1duasnueln Joyny vVd-HIN 1duasnueln Joyny vd-HIN

yduasnuey Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Alzheimers Dement. 2012 February ; 8(1 0): S1-68. doi:10.1016/j.jalz.2011.09.172.

The Alzheimer’s Disease Neuroimaging Initiative: A review of
papers published since its inception

Michael W. Weiner2”, Dallas P. VeitchP, Paul S. Aisen®, Laurel A. Beckettd, Nigel J. Cairns®,
Robert C. Greenf, Danielle Harvey9, Clifford R. Jack9, William Jagust", Enchi Liu, John C.
Morris€, Ronald C. Petersenl, Andrew J. Saykink, Mark E. Schmidt!, Leslie Shaw™, Judith A.
Siuciak", Holly Soares®, Arthur W. TogaP, and John Q. Trojanowski9 on behalf of the
Alzheimer’s Disease Neuroimaging Initiative

aCenter for Imaging of Neurodegenerative Diseases, Veterans Medical Center and Departments
of Radiology, Medicine, Psychiatry and Neurology, University of California, San Francisco, San
Francisco, CA, USA

bCenter for Imaging of Neurodegenerative Diseases, Veterans Medical Center, San Francisco,
CA, USA

¢Department of Neurosciences, University of California San Diego, La Jolla, CA, USA

dDivision of Biostatistics, Department of Public Health M. Sciences, University of California Davis,
Davis, CA, USA

eKnight Alzheimer’s Disease Research Center, Department of Neurology, Washington University
School of Medicine, Saint Louis, MO, USA

Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA, USA

9Department of Radiology, Mayo Clinic, Rochester, MN, USA

hHelen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
iJanssen Alzheimer Immunotherapy, South San Francisco, CA, USA

iDepartment of Neurology, Mayo Clinic, Rochester, MN, USA

kDepartment of Radiology and Imaging Sciences, Department of Medical and Molecular
Genetics, Indiana University School of Medicine, Indianapolis, IN, USA

INeuroscience Therapeutic area, Janssen Research and Development, Division of Janssen
Pharmaceutica, NV, Beerse, Belgium

MDepartment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA

NScientific Program Manager, The Biomarkers Consortium, Foundation for the National Institutes
of Health, Bethesda, MD, USA

°Clinical Biomarkers, Bristol-Myers Squibb, Wallingford, CT, USA

"Corresponding author. Tel.: 415-221-4810 x3642; Fax: 415-668-2864; michael.weiner@ucsf.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Weiner et al. Page 2

PLaboratory of Neuroimaging, Department of Neurology, School of Medicine, University of
California Los Angeles, Los Angeles, CA, USA

dInstitute on Aging, Alzheimer’s Disease Core Center, Udall Parkinson’s Research Center, Center
for Neurodegenerative Research and Department of Pathology and Laboratory Medicine,
Pereleman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Abstract

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter
study designed to develop clinical, imaging, genetic and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease (AD). The study aimed to enroll 400 subjects with
early mild cognitive impairment (MCI), 200 subjects with early AD and 200 normal controls and
$67 million funding was provided by both the public and private sectors including the National
Institutes on Aging, thirteen pharmaceutical companies and two Foundations that provided support
through the Foundation for NIH (FNIH). This article reviews all papers published since the
inception of the initiative and summarizes the results as of February, 2011. The major
accomplishments of ADNI have been 1) the development of standardized methods for clinical,
magnetic resonance imaging (MRI) and positron emission tomography (PET) and cerebrospinal
fluid (CSF) biomarkers in a multi-center setting; 2) elucidation of the patterns and rates of change
of imaging and CSF biomarker measurements in control, MCI and AD patients. CSF biomarkers
are consistent with disease trajectories predicted by p amyloid (Ap) cascade [1] and tau mediated
neurodegeneration hypotheses for AD while brain atrophy and hypometabolism levels show
predicted patterns but exhibit differing rates of change depending on region and disease severity;
3) the assessment of alternative methods of diagnostic categorization. Currently, the best
classifiers combine optimum features from multiple modalities including MRI, FDG-PET, CSF
biomarkers and clinical tests; 4) the development of methods for the early detection of AD. CSF
biomarkers, Ap42 and tau as well as amyloid PET may reflect the earliest steps in AD pathology
in mildly or even non-symptomatic subjects and are leading candidates for the detection of AD in
its preclinical stages; 5) the improvement of clinical trial efficiency through the identification of
subjects most likely to undergo imminent future clinical decline and the use of more sensitive
outcome measures to reduce sample sizes. Baseline cognitive and/or MRI measures generally
predicted future decline better than other modalities whereas MRI measures of change were shown
to be the most efficient outcome measures; 6) the confirmation of the AD risk loci CLU, CRI and
PICALM and the identification of novel candidate risk loci; 7) worldwide impact through the
establishment of ADNI-like programs in Europe, Asia and Australia; 8) understanding the biology
and pathobiology of normal aging, MCI and AD through integration of ADNI biomarker data with
clinical data from ADNI to stimulate research that will resolve controversies about competing
hypotheses on the etiopathogenesis of AD thereby advancing efforts to find disease modifying
drugs for AD; and 9) the establishment of infrastructure to allow sharing of all raw and processed
data without embargo to interested scientific investigators throughout the world. The ADNI study
was extended by a two year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI2)
in October, 2010 through to 2016, with enrollment of an additional 550 participants.

1. Introduction to ADNI: goals, history and organization

1.1 Background

AD, the most common form of dementia, is a complex disease characterized by an
accumulation of p-amyloid plaques and neurofibrillary tangles composed of tau amyloid
fibrils associated with synapse loss and neurodegeneration leading to memory impairment
and other cognitive problems. There is currently no known treatment that slows the
progression of this disorder. According to the 2010 World Alzheimer report, there are an
estimated 35.6 million people worldwide living with dementia at a total cost of over US$600
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billion in 2010, and the incidence of AD throughout the world is expected to double in the
next 20 years. There is a pressing need to find biomarkers to both predict future clinical
decline and for use as outcome measures in clinical trials of disease modifying agents to
facilitate phase 11111 studies and foster the development of innovative drugs [2]. To this
end, ADNI was conceived at the beginning of the millennium and began as a North
American multicenter collaborative effort funded by public and private interests in October,
2004. Although special issues focused on North American ADNI have been published in
Alzheimer’s and Dementia [3] and Neurobiology of Aging [4] and a number of other review
articles [5-12], the purpose of this review is to provide a detailed and comprehensive
overview of the approximately 200 papers that have been published as a direct result of
ADNI in the first six years of its funding.

1.2 Disease model and progression

One approach toward a greater understanding of the events that occur in AD is the
formulation of a disease model [3, 12-16]. According to the Ap amyloid hypothesis, AD
begins with the abnormal processing of the transmembrane AP precursor protein APP.
Proteolysis of extracellular domains by sequential p and -y secretases result in a family of
AP peptides that form predominantly p-sheets, the p-amyloids (Ap) (Figure 1). The more
insoluble of these peptides, mostly Ap42, have a propensity for self-aggregation into fibrils
that form the senile plaques characteristic of AD pathology. Subsequently, it is thought that
the microtubule-associated tau protein in neurons becomes abnormally hyperphosphorylated
and forms neurofibrillary tangles that disrupt neurons. However, while ADNI and other
biomarker data support this sequence of events, direct examination of postmortem human
brains by Braak and colleagues have shown that tau pathology in the medial temporal limbic
isocortex precedes the development of AB deposits with advancing age in the human brain
[17]. Downstream processes such as oxidative and inflammatory stress contribute to loss of
synaptic and neuronal integrity, and eventually, neuron loss results in brain atrophy. Jack et
al. [14, 16] presented a hypothetical model for biomarker dynamics in AD pathogenesis. The
model begins with the abnormal deposition of Ap amyloid fibrils as evidenced by a
corresponding drop in the levels of soluble AR42 in CSF and increased retention of the PET
radioactive tracer, [11C]-labeled Pittsburgh compound B amyloid (}1C-PiB) in the cortex.
Sometime later, neuronal damage begins to occur as evidenced by increased levels of CSF
tau protein. Synaptic dysfunction follows resulting in decreased 18F-fluorodeoxyglucose
(FDG) uptake measured by PET. As neuronal degeneration progresses, atrophy in certain
areas typical of AD becomes detectable by MRI. The model of Jack et al. [14] is highly
relevant to many papers reviewed in the following Studies of the ADNI Cohort section,
which often provide empirical evidence to support it. An example of a model which
proposes a series of pathological events leading to cognitive impairment and dementia is
summarized in Figure 2.

1.3 Mild cognitive impairment

Similar to many disease processes that originate in microscopic environments and are
asymptomatic until the start of organ failure, the course of AD pathology is likely to be 20 to
30 years. It is now generally accepted that the initial AD pathology develops in situ while
the patient is cognitively normal, sometimes termed the “preclinical stage” [18, 19]. At some
point in time, sufficient brain damage accumulates to result in cognitive symptoms and
impairment. Originally defined in 1999, this has been classified in a number of ways
including as predementia AD or as MCI, a condition in which subjects are usually only
mildly impaired in memory with relative preservation of other cognitive domains and
functional activities and do not meet the criteria for dementia [5] or as the prodromal state
AD [18]. Epidemiological studies of participants aged 70 to 89 years who were
nondemented found the prevalence of MCI in this population to be approximately 15% with
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an approximately 2:1 ratio of two identified phenotypes, amnestic and non-amnestic [20,
21]. Studies showed that MCI patients progressed to AD at a yearly rate of 10-15% and that
predictors of this conversion included whether the patient was a carrier of the 4 allele of the
apolipoprotein E (APOE) gene, clinical severity, brain atrophy, certain patterns of CSF
biomarkers and of cerebral glucose metabolism, and AR amyloid deposition [5].

1.4 History of biomarker development

Although the etiology of AD was not known, there was sufficient knowledge of the
mechanisms of AD pathology at the beginning of the last decade to allow the development
of new drugs. Once transgenic mice expressing AP in their brains were available [22],
development of treatments to slow the progression of AD began in earnest. Although
considerable work had been done to develop quantitative measurements of cognitive
function and activities of daily living for clinical trials of symptomatic treatments such as
acetylcholinesterase inhibitors, it was recognized that changes in cognition did not
necessarily signify “disease modification”. Investigators in academia and the pharmaceutical
industry therefore became interested in how “disease modification” of AD could be detected
using a variety of biomarkers including brain MRI scanning, and blood and CSF analytes.
This led to a decision by the NIA to fund the ADNI initiative and to structure it as a public-
private partnership.

The development of AD biomarkers for clinical trials, both for use in subject selection and
as outcome measures is paramount to the success of ADNI. During the genesis of the
initiative, Frank et al. [23] described the importance of biomarkers to ADNI and to clinical
trials. In the first paper to come out of ADNI, Trojanowski [24] reviewed candidate AD
biofluid biomarkers thought to be most promising at the time, homocysteine, isoprostanes,
sulfatide, tau and AB, and described how ADNI was poised, as a large public private
collaboration, to identify and validate the best candidate AD biomarkers. Mueller et al. [25]
reported on the scientific background at the beginning of ADNI and the limitations of the
clinical and neuropsychological tests available for monitoring disease progression at that
time. Principally, a definitive diagnosis of AD required severe cognitive deficits and autopsy
confirmation, while the clinical criteria for the detection of the MCI transitional phase were
much less certain. Accordingly, outcome measures for assessing the efficacy of new drugs
relied primarily on neurocognitive tests such as ADAS-cog (cognitive sub-scale of the
Alzheimer’s Disease Assessment Scale), the efficacy of which was limited by substantial
ceiling effects and variability in subject performance over time. There was a clear need to
develop biomarkers, biological tools that ‘mark’ the presence of pathology, for the early
diagnosis of AD and for measuring clinical drug trial outcomes [8].

Relatively early in the initiative, a major concern was developing an AD biomarker that
distinguished AD from other dementias such as Lewy body dementia, frontotemporal
degeneration and Parkinson’s disease with dementia [10]. Based on a model of AD
pathogenesis fundamentally similar to that described in [14], Shaw et al. [10] reviewed a
number of potential biomarkers, including some, such as isoprostanes and total plasma
homocysteine that did not subsequently prove to be of use. Others, such as levels of soluble
AP42 or tau protein in CSF, reflected the increase in deposition of A in fibrillar plagues or
the later release of tau protein as a result of neuronal damage. Neuronal metabolism and
neuronal degeneration could be measured using FDG-PET and by examining the
concentrations of total tau protein and tau phosphorylated on Ser181 (p-tauyg;) in CSF,
respectively. Volumetric changes to brain structure could be assessed by MRI of specific
regions such as the hippocampus, entorhinal cortex, temporal and parietal lobes and
ventricles. Additional potential risk factor biomarkers included genetic susceptibility factors
such as the APOE genotype, plasma homocysteine and isoprostanes as hon-AD specific
indicators of oxidative stress. By the following year, the wide range of potential biomarkers
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had been substantially narrowed to include CSF Ap42, t-tau and p-tauig; hippocampal
volume, voxel-based volumetry, deformation-based morphometry, functional MRI, and
FDG-PET [26]. In tandem with the development of these biomarkers a new imaging
technology using 11C-PiB in PET scans was being developed [27, 28] and the possibility of
a diagnostic approach predicated on the concept of certain combinations of biomarkers
providing complementary information was raised [8, 26].

In 2008, twin reviews were published in Neurosignals [8, 15] by members of the ADNI
Biomarker Core at the University of Pennsylvania. The first paper reviewed potential
biomarkers for the early detection of AD. In addition to the potential biomarkers described
above, these included MRI T1p relaxation times to image neuritic plaques and single proton
emission computerized tomography (SPECT) using an 1251 imidazole derivative (IMP) as an
alternative approach to amyloid PET imaging [29]. The second paper distinguished between
diagnostic biomarkers and risk biomarkers such as the APOE ¢4 allele and plasma total
homocysteine levels, suggesting that while they were not sufficiently sensitive for diagnostic
purposes, they were indicative of increased risk for AD and were predictive of disease
progression. Finally, in 2010, Hampel et al. [7] presented a review that updated our current
understanding of tau and Ap biomarkers including levels of AB42 and activity of BACE1
(the major amyloid precursor protein-cleaving B-secretase in the brain) in CSF, blood
plasma levels of AB40 and AB42 and human antibodies against Ap-related proteins. Thus
the search for biomarkers to fulfill a variety of niches is an ongoing quest and is no doubt set
to evolve even further as research progresses.

1.5 Goals of ADNI

A comprehensive description of the goals of ADNI is given in [2] and [3]. At initiation,
ADNI had the overall objective of characterizing clinical, genetic, imaging and biochemical
biomarkers of AD and identifying the relationships between them over the course of disease
progression from normal cognition to MCI to dementia. Specific goals of ADNI included
the development of optimized and standardized methods for use across multiple centers, the
enrolment of a large cohort (>800) of healthy elderly, MCI and AD patients for baseline
characterization and longitudinal studies and the establishment of repositories of data and
biological samples, both of which were to be accessible to the wider scientific community
without embargo. A specific pre-specified goal was to identify those imaging techniques
(MRI and PET) and image analysis techniques, and blood/CSF biomarkers that had the
highest statistical power to measure change (defined as the sample size required to detect a
25% reduction of rate of change in one year) and thus hopefully detect effects of treatments
that would slow the progression of AD. With these goals, ADNI hoped to identify a
combination of biomarkers that could act as a signature for a more accurate and earlier
diagnosis of AD and that could be used to monitor the effects of AD treatment [2, 3].

When originally conceived, ADNI had not included aims around genetic or proteomic
analysis. Additional add-on studies supported the evolution of the genetics core (see below)
and the study of protein changes in plasma and CSF. Plasma proteomic data from a 190
analyte multiplex panel have been posted to ADNI website and are available for additional
data mining.

1.6 The evolution of an idea: ADNI1, ADNI-GO and ADNI2

Drs. Neil Buckholz and William Potter had discussed the overall concept of a large
biomarker project to study AD for many years. Dr.. Buckholz convened a National
Institution on Aging meeting focused on AD biomarkers in 2000. In 2001 Drs. Michael
Weiner and Leon Thal (since deceased) proposed a longitudinal MRI study of AD, MCI and
control subjects. Subsequently, Dr.. Buckholz brought together a number of investigators in
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the AD field, and industry leaders, all of whom strongly supported the overall concept. The
NIA published a Request for Applications and ADNI was funded in 2004. The initial ADNI
was projected to run for 5 years and to collect serial information every six months on
cognitive performance, brain structural and metabolic changes and biochemical changes in
blood, CSF and urine in a cohort of 200 elderly controls, 200 MCI and 400 AD patients [2—
4]. It was funded as a public/private partnership with $40 million from the NIA and $27
million from 20 companies in the pharmaceutical industry and two Foundations for a total of
$67 million, with the funds from private partners provided through the FNIH. An interesting
perspective of the process by which potential competitors in the race to develop new drugs
for AD were brought together in a consortium under the auspices of the FNIH is given in
Schmidt et al. [30], who emphasizes the importance of the cooperative, precompetitive
nature of ADNI. When the ADNI grant was first submitted and funded, the significance and
impact of 11C-PiB [27, 28] studies were not fully appreciated, and there was no
infrastructure to conduct multisite clinical trials with 11C-PiB. Therefore, AR amyloid
imaging with 11C-PiB was not included in the application. However, after the first year of
funding Chet Mathis proposed adding a 11C-PiB sub-study to ADNI, which was funded by
the Alzheimer’s Association and General Electric. In addition, further industry and
foundation funding was secured to allow supplemental or “add-on” genome wide association
studies (GWAS) and for additional lumbar punctures to obtain CSF as new technologies
emerged to make these studies feasible in a large scale initiative such as ADNI.

In 2009, toward the end of the ADNI study, a Grand Opportunities grant, ADNI-GO, was
secured to extend the original ADNI-1 studies with both longitudinal studies of the existing
cohort and the enrolment of a new cohort of early MCI (EMCI) patients to investigate the
relationship between biomarkers at an earlier stage of disease progression. Technical
advances made it possible to add analyses of the new cohorts using AV45 (Florbetapir)
amyloid imaging. Additional experimental MRI sequences included for evaluation of ADNI
GO and ADNI-2 are arterial spin labeling perfusion imaging and diffusion tensor imaging.
The development of the 18F-labeled AV45 amyloid imaging agent with a substantially
longer radioactive half-life than the 11C form made it practicable to extend amyloid imaging
studies to additional sites beyond those undertaken in ADNI-1 [7].

A competitive renewal of the ADNI-1 grant, ADNI 2, was awarded with total funding of
$69 million on Oct 1, 2010 to further extend these studies with additional cohorts, together
with funding from the pharmaceutical industry in a cooperative agreement similar to the
original initiative [3, 4, 31]. It is anticipated that the study of very mild MCI patients in
ADNI-GO and ADNI 2 will help identify subjects at risk who are candidates for
preventative therapy when they are mildly symptomatic or asymptomatic [30]. Table 1
summarizes details of the three initiatives.

1.7 Structure and organization of ADNI

A full description of ADNI structure is given in [3]. Briefly, ADNI is governed by a
Steering Committee that includes representatives from all funding sources as well as
principal investigators of the ADNI sites and is organized as eight cores, each with different
responsibilities, under the direction of an Administrative Core, led by Dr.. Weiner as well as
a Data and Publications Committee, led by Dr. Green (Figure 2). The eight cores are
comprised of 1) the Clinical Core, led by Drs. Aisen and Petersen, responsible for subject
recruitment, collection and quality control of clinical and neuropsychological data, testing
clinical hypotheses and maintaining databases; 2) and 3) the MRI and PET Cores, led by
Drs. Jack and Jagust, respectively, responsible for developing imaging methods, ensuring
quality control between neuroimaging centers and testing imaging hypotheses; 4) the
Biomarker Core, led by Drs. Shaw and Trojanowski, responsible for the receipt, storage and
analysis of biological samples; 5) the Genetics Core, led by Dr. Saykin, responsible for
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genetic characterization and analysis of participants as well as banking DNA, RNA and
immortalized cell lines at the National Cell Repository for Alzheimer’s Disease; 6) the
Neuropathology Core, led by Drs. Morris and Cairn, responsible for analyzing brain
pathology obtained at autopsies of ADNI participants; 7) the Biostatistics Core, led by Dr.
Beckett, responsible for statistical analyses of ADNI data; and 8) the Informatics Core, led
by Dr. Toga, responsible for managing data sharing functions [2, 3]. A schematic of ADNI
structure is given in Figure 3.

1.8 Data sharing and informatics

An objective of ADNI, in addition to its scientific goals outlined in Section 1.5, was to make
data available to the scientific community, without embargo. To this end, Data and
Publications Committee (DPC), in conjunction with the Bioinformatics Core of ADNI at the
Laboratory of Neuroimaging (LONI) at UCLA has developed policies and procedures for
immediate, open-access data sharing on a previously unprecedented scale. The principles for
this data sharing were developed in the initial months of the ADNI project by the DPC in
consultation with the Executive Committee and presented to the Steering Committee for
adoption on DATE. The infrastructure for implementing this policy takes place through the
LONI data archive (LDA), enabling the widespread sharing of imaging, clinical, genetics
and proteomic ADNI results while overcoming such fundamental hurdles as the question of
ownership of the disseminated scientific data, and the collection of data from multiple sites
in a form that supports data analysis [32]. Briefly, LONI has developed automated systems
that de-identify and upload data from the 57 ADNI sites, ensure quality control of images
before removing them from quarantine status and make them available for download,
manage preprocessing and post-processing of images and their linkage to associated
metadata, support search functions and manage user access and approval. Clinical data are
collected by the Alzheimer’s Disease Co-operative Study through their online data capture
system and transferred to the ADNI repository at LONI via nightly data transfers. Once
received at LONI, portions of the clinical data are used to update data in the ADNI
repository to ensure consistency of demographic and examination data and to update the
status of image data based upon quality assessment results. Additional nightly processes
integrate other clinical data elements so they may be used in querying the data in the
repository. Any researchers who have been granted access to ADNI data are able to analyze
any part of the available data and can post results to LONI. In addition to ADNI data, LDA
also contains data from the parallel Australian Imaging Biomarkers and Lifestyle (AIBL)
Flagship Study of Ageing which was been collected using protocols comparable to ADNI’s.
To date, more than 1,300 investigators from 35 countries worldwide from academic and
governmental institutions, the pharmaceutical and biotechnology industries and the scanner
manufacturing sector have accessed ADNI data through the LDA [32]. The number of
downloads of ADNI data has increased yearly since 2006 and in 2010, more than 400,000
images, 1416 sets of clinical data including cognitive tests and levels of CSF biomarkers,
781 numeric summary results for all analyses, and 33,620 genetics single nucleotide
polymorphism results were downloaded.

While LONI acts as the ADNI data repository, the DPC is responsible for developing policy
around data access and publication, granting access to the data to investigators around the
world, and for reviewing publications which result from this data use. Briefly, members of
the scientific community can apply for access to ADNI data for either research or teaching
purposes and must submit a data use agreement (found at http://adni.loni.ucla.edu/wp-
content/uploads/how_to_apply/ADNI_Data_Use Agreement.pdf) for approval. As of April
2011, 1590 data applications from across the world had been approved, predominantly from
academia, but also from the biotechnology, pharmaceutical and other industries. Part of the
Data Use agreement requires applicants to include certain language in manuscripts prepared
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from ADNI data including citing “for the Alzheimer’s Disease Neuroimaging Initiative” as
an ADNI group acknowledgement, and the recognition of ADNI‘s role in data gathering in
the Methods section and of ADNI’s funding in the Acknowledgments. Manuscripts must be
submitted for approval to the DPC prior to publication. The full publication policy can be
found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/
ADNI_DSP_Policy.pdf. The role of the DPC in this step is primarily to check that
manuscripts are compliant with ADNI publication policy and not to provide a scientific
peer-review. Papers found to be non-compliant are returned to the authors for editing and
can subsequently be resubmitted for approval. This process is designed to primarily to track
and tabulate standardize the publication of manuscripts using ADNI data.

1.9 The ADNI special issue of Alzheimer’s and Dementia

Weiner et al. [3] introduced the special ADNI issue of Alzheimer’s and Dementia in 2010
with an overview of ADNI’s background, rationale, goals, structure, methods, impact and
future directions. A set of papers followed highlighting the achievements of individual
ADNI cores and perspectives of the Industry Scientific Advisory Board or ISAB which is
now referred to as the Private Partner Scientific Board or PPSB. Jack et al. [33] described
the achievements of the MRI Core of ADNI in areas ranging from the development of MRI
technology to the elucidation of AD biology and concluded that this Core had succeeded in
demonstrating the feasibility of multi-center MRI studies in ADNI and validity of this
method as a biomarker in clinical trials. The progress of the PET Core of ADNI in
developing FDG-PET and 11C-PiB PET protocols, ensuring quality control, and acquiring
and analyzing longitudinal data was reviewed by Jagust et al. [34] who similarly concluded
that the Core had successfully demonstrated both the feasibility of this technology in a
multi-center setting and the potential of FDG-PET to reduce sample sizes in clinical trials.
Trojanowski et al. [12] reviewed progress by the Biomarker Core of ADNI in developing
profiles of CSF or plasma biomarkers that would act as a “signature” of mild AD or predict
future MCI to AD conversion. Moreover, the review described studies in support of a
temporal sequence of changes in individual biomarkers that reflected proposed trajectories
of AP deposition and the formation of neurofibrillary tangles in AD disease progression
[14]. The accomplishments of the Clinical Core of ADNI were reviewed by Aisen et al. [35]
who reported that the Core had successfully recruited a cohort of over 800 subjects,
characterizing them both clinically and cognitively at baseline and following them
longitudinally over the course of the study. As the Clinical Core provided data management
support to ADNI, this review also reported on the contribution of ADNI biomarker and MRI
findings to improving clinical trial design by determining the most powerful outcome
measures and reducing sample size using subject selection strategies. The contribution of the
Genetics Core of ADNI to untangling the apparently complex genetic contributions to AD
was reviewed by Saykin et al. [6] who reported considerable progress in the identification of
novel AD susceptibility loci and of candidate loci worthy of further investigation, often
using AD biomarkers as quantitative traits in imaging genetics and genome wide association
studies. The role of the Neuropathology Core in developing procedures to improve the
autopsy rate of ADNI patients and to standardize neuropathological assessment was
reviewed by Cairns et al. [36]. Finally, Schmidt et al. [30] discussed the contributions of the
Industry Scientific Advisory Board, including acting as a conduit of information to and from
sponsoring companies and foundations, supporting add-on studies and contributing to the
scientific review of protocols and procedures.
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Given that the ultimate goal of ADNI is to develop biomarkers to facilitate clinical trials of
AD therapeutics, it is germane to consider the perspective of those investigators in academia
and the pharmaceutical industry on the development of these biomarkers. The aim of this
section is to review those papers that focus on this issue.

While ADNI is a natural history study and it is not known whether its biomarkers can
measure the effect of candidate treatments in drug trials, the primary focus of ADNI has
been the development of diagnostic biomarkers for the early detection of AD and prognostic
biomarkers that would be used to monitor disease progression [37]. Mueller et al. [38] and
Weiner et al. [3] reaffirmed the definition of an ideal biomarker formulated at the first
meeting of the NIA working group on AD biomarkers which proposed that an ideal AD
biomarker should detect a fundamental feature of AD pathology, be minimally invasive,
simple to perform and inexpensive, and meet criteria with regard to specificity and
sensitivity outlined in Table 2. Prognostic biomarkers should be representative of a stage of
AD at which the treatment has maximal effect, and also be representative of the proposed
mechanism of action of the treatment [3, 38].

Both diagnostic and prognostic biomarkers are required for clinical trials. Such clinical trials
have to date been frustratingly unsuccessful. It was thought that the failures of clinical trials
of three high profile putative anti-amyloid therapies, flurizan and Alzhemed, were in part
due to methodological difficulties such as the initial subject selection, and the statistical
comparison of results from multiple centers [7, 9, 39]. In the case of the first generation of
clinical trials focusing on patients with MCI, there was a lack of consistency in numbers of
patients progressing to AD over a certain time period, likely due to the heterogeneous nature
of MCI; likely half of study participants did not have underlying AD pathology [7, 11, 40].
Correctly distinguishing patients with AD pathology is critical, especially considering the
overlap that exists between various late-life neurodegenerative pathologies. For example, the
Lewy bodies that characterize Parkinson’s disease are found in more than 50% of patients
with AD, in addition to neuritic plaques and tangles. There is therefore a real need for
biomarkers that reliably distinguish between different types of dementias [8, 10].

Diagnostic biomarkers that meet the criteria outlined above are urgently needed for subject
selection allowing the stratification and enrichment of clinical trials. There is a need to select
subjects at an early stage of the Alzheimer’s continuum who are likely to progress through
MCI to dementia, and also, to eliminate subjects with other pathologies. In phase I, Il and 111
trials, biomarkers that detect the earliest indications of AD pathology, Ap amyloid
deposition, such as CSF AB42, and 11C PiB PET are most likely to be useful. FDG-PET as a
measure of metabolism could also have potential [41].

The biomarkers used in a clinical trial will differ depending on the mechanism of action of
the therapeutic, the goals of the trial, and questions at hand. In small, short Phase 1 trials,
CSF and plasma measures can be used to monitor Ap turnover in healthy subjects. In phase
Il Proof of Principle or Proof of Concept trials, Ap amyloid biomarkers in brain can be used
to confirm the mechanism of action of a new treatment and ‘target engagement’. For Phase
I1and 111 trials, CSF tau and phosphorylated tau, MRI, and Ap amyloid PET can be used to
determine whether there is evidence of an effect of treatment on disease progression.
Clinical MRI is used routinely for subject selection, to exclude confounding medical
conditions and detection of vasogenic edema as a safety endpoint of ‘immune’ based
treatments [41]. Finally, Ap amyloid PET imaging, MRI, CSF and plasma biomarkers, and
FDG-PET are candidates as prognostic biomarkers in Phase 11 trials for selection of non-
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demented subjects at risk for developing AD to test whether treatments have the potential of
preventing or delaying the onset of AD. The predictive power of these biomarkers in
isolation or in combination varies and will need to be factored into consideration. None of
the current generation of treatments proposed to modify the progression of AD is free of
safety concerns. Estimation of the probability of developing AD will be required for
assessing the risk versus possible benefit of participating in research trials [41]. Figure 5
shows ADNI biomarkers that could be used at different stages of the drug development
process.

Looking at drug development as a whole, Cummings [37] saw a wide variety of roles for
biomarkers, from identifying disease pathology and tracking disease progression, to
demonstrating pharmacokinetic effects of the body on the drug, to facilitating proof of
principle and determining doses for subsequent trials, to determining drug efficacy, and
finally in contributing to corporate decision making such as whether to proceed with riskier
and more expensive later phase trials (Figure 4). Fleisher et al. [9] reviewed progress in
developing neuroimaging biomarkers, either alone or in conjunction with CSF biomarkers
for subject selection, and in developing biomarkers functioning at later stages in disease
such as MRI measures of brain atrophy or changes in cerebral glucose metabolism detected
by FDG-PET as outcome measures. This review also highlighted the need for biomarkers in
drug development and discussed the use of imaging biomarkers in replacing cognitive
endpoints in clinical trials.

Both common sense and regulatory policies of the FDA and regulators in other countries
require that treatment trials need to demonstrate a significant effect on cognition and
function. Although effects on biomarkers would provide additional evidence of treatment
effect and evidence of disease modification, there are no validated surrogates for AD trials,
and such surrogates will take many years to develop. Different biomarkers are likely to be
effective over different phases of the disease [11, 41]. To be used as surrogates for clinical
measures, biomarkers would need to be validated as reflecting clinical and/or pathological
disease processes with a high degree of specificity and sensitivity. To qualify for validation
as an outcome measure, the biomarker must be shown to predict clinical outcome over
several trials and several classes of relevant agents by following subjects through disease
progression and even possibly to autopsy [3, 9, 37]. This validation process is likely to be
aided by the contribution of ADNI to standardizing procedures, particularly for imaging
techniques, to reduce measurement errors in clinical trials [42]. A review by Petersen and
Jack [11] discussed neuroimaging and chemical biomarkers, either alone or in combination
for the prediction of the development of dementia in MCI patients. They provided an
excellent and succinct summary of the issues facing clinical trials for AD disease-modifying
drugs and the role of both US and worldwide ADNI in developing biomarkers to facilitate
these trials.

A detailed discussion of the position of the FDA on biomarker validation is given in Carrillo
et al. [31] and it is likely that the process will require a wider population of well-
characterized subjects than is available through ADNI. To this end, and for the further study
of therapeutic interventions for AD, Petersen [40] proposed the establishment of a national
registry of aging. In their editorial in the Journal of the American Medical Association,
Petersen and Trojanowski [39] introduced a paper that reports the evaluation of CSF
biomarkers in a large multi-center study. Placing this in the context of other work in the
same area and in research undertaken as part of ADNI, they concluded that as biomarkers
become more sophisticated, they will play ever greater roles in AD clinical trials, and may
one day be of used in clinical practice in a diagnostic capacity. Hill [41] concluded in his
perspective on neuroimaging and its role in assessing safety and efficacy of disease
modifying therapies for AD: “....there is now sufficient experience of imaging for
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Alzheimer’s disease in both natural history and therapeutic trials for a clear recipe for
success to be emerging”. Weiner et al. [43] concluded that the use of biomarkers to select
cognitively normal subjects who have AD like pathology and as validated outcome
measures in clinical trials “is the path to the prevention of AD”.

ADNI has proven to be a rich dataset for industry sponsored research including an
assessment of disease progression in the Alzheimer’s disease population [44]. ADNI data
have been combined with additional placebo data from clinical trials conducted in AD and
are publicly available on the Coalition Against Major Disease (CAMD) website (http://
www.c-path.org/CAMDcodr.cfm) for additional datamining. Modeling efforts have
highlighted the importance of age, baseline cognitive status and APOE status on disease
progression rates and a model is currently under qualification review through newly
developed EMA and FDA qualification procedures. These types of models will inform
clinical trial design and streamline analysis for drug studies conducted in mild-moderate
Alzheimer’s disease.

ADNI has also enabled clinical studies in predementia and many have been posted to
www.clinicaltrials.gov highlighting the use of CSF and amyloid PET biomarkers in
cognitively impaired subjects to enrich for pre-dementia clinical trials. Application to
registration level, Phase 111 studies remains a challenge as the biomarkers in ADNI have not
yet been qualified for use or received regulatory approval. To address some of the remaining
challenges, precompetitive and industry sponsored initiatives were recently conducted to
qualify CSF AB42 and total tau as biomarkers for enrichment in predementia study with the
EMA and a positive qualification opinion was posted on the EMA site for these particular
biomarkers. Additional efforts are ongoing with the FDA. For the most part, industry has
been utilizing the biomarkers as enrichment tools in predementia and mild-moderate AD
studies and as secondary or exploratory efficacy measures to assess impact of exploratory
drugs on biomarker measures of disease progression.

3 Methods papers

A considerable proportion of papers published as a result of ADNI concerns the
development and testing of methods for use in ADNI, in the cohorts of other studies or in
clinical trials. These run the gamut from papers examining the best way to reduce
differences between scanners in multicenter studies, to those describing a new way to
discriminate between AD, MCI and control patients, to methods for enriching clinical trials
to reduce required sample sizes and therefore the associated cost, to new methods for
examining genotype-phenotype relationships in neuroimaging genome wide association
studies. This section presents an overview of these papers.

3.1 Standardization of ADNI procedures

3.1.1 MRI

3.1.1.1 Assessment of scanner reliability: A key feature of assessing the reliability of
scanner hardware over longitudinal scans is the use of a high resolution geometric
“phantom” which can detect linear and non-linear spatial distortion, signal-to-noise ratio and
image contrast, allowing these artifactual problems to be identified and subsequently
eliminated. While these are commonly used for periodic adjustments to quality control, they
are scanned after every patient in the ADNI MRI protocol. Gunter et al. [45] estimated that
these artifactual problems would contribute to over 25% imprecision in the metric used and
found that phantom analysis helped correct scanner scaling errors and or miscalibration,
thereby increasing the potential statistical power of structural MRI for measuring rates of
change in brain structure in clinical trials of AD modifying agents. The utility of a scanner
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phantom was once again underscored by Kruggel et al. [46] who examined the influence of
scanner hardware and imaging protocol on the variability of morphometric measures
longitudinally and also across scanners in the absence of a phantom in a large dataset from
the ADNI cohort. Using different acquisition conditions on the same subject, the variance in
volumetric measures was up to 10 times higher than under the sample acquisition
conditions, which were found to be sufficient to track changes. Their results suggested that
the use of a phantom could reduce between scanner imaging artifacts in longitudinal studies.
Kruggel et al. [46] also investigated the effect of scanner strength and the type of coil used
on image quality and found that a 3.0T array coil system was optimal in terms of image
quality and contrast between white matter (WM) and grey matter (GM). Ho et al. [47]
similarly tested the ability of 3.0 T and 1.5 T scanners to track longitudinal atrophy in AD
and MCI patients using tensor-based morphometry (TBM). They saw no significant
difference on the ability of either scanner type to detect neurodegenerative changes over a
year, and found that TBM used at both field strengths gave excellent power to detect
temporal lobe atrophy longitudinally.

While the scanning of a geometric phantom helps eliminate artifacts introduced by the
machine, Mortamet et al. [48] described an automated method for accounting for patient
artifacts that can affect image quality such as edge, flow and aliasing artifacts. They
developed two quality indices and tested their ability to differentiate between high and low
quality scans as assigned by an expert reader at the ADNI MRI center. Both indices
accurately predicted the “gold standard” quality ratings (sensitivity and specificity >85%)
and the authors proposed that this method could be integrated into a real-time or online MRI
scanning protocol to eliminate the need to rescan at a later date due to a poor quality scan, in
keeping with the goal of placing as little burden on the patient as possible. Clarkson et al.
[49] examined within scanner geometric scaling drift over serial MRI scans as assessed by
geometric phantoms and developed a nine degrees of freedom registration algorithm to
correct these scaling errors in longitudinal brain scans of patients. They found that the nine
degrees of freedom registration was comparable to geometric phantom correction, allowing
atrophy to be measured accurately, and the authors suggest that this registration-based
scaling correction was the preferred method to correct for linear changes in gradient scaling
over time on a given scanner. This in turn could obviate the need for scanning a phantom
with every patient. Bauer et al. [50] assessed the utility of collecting whole brain
quantitative T2 MRI from multiple scanners using fast spin echo (FSE) dual spin echo
sequences which have been shown to be useful in the early detection of AD pathology in
MCI patients. Although FSE-T2 relaxation properties were related to the global dementia
status, the authors concluded that the utility of the method was affected by the variability
between scanners. Several papers were aimed at reducing between scanner effects including
those of Gunter et al. [45] and Clarkson et al. [49]. Leung et al. [51] presented a method
aimed at overcoming variability in serial MRI scans for the detection of longitudinal atrophy
by modifying the boundary shift integral (BSI) method of image analysis. Two
improvements to the BSI method were made: 1) tissue-specific normalization was
introduced to improve consistency over time; and 2) automated selection of BSI parameters
was based on image specific brain boundary contrast. The modified method, termed KN-
BSI, had enhanced robustness and reproducibility and resulted in a reduction in the
estimated sample sizes required to see a 25% reduction in atrophy in clinical trials of AD
modifying drugs from 120 to 81 AD patients (80% power, 5% significance).

3.1.1.2 Development of protocols: Jack et al. [52] described the development of

standardized MRI procedures for use in the multiple ADNI centers, a process guided by the
principle of maximizing the scientific benefit of a scan while minimizing the burden on the
patient. Using technology widely available in 2004-2005, and limiting scanner platforms to
three vendors, they succeeded in developing a protocol that could be run in less than 30 min
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and that included the use of a phantom scan to monitor scanner performance over time and
different centers, back to back T1-weighted MP-RAGE (magnetization prepared rapid
gradient echo) scans to capture structural information while minimizing the need to rescan
patients due to technical difficulties, and T2-weighted dual contrast FSE sequences for the
detection of pathologies. Post-acquisition corrections were instituted to remove certain
image artifacts. Serial MRI scans such as those used in ADNI often suffer from problems
associated with the uniformity of signal intensity that introduce artifacts into the results.
Boyes et al. [53] tested the ability of non-parametric non-uniform intensity normalization
(N3) to eliminate these artifacts on higher field 3T scanners that had a newer generation of
receiver coils in serial two week scans of healthy elderly controls. They found that the
robustness and reliability of the N3 correction was highly dependent on the selection of the
correct mask to identify the region of the scan over which the N3 worked, and on the
smoothing parameter used for head scans at different pulse sequences. Leow et al. [54] also
used serial scans of healthy elderly controls two weeks apart to investigate the stability of
different pulse sequences. They used TBM to generate maps of computed changes that could
be statistically analyzed and give information on MRI reliability, reproducibility and
variability. This optimization of pulse sequences contributed to the design of the ADNI MRI
protocol and authors concluded that TBM is a useful tool for the study of longitudinal
changes in brain structure.

3.1.2 FDG and AB amyloid PET—Variability across scanners is also a major factor in
ADNI PET studies, which are spread over 50 different centers and on 15 different scanner/
software combinations. Joshi et al. [55] tackled the problem of reducing between scanner
variability in PET images that have been observed in spite of the use of standardized
protocols. Major sources of between scanner variability are high frequency differences,
mostly related to image resolution, and low frequency differences, mostly related to image
uniformity and also to corrections for scatter and attenuation. Joshi et al. [55] scanned a
Hoffmann phantom at each participating center and by comparing the scans to the Hoffman
“gold standard” digital phantom, developed corrections for both type of variability which
were tested on scans from the ADNI cohort. They found the high frequency correction by
smoothing all images to a common resolution reduced inter-scanner variability by 20-50%
but that the low-frequency correction was ineffective, perhaps due to differences in
geometry between the Hoffman phantom and the human brain. Jagust et al. [34] reported the
development of a standardized protocols for the acquisition of FDG-PET and 11C PiB PET
data that first granted approval to participating sites based on the results from a pair of
phantom scans on the 3-D Hoffman brain phantom using defined acquisition and
reconstruction parameters. These were assessed for image resolution and uniformity using
quality control process that used the digital gold standard phantom for comparison. In this
way, corrections were made for differences in PET images across sites.

3.1.3 Biomarkers—The measurement of CSF concentrations of Ap42, t-tau and p-tau are
recognized to reflect early AD pathology. Within ADNI, levels of these analytes are
measured by flow cytometry using monoclonal antibodies provided in the INNO-BIA Alz
Bio3 immunoassay kit (Innogenetics, Ghent, Belgium) with xMap Luminex technology [56,
57]. The Biomarker Core of ADNI has worked to make this a standardized procedure across
multiple ADNI sites and Shaw et al. [56] presented an analysis of within site and inter site
assay reliability across seven centers using aliquots of CSF from three normal controls and
two AD patients. Each center ran three assays of each CSF sample and data were analyzed
using mixed-effects modeling to determine assay precision. The coefficient of variation
(CV) was 5.3% for Ap42, 6.7% for t-tau and 10.8% for p-tau within center, and 17.9% for
AP42, 13.1% for t-tau and 14.6% for p-tau between centers. The authors conclude that while
they found good within laboratory assay precision, the reason for the reduced inter-
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laboratory precision is not fully understood and may be caused by many sources of
variability.

3.2 Methods for MRI image preparation and processing

A large portion of ADNI research relies on the extraction of information from MRI images
and the development of automated methods to reliably and robustly process thousands of
scans from multiple centers is vital to the project. Processing steps include whole brain
extraction, image registration, intensity normalization, tissue classification (segmentation),
cortical thickness estimation and brain atrophy estimation [58].

3.2.1 Whole brain extraction—The separation of brain from non-brain voxels in
neuroimage data, known as whole brain extraction or “skull-stripping”, is an important
initial step in image analysis. Inaccuracies at this step can lead to the introduction of artifacts
adversely affecting further analysis and so a robust and accurate automated method for this
step is highly desirable. To this end, Leung et al. [58] compared the accuracy of a technique,
Multi-atlas Propagation and Segmentation (MAPS) that was previously developed for
hippocampal segmentation ([59]; see later section) with three other widely used automated
brain extraction methods: Brain Extraction Tool, Hybrid Watershed Algorithm and Brain
Surface Extractor. They found that compared to the semi-automated ‘gold standard’
segmentation, MAPS was more accurate and reliable than the other methods and that its
accuracy approached that of the gold standard with a mean Jaccard index of 0.981 using 1.5
T scans and 0.980 using 3 T scans of control, MCI and AD patients.

3.2.2 Automated registration and segmentation—As manual registration and
segmentation of images into WM, GM and CSF is time consuming, rater-dependent and
infeasible for a large study due to its often prohibitive cost, a number of studies have
focused on developing automated registration and segmentation methods.

3.2.2.1 Atlas-based registration: Wolz et al. [60] offered a solution in which atlases are
automatically propagated to a large population of subjects using a manifold learned from a
coordinate system embedding that selects similar images and reduces the potentially large
deformation between dissimilar images, thereby reducing registration errors. This Learning
Embeddings for Atlas Propagation (LEAP) method resulted in a more accurate segmentation
of the hippocampus compared to other multi-atlas methods [60].

The use of more than one atlas on which to register brain images has been recognized as a
powerful way to increase accuracy of the automatic segmentation of T1 weighted MRI
images as it addresses the problem of brain variability. The steps of the process are
described in Lotjonen et al. [61] and shown in Figure 6. Initially, multiple atlases are non-
rigidly registered to the patient image after which majority voting is applied to produce class
labels for all voxels. Then post-processing by a variety algorithms take into account
intensity distributions of different structures.

The addition of atlases has been found to increase segmentation accuracy in a logarithmic
manner, that is, very rapidly at first, but eventually slowing towards a maximum. This
increased accuracy must be balanced by the increased computation time required for each
additional atlas [61]. Lotjonen et al. [61] obtained the best segmentation accuracy with
relatively few (8-15) atlases, and additionally found that post-processing using either the
graph cuts or expectation maximization algorithms contributed to an optimized multi-atlas
segmentation method that balanced accuracy and computation times. They also found that
the use of normalized intensity differences in the non-rigid registration step produced a
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similar segmentation accuracy to that found using the more computationally intensive
normalized mutual information method.

The selection of the atlases is a critical step. Heckeman et al. [62] described the case in
which the use of atlases based on the brain of young people resulted in occasional gross
segmentation failures due to ventricular expansion in the older AD subjects. To overcome
this problem, they modified a hierarchical registration approach by changing the first three
levels to a tissue classification algorithm instead of using native magnetic resonance
intensity data. This multi-atlas propagation with enhanced registration (MAPER) approach
was found to create accurate atlas-based segmentations and was more robust in the presence
of pathology than previous approaches.

Leung et al. [58] generated multiple segmentations using non-linear registration to best-
matched manually segmented library templates and combined them using a simultaneous
truth and performance level estimation (STAPLE) algorithm. This method, MAPS, was then
used to measure volume change over 12 months by applying the boundary shift interval. The
accuracy of MAPS was found to be compare favorably to manual segmentation, with a mean
difference between automated and manual volumes of around 1% and a Dice score of 0.89
compared to other methods developed by ADNI (0.86: Morra et al., [63], 0.85: Wolz et al.,
[64] and 0.89: Lotjonen et al., [61].

3.2.2.2 Other registration methods: In addition to registration of images to one or more
atlases, segmentation of images may use image statistics to assign labels for each tissue or
use geometric information such as deformable models or active contours [65]. A method
that combines elements of these two approaches was described by Huang et al. [65] who
employed an edge-based geodesic active contour. They found that this method segmented a
range of images more accurately and robustly than those using individual statistical or
geometric features only.

Calvini et al. [66] developed software for the automatic analysis of the hippocampus and
surrounding medial temporal lobe and the calculation of a novel statistical indicator, the A-
box, computed on intensities of the automatically extracted regions Their method did not
directly segment the hippocampus, relying instead on the use of the A-box to assess
intensities after a manual extraction step.

A computational processing application to measure subtle longitudinal changes using
nonlinear registration to the baseline image was described by Holland et al. [67]. This
method, called QUARC (quantitative anatomical regional change), used non-rigid 12
parameter affine registration, image smoothing minimization, normalization of local
intensity non-uniformity, the direct calculation of the displacement field of the region of
interest (ROI) rather than the Jacobian field, and bias correction. When QUARC was
compared to four other common registration methods used on ADNI data, it produced
significantly larger Cohen’s deffect sizes in several ROIs than Freesurfer v4.3, voxel-based
morphometry and tensor-based morphometry and a similar whole brain effect size to the
standard KN-BSI method. While, unlike the other methods, the signal to noise ratio of the
raw images obtained using QUARC was enhanced by back to back repeat scans, the authors
concluded that QUARC is a powerful method for detecting longitudinal brain morphometric
changes in levels varying from the whole brain to cortical areas to sub-cortical regions of
interest.

3.2.3 Automated temporal lobe and hippocampal segmentation—In AD, atrophy

in medial temporal lobe and in particular the hippocampus is associated with declining
cognitive function. It is not surprising, then, that a substantial body of work has been
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published on the subject of analyzing structural MRI T1-weighted measurements of this
region. Chupin et al. [68] developed a fully automated method for hippocampal
segmentation based on probabilistic information derived from an atlas built from the
manually segmented hippocampi of 16 young subjects and anatomical information derived
from stable anatomical patterns. Wolz et al. [64] used a fully automated 4D graph-cut
approach to hippocampal segmentation that segmented serial scans of the same patient.
Power analysis of the method revealed that a clinical trial for an AD-modifying drug would
require 67 AD or 206 MCI patients to detect a 25% change in volume loss (80% power and
5% significance). Morra et al. [69] developed the Auto Context Model (ACM), a fully
automated method to segment the hippocampus, based on the machine learning approach,
AdaBoost. After training the classifier on a training set, ACM was able to discriminate
between AD, MCI and control groups, suggesting that the automatic segmentation is
sufficiently sensitive to detect changes in hippocampal volume over the course of disease
progression. This method was compared to manual and other automated methods for
hippocampal segmentation, and also to TBM which assessed whole brain atrophy in an
earlier paper by the same group [63]. They found that ACM compared well to hand-labeled
segmentation and that the volume atrophy over clinical groups and correlation with clinical
measures with ACM were comparable to that found with other automated methods and
better than TBM, suggesting that the latter method may not be optimal for assessing
hippocampal atrophy.

Automatic image segmentation is prone to systematic errors introduced when these mostly
knowledge based protocols mistranslate manual segmentation protocols into the automatic
format. Wang et al. [70] presented a wrapper algorithm that can be used in conjunction with
automatic segmentation methods to correct such consistent bias. The algorithm uses
machine learning methods to first learn the pattern of consistent segmentation errors and
then applies a bias correction to the mislabeled voxels detected in the initial step. When the
algorithm was applied to four different segmentation methods, it decreased the number of
mislabeled voxels by 14% (multi-atlas hippocampal segmentation) to 72% (FreeSurfer
hippocampal segmentation) and resulted in a higher Dice overlap than other hippocampal
segmentation methods, including some those of Morra et al. (2009), Chupin et al. (2009) and
Leung et al. (2010b) described in this review [59, 68, 69].

Beyond volumetric analysis of regions of interest, recent research has focused on extracting
more meaningful information from the shape of brain structures, but most studies have not
considered the pose, or location and orientation of the structure. Bossa et al. [71] presented a
method for the statistical analysis of the relative pose of sub-cortical nuclei. The framework
of the analysis was a variety of approaches based on similarity transformations with
Reimannian metrics. Significant group differences were found between control, MCI
patients who did or did not subsequently convert to AD (MCI-nc and MCI-c, respectively),
and AD patients and the authors suggested that the method may particularly useful as an AD
biomarker in conjunction with shape analysis as both approaches leverage complementary
information.

3.2.4 Tensor based morphometry and deformation based morphometry—Bossa
et al. [72] used the method of TBM, which examines the deformation fields generated when
an image is registered to a template. Previous work used large deformation algorithms for
the non-rigid registration step as they have the flexibility to characterize anatomical
variability in cross-sectional studies. These algorithms are, however, computationally
intensive and the authors proposed a simplified version of the large deformation algorithms,
stationary velocity field diffeomorphic registration. When the method was evaluated using
ADNI subjects, it provided brain atrophy maps at high spatial resolution with lower
computational requirements. Hua et al. [73] examined two methods of image registration in
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TBM and found that the method in which each image is aligned to a single template was a
more effective measure of brain deterioration. They also found TBM to be better suited to
analyzing morphometric changes over larger areas, such as the entire temporal lobe, rather
than specific ROIs such as the hippocampus and that atrophic changes detected by their
method correlated well with clinical measures of brain deterioration (Mini-mental state
examination (MMSE) and clinical dementia rating (CDR) scores).

Yuskevich et al. [74] examined the use of deformation-based morphometry (DBM), a
technique closely related to TBM in estimating longitudinal hippocampal atrophy in the
ADNI cohort. They found that without a correction for asymmetry that arises during
longitudinal image registration, substantial bias can result in the overestimation of the rate of
change of hippocampal atrophy. Park et al. [75] tackled the problem of accurate registration
algorithms required in DBM to compute the displacement field. They proposed a method
that uses multi-dimensional scaling to improve the robustness of the registration step and
found that this method improves the ability of DBM to detect shape differences between
patients.

3.2.5 Quantification of brain morphometric changes—Several papers have focused
on the development of methods for quantifying structural changes across the whole brain
from structural MRI scans. Chen et al. [76] developed a semi-quantitative brain and lesion
index (BALI) based on T1- and T2- weighted imaging. They found that both the T1- based
and T2-based scores correlated with age and cognitive performance and differentiated
between control, MCI and AD patients. Acosta et al. [77] presented a new accurate and
computationally efficient voxel-based method for three-dimensional cortical measurement.
The method, which uses an initial Lagrangian step to initialize boundaries using partial
volume information and a subsequent Eulerian step to compute the final cortical thickness,
offered higher statistical power to detect differences between clinical groups with a slight
increase in computational time compared to methods using only the Eulerian step. The
authors proposed that the increased accuracy and precision is attributable to the Lagrangian
step, which effectively achieves sub-voxel accuracy.

3.2.6 Fractal analysis—A different approach for detecting atrophy in disease progression
based on fractal analysis is described by King et al. [78]. Recognizing that the cerebral
cortex has fractal properties such as being statistically self-similar, this group investigated
the effect of AD on gyrification using fractal analysis. They found that fractal analysis of
cortical ribbons was able to discriminate between AD and control patients in all of the seven
regions tested apart from the hippocampus and suggested that this method may play a
complementary role to ROI approaches, especially at earlier stages of disease progression.

In a subsequent work, King et al. [79] presented a new method for fractal dimension analysis
of the cortical ribbon that also measured cortical thickness. When this method was compared
to gray/white and pial surface cortical models, they found that it was the only measurement
to have a significant correlation with cortical thickness and ADAS-cog scores, and that it
best discriminated between control and AD patients. The authors concluded that the fractal
dimension of the cortical ribbon has strong potential as a quantitative marker of cerebral
cortex atrophy in AD. Li et al. [80] presented a method to reliably measure cortical thickness
for longitudinal studies by incorporating 4D information from successive scans directly into
processing steps. In the absence of a gold standard against which to test their method, they
used power analysis of the correlation between cortical thickness and the MMSE to show
that this method improved longitudinal stability compared to 3D methods that do not take
the temporal factor into account.

3.2.7 Other MRI methods—Risser et al. [81] presented a new method to compare imaged
shapes, either longitudinally or against an atlas, on several different scales simultaneously
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and to quantify the deformations on a single scale using large scale deformation
diffeomorphic mapping. When the method was applied to examine hippocampal atrophy in
ADNI patients using baseline and 24 month scans, it was found to be able to extract
information at the desired scale among all the scales.

A modification of the voxel-based analysis and statistical parametric mapping method for
the detailed spatial analysis of image data without a priori defined region of interest (ROISs)
was proposed by Zhang et al. [82]. Their method, optimally-discriminative voxel-based
analysis (OBVA), uses nonnegative discriminative projection applied to the spatial
neighborhood around each voxel to find the optimally discriminative direction between two
groups, determines a statistic for each group and obtains a statistical parametric map of
group differences. OBV A was found to perform well compared to traditional Statistical
Parametric Mapping using an ADNI dataset.

3.3 Methods for AD classification from imaging data

The development of automatic methods for the accurate classification of patients into
clinical groups from imaging data has been the aim of multiple ADNI studies. Many of these
classification methods are based on support vector machines (SVMs), a set of algorithms
that uses supervised learning of pattern recognition in a training set to build a classifier to
predict the category to which a new example belongs. Some methods condense imaging data
into one score that is reflective of brain abnormalities associated with AD to allow the direct
comparison of patients thus facilitating their classification into patient group [83-85] while
others examine which combination of imaging, CSF biomarkers, genetics and other factors
result in the most accurate classifiers [86, 87] or formulate novel approaches for identifying
AD-like patterns [87-90]. Other methods leverage the changes in spatial connectivity
between different areas of the brain that most likely occur as functional connectivity
becomes affected during disease progression [65, 83]. Finally, some methods [91, 92]
employ an alternative approach to machine learning, a relevance vector machine (RVM),
which, unlike the binary SVM, is a probabilistic machine learning algorithm. A brief
description of these methods is given below, and their results are presented and compared
with existing methods of classification in the Section 5.4.1.

3.3.1 MRI—Fan et al. [83] used a SVM to construct a classifier based on patterns of spatial
distribution of brain tissue from T1-weighted MRI scans of control and AD patients and
applied this classifier to scans of MCI patients. The classifier, which acts as an indicator of
how the structural profile of an individual fits that of AD or control subjects, also produced a
structural phenotypic score (SPS) that allowed direct comparison of patients. This approach
differs from ROI or voxel-based analyses as it examines spatial patterns of atrophy rather
than individual brain regions, and is also able to examine functional connectivity. Shen et al.
[89] also developed a method which integrated feature selection into the learning process,
but used sparse Bayesian learning methods instead a SVM. They reported that their
automatic relevance determination (ARD) and predictive ARD (PARD) in general
outperformed the SVM used for comparison and classified patients more accurately than the
method of Hinrichs et al. [88]. Stonnington et al. [91] used regression analysis based on a
RVM to analyze T1-weighted MRI data and predict clinical scores while Franke et al. [92]
used a RVM combined with an automatic pre-processing step and dimension reduction
using principal component analysis to estimate the age of healthy subjects from T1-weighted
MRI data and found that the method to be reliable, efficient and scanner independent. In
contrast to the supervised SVMs used in the above studies, Filipovych et al. [93] used a
semi-supervised SVM to classify MCI converters and non-converters. In the supervised
approach, there is an assumption that patterns in a heterogeneous construct like MCI are
known, but in a semi-supervised approach, only some of the data, in this instance, baseline
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MRIs from AD and control patients are labeled, while scans of MCI patients are left
unlabeled. Using a leave one out approach, scans were then classified as having a degree of
AD-like or normal-like anatomic features as defined by Fan et al. [83]. A more data-driven
approach for patient classification that circumvents the need for a priori defined ROIs by
using an initial independent component analysis (ICA) step was proposed by Yang et al.
[94]. Their preliminary study combined the ICA step to extract defining neuroimaging
features with a subsequent SVM for classification of scans into AD, MCI and control
patients and the resulting method was tested on two cohorts including ADNI. Pelaez-Coca et
al. [95] compared ability of anatomical versus statistically defined regions of interest to
discriminate between control and AD patients. Using a variety of classifiers, they sought to
restrict the number of features using principal component analysis and found that a higher
number of features did not necessarily correspond with higher classification accuracy. When
generalizability of the algorithm was tested by analyzing classification performance of 20
different experiments in which different subsets of the cohort were used as training and
testing sets, they found that the resulting variability was larger than within the different
classifiers used. Finally, they found that statistically defined ROIs representing voxels with
the largest significance difference in a group comparison with an unbiased atlas (belonging
to voxels in the hippocampi and amygdalae) resulted in better classification accuracy than
anatomically predefined ROIs in the hippocampi, lateral ventricles and amygdalae.

3.3.2 FDG-PET—Haense et al. [84] also used a discrimination procedure, developed by the
European Network for Standardization of Dementia Diagnosis (NEST-DD), which generates
a measure reflective of scan abnormality from FDG-PET data. This measure, AD t-sum, is
calculated from the sum of abnormal t-values in voxels known to be affected by AD, and
was used for discrimination of clinical groups. A similar approach was used by Chen et al.
[85] who developed an automatically generated hypometabolic convergence index reflective
of the degree to which the patient’s pattern and magnitude of cerebral hypometabolism
corresponded to that of probable AD patients. Huang et al. [65] identified changes in spatial
connectivity patterns based on sparse inverse covariance estimation using FDG-PET data.
Salas-Gonsalez et al. [90] developed an automated procedure to classify AD patients from
FDG-PET data using a t-test to select voxels of interest and factor analysis to reduce feature
dimension. The resulting factor loadings were tested on three different classifiers, two
Gaussian mixture models with either linear or quadratic discriminant functions, and a SVM.
Lemoine et al. [87] used a combination of feature selection and data fusion to construct
SVMs from both FDG-PET and clinical data. To extract the most meaningful features from
FDG-PET scans, they used an evolutionary algorithm in which each feature corresponded to
one gene, the number of features was arbitrarily selected to be 30 and which was complete
when an AUC of 0.98 was achieved on the training data set. SVMs were also constructed for
a range of clinical features and the results of these and the FDG-PET classifiers were
weighted and data finally fused to create a final classifier.

3.3.3 Cognitive methods—Llano et al. [96] developed a cognitive test based on ADAS-
cog as an alternative to imaging or CSF biomarkers for use as an outcome measure or for
subject enrichment in clinical trials. The ADAS.Tree composite was derived by weighting
test components of ADAS-cog based on their ability to discriminate between control, MCI
and AD patients of the ADNI cohort using a Random Forests tree-based algorithm. ADAS-
tree discriminated between patient groups as well or better than the best imaging or CSF
biomarkers, or cognitive tests. Optimal sets of markers for the prediction of 12 month
decline were then determined using machine learning algorithms performance of the derived
cognitive marker was found to be comparable or better than other individual or composite
baseline CSF or neuroimaging biomarkers. The authors suggest that the ADAS.Tree might
prove more widely applicable than expensive and /or invasive imaging or CSF biomarkers.
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3.3.4 Combined modalities—The new machine learning algorithm of Hinrichs et al.
[88], which uses data from both MR and FDG-PET images, integrates a spatial
discrimination step to identify AD-related patterns in different brain regions, rather than
assessing these relationships at the pre-or post-processing steps.

3.4 Other imaging methods

Rousseau et al. [97] presented a method for generating a high resolution image from a low
resolution input, using jointly one low resolution image and intermodality priors from
another high resolution image to create a super resolution framework, for instance a high
resolution T1-weighted image and a low resolution T2-weighted image from the same
patient. The method, when tested on clinical images from ADNI data, automatically
generated high resolution images from low resolution input and the authors suggest that this
method may permit the investigation of multi-modal imaging at high resolution.

The problem of representing a high dimensionality of brain images amassed in common
neuroimaging applications was tackled by Gerber et al. [98] who proposed that these images
can be approximated by a low dimensional, nonlinear manifold representative of variability
in brain anatomy. They constructed a generative manifold model via kernel regression and
tested this using ADNI data, finding that important clinical trends were captured by this
manifold when learned manifold coordinates and clinical parameters were subjected to
analysis by linear regression.

3.5 Statistical methods

Interpretation of imaging data is a key facet in the process of extracting meaningful
information from these scans. As the volume of neuroimaging data generated by ADNI
studies burgeons, there is an obvious need for more sophisticated analysis techniques.
Habeck et al. [99] reviewed advances in multivariate analysis techniques that are being
developed to supersede the more commonly used univariate, voxel-by-voxel analysis of
imaging data. By evaluating the correlation or covariance of activation across brain regions,
these multivariate techniques produce results that can be interpreted as neural networks, thus
addressing brain functional connectivity. Habeck et al. [99] directed this review specifically
at neuroscientists to explain the “bewildering variety of (multivariate) approaches ...
presented...typically by people with mathematics backgrounds”. In an effort to further
spread the word to neuroscientist about this technique, a video article is also available [100].

Wu et al. [101] present a method to assess the reliability of hypometabolic voxels during the
statistical inference stage of analysis. The aim of this method was to incorporate the
differential involvement of each voxel into the multiple comparison correction, as opposed
to current methods in which each location is treated equally. They used statistical parametric
mapping and bootstrap resampling to create a bootstrap-based reliability index and
compared this approach to the commonly used type 1 error approach, finding a strong but
non-linear association between the two methods. The authors suggest that this approach
could have utility in both cross-sectional and longitudinal studies, in the early detection of
AD and in tracking disease progression in clinical trials.

Singh et al.[102] presented a new method to relate complex anatomical changes observed in
AD patients with changes in cognition based on a statistical analysis of large deformation
diffeometric mapping. In this method, the diffeomorphic transformations were analyzed
using a multivariate and partial least squares approach without segmentation or the use of a
priori defined ROIs. They found that this approach associated ventricular expansion, cortical
thinning and hippocampal atrophy with worsening scores on neuropsychological variables
such as ADAS-cog, Rey Auditory Verbal Learning test (AVLT) and CDR-SB, confirming

Alzheimers Dement. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 21

that this data-driven approach was able to reach similar conclusions as other studies based
on predefined ROIs.

3.6 Genetics methods

Genetic contributions to AD are being revealed by genome-wide association studies that
search for associations between quantitative traits in the form of imaging or biomarker data
and genetic loci. The standard approach (MULM: mass univariate linear modeling), which
compares each phenotype-genetic loci pair individually and then ranks the association in
terms of significance, is extremely computing intensive and can miss information from areas
surrounding a particular association. VVounou et al.[103] proposed a new method, sparse
reduced rank regression (SRRR), which overcomes these problems by enforcing sparsity of
regression. They found SRRR to be less computing intensive and to have better power to
detect deleterious genetic variants than MULM. An alternative approach to reducing
computational requirements while retaining a high degree of significance to AD is presented
by Chen et al. [104] who used each of 142 pre-selected imaging regions of interest as
quantitative traits in a genome wide association study. Heat maps and hierarchical mapping
were then used to organize and visualize results and to select target single nucleotide
polymorphisms (SNPs), quantitative traits or associations for further analysis.

In addition to computational challenges, imaging genetics studies with multiple testing are
also prone to false positives and both family-wise error and false discovery rate corrections
are employed to adjust significance thresholds across multiple voxels. Silver et al. [105]
measured false positive rates using VBM to investigate the effect of 700 null SNPs on grey
matter volume in the ADNI cohort. They found that, while false positive rates were
generally found to be well-controlled, under certain conditions, such under low cluster
forming thresholds, the false positive rates were substantially elevated. Consequently, they
proposed the use of parametric random field theory cluster size inference and alternative
non-parametric methods under different circumstances.

3.7 Methods papers: Summary and conclusions

Papers focused on method development have been instrumental in facilitating ADNI
research thus far and promise to deliver improvements in reliability, efficiency and
effectiveness in ADNI-GO and ADNI-2. The establishment of standardized protocols that
account for problems of variability both across the multi-center setting of ADNI and
longitudinally has been a primary accomplishment. Likewise, the development of methods
for automatic tissue registration and segmentation that avoid the necessity of time-
consuming and costly manual segmentation are critical for the analysis of ADNI data. The
majority of these approaches are atlas-based, although statistically based registration has
also been proposed. Automatic segmentation of the hippocampus, a prominent AD
biomarker, poses particular challenges due to its size and location and several studies made
contributions to the analysis of both its volume, shape and pose. TBM and DBM methods
and fractal approaches offer an alternative to volumetric ROI analysis. Methods to allow the
classification of patients according to disease status have primarily been based on SVMs and
the related RVMs which are used to build classifiers that can include MRI, FDG-PET,
biomarker, APOE 4 and cognitive data. Finally, statistical methods have been developed to
deal with the complexities of the volume and diverse types of data generated by ADNI
studies.
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4 Studies of the ADNI cohort

4.1 Clinical characterization

Central to achieving the goals of ADNI was the recruitment of a study population that
mirrors cohorts used in MCI and mild AD trials. Petersen et al. [106] presented a baseline
and 12 month longitudinal clinical characterization of the ADNI cohort, comprising 229
normal control subjects, 398 subjects with MCI and 192 subjects with mild AD, and
provided clear support for the success of ADNI in this regard. The demographic
characteristics of the participant groups, given in Table 3, indicate that the cohort was
mostly white and well-educated, and that there were a high proportion of APOE 4 carriers,
consistent with populations recruited for clinical trials. At baseline, each study group
differed significantly in a range of cognitive measures, with the MCI group intermediate
between the control and AD groups in measures of memory impairment and in levels of CSF
biomarkers (Table 4). In contrast to AD subjects who were impaired in virtually all
cognitive measures, MCI subjects were only mildly impaired in non-memory cognitive
measures. After 12 months, 16.5% of MCI subjects had converted to AD, and a greater
increase in the ADAS-cog was seen in the AD group compared to the MCI group. Little
change was observed in control subjects. The study also found that baseline Ap42 levels
were predictive of the progression of clinical measures over 12 months.

4.2 Medication use

Medication use among the ADNI cohort was investigated by Epstein et al. [107]. They
found a high rate of polypharmacy with 85% of participants taking more than four
medications, the average being eight (SD = 4). Moreover, 22% of participants reported
taking one or more Beers list medications deemed to be potentially dangerous in the elderly.
The most common medications for symptomatic treatment of AD or MCI were the
cholinesterase inhibitor, donepezil and the NMDA-partial receptor agonist, memantine,
which were frequently taken as a combination therapy. Despite the lack of FDA approval for
use of these drugs to treat MCI, donepezil, memantine and other cholinesterases were
common used by MCI patients. Women, less educated and more elderly participants were
less likely to receive treatment. Schneider et al. [108] focused on the use of cholinesterase
inhibitors and memantine in the ADNI cohort. They found that 44% of MCI patients and
85% of mild-AD patients were treated with cholinesterase inhibitors and that 11% of MCI
patients and 46% of mild AD patients were treated with memantine. In both patient groups,
use of these medications was associated with increased cognitive impairment at baseline, a
higher rate of clinical decline over two years and a more rapid progression to dementia in
MCI patients. Cholinesterase inhibitors and memantine appeared to be more frequently
prescribed to patients diagnosed as having MCI due to AD despite a lack of evidence from
clinical trials and lack of FDA approval for this treatment. The authors suggest that use of
these medications may affect the interpretation of clinical trial outcomes.

4.3 Baseline and longitudinal studies of brain morphometric changes during disease
progression

ADNI has afforded a unique opportunity to examine brain morphometric changes that occur
during disease progression in a large, well-defined cohort. Using MRI data, cross sectional
and longitudinal studies focused either on evaluating spatial pattern and regional rates of
atrophy, or on characterizing biomarkers for varying disease stages have together resulted in
a more detailed and coherent picture of this complex process.

A cross-sectional study by Fennema-Notestine et al. [109] examined the feasibility of high
throughput image analysis to detect subtle brain structural changes in the early stages of AD.
They further divided the MCI group based on neuropsychological performance into single-
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domain and multi-domain groups which they proposed to represent earlier and later stages in
disease progression, respectively. Using comparisons of cortical thickness, they found a
pattern of progressive atrophy from normal controls to single domain MCI subjects, to
multiple domain MCI subjects and finally to subjects with AD (Figure 7). When ROIs were
examined, they found that the regions that differed between the control group and the single
domain MCI included not only the hippocampus and entorhinal cortex, which had the
largest effect sizes, but also other temporal regions, the temporal horn of the lateral
ventricle, rostral posterior cingulate and several parietal and frontal regions. Relative to
controls, multiple domain MCI patients had greater differences in the same regions as well
as lateral inferior, middle, and superior temporal gyri and fusiform cortices. Additional
atrophy was seen in AD patients relative to controls in the inferior parietal, banks of the
superior temporal sulcus, retrosplenial and some frontal regions. Similar results were
reported in a cross-sectional study by Karow et al. [110] who found a pattern of atrophy
spreading from the mesial temporal lobe in MCI patients to widespread areas in AD patients.
Fennema-Notestine et al. [109] also explored the trajectories of change of ROIs over the
course of the disease and found that while some regions, such as mesial temporal regions,
exhibited a linear rate of atrophy through both MCI stages to AD, other regions, such as the
lateral temporal middle gyrus, retrosplenial, inferior parietal and rostral mid-frontal cortices,
exhibited accelerated atrophy later in the disease.

The idea that rates of change of atrophy are not uniform but vary by disease stage is
supported by several studies. When MCI groups were classified according to subsequent
clinical outcome, Leung et al. [59] found higher rates of hippocampal atrophy in MCI
converters than non-converters. McDonald et al. [111] examined regional rates of
neocortical atrophy in the ADNI cohort, dividing MCI subjects into two groups by their
CDR-SB scores. The less impaired MCI group had CDR-SB scores of between 0.5 and 1.0,
whereas the more impaired group had CDR-SB scores of 1.5-2.5 (AD subjects had CDR-SB
scores of >2.5). They found that over the course of disease progression, atrophy changed
from the medial and inferior lateral temporal, inferior parietal and posterior cingulate
initially, to the superior parietal, prefrontal and lateral occipital cortex and finally to the
anterior cingulate cortex (Figure 8). Moreover, the rates of change differed among the three
groups. The least impaired MCI patients showed the greatest rates of atrophy in the medial
temporal cortex, while later in disease progression, rates of atrophy were higher in the
prefrontal, parietal and anterior regions. Similar patterns were found by several other groups
using a range of MRI methods. Hua et al. [112] and Leow et al. [113] both used TBM to
create 3D maps of structural changes over 12 months. Risacher et al. [114, 115] examined a
variety of structural MRI markers for their sensitivity to longitudinal change and clinical
status using multiple methods including VBM and ROIs whereas Schuff et al. [116] focused
on changes in hippocampal volume and McEvoy et al. [117] calculated an atrophy score
based on regions of interest most associated with AD atrophy. Collectively, these studies
showed atrophy spreading from the medial temporal lobe to the parietal, occipital and
frontal lobes over the course of the disease, with MCI patients in general having a more
anatomically restricted AD-like pattern of change. MCI subjects who converted to AD
within the time frame of the study (MClc) had a more AD-like pattern of atrophy, and non-
converters (MCInc) had a pattern more intermediate between controls and AD subjects
(Figure 9). Several studies [114, 115, 118, 119] divided the MCI group into those patients
who converted to AD within a year and those that remained stable. Each group had distinct
profiles when assessed using a score derived from patterns of structural abnormality, the
future converters having mostly positive scores that reflected a largely AD-like pattern of
brain atrophy. Conversely, the distribution of abnormality scores in the MCInc group was
bimodal, reflecting the heterogeneity of this group that appears to contain some members
who, with abnormality scores close to those of AD patients, are likely to convert in the near
future.
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The highest rates of change occurred in AD subjects and MClc patients in measures of
hippocampal volume and entorhinal cortex thickness [115, 120]. Schuff et al. [121] found
that atrophy was detectable at six months and accelerated with time to 12 months in MCI
and AD subjects, with the highest rates of atrophy seen in AD patients (Figure 10). Hua et
al. [120] used TBM to examine the effects of age and sex on atrophic rates and found that
the atrophic rates of women were 1- 1.5% higher than for men. They also observed a 1%
increase in atrophic rate and a 2% increase in ventricular expansion for every 10 year
decrease in age, with correlations strongest in the temporal lobe.

A different data-driven approach to determining the time course of brain volume changes in
healthy elderly, MCI and AD patients without using a priori models was taken by Schuff et
al. [116]. Using generalized additive models to analyze serial MRI scans over 30 months,
they found that atrophy rates varied non-linearly with age and cognitive status, most
noticeably in temporal regions and that atrophy tended to level off in control and MCI-nc
patients, but decline further in MCI-c and AD patients. The authors suggest that these
differences are a reflection of the different processes involved in healthy versus disease-
related neurodegeneration. The regions with the greatest effect sizes between young control
and AD patients were the entorhinal cortex, the hippocampus and the lateral ventricles,
suggesting that rates of change in these regions have potential as biomarkers for the early
detection of AD.

Beyond simple volumetric analysis, one approach to analyzing brain morphometric changes
in greater detail has been to assess changes in shape of regions of interest. Qiu et al. [122]
used large deformation diffeomorphic metric mapping to reveal that the anterior of the
hippocampus and the basolateral complex of the amygdala had the most surface inward
deformation in MCI and AD patients, whereas the most surface outward deformation was
found in the lateral ventricles (Figure 12). These results are in agreement with the
volumetric findings of Apostolova et al. [123] and also with many findings documenting the
enlargement of the lateral ventricles with disease progression.

4.4 Associations between characteristics of the ADNI cohort

A major area of focus in research using ADNI data has been the elucidation, both at baseline
and longitudinally, of associations between various imaging, CSF, genetic and clinical
correlates in different clinical groups in order to gain a better understanding of the interplay
of biomarkers throughout disease progression.

4.4.1 MRI

4.4.1.1 Temporal lobe: Structures within the temporal lobe have long been associated with
AD decline due to their critical role in the formation long term memory, one of the first
functions to be affected in disease progression. Leow et al. [113] found that in MCI patients,
temporal lobe atrophy as associated with increased cognitive impairment as indicated by
changes in CDR, MMSE scores and the AVLT (Figure 13). Among the structures of the
temporal lobe, hippocampal atrophy is the best studied structural biomarker as it is one of
the earliest structures to degenerate in AD. In a small initial study, Morra et al. [63] found
that bilateral hippocampal atrophy at baseline was strongly correlated with both MMSE and
CDR-SB (Table 5). A further larger study by the same group [124] examined rates of
hippocampal atrophy over 12 months and found that these correlated with both baseline
cognitive scores on MMSE and global and sum of boxes CDR and with longitudinal change
in these measures (Table 5). Wolz et al. [64] also revealed significant correlations between
rates of hippocampal atrophy and both baseline MMSE and CDR, and changes in these
measures over 12 months (Table 5). Additionally, a study by Schuff et al. [121] found that
rates of change of MMSE and ADAS-cog were associated with rates of hippocampal
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atrophy (Table 5). Using TBM, Hua et al. [73] found that baseline temporal lobe atrophy
was associated with both baseline and change in the CDR-SB in MCI and AD patients, but
with change in the MMSE only in the AD group, providing further evidence for the
acceleration of atrophic change with disease progression.

The relationships between hippocampal volume and memory retention were examined by
Apostolova et al. [123] who found that MCI patients had bilateral associations between
hippocampal volume and radial distance, and three tests of delayed recall (DR): ADAS-cog-
DR, AVLT-DR and the Wechsler Logical Memory Test I1-DR whereas associations
between these tests in AD patients were stronger in the left hippocampus both at baseline
and at the 12 month follow-up (Table 5). In addition, they found highly significant regional
associations for memory performance, especially in the CA-1 sub-region and the subiculum
on the anterior hippocampal surface. Associations between temporal lobe degeneration and
memory performance (Wechsler memory scale revised — logical memory, immediate and
delayed recall) were also found by Hua et al. [73]. Along with hippocampal atrophy,
ventricular expansion is a hallmark of brain morphometric changes that occur during
Alzheimer’s disease progression and has great potential as a structural biomarker as, due to
their high contrast under MR, the lateral ventricles are comparatively easy to measure as
well as being highly sensitive to disease progression. Evans et al. [125] found that
ventricular expansion differentiated between patient groups, was associated with ADAS-cog
scores in AD patients and that MClc patients had higher rates of ventricular expansion than
non-converters. Chou et al. [126] automatically mapped ventricular geometry and examined
correlations between surface morphology, clinical decline and CSF biomarkers. They found
that ventricular enlargement at baseline correlated with diagnostic group, depression
severity, both baseline and rates of change of cognitive function (MMSE and CDR-SB) and
with lower CSF Ap42. In a subsequent study by the same group [127] using automated
radial mapping to generate statistical maps, ventricular enlargement was found to correlate
with a large number of measures of clinical decline as well as lower levels of CSF AB42 and
the APOE e4 genotype (Figure 11). Chou et al. [126] also noted expansion of the posterior
regions of the ventricles in MCI patients and in the frontal regions of the superior horns in
AD patients compared to controls, suggesting a topographic sequence of morphometric
change throughout disease progression.

The studies of Morra et al. [124], Wolz et al. [64], Hua et al. [112] and Risacher et al. [115]
all found that carriers of the APOE ¢4 allele had higher rates of hippocampal atrophy than
non-carriers. In contrast, Schuff et al. [121] found that increased rates hippocampal atrophy
were associated with APOE genotype in AD but not MCI or control groups. Using
Structural Abnormality Index (STAND) scores to reflect the overall level of AD-like
anatomic features, Vemuri et al. [128] also found that the APOE e4 genotype contributed to
MRI atrophy. Hua et al. [112] found that the APOE ¢4 allele had a dose-dependent
detrimental risk with greater atrophy in the hippocampus and temporal lobe in homozygotes
than heterozygotes in MCI and AD groups (Figure 11). The recently identified AD risk
allele, GRINZ2b was associated with higher rates of temporal lobe atrophy in the pooled
group, but more weakly than APOE e4 [120]. Other thus far unidentified genetic risk factors
likely contribute to AD, with epidemiological studies suggesting, maternal history of the
disease increases the risk of developing AD. Andrawis et al. [129] examined the influence of
maternal history of dementia on hippocampal atrophy and found smaller baseline and 12
month follow-up hippocampal volumes in MCI patients with maternal but not paternal
history. APOE 4 positive patients also had decreased hippocampal volumes, regardless of
parental history. These results suggest the involvement of maternally inherited genetic
material, encoded on either the X chromosome or mitochondrial genome. The latter may be
more likely, given that decline in mitochondrial function has been found to lead to increased
generation of reactive oxygen species, enhanced apoptosis, cell loss and brain atrophy [130].
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4.4.1.2 Other regionsof interest: Although the caudate has not been the subject of
intensive AD research, it plays a crucial role in the formation of new associations required
for the acquisition of explicit memories. Madsen et al. [131] found that baseline caudate
atrophy was associated with a number of clinical and biochemical measures including most
strongly, body mass index (BMI) in the AD group alone and in the pooled sample, and
CDR-SB and MMSE scores at baseline (Table 5). There appeared to be preferential right
caudate atrophy in AD patients and the authors proposed that caudate atrophy might
function as a complementary biomarker to other structural measures. The IPL is involved in
sensory and motor association and possibly comprises part of the memory circuitry. Greene
et al. [132] examined the associations between sub-regions of the IPL (gyrus, banks and
fundus) and cognitive measures in control, MCI and AD patients. They found that compared
to controls, MCI patients differed only in the thickness of the banks of the left IPL, a change
that correlated with decreased scores in the AVLT-DR, whereas AD patients had significant
morphometric changes in all sub-regions of the right IPL. These results suggest a temporal
sequence of changes during disease progression, with atrophy beginning in the left IPL and
spreading to the right.

4.4.1.3 Multipleregions of interest and whole brain studies: Other MRI studies have
used approaches based on the whole brain or multiple regions of interest, rather than specific
regions of interest. Evans et al. [125] examined brain atrophy rates using the brain boundary
shift interval (BBSI) technique and found atrophy to be associated with MMSE and ADAS-
cog scores in MCI and AD patients. Within the MCI group, they found greater rates of
change, in a range similar to that observed in the AD group, in subjects who converted to
AD within the time frame of the study. Stonnington et al. [91] found that whole brain grey
matter at baseline predicted baseline scores on the ADAS-cog, MMSE and Dementia Rating
Scale, but not on the AVLT (Table 3). The latter is a more specific test of memory and the
authors suggest that whole brain methods may be preferentially more highly sensitive to
tests, unlike the AVLT, that involve diverse brain regions. Vemuri et al. [133] used STAND
scores as a measure of the degree of AD-like anatomic features to assess correlations
between brain morphometric changes and cognitive scores and found that STAND scores
were highly correlated with CDR-SB and MMSE scores in individual groups and the pooled
sample (Table 5). These studies lend support for atrophy of the whole brain or multiple
regions of interest as biomarkers based on their ability to differentiate between patient
groups and healthy controls, and to track disease progression and clinical decline.

A measure derived from a multidimensional scaling method for quantifying shape
differences using DBM [75] had a strong inverse correlation with the MMSE (r= —0.53),
although the findings were limited by small sample size. Using the related method of TBM,
Ho et al. [134] created regional maps of changes in brain tissue and used the resulting
Jacobian values to represent brain tissue excess or deficit relative to a template. They found
that lower brain volume in the frontal, parietal, occipital and temporal lobes was associated
with higher BMI in MCI and AD patients and that ventricular expansion correlated with
higher BMI in AD but not MCI patients (Figure 14). Every unit increase in BMI was
associated with a 0.5-1.5% decrease in brain volume in patients of the ADNI cohort.

4.4.2 FDG-PET—FDG-PET has been used by several groups to investigate relationships
between cerebral glucose hypometabolism and other factors including cognitive measures
and CSF biomarkers. Several papers confirmed that there is a characteristic regional pattern
of hypometabolism in MCI and AD patients. Wu et al. [101] found that hypometabolic
voxels were associated with the posterior cingulate/precuneus and parietotemporal regions.
Lower bilateral cerebral metabolic rate for glucose (CMRgl) at baseline in these regions and
in the frontal cortex was associated with higher CDR-SB and lower MMSE scores in MCI
and AD groups [135] (Table 5). Although the pattern of hypometabolism was similar in the
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two groups, the magnitude and spatial extent was greater with increasing disease severity. In
the AD group alone, however, lower MMSE correlated with lower left frontal and temporal
CMRygl, suggesting that the characteristic pattern of baseline reductions in glucose
metabolism shifts to the frontal cortex after the onset of dementia. Chen et al. [104]
investigated declines in CMRgl in statistically predefined ROIs associated with AD over 12
months in the ADNI cohort and found significant changes in MCI and AD groups compared
to controls bilaterally in the posterior cingulate, medial and lateral parietal, medial and
lateral temporal, frontal and occipital cortex. These changes correlated with CDR-SB but not
ADAS-cog scores in both groups, and with MMSE scores in the MCI group (Table 5).
Landau et al. [136] found a greater decline in CMRgl in all a priori defined ROIs in AD
patients and in a composite score of ROIs in MCI patients compared to controls.
Longitudinal glucose decline was associated with concurrent ADAS-cog scores and decline
on the Functional Activities Questionnaire (FAQ), validating the relevance of longitudinal
measures of glucose metabolism to both cognitive and functional decline. The annual
decline in the ADAS-cog and FAQ was greatest in AD patients followed by the MCI and
control groups in accordance with an acceleration of the disease process over time (Table 5).
The hypometabolism index of Chen et al. [85] correlated with cognitive measures of disease
severity, hippocampal volume and CSF biomarkers (Table 5). These papers support the use
of glucose metabolism as a sensitive measure of cognition in AD.

4.4.3 Cognitive—A number of studies have focused on the relationship between cognitive
function and imaging or CSF biomarkers. Atrophic changes in the episodic memory network
(Figure 16), which is comprised of MTL structures, medial and lateral parietal and prefrontal
cortical areas and is involved in the formation of new episodic memories, are presumed to
underlie ongoing memory loss in AD. Walhovd et al. [137] studied how baseline brain
morphometry and metabolism within the episodic memory network and APOE genotype
predicted memory as assessed by the AVLT. They found that in the total sample of the
ADNI cohort, hippocampal volume and metabolism, parahippocampal thickness and APOE
genotype predicted recognition whereas hippocampal volume and metabolism, cortical
thickness of the precuneus and inferior parietal metabolism predicted learning, suggesting
that MTL structures are related to learning, recall and recognition whereas parietal structures
are involved solely in learning (Table 5). The authors concluded that MRI and FDG-PET
imaging have differential sensitivity to memory in AD and thus provide complementary
information. Episodic memory likely involves a number of different cognitive processes,
such as initial encoding, learning on repeated exposure and delayed recall, which may be
subserved by disparate components of the episodic memory network. Wolk et al. [138]
investigated whether verbal episodic memory could be fractionated into dissociable
anatomic regions in mild AD patients, using cortical thickness of predefined *AD signature”
ROIs and hippocampal volume as structural measures and different stages of the AVLT as a
verbal memory measure. They found that initial immediate recall trials were most
significantly associated with the temporal pole region but that regions in the medial temporal
lobe became more significantly associated in later trials. In tests of delayed recall, only the
hippocampus correlated with performance whereas the perirhinal/entorhinal cortex was most
strongly associated with delayed recognition discrimination. The authors concluded that
their results lend support models hypothesizing that dissociable brain regions are involved in
differential episodic memory processes. Associations between memory learning and brain
morphometry in the medial temporal lobe were found in a study by Chang et al. [139]. MCI
patients were differentiated into learning-deficit and retention deficit sub-groups using the
AVLT. Low memory retention was associated with changes in the medial temporal regions,
particularly the hippocampus and entorhinal cortex whereas low memory learning correlated
with a more widespread pattern of morphometric changes beyond the temporal lobe
including areas of the frontal and parietal lobes (Table 5).While memory loss is a hallmark
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of AD, a subset of MCI patients is impaired primarily in their executive function. Dickerson
et al. [140] identified dysexecutive and amnestic phenotypes in patients with MCI or very
mild AD based on performance on the Trail Making test and ADAS-cog subscale: Word
recognition. They found that the memory impaired group has a more frequent occurrence of
the APOE genotype than the dysexecutive group, and that patients with low executive
function had thinner frontoparietal cortical regions and were more impaired in daily life than
the those with predominantly memory impairment. A further study by Chang et al. [141]
found that MCI patients with high executive function performed better on tests of verbal
memory than those with low executive function and that morphometric measures of the two
groups differed primarily in the dorsolateral prefrontal and posterior cingulate cortices
where more thinning was evident in low executive function patients (Table 5). Results from
both studies suggest that the dysexecutive phenotype may reflect differences in underlying
pathology in brain regions beyond the MTL.

The ideas that different brains regions subserve different cognitive functions and that MCI is
a heterogeneous construct led Wolk et al. [142] to examine the influence of APOE genotype
on memory and executive function in AD. When cortical thickness in predefined ROIs was
examined in carriers and non-carriers of the APOE ¢4 allele who had a CSF biomarker
profile consistent with AD, carriers were more impaired in measures of memory retention
and had greater atrophy in medial temporal regions whereas non-carriers were more
impaired in tests of executive function, working memory and lexical access and had greater
frontoparietal atrophy. The finding that neuroanatomic regions thought to subserve different
cognitive processes are differentially affected by APOE e4 genotype supports the hypothesis
that this allele exerts its effect on AD by influencing different large scale brain networks.

The question of whether domain-specific cognitive deficits in MCI are caused by global
atrophy or progressive atrophy within specific regions was studied by McDonald et al. [143]
who examined two year regional atrophy rates in MCI patients. Stepwise regression models
revealed that left entorhinal atrophy, left lateral lobe thinning, left temporal lobe atrophy,
left frontal lobe and the right medial temporal lobe atrophy rate, respectively, were
associated with memory decline (Logical Memory 1), naming decline (Boston Naming
Test), semantic fluency decline (Category Fluency test), executive function (Trail Making
test B) and clinical decline (CDR-SB), respectively (Table 5). This study affords a glimpse
into the specific structure-function relationships that occur early in disease progression and
enhances our understanding of the neural basis of cognitive impairments.

While studies such as those described above have focused on the relationship between brain
atrophy, APOE &4 status and cognitive decline, relatively little is known about the
biomarkers of functional decline, a hallmark of AD. Accordingly, the rate of decline in the
FAQ, a measure of the ability of patients to maintain daily function, and how it is affected
by cerebral atrophy and APOE 4 genotype was studied by Okonkwo et al. [144]. They
found that AD patients had a higher rate of functional decline than controls with the rate of
MCI patients intermediate between the two. Moreover, MCI patients who subsequently
progressed to dementia had higher rates of decline on the FAQ than stable MCI patients.
Increasing ventricle to brain volume ratio (VBR), the measure of neurodegeneration chosen
for the study, correlated with increased functional impairment in MCI patients. Those
patients who were both APOE e4 positive and had elevated VBR were the most functionally
impaired. These results parallel studies that have shown neurodegeneration and APOE 4
status to be associated with cognitive decline. In a further study by the same group,
Okonkwo et al. [145] investigated the relationships between CSF biomarkers and everyday
function, as assessed by the FAQ. They found that biomarkers were more sensitive to
functional decline in control and MCI patients than AD patients and that in the latter group,
scores on the ADAS-cog were more highly correlated with functional activity.
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Combinations of tau and AB42 abnormalities had the steepest rates of functional decline
across clinical groups. The authors suggested that the effect of CSF abnormalities on
functional decline is partially mediated by their effect on cognitive status.

In elderly populations, in addition to brain atrophy or genetic studies, BMI has been
associated with cognitive decline. Cronk et al. [146] examined the relationship between BMI
and cognition in MCI patients and found that lower BMI at baseline was associated with a
decline in the MMSE, ADAS-cog and a global composite of the ADNI neuropsychological
battery but not with CDR-SB scores or conversion to AD. The causal relationships between
BMI and cognitive decline in MCI remain to be elucidated but the authors suggest that either
low BMI is a result of factors associated with MCI or that MCI patients with low BMI are
predisposed to more rapid disease progression.

4.4.4 CSF biomarkers—The relationship between CSF biomarkers and neuronal
degeneration has been investigated by a number of groups within and outside ADNI
following the seminal publication by Shaw et al. [57] which defined cut points for CSF tau
and Ap42 based on an ADNI independent cohort of autopsy confirmed AD patients as well
as normal controls and then applied these cut points successfully to the ADNI cohort.
Follow-up studies went on to test the hypothesis that changes in levels of biomarkers occur
early in disease and thus are likely predictive of future brain atrophy, if not directly
associated with all parts of the degenerative process. For example, Tosun et al. [147]
examined how rates of regional brain trophy were related to levels of CSF biomarkers in
MCI patients and healthy elderly controls. They found that lower CSF AB42 levels and
higher tau levels were associated with increased atrophy in numerous brain regions
beginning primarily in the temporal and parietal cortices in MCI patients and extending to
regions not normally associated with amyloid pathology such as the caudate and accumbens
areas in AD patients. Schuff et al. [121] also found that increased rates of hippocampal
atrophy were associated with lower levels of Ap42 in MCI but not AD or control groups.
Leow et al. [113] used TBM to examine rates of atrophy and found that lower CSF Ap42
levels, higher tau levels and a higher p-tau/Ap42 ratio were significantly associated with
temporal lobe atrophy in the pooled group and additionally that within the AD group, levels
of CSF p-tau and the p-tau/Ap42 ratio were also significantly associated. Fjell et al. [148]
investigated whether baseline levels of CSF biomarkers were associated with baseline brain
morphometric differences between control, MCI and AD patients, as measured by cortical
thickness in a number of ROIs. They found that while CSF biomarkers levels couldn’t
account for baseline differences, they were moderately associated with longitudinal change
in multiple areas including medial temporal regions and beyond.

A second focus of research into CSF biomarkers has been how they are modulated by APOE
genotype and their association with cognitive measures. Shaw et al [57] reported that AB42
concentrations were dose dependent on the number of APOE e4 alleles, with the highest
concentrations found in homozygotes. Vemuri et al. [128] found that AB42 is more closely
associated with APOE genotype than cognitive function (MMSE, CDR-SB), but that APOE
genotype had no significant effect on levels of t-tau (Figure 15). An earlier study by the
same group [133] investigated the relationship between CSF biomarkers and cognitive
function (MMSE and CDR-SB) and found that the CSF biomarkers AB42, t-tau and p-
taul81 were only significantly correlated with cognitive function in the pooled sample
(Table 5). Ott et al. [149] studied the relationship between CSF biomarkers and ventricular
expansion with the hypothesis that ventricular dilation may reflect faulty CSF clearance
mechanisms resulting in reduced levels of AB. They found that ventricular expansion was
associated with reduced CSF A levels in normal elderly carriers of APOE e4, but that in
APOE 4 positive AD patients, ventricular expansion was associated with increased levels
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of tau and not AB. The authors suggested that the APOE 4 genotype may exert its effect via
modulation of CSF-blood-brain barrier function.

The results from these studies support a model in which changes in the levels of CSF
biomarkers are an early step in the course of the disease that reflects the degree of AD
pathology, and in which AB42 is modulated by the APOE &4 allele which functions in the
early stages of pathology by reducing the efficiency of AB42 clearance. As described in the
Genetics section 5.3, Kim et al. [150] performed a genome wide search for markers
associated with CSF analyte levels in the ADNI cohort. Overall, CSF Ap42 and tau, in
conjunction with imaging measures of atrophy, are promising biomarkers for early detection
of AD.

4.4.5 11C-PiB PET imaging—A complementary method for assessing amyloid
deposition is 11C-PiB PET imaging. Jack et al. [16] investigated the relationship between
amyloid deposition and ventricular expansion in the ADNI cohort by examining serial 11C-
PiB PET and MRI scans. They found no difference in the rate of global PiB retention
between clinical groups, and changes in global PiB retention only weakly correlated with
concurrent decline on MMSE and CDR-SB. In contrast, ventricular expansion increased
from controls to MCI to AD groups and correlated strongly with concurrent cognitive
decline (Table 5). The relationship between PET and CSF biomarkers and cognitive
measures in the ADNI cohort at baseline was investigated by Jagust et al. [151]. CSF Ap42
and 11C-PiB PET were found to be in substantial agreement as measures of amyloid
deposition and neither measure correlated with MMSE scores. In contrast, FDG-PET, as a
measure of cerebral glucose metabolism was strongly correlated with MMSE scores but
much less so with CSF biomarkers (Table 6). Apostolova et al. [152] also examined
associations between hippocampal atrophy, CSF biomarkers and average cortical, precuneal
and parietal uptake of 11C-PiB. They found that, while all CSF biomarkers were associated
with hippocampal atrophy, the strongest correlations were with p-tau;g; and the weakest
with Ap42. Precuneal 11C-PiB uptake was most strongly associated with hippocampal
atrophy. Jack et al. [153] examined the relationship between log relative hazard of
progressing from MCI to AD and both hippocampal atrophy and amyloid load, measured as
a composite of 11C-PiB PET and CSF AB42 data. They found that while the risk profile was
linear throughout the range of hippocampal atrophy, amyloid load reached a ceiling at a
certain concentration earlier in disease progression. These papers support a disease model in
which initial amyloid deposition occurs in the early stages and does not correlate with
cognitive decline, but stabilizes later in disease and in which neurodegeneration accelerates
with disease progression with concomitant cognitive decline.

4.4.6 Combined modalities—The dynamics of CSF, MRI, and FDG-PET biomarkers in
the ADNI cohort were studied by Caroli et al. [154] in an effort to understand how they
change over the course of the disease. Each biomarker differed between clinical groups after
post-hoc analysis and the authors found that these measures of disease progression fitted
better in sigmoidal rather than linear models, suggesting that individual biomarkers vary in
their rate of change during disease progression. Ap42 amyloid imaging signals increased
early in disease progression and then plateaued whereas CSF Ap42 declined early and then
plateaued and hippocampal volume followed a similar trajectory with volumes increasing
later in disease progression. In contrast, FDG-PET measures of glucose metabolism and
CSF tau began to increase early in disease progression and only stabilized at later stages of
disease, suggesting that there is an ongoing reduction in glucose metabolism and tau-
mediated neurodegeneration throughout the early stages of AD (blue line in Figure 2 and
Figure 17). Patients with APOE e4 genotype had earlier hippocampal atrophy. A similar
study by Beckett et al. [155] also found that measures associated with early disease, such as
AP42 had greater changes in MCI patients than in AD patients and that those associated

Alzheimers Dement. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Weiner et al.

Page 31

with later changes, such as those in FDG-PET ROIs, were more evident in AD patients
(Table 7). The authors hypothesized that changes in biomarkers may not be linear and that
for each biomarker, there may be steeper rates of change in some stages of disease
progression than others. In seeking an optimum combination of imaging and CSF
biomarkers to predict NC/AD classification, Walhovd et al. [156] examined the relationships
between the best predictive biomarkers and changes in cognitive scores in the MCI group.
They found that change in MMSE scores correlated with retrosplenial volume and
metabolism, and entorhinal volume, but that only hippocampal volume was associated with
the Logical Memory Il-delayed recall (LM-I1-DR) and only retrosplenial volume was
associated with changes in CDR-SB. No CSF biomarkers were significantly associated with
cognitive scores in this clinical group (Table 5). Once again, these results are consistent with
the disease progression model in that earlier changes that are reflected in CSF biomarkers do
not correlate with clinical measures, whereas changes in brain metabolism and morphometry
occur at later stages of the disease and therefore correlate better with cognitive measures.
Further support for this model comes from the study of the annual change in MRI and CSF
biomarkers and how these are influenced by APOE genotype in control, MCI and AD
patients [157]. Levels of neither Ap42 nor t-tau changed significantly over 12 months in any
clinical group but annual changes in ventricular volume increased with disease severity and
were correlated with worsening cognitive and functional indices. APOE e4 carriers had
higher rates of change in ventricular volume but not in levels of CSF biomarkers, consistent
with the model in which levels of AB and tau plateau as neurodegeneration becomes
detectable by MR measures.

The question of whether structural or metabolic measures are the most sensitive biomarkers
of changes associated with early stages of AD was investigated by Karow et al. [110].
Directly comparing the ability of MR and FDG-PET measures in pre-specified ROIs to
detect such changes by quantifying and comparing their effect sizes (Cohen’s 4, they found
that largest morphometric effect size (hippocampal volume; 1.92) was significantly greater
than the largest metabolic effect size (entorhinal metabolism; 1.43). Both measures were
significantly associated with ADAS-cog and AVLT scores in AD patients, but in MCI
patients, the relationship was only maintained with hippocampal volume (Table 5). The
authors concluded that for the detection of early AD, MRI may be preferable to FDG-PET
as it is more sensitive, more widely available, less invasive and less costly.

4.4.7 Summary and conclusions of ADNI cohort associations papers—ADNI
has succeeded in recruiting a cohort of MCI and mild AD patients that mirrors populations
used for clinical trials of AD therapies. A number of cross-sectional and longitudinal studies
have lent support to a model of disease progression in which the earliest indications of
neurodegeneration occur within the medial temporal lobe, particularly the hippocampus and
atrophy becomes more widespread in later stages, ultimately encompassing areas of the
parietal, occipital and frontal lobes. Rates of atrophy are initially fastest in the temporal lobe
but accelerate in other regions as the disease progresses. Cortical atrophy and that of specific
regions identified in the model of disease progression as well as ventricular enlargement
have been correlated with measures of clinical severity. Structure-function relationships
within the brain have begun to be elucidated with findings that atrophy in dissociable
anatomic regions, especially within the episodic memory network, is associated with
different cognitive functions. Patterns of glucose hypometabolism associated with AD have
been identified, with the precuneus and posterior cingulate typically displaying the most
reduced CMRgl and reduced metabolism in these key areas has been associated with lower
scores on cognitive tests. The differential effects of an SNP in brain-derived neurotrophic
factor suggest that genetics may modulate glucose metabolism. Levels of CSF biomarkers,
particularly Ap and tau, have been associated with earlier stages of neurodegeneration. 11C-
PiB PET AP amyloid imaging has largely confirmed that decreased levels of CSF AP and
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increasing 11C-PiB PETrepresent an early event in disease progression and neither amyloid
imaging nor studies of CSF biomarkers have found that levels of these biochemicals are
strongly associated with cognitive decline. CSF biomarkers have been found to abnormal
(i.e. decreased CSF AP and increased CSF tau) early and then plateau with little detectable
change whereas glucose metabolism remains relatively stable until the latest stages of
disease progression. Presence of the APOE e4 allele has been shown to enhance
neurodegeneration and to modulate levels of CSF biomarkers, but the exact mechanism by
which it exerts its effect remains unclear. Likewise, the role of BMI has been the subject of
contradictory reports and it is unknown whether changes in BMI influence disease
development or occur as a result of the disease.

4.5 Diagnostic classification of study participants

The ability to accurately diagnose to which clinical group a subject belongs is a crucial one
in the clinical trial design. To this end, some researchers have investigated the ability of
individual MRI, FDG-PET and CSF biomarkers to discriminate between ADNI AD
participants and ADNI controls, and between MCI participants who converted to AD and
those who did not. Others have tried to determine the optimum mix of these biomarkers for
ADNI participant classification with many studies leveraging knowledge of associations
between various structural and fluid biomarkers and the sequence of brain morphometric
change over the course of disease to guide development of marker combinations.
Discrimination between the clinically distinct ADNI participant groups offers an important
first step in identifying biomarker diagnostic tools that can be validated in representative
population-based studies before clinical use.

4.5.1 MRI

4.5.1.1 Temporal lobe structures: Atrophy of the hippocampus, the best studied structure
affected by AD, has been used in patient classification by a number of groups. Chupin et al.
[68] correctly distinguished AD patients from controls 76% of the time and MCI patients
who would convert within 18 months from controls 71% of the time (Table 8). Karow et al.
[110] found that hippocampal volume discriminated between controls and AD patients with
an area under the curve (AUC) of 0.90 and between control and MCI patients with and AUC
of 0.75 (Table 8). The discriminative ability of the rate of hippocampal atrophy was
investigated by Wolz et al. [64] who found that their method correctly classified 75% to
82% of AD patients and 70% of MCI patients who converted to AD over 12 months. Their
method was also able to discriminate between MClc and MClnc patients at a rate of 64%
(Table 8). Calvini et al. [66] derived a statistical indicator from the hippocampus and other
MTL structures and were able to discriminate between AD and control groups, and MCI and
control groups, with AUCs of 0.863 and 0.746, respectively (Table 8).

4.5.1.2 Multiple ROls and whole brain: Other methods have focused on many regions of
interest across the brain, using the degree of association with AD to construct a score
reflective of the anatomic profile of AD. These include temporal, cingulate and orbitofrontal
regions. The classifier developed by Fan et al. [83] produced a structural phenotypic score
that allowed direct comparison of patients and was able to discriminate between AD and
control patients, MCI and control patients, and AD and MCI patients with AUCs of 0.965,
0.846 and 0.750, respectively (Table 8). Similarly, Misra et al. [118] extracted an
abnormality score that discriminated between MClIc from MClnc patients with a
classification accuracy of 81.5 and an AUC of 0.77 (Table 8). Using a semi-supervised
SVM, Filipovych et al. [93] discriminated between MClIc and MClinc with an AUC of 0.69,
comparing favorably with fully supervised SVM methods (Table 8). They also found that
79.4% of all converters were classified as AD-like (the remainder being classified as
normal-like). In addition, 51.7% of non-converters were classified as normal-like and the
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remainder as AD-like, perhaps representing a proportion of MCI patients who would convert
to AD further in the future. The authors also found that semi-supervised SVM performed
better than a fully supervised SVM in instances when there were a small number of labeled
images. The classifier developed by Yang et al. [94] that relied on image features defined by
independent component analysis discriminated between control and AD patients with an
accuracy of 80.7%, a sensitivity of 81.9% and a specificity of 79.5%, and between control
and MCI patients with an accuracy of 71.1%, a sensitivity of 73.2% and a specificity of
68.6% based on grey matter images and a training set to test set ratio of 90%: 10% (Table
8).

McEvoy et al. [117] presented data from their fully cross-validated linear discriminant
model compared to partially cross-validated models and found that the fully cross-validated
model discriminated between AD and control patients with an accuracy of 89%, a sensitivity
of 83%, a specificity of 93% and an AUC of 0.915 (Table 8). They noted that these numbers
were lower than those obtained using the partially cross-validated model, suggesting that
numbers presented by other studies using partially cross-validated models may be artificially
high. Hinrichs et al. [88] used a classifier based on grey matter probability maps and found
that it discriminated between AD and control patients with a sensitivity of 85% and a
specificity of 80%. Park et al. [75] tested their method of multidimensional scaling of DBM
and compared it to the ability of hippocampal volume to discriminate between AD and
control patients. They found that their MDS method outperformed hippocampal volume,
yielding accuracies of 86.3% and 75.0%, respectively (Table 8). Further details of classifier
construction using support vector machines are given in the Methods section 3.3.

Longitudinal measurements of cortical thickness were the focus of a classifier constructed
by Li et al. [158]. They found that while the pattern of cortical thinning was similar in all
patient groups, the rate of thinning and ratio of follow-up to baseline measures provided a
better tool for distinguishing between MClc and MClinc patients. An additional
complementary component in the form of a brain network feature computed from the
correlations of cortical thickness changes with ROIs further improved classification
accuracy. The final classifier, comprising of static, dynamic and network measures,
discriminated between normal controls and AD patients with an accuracy of 96.1% and
between MClIc and MClinc patients with an accuracy of 81.7% (Table 8).

4.5.1.3 Comparison of MRI methods: Cuingnet et al. [159] directly compared ten methods
for the automatic classification of AD patients from anatomical MR data using the ADNI
database. Five voxel-based approaches, three cortical approaches and two methods based on
hippocampal shape and volume were tested for their ability to discriminate between control,
MClc, MClinc and AD patients. They found that voxel or cortical-thickness-based whole
brain methods yielded highest sensitivities for AD versus controls (maximum of 81%) but
that sensitivities were substantially lower for discriminating between MClc and MCinc
(maximum of 70%).

4.5.2 FDG-PET—As AD affects not only morphology, but also metabolism in the brain,
Haense et al. [84] used the AD t-sum measure of scan abnormality from FDG-PET data to
discriminate between AD and control patients with a sensitivity of 83% and a specificity of
78% (Table 8). The HCI of Chen et al. [85], which also capitalized on hypometabolism data
across the entire brain, was significantly different in control, MCI-nc, MCI-c and AD patient
groups. The method of Hinrichs et al. [88] described in the MRI section, was also used with
FDG-PET data and was able to discriminate between AD and control patients with a
sensitivity and specificity of 78% and 78% (Table 8). Huang et al. [65] used FDG-PET data
to examine functional connectivity between brain regions, and then leveraged the patterns
they found to be typical of AD for classification purposes. They found that compared to
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controls, AD patients had decreased temporal lobe inter-regional connectivity, especially in
the hippocampus, and weaker between lobe and between hemisphere connectivity. In
contrast, MCI patients had increased connectivity between occipital and frontal lobes
compared to controls, illustrating the uniqueness of this condition. This method
discriminated between AD and control patients with a specificity of 88% and a sensitivity of
88% (Table 8). Using their method based on feature selection using factor analysis and a
SVM, Salas-Gonzalez et al. [90] discriminated between AD and control patients with a
sensitivity, specificity and accuracy of 98.1%, 92.5% and 95.2%, respectively and between
MCI and control patients with a sensitivity, specificity and accuracy of 92.1%, 80.8% and
88.0%, respectively (Table 8). Having identified entorhinal metabolism as the FDG-PET
measure with the largest effect size for the detection of early AD, Karow et al. [110] found
that this measure discriminated between control and AD patients with an AUC of 0.71 and
between control and MCI patients with an AUC of 0.63 (Table 8). Mormino et al. used 11C-
PiB PET imaging to deduce a cut-off point to optimally separate PiB+ from PiB— MCI
patients, finding that PiB+ MCI patients had lower hippocampal volumes and greater
episodic memory loss compared to this MCI patients with 11C-PiB levels below the cut-off
point of 1.465.

4.5.3 CSF biomarkers—Shaw et al. [57] examined CSF biomarkers in the ADNI cohort
as well as in a cohort of non-ADNI autopsy-confirmed AD patients with the goal of
developing a “biomarker signature” best able to predict AD and to classify patients
correctly. Like many smaller studies, they found that t-tau and p-tauyg;p, as well as the t-tau/
AB42 and p-tauygip/AP42 ratios all increased in MCI patients compared to controls, while
CSF AB42 decreased. The best single measure for discriminating between AD and control
patients was CSF Ap42, which had an AUC of 0.913, a sensitivity of 96.4%, a specificity of
76.0% and an accuracy of 87% (Table 8). Linear regression analyses determined which
variables, including APOE genotype, contributed most to the discrimination and a final
linear regression model which included Ap42, APOE e4 carriers and t-tau (LRtaa model)
resulted in enhanced discrimination over individual factors (Table 8). De Meyer et al. [160]
used an unsupervised learning method that did not presuppose clinical diagnosis to identify
biomarkers of AD. A mixture modeling approach derived a signature, consisting of both
AP42 and t-tau concentrations, which had a sensitivity of 94% in autopsy-confirmed AD
patients from an independent cohort and was present in 90%, 72% and 36% of patients with
AD, MCI and no cognitive impairment, respectively (Figure 18). APOE &4 carriers were
over-represented in those patients with the AD biomarker signature by a factor of 6.88:1.
Interestingly, when modeling single biomarkers, the cut-off concentration of Ap42 that
optimally delineated AD patients from healthy elderly was found to be 188pg/ml, very close
to that found by Shaw et al. [57] and Schott et al. [161]. Moreover, the proportion of healthy
elderly with an identifying AD CSF biomarker signature was similar to that found by Schott
et al. [161] and likely reflects a proportion of cognitively normal elderly who will progress
to MCI and AD in the future. Further, De Meyer et al [159] examined another data set with
MCI patients (n=57) followed up for 5 years and they showed that the De Meyer et al model
had a sensitivity of 100% in patients progressing to AD. The finding that AD pathology is
detectable in significant numbers of healthy elderly controls has important implications for
future clinical trials and suggests the possibility of pre-symptomatic treatment studies of
potential AD preventive compounds.

4.5.4 Clinical—Llano et al. [96] compared the ADAS-cog and MMSE tests with a new
form of ADAS-cog in which the sub-scores were given weights using a Random Forests tree
algorithm, resulting in a new metric, the composite ADAS.Tree. ADAS.Tree, therefore,
represents a multivariate model in which subscales have been weighted according to their
importance in discriminating between AD and control subjects. When the ability of
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ADAS.Tree to classify control, MCI and AD subjects was compared to that of ADAS-cog
and MMSE, the composite model generated a numerically highest test statistic. The authors
suggest that this derivative of an internationally recognized and easily administered test may
offer a more widely useful and less expensive approach to other imaging and CSF
biomarkers that can be invasive and/or expensive.

4.5.5 Combined modalities—The approach of Kohannim et al. [86] combined multiple
factors including MRI and FDG-PET measures, CSF biomarkers, APOE genotype, age, sex
and BMI to enhance machine learning methods for AD diagnosis. They found that the
optimum combination of factors to discriminate between AD and control patients —
hippocampal volume, ventricular expansion, APOE genotype and age — yielded an AUC of
0.945 with an accuracy of 82%, whereas to detect MCI patients, the optimum combination
of hippocampal volume, ventricular expansion and age yielded an AUC of 0.860 and an
accuracy of 71% (Table 8). Walhovd et al. [156] likewise sought the optimum
discriminatory combination of biomarkers. They found that the best MRI combination to
discriminate between AD and control patients consisted of hippocampal volume, and
entorhinal and retrosplenial thickness (85% accuracy), the best FDG-PET combination was
entorhinal, retrosplenial and orbitofrontal metabolism (82.5% accuracy) and the best CSF
combination was t-tau/AB42 (81.2% accuracy). Using stepwise linear regression, they
developed a final model which included retrosplenial thickness and the t-tau/ApA42 ratio as
predictors and which achieved 88.8% accuracy in the classification of AD versus controls.
For the discrimination of MCI from control patients, the optimum combination of factors
was found to be hippocampal volume and the t-tau/Ap42 ratio, with an accuracy of 79.1 %
(Table 8). Ewers et al. [162] tested a variety of cross-validated models of single or multiple
predictors for their ability to discriminate between control and AD patients. They found that
the addition of neuropsychological tests, specifically the AVLT immediate free recall and
delayed recall, and the Trail Making test B, to models that included only CSF and/or genetic
biomarkers and imaging measures resulted in increased overall classification accuracy. The
best model, which included CSF t-tau/AB42, the number of APOE e4 alleles (the previously
described LTraa model: [57]), left entorhinal volume and hippocampal volume in addition
to the aforementioned neuropsychological tests resulted in an accuracy of 95.2%, a
sensitivity of 92.2% and a specificity of 97.5% (Table 8). Van Gils et al. [163] also
demonstrated that cognitive tests such as the CDR, MMSE and the neuropsychological
battery comprised the most important feature category of all classifiers designed to
discriminate between different patient groups. The classifier constructed by Lemoine et al.
[87] from data fusion of both FDG-PET and clinical data discriminated between control and
AD patients with an AUC of 0.97, an improvement over the best single FDG-PET classifier
(AUC =0.94) or the best clinical classifier (derived from ADAS-cog data: AUC = 0.93)
(Table 8). Vemuri et al. [133] compared STAND score measures from MRI with CSF and
concluded that CSF and MRI biomarkers independently contribute to intergroup diagnostic
discrimination and the combination of CSF and MRI provides better prediction than either
source of data alone.

4.5.6 Summary and conclusions of diagnostic classification papers—A variety
of approaches have been used to diagnose MCI and AD, some based on single measures,
others on composite scores of a single modality and others on a combination of factors from
different modalities. It should be emphasized that ADNI was not designed as a diagnostic
classification study; none of the imaging methods used in ADNI are as accurate as a clinical
diagnosis and the enrolled cohort represent typical cases rather than the types of difficult
diagnostic problems that clinicians often confront. Nevertheless, a number of conclusions
can be drawn from the results of these studies. Single features such as hippocampal volume
are not as accurate as multiple features such as whole brain or cortical thickness
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measurements. The best classifiers combine optimum features from different modalities
including CSF biomarkers, MRI, FDG-PET and cognitive measures as well as factors such
as age and APOE 4 enotype. The most discriminative measures include hippocampal
volume, entorhinal cortical thickness, entorhinal metabolism, the t-tau/Ap42 ratio and
ADAS-cog scores. In some of these models, FDG-PET measures appear to lose significance
to cognitive and MRI measures, but glucose hypometabolism alone has been shown to have
high classification accuracy. ADAS-cog scores, either used directly or in a model using
weighted components, appears to be an excellent diagnostic tool, although the highest
accuracies were found with the addition of MRI measures. While most classifiers used
baseline measurements, there is some evidence to suggest that longitudinal data may provide
even more accurate diagnoses although it remains to be seen whether this approach is more
generally applicable to other modalities. Currently, the best classifiers are able to
discriminate between control and AD patients with accuracies in the mid 90 percent range
but have considerably lower accuracies for the discriminating between control and MCI or
MClinc and MClc patients, although data for the latter diagnoses, arguably the more
important distinction to make, are far less reported. It is as yet unknown whether the
application of some of the promising classifiers to these problems will result in increased
diagnostic accuracy. Another key question is how methods that perform well in ADNI, with
its sharply delineated diagnostic groups and exclusion of mixed dementias and borderline
cases, will translate to the community or general clinic setting for wider diagnostic use.
Validation studies in population-based samples will be required to address this issue.

4.6 Improvement of clinical trial efficiency

One of the primary goals of ADNI is to improve the efficiency of clinical trials of AD-
modifying treatments. Selection of the study population and development of more sensitive
outcome measures are two approaches to increasing the power of clinical trials and therefore
reducing the number of participants required, the length of time required before a disease-
modifying effect is observed and therefore the overall cost. This section details the results of
studies examining the use of structural, fluid and genetic biomarkers in the improvement of
clinical trial efficiency.

4.6.1 Prediction of cognitive decline—Beyond the simple classification of clinical trial
participants, an important strategy for increasing clinical trial efficiency is the enrichment of
clinical trial populations — normally MCI patients — with participants who are likely to
progress to AD within a short time frame. In particular, the early and reliable detection of
MCI subjects who convert early to AD could support clinical decisions for or against
therapy with disease-modifying drugs. Many studies have therefore focused on identifying
baseline predictors of future decline, with “future decline” meaning both decline in clinical
measures such as the MMSE, ADAS-cog and CDR-SB, and conversion of MCI to AD
status. However it is measured, it is desirable for appreciable decline to occur over a
relatively short time frame, typically 12 months. Imaging measures, CSF biomarkers and
APOE &4 genotype, in combination or alone, have been identified as baseline future
predictors and several studies have focused on determining the optimum combination of all
modalities which results in the most power for clinical trials.

4.6.1.1 MRI

4.6.1.1.1 Temporal lobe: Hua et al. [112] used tensor based morphometry to create Jacobian
maps of temporal lobe atrophy at baseline and examined the relationship between the maps
and cognitive decline over the following year as assessed by both the CDR-SB and the
MMSE. They found that baseline temporal lobe atrophy predicted decline in the MMSE in
AD patients and also predicted the conversion of MCI to AD over 12 months (Figure 18;
Table 9). Baseline atrophy of medial temporal lobe structures was also found to best predict
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the progression of MCI patients to AD in a study by Desikan et al. [164]. These measures,
including the volumes of the hippocampus and amygdala, and the thickness of the entorhinal
cortex, temporal lobe and parahippocampal gyrus, were found to be better predictors of
clinical decline than levels of CSF Ap42 or FDG-PET regions of interest. The combination
of CSF biomarkers and FDG-PET ROIs predicted time to progression of MCI to AD with an
AUC of 0.70, a sensitivity of 93% and a specificity of 48% compared to MRI temporal lobe
factors, which had an AUC of 0.83, a sensitivity of 87% and a specificity of 66%. The
addition of CSF or FDG-PET measures to the combined Cox proportional hazards model did
not significantly increase prediction accuracy, with the combined model predicting
conversion with an AUC of 0.83, a sensitivity of 90% and a specificity of 69% (Table 9).
Similar structures were found to predict future decline in cognitive status by Kovacevic et al.
[165] who used high throughput volumetry to segment regions of interest in control, MCI
and AD patients. They found that after adjusting for age, education and APOE genotype,
smaller baseline volumes of the hippocampus, amygdala and larger temporal horn volume
predicted six month decline in both the MMSE ( (A = 0.14 (0.04), 0.18 (0.004), —-0.2
(0.003), respectively) and CDR-SB (B (A) = —0.19 (0.005), —0.12 (0.06) and 0.2 (0.005),
respectively) in all groups (Table 9). Risacher et al. [114] also found atrophy of structures
within the medial temporal lobe to be the best antecedents of imminent conversion of MCI
to AD. The largest effect sizes were for hippocampal and amygdalar volume and cortical
thickness of the entorhinal cortex and inferior, middle and superior gyri (Figure 20; Table
9).

4.6.1.1.2 Ventricles: Baseline ventricular morphology has been shown to predict future
clinical decline in studies of the ADNI cohort. Chou et al. [126] found that this measure
predicted decline in MMSE, global CDR and CDR-SB over 12 months (Figure 21; Table 9).
These findings were confirmed in a subsequent larger study by the same group [127], and
further extended by examining additional cognitive criteria. Only right ventricular baseline
anatomy was correlated with future decline in delayed recall memory scores but there was
no correlation between ventricular anatomy and changes in depression scores, despite a
baseline association between these measures (Table 9).

4.6.1.1.3 Other regions. Targeting the caudate, a region not traditionally associated with
AD, Madsen et al. [131] found that baseline atrophy in the right caudate predicted both the
conversion of MCI patients to AD and cognitive decline of this group as assessed by the
MMSE (Figure 22; Table 9). Querbes et al. [166] created a Normalized Thickness Index
(NTI) derived from the cortical thicknesses of regions most likely to show atrophy in AD
and to distinguish between MClc and MClnc patients, primarily in the left lateral temporal,
right medial temporal and right posterior cingulate. They found that the NTI predicted
conversion of MCI patients to AD with 76% accuracy compared to accuracies of 63-72% by
cognitive scores (Table 9). The additional dimension of time increased the ability of cortical
thickness measurements to predict the conversion of MCI to AD in a study by Li et al. [158].
By incorporating both static baseline and follow-up measures, dynamic measures of thinning
speed, the ratio of follow-up to baseline thicknesses in regions of interest, and a network
feature that examined correlations between longitudinal thickness change in different ROIs,
Li et al. constructed a classifier that correctly identified 81.7% of MCI converters six
months ahead of their conversion (Table 9).

White matter hyperintensities (WMH) may represent an accrual of non-specific neuronal
injury over a lifetime. Carmichael et al. [167] investigated the relationship between white
matter disease and cognition over a year and found that both baseline and longitudinal
change in WMH were associated with worsening over 12 months of ADAS-cog and MMSE
scores (Table 5), raising the possibility of the use of WMH as a biomarker and highlighting
its ability to predict future clinical decline (Table 9).
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A number of studies have leveraged information on atrophy from multiple brain regions to
distill a number or a score that is more predictive of future clinical decline than single
regions alone. McEvoy et al. [117] found that an atrophy score derived from mesial and
lateral temporal, isthmus cingulate, and orbitofrontal areas was predictive of one year
decline in MMSE scores and progression of MCI patients to AD. They found that the
atrophy score was a better predictor than right or left hippocampal volume or the thickness
of the left or right entorhinal cortices (Table 9). Similarly, a structural abnormality score
extracted from baseline MRI data by Misra et al. [118] was higher in MCI patients who
converted to AD over the following year than stable MCI patients and a structural
phenotypic score derived by Fan et al. [83] from a complex pattern of spatial atrophy
predicted decline in MMSE scores within a year from baseline (Table 9). Vemuri et al. [168]
found that STAND scores that reflected greater baseline atrophy in regions associated with
AD predicted greater subsequent decline on the CDR-SB and also a shorter time to
conversion for MCI patients than CSF analytes (Table 9). Davatzikos et al. [119] focused on
structural changes occurring at the early stages of AD and derived SPARE-AD scores
(Spatial Pattern of Abnormalities for Recognition of Early AD) largely from changes in the
temporal regions, posterior cingulate, precuneus and orbitofrontal cortex. They found that
higher SPARE-AD scores predicted conversion of MCI to AD (Table 9).

McEvoy et al. [169] also investigated enrichment strategies for constraining recruitment into
clinical trials by selecting MCI patients most likely to progress. Their first strategy, which
selected MCI patients with an APOE e4 genotype, reduced sample sizes by an estimated 10—
40% but was discounted because of the possibility that restricting patient genotype may
invalidate trial findings. Their second strategy, based on baseline MRI atrophy in regions
previously shown to be predictive of disease progression, resulted in an estimated sample
size reduction of 43-60% (Table 11).

4.6.1.2 FDG-PET: Chen et al. [85] reported that their HCI outperformed other measures
such as hippocampal volume, cognitive scores, APOE genotype and CSF biomarkers in the
prediction of conversion of MCI patients to AD. In a univariate model, patients with an HCI
above a predefined cut-off had an average Cox proportional hazard ratio for the estimated
risk of conversion to probable AD within 18 months of 7.38 compared to 6.34 for
hippocampal volume, 4.94 for p-tau1g1, and 3.91 for ADAS-cog, the most significant of the
other measures tested. Moreover, patients with a combination of both high HCI score and
hippocampal volume below a similarly defined threshold value had a Cox proportional
hazard ratio of 36.72 (Table 9). This study suggests that data from FDG-PET analyses
represent a powerful tool for the prediction of future decline in AD that is complementary to
MRI data.

4.6.1.3 CSF biomarkers: Vemuri et al. [168] examined the ability of CSF biomarkers to
predict decline in CDR-SB and MMSE scores over two years and the time to conversion
from MCI to AD. While all CSF biomarkers were predictive of future decline, the best
predictor was log(t-tau/Ap42) which was comparable to the MRI-derived STAND scores. In
contrast, AB42 alone, was only weakly predictive of conversion to AD, reflecting its status
as a marker of early AD pathology. Used in combination with STAND scores, only log(t-
tau/Ap42) improved the predictive ability of the MRI measure (Table 9). Jack et al. [153]
compared the ability of amyloid load, measured either by levels of CSF AB42 or by 11C-PiB
PET imaging, and hippocampal volume to predict MCI to AD progression. Using a new
method to pool CSF and 11C-PiB PET data [170] and to extract a score representative of Ap
amyloid load from the pooled information, they found that the group of MCI patients
classified as being Ap amyloid positive had higher frequencies of the APOE e4 allele and
smaller baseline hippocampal volumes and a three-fold higher chance of progressing to AD
within 3 years than the Ap amyloid-negative group (Figure 23; Table 9). Thus both baseline
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hippocampal atrophy and Ap amyloid load were significant predictors of future decline.
Interestingly, when risk profiles were constructed from the log relative hazard of progressing
and degree of hippocampal atrophy or Ap amyloid load, the relationship was linear for
hippocampal atrophy, but plateaued at higher Ap amyloid loads, consistent with a model in
which AB amyloid deposition is an early event in AD disease progression, whereas
neurodegeneration as evidenced by hippocampal atrophy occurs later and is thus a better
indicator of progression toward dementia.

Using the ADNI database, Schneider et al. [171] empirically tested the recommendation that
low Ap42 and a high t-tau/AB42 ratio can select those MCI patients most likely to progress
to AD throughout the course of a clinical trial. After statistically simulating a number of
different clinical trial scenarios with MCI patients with or without biomarker enrichment,
they found that selection with either of the biomarker criteria resulted in only minor
increases in power for the trial and concluded that the use of these criteria would likely not
result in more efficient clinical trials. In contrast, Beckett et al. [155] calculated that
restricting a trial population to MCI subjects with CSF AR42 levels less than 192 pg/ml
would reduce the sample size required from 375 to 226 subjects per arm to detect a 25%
change using ADAS-cog as an outcome measure, demonstrating a clear beneficial use of
CSF biomarkers in clinical trial population selection (Table 10). Schott et al. [161] tested the
use of the same cut-off point of CSF AB42 levels in cognitively normal elderly as a selection
tool for pre-symptomatic treatment studies in AD. Those participants with CSF Ap42 levels
lower than 192 pg/ml had higher levels of t-tau and p-tau and higher ratios of tau/CSF Ap42
and p-tau/CSF AB42, were more likely to be carriers of the APOE ¢4 allele and had
significantly higher whole brain atrophy, ventricular expansion and hippocampal atrophy
over one year than participants with higher CSF AB42 levels. Of the six participants who
later converted to MCI or AD, five had low or borderline baseline CSF AB42 levels,
suggesting that the roughly one third of healthy elderly with a CSF profile consistent with
AD were at greater risk for development of the disease. When sample sizes for clinical trials
were calculated for both CSF Ap42 levels and APOE 4 genotype as selection criteria and
using whole brain atrophy, ventricular expansion or hippocampal atrophy as outcome
measures, the smallest size per arm (141) was calculated using selection by CSF Ap42
levels and whole brain atrophy as an outcome measure (Table 10).

4.6.1.4 Cognitive: Ito et al. [172] evaluated disease progression in clinical studies and drug
trials from 1990 to 2008 by using a model to assess the effect of cholinesterase inhibitors
and placebos on longitudinal ADAS-cog scores in mild to moderate AD patients. They
found no significant differences in the rate of disease progression between patients taking
the placebo versus patients receiving cholinesterase treatment. The only significant covariate
in disease progression was baseline ADAS-cog score, meaning that those patients with a
higher (worse) ADAS-cog score at baseline had a significantly worse prognosis and higher
rates of cognitive deterioration than those patients with lower (better) baseline scores (Table
9). Llano et al. [96] used a new Random Forest tree-based multivariate model of ADAS.cog
in which the sub-scores had been weighted according to their contribution to patient
discrimination. This model, ADAS.Tree, predicted conversion of MCI to AD more
accurately than baseline MMSE or ADAS.cog and, in addition, was a better predictor of
conversion than the best single imaging (left inferior temporal cortex), metabolism (left
precuneus) or CSF (p-taug1/AB42) biomarkers. The significance of association varied by
several orders of magnitude with the ADAS.Tree four orders of magnitude higher than the
next MRI marker and FDG-PET and CSF biomarkers several orders of magnitude lower
than the MRI marker. Moreover, the addition of these markers to the ADAS.Tree model did
not result in substantial improvement, providing support for this modified form of
ADAS.cog as a useful and effective predictor of future decline (Table 9).
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4.6.1.5 Combined modalities: Lorenzi et al. [173] tested two strategies for the enrichment
of MCI patients in clinical trials using changes in brain structure or metabolism, or changes
in CSF biomarkers well known to herald future disease progression. They used hippocampal
atrophy (MRI), temporoparietal hypometabolism (FDG-PET), CSF Ap42, t-tau and p-tau
and cortical amyloid deposition (11C-PiB PET) as biomarkers to either screen in MCI
converters or screen out MCI non-converters. While both strategies substantially reduced the
estimated sample sizes required, the authors found that there was a trade-off between the
high proportion of converters screened out in the first strategy and the decreased power and
increased estimated sample sizes using the second strategy (Table 10). Kohannim et al. [86]
investigated the utility of their machine learning classifier based on MRI hippocampal and
ventricular summaries, APOE genotype and age as features, in subject stratification and
found that it reduced the numbers of AD and MCI patients required to detect a 25% slowing
in temporal lobe atrophy with 80% power to fewer than 40, a substantial reduction over
other methods (Table 10). Walhovd et al. [156] examined baseline MRI, FDG-PET and CSF
biomarker data in order to determine the optimum combination of these biomarkers for the
prediction of decline over two years. They found that in MCI patients, retrosplenial and
cortical thickness predicted decline on the CDR-SB, retrosplenial and entorhinal metabolism
predicted decline on the MMSE and hippocampal volume predicted decline in delayed
logical memory. The tau/Ap42 ratio also predicted decline in the CDR-SB and MMSE, but
less significantly than the MRI and FDG-PET measures (Table 9). Beckett et al. [155] found
that in MCI and AD patients, baseline glucose metabolism in a range of ROIs predicted
cognitive decline measured by ADAS-cog in a multivariate model. In univariate models,
hippocampal and ventricular volume, Ap42 and tau also predicted cognitive decline in MCI
patients (Table 9). Both papers support the idea that reduced metabolism and greater brain
atrophy at baseline are associated with more rapid cognitive decline and that CSF
biomarkers are less useful indicators of future change. A degree of agreement with these
results was found by Landau et al. [174] who studied a range of predictors of conversion to
AD and cognitive decline including FDG-PET measures, CSF biomarkers, APOE e4 status
and hippocampal atrophy, that were defined dichotomously according to their ability to
separate AD and control patients. While all biomarkers were predictive of decline in
univariate models, only reduced glucose metabolism and episodic memory (measured by the
AVLT) predicted conversion to AD and, in contrast to the studies of Beckett et al. [155] and
Walhovd et al. [156], only p-taul81/Ap42 predicted decline in ADAS-cog scores in
multivariate models (Table 9). Ewers et al. [162] compared the effectiveness of single
variables and multiple variables in predicting the conversion of MCI to AD. They found that
these best single predictors (right entorhinal cortex, and the Trail Making test B (TMT-B)
were comparable in accuracy to the best multiple predictor models which included right
hippocampal volume, CSF p-taul81/Ap42, TMT-B and age (Table 9).

4.6.2 Adjustments for normal aging and baseline characteristics—McEvoy et al.
[169] also examined the effect of normal aging on the detection of longitudinal change and
found that while this did not affect clinical outcome measures such as ADAS-cog and CDR-
SB, neuroimaging outcome measures were far more sensitive to atrophy associated with
normal aging. They suggested that larger sample sizes are required in clinical trials to
account for this effect, and that clinical trials run the risk of being severely underpowered if
normal aging is not taken into account. Schott et al. [175] proposed an alternative method
for increasing the statistical power of clinical trials without resorting to subject selection
procedures that can potentially limit the applicability of studies. They found that by
statistically adjusting for a range of baseline characteristics that might account for inter-
individual differences, and also for normal aging, sample sizes were reduced by 15-30% in
AD subjects and by 10-30% in MCI subjects (Table 10).
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4.6.3 Biomarkers as outcome measures—A number of studies have focused on
determining the effectiveness of different biomarkers as outcomes in clinical trials by
calculating sample size estimates for a hypothetical clinical trial, per arm at either 90%
(N90) or 80% (N80) power to detect a 25% improvement in annual rate of decline. Schuff et
al. [121] used hippocampal volume loss over time assessed by MRI as an outcome measure
and found that the greatest reductions in sample size were achieved when three serial scans
(0, 6 and 12 months) were combined with APOE e4 data using Markov chain analysis to
exploit correlations between observations (Table 11). The inclusion of Ap42 level data did
not further reduce sample size. All MRI hippocampal measures were substantially better
than cognitive measures (ADAS-cog and MMSE) as outcome measures. Wolz et al. [64]
used a 4D graph cut method to segment the hippocampus and subsequently calculated N80s
in the same range as the best combinations of Schuff et al. [121] (Table 11). Nestor et al.
[176] investigated the use of ventricular expansion as an outcome measure and found that
ventricular expansion over 6 months was sufficiently sensitive to produce N80s for a
hypothetical trial at least an order of magnitude lower than clinical scores (MMSE and
ADAS-cog). Moreover, sample sizes were further reduced when the trial population of AD
subjects was restricted to carriers of the APOE e4 allele (Table 11). Holland et al. [177]
examined the utility of longitudinal volumetric change in a variety of regions of interest as
outcome measures with which to measure putative disease-modifying medications for AD
and MCI. Regions of interest, including temporal lobe structures and ventricles, and whole
bran atrophy were compared with clinical measures in two separate models, one in which
the putative drug was presumed to affect both disease and aging-related changes (Model T
for ‘total’) and one in which the drug putatively affected only disease specific changes
(Model D for “disease-specific”). They found that, while imaging measures generally
resulted in smaller sample sizes than cognitive measures in both models, Model T was the
more conservative model for cognitive measures, whereas Model D was more conservative
for imaging measures. The authors emphasize the importance of comparing both models
when comparing across imaging and cognitive outcome measures (Table 11).

Hua et al. [178] compared a variety of non-linear registration methods used in TBM with
standard clinical outcome measures and found that a substantial reduction in sample size at
80% power (N80s) was achieved over clinical measures using all TBM methods with the
best TBM measure presenting an eight-fold improvement over the best clinical measure
(CDR-SB) (Table 11). The same group [120] subsequently compared the use of TBM to
measure grey matter of the entire brain and white matter atrophy in the temporal lobe with
one year changes in CSF biomarkers as outcome measures in a hypothetical clinical trial.
The N80s for CSF biomarkers were much larger than those from neuroimaging measures,
reflecting their poorer reproducibility, especially in later stages of the disease process (Table
11). Ho et al. [47] compared 3T and 1.5T MRI for tracking disease progression using TBM
and an alternative method for measuring the overall percentage brain volume change,
Structural Image Evaluation, with Normalisation, of Atrophy (SIENA). The lowest N80 was
calculated to result from using TBM on a 1.5 T MRI scanner to detect changes in brain
atrophy as an outcome measure (Table 11). Leung et al. [51] estimated N80s for both the
classic BBSI MRI technique and their improvement on this, the KN-BSI method, and found
that the improved method resulted in lower N80s (Table 11). More recently, using a newly
revised TBM method that enforces inverse-consistency, Hua et al [179] reported that to
demonstrate a 25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects
would be required for a 2-year trial, and 91 AD and 192 MCI subjects for a 1-year trial.

Beckett et al. [155] compared a number of promising MRI and FDG-PET outcome
measures. They calculated the sample size that would be required in a two-arm, 1 year
clinical trial with 80% power to detect a 25% effect and found that MRI measures of overall
brain change, using either regions of interest or boundary shift interval techniques, or
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hippocampal volume required fewest subjects. Brain metabolism measures were generally
less effective, requiring substantially larger sample sizes, although the best FDG-PET
measure, a data driven functional ROI, was comparable to many of the MRI measures
(Table 11).

4.6.4 Summary and conclusions of papers focused on the improvement of
clinical trial efficiency—Strategies for the reduction of sample sizes in clinical trials by
the selection of subjects with a significantly worse prognosis and through the use of more
effective outcome measures have been developed over the course of ADNI. Studies have
found that baseline MRI measures, particularly of hippocampal volume and of whole brain
atrophy, outperform measures of glucose hypometabolism or CSF biomarkers in the
prediction of future decline. In one instance, a score derived from AD-like patterns of
hypometabolism outperformed other single MRI, cognitive or CSF biomarker measures, but
this too was enhanced by the addition of MRI measures. Of the CSF biomarkers, the t-tau/
APA42 ratio and the use of a cut-off value of around 192 pg/ml of Ap42 have been shown to
best predict future decline. In a manner similar to classification of AD subjects, the use of
multiple modalities appears to enhance the prediction of future decline. Interestingly, a
weighted version of the ADAS-cog [96] has been shown to outperform any single MRI
measure tested as a predictor of future change and was not improved by the addition of any
MRI measure tested. In contrast, MRI and FDG-PET, which have strikingly better signal-to-
noise ratios, clearly outperformed cognitive tests as outcome measures of rates of change.
Calculated sample sizes for clinical trials required to see a 25% effect at 80% power were
lowest for MRI measures of overall morphometric change or of hippocampal volume,
followed by those for hypometabolism ROIs and cognitive scores. CSF biomarkers were the
least effective outcome measure by several orders of magnitude. Finally, it also will be
necessary to study the comparative effectiveness and cost effectiveness of the AD
biomarkers studied in ADNI to determine the optimal way to make use of these biomarkers
in the diverse applications needed in AD research. For example, based on the recent studies
of Wiegand et al. [170] it is possible to impute AB amyloid measures determined by AB
amyloid imaging using far less expensive measures of CSF AB42 levels. Additional similar
studies as well as others focused on the economics of the use of biomarkers in clinical trials
and clinical practice are needed.

5 Identification of genetic risk factors for AD

The influence of genetics on the dynamic trajectory of brain development and aging is well
established, if not well understood. Studies of twins have estimated the heritability of AD to
be between approximately 60-80% [180] and until recently the only established genetic risk
factor for AD was the APOE &4 allele which accounts for around 50% of AD heritability
[181]. The question of accounting for the up to 30% of heritability has only begun to be
addressed and while there have been a number of candidate genes proposed, the majority of
them await independent confirmation. ADNI is in the unique position of providing a large
cohort with genotype information in addition to imaging and biochemical data that can be
leveraged as quantitative traits in uncovering new genetic associations, and as such plays an
increasingly important role in the discovery and confirmation of novel genetic risk alleles.

Three main approaches have been taken to investigating the genetic basis of AD. Case
control studies that search for loci with differential frequency between patient groups have
identified a number of candidate genes. Typically, markers are used to tag susceptibility
loci, usually in 10-20kb regions in the genome that are rarely found to be causal. Using this
method, the association of APOE 4 genotype with AD has been confirmed and three new
risk loci, CLU, PICALM and CR1 have been identified and confirmed [182-184]. Further
studies have focused on examining relationships between SNPs in a limited number of genes
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of interest and quantifiable phenotypic characteristics, or quantitative traits, (QTs) such as
imaging data or levels of CSF biomarkers. Genome wide association studies (GWAS)
evaluate a large and dense set of SNP markers distributed throughout the genome providing
and unbiased search for the discovery of new candidate genes. With over 500,000 markers
typically included in a GWAS, a stringent correction for multiple testing is requires with
typical thresholds of p < 1078 used to reduce false detections. These stringent corrections
also greatly reduce power and require extremely large sample sizes to achieve significance
in case-control designs. However, the use of quantitative phenotypes such as cognitive,
imaging and fluid biomarker measures can greatly increase the power to detect associations.
Where a binary case-control design might require many thousands of samples to detect a
gene effect, samples on the scale of ADNI are sufficient for detecting associations with
quantitative phenotypes [185]. The emerging field of imaging genetics, which utilizes
imaging data as QTs in GWAS, promises the power to reveal patterns of genetic
associations throughout the brain but is hampered by the computational load required for
such high dimensional studies. Further development of this field, including improvement of
existing GWAS methods, is a major goal of the Genetics Core of ADNI [6].

5.1 Case control studies

Jun et al. [186] conducted a meta-analysis case control study of AD patients and healthy
elderly controls from 12 different studies including ADNI to examine the association of
APOE 4, CLU, PICALMand CRIwith AD. They found that CLU, PICALM and CR1
were significantly associated with AD only in Caucasian populations. In contrast, APOE 4
was significantly associated with AD in all ethnic groups and with P/ICALM in white
populations suggesting that APOE 4 and PICALM act synergistically and may participate
in a common pathological pathway (Table 12). Two of the largest case/control GWAS
studies of AD were recently published as companion reports in Nature Genetics [187, 188].
Both reports included the ADNI-1 data in their analyses (Table 12). These multi-stage meta-
analytic reports included discovery and replication data sets and confirmed each other.
These new results bring the total set of confirmed and replicated candidate genes to 10
(APOE/TOMMA40, ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHAIL, MS4A4/MS4A6A,
PICALM).

Mitochondrial genes are also of great interest in AD and Lakatos et al. [189] studied the
incidence of AD in patients belonging to different subgroups (HV, JT, UK and IWX) of
mitochondrial haplogroup N in the ADNI cohort. They found that haplogroup UK had the
strongest association with AD and that this relationship remained significant after adjusting
for APOE ¢4 allele dose. Additionally, they identified five mitochondrial SNPs that were
associated with increased risk of AD and suggested that, given the vital role of mitochondria
in maintaining cellular energy balance, dysfunctional mitochondria may contribute to AD by
causing neuronal oxidative damage. In another case-control design, Kauwe et al. [190]
attempted to replicate a study which found that epistatic linkage between two SNPs in the
transferrin and hemochromatosis genes was associated with AD risk, suggesting a role for
iron in AD pathology. Using synergy factor analysis they found significant association
between bicarriers of the minor alleles of both SNPs and risk for AD in several US and
European study populations including ADNI, providing support for the iron hypothesis
(Table 12).

5.2 Studies of limited loci using quantitative phenotypes

Several studies have utilized knowledge of the model for AD disease progression by testing
the associations between genes potentially involved in AD pathology and CSF biomarkers.
Cruchaga et al. [191] examined associations between SNPs in 35 genes putatively involved
in tau post-translational modification and CSF levels of ptauqg;. They found that SNPs in
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the gene for protein phosphatase B were associated with higher levels of ptau;g; and that an
SNP in the regulatory subunit of protein phosphatase B was more highly expressed in AD
patients compared to controls (Table 12). These results suggest that genetic variants that
alter the activity of protein phosphatase B could contribute to AD pathology by affecting tau
phosphorylation. A further study by the same group [192] found that the SNP in the
regulatory subunit of protein phosphatase B was not associated with the age of onset or risk
of AD but with the rate of disease progression. In contrast, APOE 4 was associated with
lower levels of CSF AB42, increased disease risk and lower age of onset, providing support
for a model in which amyloid deposition is an early event in disease progression and
accumulation of hyperphosphorylated tau occurs at a later stage (Table 12). Kauwe et al.
[193] also used levels of CSF biomarkers as a QT to investigate the predicted biological
effects of SNPs in three genes associated with AD. They found that a non-synonymous
coding substitution in the gene for calcium homeostasis modulator 1 (CAHLM 1), proposed
to affect levels of AB by modulating intracellular calcium levels, was associated with
increased CSF levels of Ap42 (Table 12). Associations between levels of CSF biomarkers
and SNPs in the two other genes for GRB-associated binding protein 2 (GAB2), proposed to
influence tau phosphorylation and sortilin-related receptor (SORL 1), an apoliprotein E
receptor proposed to bind AB, were not found, perhaps due to power limitations of the study.

Using six imaging measures reflective of AD pathology as QTs, Biffi et al. [194] searched
for associations between these and SNPs in a range of established and candidate genes for
AD risk. They first sought to confirm associations of APOE, PICALM, CLUand CR1 with
AD and found that while APOE had a strong association with diagnosis, of the remaining
identified risk alleles, only CR1 was associated with AD in the ADNI cohort possibly
reflecting sample size limitations for case control studies. Two novel loci, CNTN5 and
BIN1, were also found to have significant association with AD (Table 12). When the
relationship of APOE €4, CR1, CNTN5and B/NI with imaging measures was examined, it
appeared that APOE e4 was associated with virtually all brain regions whereas the other loci
had a more limited pattern of association, consistent with APOE e4 being the primary AD
genetic risk factor and other loci making more modest contributions to the disease.

5.3 Genome wide association studies of quantitative phenotypes

In the first ADNI GWAS using the ADNI AD cases and controls, Potkin et al. [185]
confirmed the association of APOE with AD and identified a novel AD risk gene,
TOMMA40, encoding a regulatory subunit of a protein translocase in the outer mitochondrial
membrane, as being significantly associated with AD. A further GWAS using VBM-derived
estimates of hippocampal volume as a QT identified 21 loci with significant association with
hippocampal volume including, in addition to APOE e4, genes in involved in hippocampal
development (EFNAY), ubiquination (MAG/Z2, CANDI), apoptosis (PRUNEZ, CAND]I),
necrosis (ARSB) and dementia (MAG/2, ARBS) (Table 12) The involvement of TOMMA40
in numerous brain regions of AD patients was confirmed by Shen et al. [195]. This study
employed a novel whole brain set of ROIs from both VBM and FreeSurfer parcellation as
QTs in a GWAS. Of the three SNPs additionally identified as significantly associated with
brain volumetric changes, only one, proximal to the NXPH1 gene encoding neurexophilin
known to promote adhesion between dendrites and axons, had a bilateral pattern of
association and was chosen for further study (Table 12). AD patients homozygous for the T
allele at this locus displayed reduced grey matter most significantly in hallmark regions of
AD atrophy such as the hippocampus. This study illustrates the potential power of imaging
genetic to identify novel candidate genes that warrant further investigation as AD
candidates.

Whereas Shen et al. [195] used ROIs covering the brain, Stein et al. [196] further extended
the dimensionality of imaging genetics studies by carrying out a voxelwise GWAS
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(VGWAS) which explored associations between hundreds of thousands of SNPs and each of
the nearly 32,000 voxels of the entire brain. While no SNP was found significant at the
stringent criteria used in the study, a number of SNPs of interest were identified in or near
genes known to have functions relating to brain structure such as monoamine uptake in
neurons (CAPDS2), psychiatric illness (CSMDZ2and CAPDS2) and neurite growth (SHB
and ARPI) (Table 12). In a second GWAS of a targeted region of TBM-derived structural
brain degeneration on MRI, Stein et al. [197] identified a SNP located in the gene encoding
NMDA receptor NR2B subunit (GRINZB) that was significantly associated with lower
volumes in the temporal lobe bilaterally. Risk alleles at this locus were more prevalent in
AD patients of the AD cohort than in healthy elderly controls and were additionally
associated with decreased MMSE scores (Table 12).

Furney et al. [198] also used targeted imaging measures (entorhinal cortex thickness and
volume, volumes of hippocampus, whole brain and ventricles) as quantitative traits in a
large GWAS involving two cohorts (AddNeuroMed and ADNI). As well as confirming a
role of PICALM as a susceptibility gene for AD and as related to entorhinal thickness, they
identified two other loci, ZNF292and ARPP-21 as potential candidate genes based on
associations of flanking SNPs with entorhinal cortex thickness and volume (Table 12).

Most imaging GWAS reports have addressed baseline ADNI data however genetic variants
predicting rate of progression are of great interest. Saykin et al. [6] reported an initial
longitudinal analysis of hippocampal volume and grey matter density using baseline and 12
month scans. In a candidate gene analysis [199], five AD genes from the AlzGene database
(alzgene.org) were found to have significant SNPs associated with hippocampal volume or
grey matter density changes after accounting for APOE, baseline diagnosis, and other
factors (MEDDY, SORL 1, DAPKI, IL1B, and SORCSI). Next, a longitudinal GWAS was
performed on hippocampal volume and grey matter density, using the MRI measures
reported in Risacher et al. [115]. A number of interesting potential candidate genes were
identified by this GWAS. In addition to APOE and TOMMA40, a SNP (rs12449237) located
at 16922.1 between CDH8 (cadherin 8, type 2) and LOC390735was strongly associated
with change in hippocampal volume. CDH& codes for a calcium-dependent cell adhesion
protein related to synaptic integrity (neuronal adhesion and axonal growth and guidance).
Although the cadherin protein has been implicated in AD and is known to interact with
presenilin, this was the first indication that genetic variation in CDH8 may be associated
with rate of neurodegenerative changes in the hippocampus. Several other markers did not
reach genome-wide significance but also showed association signals worthy of follow-up
(for volume change: SLC6A13, for grey matter density change: MADZL2, LOC728574,
QPCTand GRB2).

In a QT GWAS of CSF biomarker levels instead of imaging variables, Kim et al. [150]
examined levels of AB42, t-tau, p-tau;g; and the ratios of p-tau;g:/AB42 and t-tau/AB42 in
the ADNI cohort. They found five SNPs that reached genome-wide significance for
associations with one or more biomarkers, including the known candidates, APOE and
TOMMA40 as well as one hypothetical gene, LOC10012950that partially overlaps APOE.
Most interestingly, several SNPs in the vicinity of the novel gene, £PCZ2 (enhancer of
polycomb homolog 2) were associated with t-tau levels. EPC2is involved in chromatin
remodeling and has not been previously associated with AD, yet this gene may be causally
associated with mental retardation in a microdeletion syndrome. Along with £PC2, SNPs
near CCDC134, ABCG2, SREBF2and NFATC4 approached significance (p<10°) in their
association with CSF biomarkers and can be considered potential candidate genes for future
studies (Table 12). Han et al. [200] also used levels of CSF biomarkers as QTs in a GWAS
of the ADNI cohort. They found that increasing APOE e4 allele dose were associated with
lowered Ap42 and elevated t-tau and p-taug; levels. After adjusting for age and APOE
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genotype, several SNPs were found to be significantly associated with increased AB42
levels in normal subjects, the most strongly associated being within or proximal to the
TOMMA40, NCAMZ and CYP19A1 genes (Table 12). NCAMZ encodes neural adhesion
molecule 2, a poorly characterized protein implicated in neuronal adhesion and fasciculation
of neurons, while CYP19A1 encodes cytochrome P450 aromatase, an enzyme that catalyzes
the conversion of androgens to estrogens.

5.4 Summary and conclusions of genetic risk factor studies

Genetic studies of the ADNI cohort have confirmed that the APOE e4 allele is the major
genetic risk factor for late onset AD and that it is associated with atrophy in widespread
areas of the brain. Case control GWAS that have included ADNI data have also confirmed
CLU, CRIand PICALM as AD risk loci and identified a number of other candidate genes.
Quantitative trait GWAS using ADNI phenotypes such as Ap42 and tau or imaging
measures of brain atrophy have detected genes implicated in the modification or modulation
of AP or tau proteins, mitochondrial oxidative pathways, iron metabolism, neural adhesion
and growth, and synaptic plasticity, epigenetic processes and memory function. A particular
contribution of ADNI imaging genetic studies has been to develop methods to expand the
dimensionality of GWAS studies to include all regions or voxels of an imaging scan,
significantly expanding the potential of the field of imaging genetics to pinpoint specific
brain regions influenced by different loci. While candidate genes await confirmation by
independent studies, they promise to unveil biological mechanisms underlying AD
pathology.

6 Studies of normal controls

With the realization that AD pathology most likely begins to accumulate years in advance of
any detectable cognitive effect, a major issue has been determining the proportion of
apparently normal controls that harbor preclinical AD. As more sensitive biomarkers have
been developed, studies have emerged with the goals of ascertaining the utility of these
biomarkers in healthy elderly and determining the earliest stage at which incipient AD
pathology can be detected. This clearly has implications for development of AD therapies: if
AD pathology can be reliably detected at such an early stage, would existing or novel AD
modifying treatments then be more effective when used before clinical symptoms become
evident? In tandem with these studies, ADNI’s cohort of well- characterized normal controls
has been used to investigate processes occurring in the brain during healthy aging when
there are no clinically detectable underlying pathologies. These two thrusts are often
interwoven within same study as it becomes more obvious that healthy elderly, while
cognitively normal, are in fact a heterogeneous group when examined by other means.

6.1 MRI studies

The question of whether atrophy observed in normal aging is due primarily to normal aging
processes or to the development of underlying pathologies is the subject of much debate.
Fjell et al. [201] presented the first detailed longitudinal study of brain atrophy in healthy
elderly aimed at understanding age-related changes in cognitive function. When volume
changes in multiple ROIs and across the entire cortex were compared in healthy elderly and
AD patients, they found that the healthy elderly had an atrophy rate of about 0.5% per year
and that volume loss was widely distributed across the brain and included both regions
typical of AD associated atrophy and areas not typically associated with AD such as the
inferior, superior and middle frontal cortices. The rate of change accelerated with age
especially in those regions associated with AD possibly due to the existence of preclinical
AD pathology superimposed on normal aging processes. The authors believe, however, that
the majority of volumetric changes observed in healthy aging are not related to those caused

Alzheimers Dement. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Weiner et al.

Page 47

by degenerative diseases. Davatzikos et al. [119] used the SPARE-AD index (see Section
4.4.2.1. for further description), to examine the degree of AD pathology in healthy elderly
and its association with cognitive decline in ADNI and another cohort with longitudinal data
available. They found that SPARE-AD scores increased with age as did the rate of change of
the SPARE-AD score. When healthy elderly were divided into groups of high versus low
SPARE-AD score, the majority had negative scores. However, a small group with positive
scores had a significantly lower MMSE scores at baseline, suggesting that a subset of
cognitively normal elderly harbored underlying AD preclinical pathology.

In response to a paper by Burgmans et al. [202] suggesting that underlying preclinical
disorders may lead to the overestimation of grey matter atrophy in normal aging studies,
Fjell et al. [203] conducted a meta-analysis of a number of cross-sectional studies. They
found that atrophy correlated with age in virtually all ROIs studied, even at younger ages,
suggesting a linear trajectory of brain atrophy over time. When two year follow up cognitive
data of healthy elderly from the ADNI cohort were used to exclude participants with any
indication of cognitive decline, significant atrophy in all ROIs was still found in the
remaining “super-stable” cohort. These results support the view that brain atrophy is part of
normal aging and not necessarily caused by underlying neuropathological processes. In
order to detect unusually fast atrophy in cognitively normal healthy elderly, Franke et al.
[92] developed a model of healthy aging by estimating age from MRI scans of normal brain
anatomy. Their method (described in more detail in Section 3.7) accurately estimated the
age of healthy subjects (r=0.92 between real and calculated ages). Using the same method,
they also estimated ages of patients with early AD and found that the predicted ages were an
average of 10 years higher than the actual ages, implying that the pattern of AD atrophy
does accelerate relative to healthy elderly controls.

Murphy et al. [204] used an automated method to examine volume changes in 14 cortical
and sub-cortical regions over six months in an effort to determine whether atrophy was
detectable over the short time period in healthy elderly and whether this atrophy was related
to two year declines in memory-specific neuropsychological tests. They found that volume
changes in these regions could be measured and that they were predictive of future clinical
decline. The most significant associations were found in the medial temporal lobe,
suggesting that this atrophy could represent the earliest stages of AD and that MRI may be a
useful tool in complementing neuropsychological tests in the early detection of those at risk
for subsequent cognitive decline.

6.2 Studies of CSF biomarkers and amyloid deposition (}1C-PiB PET)

In a manner similar to the examination of MRI markers of AD pathology, there has been
interest in assessing the utility of CSF biomarkers in healthy elderly on the basis that an
“earlier biomarker horizon” [205] would have great clinical significance. Nettiksimmons et
al. [205] examined healthy elderly in the ADNI cohort and found three clusters of
participants when 11 biomarker and imaging measures were subjected to unsupervised
cluster analysis. The first, compact cluster had the most ‘normal” CSF and MRI measures,
whereas the measures of the third, more dispersed group more closely resembled those of
MCI patients included in the study for comparison (the second cluster was placed in an
intermediate position). The third cluster had a significantly higher proportion of APOE 4
carriers and scored worse on tests of cognition (ADAS-cog, AVLT), suggesting that this
group may harbor the very earliest manifestations of AD symptoms. These results provide
support for the notion that cognitively normal elderly are in fact a heterogeneous group, a
portion of which may progress to MCI in the future. In a study of the relationship between
levels of CSF biomarkers and one year atrophy in 15 sub-cortical and 33 cortical ROIs in
healthy elderly, Fjell et al. [206] reached similar conclusions. They found that levels of CSF
biomarkers, especially AB42, correlated with atrophy in many of the regions tested and that

Alzheimers Dement. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Weiner et al.

Page 48

atrophy was not restricted to regions most typically associated with AD. When Ap42
concentration was plotted against the percentage of annual change in ROIs, there was an
inflection point at around 175pg/ml below which participants had larger brain volume
changes over a year, suggesting that Ap42 may play a role in changes in brain volume
observed in healthy elderly below a certain threshold level. De Meyer et al. [160] found that
when a biomarker “signature” for AD using levels of Ap42, t-tau and p-tau;g; was tested in
healthy elderly subjects, there was a bimodal distribution of AB42 levels with a separation
point at 188 pg/ml. While it was unknown whether those participants with low levels of
AB42 in these two studies would develop AD pathology, they once again highlighted the
heterogeneity of the cognitively normal healthy elderly group.

In the current model of AD pathogenesis, it is well established that deposition of amyloid
plaques is an early event that, in conjunction with tau pathology, causes neuronal damage
typically beginning in the hippocampus and resulting in the first clinical manifestations of
the disease in the form of episodic memory deficits. Mormino et al. [207] investigated the
relationship between A amyloid deposition, as measured by 11C-PiB PET uptake,
hippocampal atrophy and episodic memory loss in cognitively normal healthy elderly. They
found an inverse relationship between 11C-PiB uptake and hippocampal volume and that
episodic memory loss was predicted by hippocampal volume, but not by 11C-PiB uptake.
The results suggest that low levels of AB42 accumulation in healthy elderly may reflect
early stages of AD pathogenesis and may subsequently mediate dementia via an effect on
hippocampal volume and the resulting declines in episodic memory.

6.3 Genetic studies of normal controls

While the APOE €4 allele has been clearly identified as an AD risk allele, the question of
whether a second variant in the APOE gene, the €2 allele, confers a protective effect has
been less well studied. Evidence for the protective effect of the APOEZallele came from a
study by Hua et al. [120] who found reduced CSF volume in the ventricular system of
healthy elderly who had the highest frequency of this allele compared to MCI and AD
patients. Chiang et al. [208] sought to determine the effect of APOE 2 allele on hippocampal
volume and levels of CSF biomarkers in healthy elderly. They found that carriers of the
APOEZ2 genotype, constituting around 5% of the population, had lower rates of hippocampal
atrophy and higher AB42 and lower t-tau and p-tauqg; levels compared to the more common
(~70% of population) APOE 3/e3 homozygotes, suggesting that lower rates of atrophy
could be related to decreased underlying AD pathology and may explain the lower rates of
AD among carriers of this allele. A similar finding was reported by Fan et al. [209] who
examined the relationship between cortical thickness at multiple regions across the brain and
APOE genotype in healthy elderly in €2 carriers, €3 homozygotes and 4 carriers. After
adjusting for multiple comparisons, they found greater thickness in the superior temporal
cortex in e2 carriers compared to €3 homozygotes and in the dorsolateral prefrontal cortex
in €2 compared to 4 carriers. Moreover, CSF concentrations of AB42, t-tau and p-tau;g;
were significantly different in all groups (Figure 24) although no differences were found in
the MMSE between groups. The results of these two studies provided support for the
differential effect of APOE alleles on brain structure and on CSF biomarkers.

In addition to risk factors like age and APOE genotype, increased body mass index (BMI)
has been associated with frontal, temporal and sub-cortical atrophy and may increase
susceptibility to AD. Recent studies identified a novel obesity genetic risk factor, a variant
of the fat mass and obesity associated (F70) gene, carried by almost half of Western
Europeans. Ho et al. [210] examined the effect of the £7Orisk allele on brain volumes in
healthy elderly and compared its effects on brain structure to that of increased BMI. They
found that carriers of the F7Orisk allele had an 8-12% deficit in a subset of areas affected
by BMI, predominantly in the frontal and occipital lobes compared to non-carriers,
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suggesting that the F7Orisk allele contributes to, but does not fully account for, the effect of
increasing BMI on brain atrophy. Bertam and Heekeren [199] discussed the findings of the
study and the need for corroborating the results to determine the influence of genetics on
normal brain structure and function.

The idea that common variance in brain structure may be primarily controlled not by
polymorphisms resulting in altered protein structure, but by changes in regulatory elements
found support in a study by Rimol et al. [211]. Using the ADNI cohort they found that two
SNPs located in non-exonic regions of genes for primary microencephaly were correlated
with reduced cortical surface in males only, regardless of disease status and suggested that
these polymorphisms may affect gene regulation and result in gross abnormalities in brain
structure observed in this disease. More data on the role of common genetic sequence
variations in accounting for commonly-occurring brains structure variation came from a
study by the same group [212] on associations between a common haplotype of the MECP2
gene and brain structure. Mutations in MECPZ, encoding methyl CpG binding protein 2,
cause microencephalopathy and are associated with other severe neurodevelopmental
disorders, but Joyner et al. [212] found that common sequence variations in this regions
correlated with reduced cortical surface area in males only of the ADNI cohort. As MECP2
is thought to transcriptionally activate or repress thousands of genes, studies of the influence
of such common sequence variations may reveal profound insights into brain structure and
development.

6.4 Summary and conclusions of papers focusing on normal controls

Heterogeneity of cognitively normal healthy elderly appears well-supported by these studies,
with a number suggesting the existence of a subset of cognitively normal elderly that bears
the hallmarks of early AD pathogenesis in terms of changes in brain volume and levels of
CSF biomarkers. The extent to which these changes are separate from those of normal aging
remains to be fully elucidated. Fjell et al. [203] concluded “We need more knowledge about
which factors mediate brain atrophy in healthy elderly and what consequences the changes
have for cognitive function”. Likewise, several intriguing studies have pointed to the role of
genetics in healthy aging, and suggest a protective effect of the APOE 2 allele and
increased susceptibility to brain atrophy and perhaps AD conferred by a risk allele at the
novel F7Oloci. Clearly studies of the healthy elderly controls are revealing information not
only about the processes of healthy aging but also the initial development of preclinical AD
pathology.

7 Worldwide ADNI

Since the inception of ADNI in North America in 2004, there has been worldwide interest in
creating programs that are at least partially modeled on the ADNI platform, and that use
protocols developed by ADNI for at least part of their studies. Combined, the initiatives
represent a concerted effort towards globalization of this concept. Society may well reap the
rewards of having not just a well-characterized North American cohort for the development
of AD biomarkers but similarly characterized cohorts globally that may represent diverse
ethnic groups, important for determining the applicability of ADNI findings to the world
population. Like ADNI, these initiatives from Europe, Japan and Australia are predicated on
the sharing of data and infrastructure is beginning to be developed to allow full transparency
of global results. Future ADNISs are expected to begin in Argentina, China, Korea and
Taiwan. All worldwide ADNIs share common goals of increasing understanding of AD
onset and progression, both cognitively and physically, establishing globally recognized
standards for diagnosis and ultimately developing methods to allow more efficient clinical
trials.
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7.1 European ADNI

Frisoni [213] provides an overview of all programs either completed or underway in Europe
that are in some way related to ADNI. The ADNI platform was first introduced into Europe
in the form of a small cross-sectional pilot study, E-ADNI, which aimed to assess the
feasibility of importing ADNI procedures to a European multi-center multi country setting
[214]. E-ADNI was initiated under the auspices of the Alzheimer’s Association through the
generosity of the HEDCO Foundation and enrolled a total of 49 control, MCI and AD
participants over seven sites in seven countries. The pilot study used all ADNI protocols
with the exception of PET imaging, the feasibility of which had been previously
demonstrated and MRI sequences for the detection of cerebral small vessel damage, a
slightly different emphasis of the study. Buerger et al. [215] conducted a multicenter
feasibility study within E-ADNI and found that the use of fresh rather than frozen biological
samples increased diagnostic accuracy. Overall, the study demonstrated that apart from age
and education, the enrolled cohort was very similar to the ADNI cohort in MRI and CSF
measures and that implementation of the ADNI platform in Europe was feasible [214].

Other data collection programs in Europe include 1) AddNeuroMed, a public-private
initiative with a cohort of 700 control, MCI and AD patients across Europe that used ADNI
protocols for structural MRI; 2) Pharma-cog, which overlaps to the greatest extent with
ADNI and which aims to predict cognitive properties of new drug candidates for
neurodegenerative diseases; 3) Swedish ADNI, a small scale initiative funded by the
Alzheimer’s Association that used ADNI protocol and which has merged in to the larger
Swedish BrainPower initiative, and 4) Italian ADNI, a larger project with 480 patients
enrolled. These initiatives vary in the size and composition of cohorts enrolled, the length of
study and the frequency and type of data collection. However, they all have the use of
standardized ADNI protocols in common for at least some of their data collection [213].

Two additional European programs funded by the Alzheimer’s Association focused on
harmonization of measurements of both CSF biomarkers [216] and hippocampal volume
[217], aiming to create worldwide protocols for standardized hippocampal segmentation and
measurement of CSF biomarker concentrations to allow the direct comparison of results
generated globally.

Finally, initiatives inspired by ADNI to build infrastructure including a central repository of
all data, like that developed at LONI, have been implemented in Europe. NeuGRID is being
developed at the European equivalent of LONI whereas outGRID aims to synergize
neuGRID, LONI and the Canadian repository CBRAIN and to develop full interoperability.
Lastly CATI (Centre pour I’ Acquisition et le Traitement de I’Image) is the French repository
for data sets within that country.

ADNI-related programs and initiatives in Europe are summarized in Table 13.

7.2 Australian Imaging, Biomarkers and Lifestyle Study - the Australian ADNI

Often termed the “Australian ADNI”, the AIBL has similar goals to ADNI, namely to better
understand disease pathogenesis and to develop tests for an earlier diagnosis of AD, and to
this end, utilizes ADNI protocols for its imaging studies [218]. Some methodological
differences between the two studies include the omission of FDG-PET metabolic
investigations and the comparison of amyloid pathology using 11C-PiB PET and AB42
levels in blood plasma instead of from CSF on the basis that obtaining blood plasma is both
less expensive and less invasive than lumbar punctures. Perhaps the greatest difference
between AIBL and ADNI lies in the approach AIBL is taking to investigating lifestyle
factors involved in AD. By collecting extensive neuropsychological and lifestyle data, the
study aims to understand which health and lifestyle factors protect or contribute to AD. Like
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ADNI, however, all data are made available through LONI. Ellis et al. [218] reported that
one recent finding from the study found that hippocampal atrophy was regionally associated
with 11C-PiB retention only in the inferior lobe, leading to a new hypothesis of how AB
accumulation could disrupt connections between the hippocampus through accumulation in
this area (Bourgeat et al., 2010, Beta-amyloid burden in the temporal neocortex is related to
elderly subjects without dementia. Neurology 2010:74:121-7).

Rowe et al. [219] reported on the progress of the neuroimaging arm of the AIBL in
characterizing a cohort of 177 healthy elderly, 57 MCI and 53 AD patients. The patient
groups had increasing numbers of APOE e4 carriers, increased hippocampal atrophy and
increased cognitive impairment with disease progression. The distribution of 11C-PiB
binding in controls did not follow a normal distribution and cluster analysis determined a
separation point between low and high 11C-PiB binding groups at a neocortical standardized
uptake value threshold of 1.5. This bimodal distribution in normal healthy elderly again
echoes the idea of heterogeneity within this group and the existence of a subset of patients
with the first manifestations of AD pathogenesis well in advance of any effects on
cognition. 11C-PiB binding may therefore play a role in populating and monitoring clinical
trials of anti-amyloid therapies. Rowe et al. [219] also used 11C-PiB PET imaging for
diagnosis and found that 11C-PiB scans discriminated between AD and control patients with
an accuracy of 73%, a sensitivity of 98% and a specificity of 63%, comparable to results
obtained using hippocampal volume (accuracy = 73%, specificity = 80%, sensitivity =
78%).

7.3 Japanese ADNI

The need for a Japanese ADNI (J-ADNI) was realized in 2006 when ADNI was beginning
in North America and at the end of the Japanese study, J-COSMIC (Japan Cooperative
SPECT study on Assessment of Mild Impairment of Cognitive Function) [220]. Iwatsubo
[221] reported that J-ADNI was needed not only to meet requirements for global clinical
trials of AD drugs about to begin in Japan and to develop the necessary infrastructure for
these trials, but was also motivated by the desire of Japanese researchers to improve their
clinical science through international collaboration. A special issue of Rinsho Shinkeigaku
near the inception of J-ADNI in 2007 reported on ADNI and the need for the establishment
of a Japanese version [222], the goals of early detection of AD and biomarker development
[223], the methods used by ADNI and adopted by J-ADNI for achieving these goals [220]
and use of ADNI approaches for detecting MCI in neuropathological studies [224]. Funding
for J-ADNI was sought and received from both the public and private sector, including
Japanese and international companies, to a total of approximately 300 million yen per year
[221]. The study began in 2008 and aimed to recruit 300 amnestic MCI patients, 150
patients with early AD and 150 healthy elderly controls from 30 centers across Japan by the
end of 2010 who would then be followed until 2013 using a research protocol designed to
maximize compatibility with ADNI [221, 225]. Compatibility with ADNI protocols was
designed to allow sharing and direct comparison of data and as a way to contribute to global
standardization of protocols. Arai et al. [225] reported that initial results from ADNI
supporting the use of biomarkers in clinical trials contributed to paradigm shift in Japanese
geriatric medicine from defining AD solely by cognitive measures to considering the
information available from biomarkers.

7.4 Worldwide ADNI future directions

The establishment of Worldwide ADNI, an umbrella organization of global ADNI efforts is
coordinated by the Alzheimer’s association and is a direct result of ADNI. In addition to the
North American, European, and Australian programs, an initiative has recently begun in
Taiwan and future sites are scheduled to be established in Korea, China and Argentina
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(Figure 25). Information on the countries that have established or plan to establish ADNI
sties in their countries can be found at http://www.alz.org/research/funding/partnerships/
WW-ADNI_overview.asp. Using standardized protocols developed by ADNI, these
programs collectively aim to help define the rate of progression of mild cognitive
impairment and Alzheimer's disease, and to develop improved methods for identifying the
appropriate patient populations to participate in clinical trials. It is anticipated that data
generated by these global initiatives will ultimately be shared through a common
infrastructure with international researchers. It is clear that ADNI has had and will continue
to have a profound and far-reaching impact on the development of methods for the
prediction and monitoring of the onset and progression of AD and in gaining worldwide
picture of the physical changes that lead to Alzheimer's disease.

List of Abbreviations

ic-piB [11C]-labeled Pittsburgh compound B

ACM auto context model
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ADAS-cog Alzheimer’s Disease Assessment Scale, cognitive sub-scale
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BALI brain and lesion index
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SNP small nucleotide polymorphism

SPARE-AD spatial pattern of abnormalities for recognition of early AD
SPECT single proton emission computerized tomography
SPS structural phenotypic score

SRRR sparse reduced rank regression

STAND structural abnormality index

STAPLE simultaneous truth and performance level estimation
SVM support vector machine

TBM tensor-based morphometry

™ Trail making (test)

t-tau total tau protein

VBM voxel-based morphometry

VBR ventricle to brain ratio

WM white matter

WMH white matter hyperintensities
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Full length APP

A y-secretase

Figure 1. Generation of soluble -amyloid fragments from amyloid precursor protein
From [7].
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Figure 2. Model for AD disease progression
From [14].
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Figure 3. ADNI structureand organization
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Figure 4. Roles of biomarkersin AD drug development
ADMET- absorption, distribution, metabolism, excretion, toxicity; BBB= blood-brain
barrier; POP = proof of principle. From [37].
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Figure 5. AD drug development
Black arrows show the phases of drug development; the brick-colored arrows show the
ADNI biomarkers that could be used in that stage. From [37].
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Atlases

Page 74

Patient data

Final
segmentation

>

I Non-rigid registration
- Similarity measures
- Deformation model

Figure 6. Steps of multi-atlas segmentation
(1) non-rigid registration used to register all atlases to patient data, (11) classifier fusion using
majority voting for producing class labels form all voxels, and (111) post-processing of multi-
atlas segmentation result by various algorithms taking into account intensity distributions of
different structures. From [61].

II Majority voting IIT Post-processing
- Atlas selection - EM segmentation
- Graph-cuts
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SMCI-NC

MMCI-NC

Figure 7. Group differencesin average thickness (mm) for left hemisphere

Top row: NC vs. MCI non-converters (SMCI); middle row: NC vs. MCI converters
(MMCI); bottom row: NC vs. AD. Left mesial views, right lateral views. The scale ranges
from <20.3 (yellow) to >10.3 (cyan) mm thickness. Areas on the red-yellow spectrum
indicate regions of thinning with disease: approximate color scale in mm is 20.05 to 20.15
dark red, 20.20 bright red, 20.25 orange, and <20.30 yellow. For thicker regions: 10.05 to
10.15 blue. Any differences smaller than 60.05 mm are gray. From [109].
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Figure 8. Annual atrophy rates as a function of degree of clinical impair ment

Clinical impairment measured using baseline CDR-SB scores. Mean atrophy rates are
represented as a percent change in neocortical volume and mapped onto the lateral (left),
ventral (middle), and medial (right) pial surface of the left hemisphere. These data
demonstrate that atrophy rates are most prominent in posterior brain regions early in the
course of disease, spreading to anterior regions as the level of impairment increases, with
relative sparing of sensorimotor regions. From [111].
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204

-4 L' 2 4
Alraphy Score

Figure 9. Distribution of atrophy scores used to classify subjectswith MCI
MCI atrophy score was derived from LDA trained on data from all control subjects and

subjects with AD. Discriminant model assumed equal prior group probabilities. Individuals
were classified as having control phenotype if their scores were above —0.33. Cutoff score
was chosen to maximize overall accuracy of classifying control subjects and subjects with
AD on whom this model was trained. Average atrophy score for subjects with MCI was
-0.50. Atrophy score is not normally distributed (Kolmogorov-Smirnov test = 0.73, df= 175,
P=.025) but shows evidence of bimodal distribution. From [117].
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Figure 10. Individual trajectories of hippocampal volume change
Thick black lines indicate the mean trajectory change of each group. From [121].
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Effects of ApoE

a. NORMAL: ApoE3/3 vs. 2/2 + 2/3 Cc. MCI: 3/4 vs. 4/4
(n=52, neg P = 0.03, ROI: CSF) (n=68, neg P = 0.001, ROIL: Hippocampi

£
 am

-30%-20% -10% 0  10% 20% 30% -10% -5% 0 5%

b. MCI: ApoE3/3 vs. 3/4 d. AD: 3/4 vs. 4/4
(n=68, pos P = 0.019, ROI: CSF) (n=64, neg P = 0.01, ROI: Hippocampi;
neg P = (.02, ROI: Temporal Lobes)

Figure 11. APOE gene effects on regional brain volumes

Maps show the mean percent differences in regional brain volumes for four different group
comparisons. Percent differences are displayed on models of the regions implicated: (a)
ventricular CSF, (b) sulcal CSF, (c) hippocampi, and (d) temporal lobes; dotted lines show
the boundary of the hippocampus. From [112].
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Figure 12. Group differencesin regional shape deformations
Am - amygdala, Hp - hippocampus, V - ventricles, iLV - inferior lateral ventricles, Cd -
caudate, Pu - putamen, Pa - globus pallidus, Th - thalamus. From [122].
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Figure 13. CDF plotsfor voxel-wise correlation of progressive temporal lobe tissuelossin MCI,
AD, and pooled groups

(a) Correlations with various biomarker indices including Ap42 (AB142), tau protein
(TAU), phosphorylated-tau 181 (PTAU), tau/Ap42 ratio (TAUAB), and ptau/AB42 ratio
(PTAUAB), and (b) correlations with various clinical measures. From [113].
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Figure 14. Association of regional brain tissue volumeswith BM|1

These represent the estimated degree of tissue excess or deficit at each voxel, as a
percentage, for every unit increase in BMI, after statistically controlling for the effects age,
sex, and education on brain structure. Images are in radiological convention (left side of the
brain shown on the right) and are displayed on a specially constructed average brain
template created from the subjects within each cohort (mean deformation template, or
MDT). From [134].
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Figure 15. Correlations between biomarker levels, structural abnormalities and cognitive
performancein APOE e4 carriersand non-carriers
Smoothed biomarker (A and B) or STAND (C) zscore curves plotted as a function of

cognitive performance (MMSE). STAND = Structural Abnormality Index. From [128].
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Figure 16. The episodic memory network

Along with the hippocampal formation, the cortical areas shown here are part of the episodic
memory network. Shown here are pial cortical representations of selected parcellations in
the left hemisphere. From left to right: medial, ventral and lateral views. From [226].
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Figure 17. Biomarker trajectoriesthrough disease progression
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Page 85

ABETA142
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For each biomarker, individual Zscores are plotted against ADAS-Cog scores, and the fitted
sigmoid curve is displayed. Full circles denote healthy controls, full squares MCI patients
converted to AD, empty circles early AD, and full triangles late AD patients. Sigmoid fitting
was better than linear fitting for tau, AB42 and hippocampus (for the latter: sigmoid non-
significantly better than linear); linear fitting was better for FDG-PET. From [154].
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Figure 18. Separation of control, MCI and AD patients using a CSF AB42/t-tau mixed model
signature

A combined CSF Ap42/t-tau mixed model was applied to the subject groups. Densities of
each signature are represented with confidence ellipses, and signature membership of the
subject based on the mixture is indicated with the corresponding color (signature 1 is the
Alzheimer disease [AD] signature [red]; signature 2 is the healthy signature [green]). From
[160].
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Figure 19. Association between temporal lobe atrophy and conversion to AD

Subjects who converted from MCI to AD over a period of 1 year after their first scan were
coded as “1”; non-converters were coded as “0”. A negative correlation suggests that
temporal lobe degeneration predicts future conversion to AD. From [112].
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Effect Size of Imaging Biomarkers for MCI-Converters vs. MCI-Stable
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Figure 20. Effect size of imaging biomarkersfor M Cl-convertersvs. M Cl-non-converters

Effect sizes (Cohen’s D) of the comparison between MCI-Stable (MCI non-converter) and

MCI-Converter groups evaluated for selected imaging biomarkers. From [114].

NIH-PA Author Manuscript
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Page 89
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Figure 21. Significance maps of correlation between ventricular shape and cognitive decline
Significance maps correlate baseline ventricular shape with subsequent decline, over the
following year, in 3 commonly used clinical scores. From [126].
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4

Figure 22. M aps of associationswith MM SE scores at baselineand 1 year later, MCl-to-AD
conversion, and CSF concentrations of tau

3D maps show areas of significant associations between local volumetric atrophy in the
caudate and MMSE scores at baseline and after a 1-year follow-up interval, with p-values
color-coded at each surface voxel. From [131].
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Figure 23. PIB-PET and MRI comparisons of M Cl-converter vs M CI- non-converters

Left: Mild cognitive impairment progressor, Top: positive PIB PET. Bottom: MRI
illustrating atrophic hippocampi and ventricular enlargement. Right: Mild cognitive
impairment non-progressor. Top: negative PIB PET with non-specific white matter retention
but no cortical retention. Bottom: MRI illustrating normal hippocampi and no ventricular
enlargement. From [153].
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Figure 24. Mean biomarker levels (t-tau, p-tau and AB42) for the APOE genotype groups

The APOE 2 carriers are represented in black, the 3 homozygotes in grey and the 4 carriers
in white. The CSF Ap42 levels show a significant stepwise trend downward, from 2 carriers
to 3 homozygotes to 4 carriers; whereas the t-tau and the p-tau levels show the opposite

trend. From [209].
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Future ADNI sites

Figure 25. Worldwide ADNI sites
NA-ADNI, North American ADNI; Arg-ADNI, Argentinean ADNI; E-ADNI, European

ADNI; C-ADNI, Chinese ADNI; K-ADNI, Korean ADNI; J-ADNI, Japanese ADNI; T-
ADNI, Taiwanese ADNI; A-ADNI, Australian ADNI.
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Table 1

Comparison of ADNI-1, ADNI-GO and ADNI-2.

Page 94

ADNI1

ADNI-GO

ADNI-2

Primary goal

Funding

Duration/start date
Cohort

Study techniques
MRI
fMRI
FLAIR (micro hemorrhage detection)
T2* GRE (micro hemorrhage detection)

Vendor-specific protocols (1. resting state (task
free) fMRI to Phillips systems, (2) perfusion
imaging(ASL) to Siemens, and (3) DTI to
General Electric

FDG-PET

AV45
biosamples
“Add-on” studies

Develop CSF/blood and
imaging biomarkers as
outcome measures

$40 million Federal (NIA)
$20 million industry and
Foundation

$7 million industry for
supplemental studies

5 years /October 2004
200 elderly controls
200 MCI

400 AD

X

GWAS, PIB-PET, Lumbar
puncture

Act as bridging grant
between ADNI 1 and
ADNI 2, examine
biomarkers in earlier stage
of disease progression

$24 million American
Recovery Act funds
(stimulus finds)

2 years/ September 2009
Existing ADNI 1 cohort
plus:

200 EMCI

X X X X X

X

Develop CSF/blood and
imaging biomarker as
predictors of cognitive
decline, and as outcome
measures

$40 million Federal (NI1A)
$27 million expected
industry and foundation

5 years/September 2011

Existing ADNI 1 and ADNI-

GO cohort plus:
150 elderly controls
100 EMCI

150 MCI

150 AD

X X X X X

X
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Table 2

Characteristics of an ideal biomarker (adapted from [7] and [10]).

Characteristic

Ideal

Sensitivity: % of patients correctly identified as having AD
Specificity: % of patients correctly identified as not having AD.
Positive predictive value: % of patients who are positive for biomarker and have definite AD pathology a autopsy

Negative predictive value: % of patients who, at autopsy, prove not to have the disease.

>80% — 85%
>80%
>80%
>80%
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Mean (standard deviation) of annualized change for selected ADNI variables (from [155]).

Variable name

CSF Ap42

CSF Tau

PIB

FDG-PET: ROI-avg
Hippocampus
Ventricles
ADAS-cog total
MMSE

CDR-SB

AVLT 5-trial total

Table 7

Annualized mean change by diagnosis

NC MCl AD
-0.94 (18) -1.4 (17) -0.1 (14)
3.45 (13) 2.34(21) 1.24 (24)
0.098 (0.18)  —-0.008 (0.18)  0.004 (0.25)
-0.006 (0.06) -0.015 (0.064)  0.081 (0.047)
-40 (84) -80 (91) -116 (93)
848 (973) 1551 (1520) 2540 (1861)
-054(3.05)  1.05 (4.40) 4.37 (6.60)
0.0095 (1.14)  -0.64 (2.5) -2.4(4.2)
0.07 (0.33) 0.63 (1.16) 1.62 (2.20)
0.29 (7.8) 21.37 (6.6) 23.62 (5.6)
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Table 11

Page 110

Comparison of outcome measure methods in clinical trials: sample size estimates per arm required to detect a

25% reduction in atrophy with 80% power, 5% significance.

Method tested Samplesize AD SamplesizeMCl  Reference
Hippocampus 2 scans, 0—-6 months 462 949 [121]
3 scans, 0-6-12 months 255 673
3 scans + MC + APOE e4 86 341
Clinical ADAS-cog 2 tests, 0-6 months 745 4663
ADAS-cog 3 tests, 0-6-12 months 569 8354
MMSE 2 tests, 0-6 months 1280 6300
MMSE 3 tests, 0-6—12 months 780 3353
Hippocampal atrophy 12 (24) month 67 (46) 206 (121) [64]
Hippocampal atrophy 12 month 78 285 [59]
Ventricular expansion 6 month change 342 1180 [176]
Clinical MMSE 7,056 7,712
ADAS-cog 1,607 >20 000
MRI Entorhinal 45 /65 135/241 [177]
(Model T/Model D) Inferior temporal 79/117 199/449
Fusiform 72/114 185/485
Mid temporal 83/122 229/501
Hippocampus 67/118 179/510
Inferior lateral ventricle 76/157 160/550
Whole brain 101/189 158/541
Ventricles 86/240 189/1,141
Clinical CDR-SB 226/236 490/551
(Model T/Model D) Apas-cog 324/283 1,232/804
MMSE 482/494 1,214/1,304
Whole brain atrophy KN-BSI 81 NA [51]
Classic-BSlI 120 NA
TBM 15T MRI/3T MRI 37/48 107/159 [47]
SIENAZL 15T MRI/3T MRI 116/92 2071265
TBM SKL-MI 56L8% 48 88 [178]
Clinical ADAS-cog 619 6,797
MMSE 1,078 3,275
CDR-SB 408 796
TBM Gray matter atrophy 43 86 [120]
Temporal lobe atrophy 43 82
CSF biomarkers Ap42 5,721,531 75,816
t-tau 81,292 19,098
t-tau/ Ap42 66,293 533, 091
PET ROI-avg? 4,605 [155]
logSumZ2PNS4 2,176
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Method tested SamplesizeAD SamplesizeMCl  Reference
logSumz2PR# 1,629
DD-fROI® 249

MRI VBSI6 284
Ventricles” 21
Hippocampus7 202
BSI® 177
DD-ROIZ 73

1 . . L .
Structural Image Evaluation, using Normalisation, of Atrophy (SIENA). See text for more details;

Page 111

a nonlinear registration algorithm driven by mutual information cost function and with a regularizing term based on the symmetric Kullback-

Leibler (sKL) distance;
3
Jagust lab method,;
4Foster lab method, measures of glucose hypometabolism, log transformed;

5 . . - . .
Reiman lab method, data-driven summaries applied to independent test set;

6 . - . .
Fox lab method, ventricular boundary shift interval as a percentage of baseline brain volume;

7Schuff lab method (FreeSurfer);

gFox lab method., brain shift interval.
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Table 13

European initiatives related to ADNI (from [213]).
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Purpose Program name Funding agency Timeframe Countries

Data collection Pilot E-ADNI Alzheimer Association 2006-2007 IT, FR, GE, NL, SW, DE
AddNeuroMed EC Ongoing, 40 mo  FI, PL, UK, IT, GR, FR
Pharma-Cog WorkPackage 5 EC IMI Ongoing 5 yr SP, IT, GE, FR
(E-ADNI)
Swedish ADNI Alzheimer Association 2007-2009 SW
Italian ADNI NHS 2009-2011 IT

SOP development International harmonization of ~ Alzheimer Association 2009-2013 40 labs (EU, US, Japan,
CSF Ab42, t-tau and p-tau Australia Brazil)
EADC-ADNI harmonization Lily-Wyeth 2010-2012 24 centers in EU, US,
of hippocampal volume Canada, Australia

Infrastructure development  neuGRID FP7 2008-2011 IT, FR, SP, CH, UK, SW
OutGRID FP7 2009-2011 IT, FR, UK, US, CD
Centre pour I’Acquisition et French National Foundation 2010-2013 FR

le Traitement de I’Image
(CATI)

on AD and RD

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; EC, European Commission; IMI, Innovative Medicines Initiatives; NHS,
National Health System; EADC, European Alzheimer’s Disease Consortium; FP7, 7th Framework Programme; AD and RD, Alzheimer’s disease

and related diseases.

DE, Denmark; CD, Canada; CH, Switzerland; FI, Finland; FR, France; GE, Germany; GR, Greece; IT, Italy; NL, Netherlands; PL, Poland; SP,
Spain; SW, Sweden: UK, United Kingdom; US, United States.
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