion
operator (see Figure 6). In general, this is a different
action from the toggle-promotion defined in the previous
section. A relation between these actions will be made
clear later in this section and the next.

Definition 13. Given a partition A, promotion on
T € SYT(A) is the product p,—1--p2p1(T) of the
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Figure 6. Promotion computed as the product pg -

p2p1(T) of Bender-Knuth involutions. The entries that are

being acted on at each step are shown in red, and at any step in which the involution acts nontrivially, the

resulting tableau is shown.

-
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6 1 6 1
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Figure 7. Promotion on SYT (2 X b) is in equivariant bijection with rotation on noncrossing matchings of 2b
points. Each top row tableau entry is the smaller number in its matching pair.

Bender-Knuth involutions p;, where each p; swaps i
and i + 1 if possible.

Promotion on standard Young tableaux in an a X b
rectangle has the unexpected property that all the orbit
sizes are divisors of the maximum value ab.

Theorem 14 ([Hai92]).
order ab.

Promotion on SYT(a X b) is of

For example, by the hook formula, [SYT(5 X 7)| =
T3S 637 ssroorT = 278,607,172,289,160, but promo-
tion is of order 7 - 5 = 35. Rectangles are among a few
special shapes for which promotion is of a nice order.
Promotion on tableaux of general shape does not have
a nice order; for example, promotion on the partition
HHHH Y has order 7,554,844,752.

Even more surprisingly, SYT (a X b) under promotion
exhibits the cyclic sieving phenomenon, which means
the evaluation of the g-analogue of the hook length
formula for SYT(a X b) at the (ab)th root of unity
(e2™i/abyd counts the number of T € SYT(a X b) such
that Promotion?(T) = T.

JUNE/JULY 2017

NOTICES OF THE AMS

Theorem 15 ([Rh10]). Promotion on SYT (a X b) exhibits
the cyclic sieving phenomenon.

Proofs of this result illuminated connections to rep-
resentation theory and geometry. In the cases a = 2,3,
there are proofs that proceed by giving a bijection to other
combinatorial objects (noncrossing matchings and webs,
respectively) that sends promotion to rotation [PePyRh09];
see Figure 7. There are also homomesy results in this and
more general settings; see [BIPeSal6].

Promotion on two-row rectangular tableaux SY T (2 X b)
is equivalent to toggle-promotion on the type A positive
root poset [StWil2], which is why we gave the name
promotion to the action of toggling from left to right.
A few years later, this name was further validated by
the result that hyperplane-toggle promotion on J(a X b X
c) is equivalent to K-theoretic promotion on increasing
tableaux [DiPeSt17]; we explain this in the next section.

Resonance on Orbits of Increasing Tableaux and
Plane Partitions

For our final example, we take our set X to be increasing
tableaux, objects that have appeared in various contexts
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within algebraic combinatorics, in particular, in relation
to K-theoretic Schubert calculus of Grassmannians.

Definition 16. An increasing tableau of partition shape
A is a filling of A with positive integers such that labels
strictly increase from left to right across rows and from
top to bottom down columns. Let Inc?(A) denote the set
of all increasing tableaux of shape A with entries at most

q.

1[4]5]8

2[s5]7]9

679710

810
1[3]5]s 1[4][5]8
25|79 2[s5]7]9
6/7]9]10 6|7[8]10
B 9]0

Figure 8. The action of some K-Bender-Knuth
involutions on an increasing tableau in Inc'°(4, 4, 4, 2).

See Figures 8 and 9 for examples. Note that Inc"(A)
(where n is the number of boxes in A) contains SYT (A) as
a subset; increasing tableaux differ from standard Young
tableaux in that there may be repeated and/or missing
numbers in the filling.

Our action g will be K-promotion (see Figure 8), which
was originally defined globally using K-jeu-de-taquin,
we give here our equivalent definition from [DiPeSt17].
Note that if an increasing tableau is a standard Young
tableau, K-Bender-Knuth involutions are equivalent to
Bender-Knuth involutions.

Definition 17. Given a partition A and a natural num-
ber g, K-promotion on T & Inc?(A) is the product
K-BK;-1 - K-BK> K-BK; (T) of the K-Bender-Knuth in-
volutions K-BK;, where each K-BK; increments i and/or
decrements i + 1 wherever possible.

For Inc?(a X b) under K-promotion, it is no longer true
that orbit sizes are divisors of the maximum value g, but

rather, they are multiples of divisors of q. For example,
Inc'! (4 X 4) has orbits of size 11 and 33. With Kevin Dilks

and Oliver Pechenik, we made this observation more
precise and gave this phenomenon the name resonance.

Definition 18 ([DiPeSt17]). Suppose g is a cyclic group
action on a set X, ¢ a cyclic group action of order w acting
nontrivially onaset Y, and f : X — Y a surjection. We say
the triple (X, (g),f) exhibits resonance with frequency
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w if, forall x € X, c-f(x) = f(g-x), thatis, the following
diagram commutes:

X

’f

Y

Resonance is a first step in understanding dynamics
of more complicated combinatorial objects, since it is
an analogue of an action having a nice order. Resonance
is a pseudo-periodicity property, in that the resonant
frequency w is generally less than the order of g. (If
w equals the order of g, this is an instance of trivial
resonance.) For non-trivial resonance, we also need a
surjective map f to a simpler underlying set Y on which g
corresponds to a cyclic action ¢ with smaller order . In
the second theorem below, this map is the binary content
vector, defined on an increasing tableau T € Inc?(A) as
the sequence Con(T) = (a1, ay,...,dq), where a; = 1 if i
is an entry of T and a; = 0 if it is not. See Figure 9.

Theorem 19 ([DiPeSt17]). For a certain map f, (J(aX b X
c), (Rowmotion), f) exhibits resonance with frequency a +
b+c—1.

Theorem 20 ([DiPeSt17]). (Inc?(A), (K-promotion), Con)
exhibits resonance with frequency q.

B ——

X
g

|f

Y

_—
C-

The uncanny similarity of the objects and actions in
these theorems when A =aXbandg=a+b+c—11led
to a nonobvious connection between them.

Theorem 21 ([DiPeSt17]). Inc?*?*c~1(q X b) under K-
promotion is in equivariant bijection with J(a X b X c)
under rowmotion.

This proof relies on the following extension of The-
orem 6 from the 2- to n-dimensional lattice. For this
generalization, we introduced and developed the machin-
ery of affine hyperplane toggles and n-dimensional lattice
projections. We obtained a large family of toggle group
actions {Pror,, }, whose orbit structures are equivalent to
that of rowmotion. That is, given a poset P, we project the
elements in a way consistent with the covering relations
into the n-dimensional lattice by the map 7r. Then Pro, , is
the toggle group action that toggles elements as it sweeps
through 1m(P) by an affine hyperplane in the direction
determined by the vector v.

Theorem 22 ([DiPeSt17]). Let P be a finite poset with an
n-dimensional lattice projection 1t. Let v and w be length
n vectors with entries in {+1}. Then there is an equivari-
ant bijection between J(P) under Pror, and J(P) under
Prosqw.

Itis not hard to show that Pros (1,1, 1) is rowmotion, so
this theorem says rowmotion and 2" — 1 other promotions
have the same orbit structure. For 1t the natural three-
dimensional embedding, Proq . 1,-1) on J(a X b Xc) is
equivalent to K-promotion on Inc?*?*¢~1(g x b), which
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Figure 9. An increasing tableau in Inc!?(4 X 4) and its image under K-promotion, along with the map to the
binary content of each. K-promotion cyclically shifts the binary content vector.

when combined with the above theorem gives the proof of
Theorem 21, showing that toggle-promotion and tableaux-
promotion coincide on a much larger set than we had
previously known.

Conclusion

We have given a flavor of dynamical algebraic combina-
torics through examples of combinatorial objects with
actions that have small order and other nice properties,
such as cyclic sieving and homomesy. Most of the objects
and actions that behave nicely in these three respects are,
in some sense, planar. These phenomena often still occur
in objects that are only slightly three-dimensional, since
such objects may often be mapped bijectively to planar
objects, as in Theorem 10. But once such maps are no
longer possible, these properties tend to no longer hold.
We have seen examples of higher-dimensional combina-
torial objects with natural actions that no longer have a
nice order, but rather exhibit resonance. We hope that
further study of resonance in such combinatorial dynam-
ical systems will uncover more interesting properties and
surprising connections.
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