
REPORT

Overcoming
Infrastructure
Obstacles
When Deploying
Production-Ready
Kubernetes

Nathan LeClaire

Compliments of

https://www.delltechnologies.com/Tanzu

Nathan LeClaire

Overcoming Infrastructure
Obstacles When Deploying

Production-Ready
Kubernetes

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09240-7

[LSI]

Overcoming Infrastructure Obstacles When Deploying Production-Ready Kubernetes
by Nathan LeClaire

Copyright © 2021 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Angela Rufino
Production Editor: Daniel Elfanbaum
Copyeditor: Stephanie English

Proofreader: O’Reilly Media
Interior Designer: David Futato
Cover Designer: Susan Thompson
Illustrator: Kate Dullea

October 2020: First Edition

Revision History for the First Edition
2020-10-29: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Overcoming Infra‐
structure Obstacles When Deploying Production-Ready Kubernetes, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and Dell Technologies/
VMware. See our statement of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence

Table of Contents

1. What Problems Are You Solving and Are You Ready?. 1
Is the Business Ready? 1
Are the People Ready? 3
Are Your Systems Ready? 4
Modern Applications Initiative 5
Cloud Native Applications Are About “How” 6
Identifying the Low-Hanging Fruit of Apps 7

2. Tackling the Code. 9
Separation of Concerns 9
Containerization and Artifact Storage 12
Prepare for Running On Kubernetes 13

3. Tackling the Infrastructure. 17
Where and How to Run Kubernetes 17
Bare Metal, Cloud Provider, or Bring-Your-Own? 18
Number of Clusters and Size 19
Networking 20
Storage 22

4. Operations and Security. 25
Authentication and Authorization 25
Monitoring and Tracing 26
Log Aggregation 28
Scaling 30
Upgrades 32
Business Continuity and Disaster Recovery 33

v

5. People and Process. 35
Adopting a DevOps Culture 35
Immutable Infrastructure 36
Everything As Code 38
Updates and Patches Across the Stack 38
Fleet Management 40
Continuous Integration, Delivery, and Deployment 42
Wrap-Up 43

vi | Table of Contents

CHAPTER 1

What Problems Are You Solving
and Are You Ready?

Modern businesses have to adapt to a changing infrastructure land‐
scape to achieve their growth goals. Part of that transition has been
the transformation in the enterprise to use tools such as containers
and Kubernetes. These new tools, while offering many benefits,
come with a high degree of uncertainty too. The pressure to use new
technology to stay competitive is constantly vying with other needs
of the business, such as operational reliability. A new deployment
system and infrastructure has to solve more problems than it
introduces.

How can an enterprise harmonize Kubernetes adoption with the
need to protect itself, to preserve existing value, and to ensure com‐
pliance? In this piece, we’ll discuss what you need to prepare for
adopting Kubernetes in your business.

Is the Business Ready?
Why would you be interested in using Kubernetes in the first place?
The constructs Kubernetes has allow us to move faster, deploy more
software, and quickly roll back changes in the event of a buggy
build. This workflow is beneficial to developers because it is can free
them up from laborious infrastructure tasks and allow them to focus
on shipping more code.

1

Some folks on your team might need some convincing before jump‐
ing in to Kubernetes with both feet. After all, there’s a whirlwind of
buzzwords and hype out there, and even for experts, it’s hard to keep
up. When articulating the value of adopting Kubernetes, especially
in the enterprise, you need to meet your audience where their needs
are. That includes addressing topics such as security, safe migration,
and organizational challenges for rolling out Kubernetes.

Questions Kubernetes opens up include:

• Who is going to handle what responsibilities in the migration
and day-to-day operations?

• What about teams with special hardware or security needs?
• How and where should we deploy Kubernetes?

All of these questions and their counterparts are the source of a lot
of angst. That’s what makes clearly articulating the business value of
a container orchestration tool like Kubernetes vital. You’ll need to be
prepared to address a lot of objections.

In addition to addressing objections, you also want to proactively
demonstrate what’s great about Kubernetes. Kubernetes can enable
teams to deploy incredibly rapidly compared to how teams managed
their code rollouts in the past. Not only can it allow for that rapid
rollout, but it has the primitives to make that scalable and address
concerns about monitoring and availability.

Instead of spending time fretting over configuration of the infra‐
structure, your team can define their applications using code and
track them in version control, so everyone can easily follow what’s
going on. Kubernetes then serves as the beating heart of your
deployment infrastructure, absorbing those definitions and han‐
dling many of the scheduling hassles your engineering team would
otherwise be ensnared with. Painting a vivid picture of life in
greener pastures will go a long way towards successfully making a
case.

Finally, once your organization is in alignment about the benefits of
adopting Kubernetes, you’ll want to manage expectations clearly. If
the business is under the impression that there’ll be an easy lift-and-
shift from existing code running in virtual machines (VMs) to
Kubernetes resulting in instant benefit, there will be a lot of disap‐
pointment. While Kubernetes is often presented as a panacea for a

2 | Chapter 1: What Problems Are You Solving and Are You Ready?

variety of problems, the truth is that your managers and engineers
need to be prepared for lots of refactoring existing apps to get them
working properly on Kubernetes. If a migration is handled improp‐
erly, it can have catastrophic results for the business.

Are the People Ready?
Your company might also need to be prepared to restructure some
of the organization for maximum effectiveness while adopting
Kubernetes. Organizations with traditional structure often have a
hierarchical system in which a few key architects have veto power.
Such an organization might also set policies, design principles, and
formal processes in place that everyone has to follow. This kind of
rigidity can make it difficult for an individual or project to make a
change. Businesses can begin to operate more effectively as they
adopt Kubernetes if they can make small changes from a strict and
hierarchical model to a more egalitarian one with a strong culture of
ownership.

One way to help promote such a change is by developing a site relia‐
bility engineering (SRE) team. Instead of working on one specific
service or subsystem, the site reliability team in your organization
can focus on developing solutions that benefit everyone and
improve application reliability across the board. The development of
a site reliability engineering department can enable your develop‐
ment teams to breathe easier when it comes to production deploy‐
ments as they know someone has their back when it comes
to monitoring, infrastructure deployment, and Kubernetes best
practices.

As you can see in Figure 1-1, teams can start small by spinning off
operators or having bridge members that help them adopt cloud
native practices without having to refactor the business to an edgy
SRE model right away. These folks can be responsible for deploying
software around or on top of Kubernetes.

What type of software will your SRE or pseudo-SRE team be deploy‐
ing? One important addition is the introduction of a core control
plane as a consolidated “single pane of glass.” Instead of each team
rolling their own solutions, a common platform will serve as the
interface point for the underlying infrastructure. While forcing
standardization can cause slowdowns initially, it’s building equity by
freeing the team to ship more code down the line. The SRE team can

Are the People Ready? | 3

also be responsible for deployments of shared components for sys‐
tems such as monitoring and tracing.

Figure 1-1. Enterprises and siloed organizations can learn from site
reliability engineering practices slowly, as operators and developers
from previously disparate departments work together on Kubernetes-
related projects.

Once teams adapt to the addition of an SRE team and deployment
standardization, they will be able to deploy more frequently and
with less fear, and make improvements at bridging the gaps between
the development and operations wings. Enabling a team to make
smaller, more concise calls about what they need is the key to more
easily scaling operations teams. Standardizing on a common under‐
lying deployment platform (i.e., Kubernetes) as well as common
tooling for interacting with it is key for success.

Are Your Systems Ready?
As we’ll discuss in more detail in Chapter 2, preparing for an effec‐
tive Kubernetes rollout on the systems side requires a lot of careful
thought and planning to ensure it is done correctly. Getting too lax
about security, for instance, could come back to haunt you.

For example, you could take special care in configuring your ingress
and networking, which we will discuss in Chapter 2. You can also
meticulously code review changes, audit what’s happening within
your Kubernetes cluster, and run a scanning system for your

4 | Chapter 1: What Problems Are You Solving and Are You Ready?

container images to catch vulnerabilities in your dependencies
quickly.

You can also look at existing workflows within your company to see
where you can start making changes in the quest to adopt Kuber‐
netes, and establish if your business is even ready for such a jump in
the first place. Are you already automating common operational
tasks, or is it tedious and manual? Are you using Git or other ver‐
sion control systems? Are you taking advantage of existing virtuali‐
zation or cloud systems? If you aren’t already taking these baby steps
in the direction of cloud native, you will be in for a huge culture
shock if you try to adopt Kubernetes. Take some small steps in that
direction first if your systems aren’t already headed that way.

Modern Applications Initiative
To successfully adopt Kubernetes, you must prepare the applications
that will run within it to follow the way of cloud native. Kubernetes
is a solution that can make your infrastructure sing when everything
is done its way, but might make everything wail with horrible cries
when it’s not. Often, net new apps are the best fit to run on it, as they
don’t have to unlearn the old ways of the world they were originally
coded for.

Kubernetes won’t magically be able to take a traditional application,
such as a legacy monolith depending on a huge SQL database, and
transform it into a fast modern app. To get ready for your applica‐
tions to run on Kubernetes, you’ll have to perform a lot of prep
work. While vendors might promise that lift-and-shift from an old
model can be relatively straightforward, this couldn’t be farther from
the truth. Adopting Kubernetes requires adopting a whole new
mindset. Everything from secrets management, to dependency
installation, to networking will be different from what you might be
used to when working with legacy systems. Of course, that can also
be a good thing—many of you are probably fed up with the old way
of doing things and looking for change.

Being able to use modern cloud systems and tools built on top of
Kubernetes will enable engineers to be more productive. In a slow-
moving environment, access to certain legacy data systems might be
impractical or impossible. Adapting to the new landscape with
heavy lifting done by cloud, container platforms, and trusted virtual
control planes in the data center will help companies to speed up.

Modern Applications Initiative | 5

We’ll discuss more on architecture and considerations for cloud
native applications in Chapter 4.

Cloud Native Applications Are About “How”
Many folks have probably heard the term “cloud native” bandied
about. It’s easy to get an incomplete picture of what it means, and
you might be surprised to find out that it doesn’t just encompass the
public cloud, but private clouds too. It’s a philosophy and system of
design that can be leveraged to deploy applications that can funda‐
mentally handle resiliency, scale, and several other concerns natu‐
rally. Adopting cloud native practices can help your team learn,
grow, and deliver high-quality software.

To best benefit from what cloud native applications have to offer,
you have to be continually asking yourself “how.” After all, it’s not
magic behind the scenes with tools like Kubernetes, but a system
that will do exactly what you tell it to do like any other computer. So
it helps to understand how it will be able to deliver on its promises
—for instance, how will you scale out apps when needed? This
requires an understanding of not only Kubernetes concepts, but
how you will deliver the underlying hardware and resources to allow
those apps breathing room. After all, the control of Kubernetes will
simply not schedule our apps if the resource claims cannot be
enforced.

What’s another “how” for cloud native apps? One thing you can’t
take for granted is resiliency, i.e., how will you run Kubernetes with
high availability, a stable networking configuration, and with the
right trade-offs between flexibility and security? We’ll discuss more
on those topics specifically in Chapter 4.

Likewise, how will you properly adapt your current applications to
conform to the Kubernetes way? Kubernetes enforces a new model
for application architecture, which requires extra thinking about
how you will define your workloads. The blessing of highly automa‐
ted and flexible systems like Kubernetes comes with responsibility,
too.

6 | Chapter 1: What Problems Are You Solving and Are You Ready?

Identifying the Low-Hanging Fruit of Apps
As you identify ways that your business can move forward with
Kubernetes and cloud native, identifying key areas to get started in
will help enable your success. For instance, Kubernetes has a lot of
obstacles and risks when it comes to running stateful workloads
such as databases, so those types of workloads should be avoided for
early picks. There’s also no need to jump in the deep end of the pool
by migrating tier 1 workloads, a project which would be risky for
teams without much container experience under their belt.

Instead, for your first choices to deploy on Kubernetes, it’s best to
choose applications that are fairly simple, so they can be adapted
with relative ease. There’s probably a lot of low-hanging fruit on tier
3, 4, 5, and beyond that your team can pluck. In terms of identifying
good candidates, there are some common qualities that will help
you assess them. If they are stateless, that’s a big win, because man‐
aging state on Kubernetes requires extra planning and caution.

The less pressure there is on the applications in their final environ‐
ment, the better. Development use cases can excel, like allowing
software engineers to run their forks on a test cluster to accelerate
their workflow. Production apps that are only lightly relied upon
(e.g., an internal best-effort app where no one needs to get paged if
it goes down for a while) also can make for a great fit—they offer
some of the excitement of deploying something to production, with
low risks and an opportunity to experiment and learn what works
well and what doesn’t.

All in all, it’s best to walk before you run—and before you know it,
you’ll be sprinting around the cloud native landscape like a pro.

Identifying the Low-Hanging Fruit of Apps | 7

CHAPTER 2

Tackling the Code

Kubernetes is a system for containerized apps. It allows us to decou‐
ple our apps from their scheduling layer, but it asks for discipline
from us in return. A big benefit of Kubernetes is being able to
declaratively specify what you want and let the “brain” of Kuber‐
netes handle the heavy lifting of ensuring everything gets arranged
correctly. The effort to port applications to the Kubernetes model
eventually starts paying off quite quickly, but a Kubernetes migra‐
tion can’t be performed in a day—there are several hurdles your
team will have to clear first.

In this section, we’ll discuss the practical concerns your team will
encounter as you move forward with tackling the challenges of a
technical rollout of containers and how to address them.

Separation of Concerns
Traditionally, the applications you were responsible for and the
manner in which you ran them in production tended to get confla‐
ted, with fuzzy separation between how the app was defined and
how the app was run. For instance, vital configuration might live
inside a database table instead of in a version-controlled system.
Because traditional deployments often become a mishmash of code
that is over-specific to the environment they’re run in, porting appli‐
cations from one environment to another can require a massive
investment of engineering resources. When the underlying platform
is not cleanly designed, the temptation is strong to make architec‐
tural compromises and reach directly into backing systems.

9

Kubernetes helps you separate out these concerns thanks to its clean
design. It also helps you split out applications into discrete logical
components, so that monoliths can be decomposed into smaller
pieces for effective scaling. Reviewing the twelve-factor app method‐
ology, originally popularized by Heroku, is a good idea for teams
getting started with Kubernetes. Many of these guiding principles
were key influences on the way modern container-based app archi‐
tecture developed.

In Figure 2-1, you can see an example of some of the complexities
that arrive at your doorstep without clean separations in what you
are deploying. Processes can read and write shared local files with
abandon, and upgrading or changing dependencies for one applica‐
tion can break others. Applications don’t have any separation of
concerns from their underlying infrastructure.

Figure 2-1. Cotenant processes traditionally share config files, libraries,
and more, which can cause all sorts of chaos.

How does Kubernetes, in contrast, promote separation of concerns?
It has been designed so that workloads are specified using a set of
common best practices. Static pre-baked container images can help
you fix the problem of libraries changing out from underneath your
feet, but Kubernetes doesn’t stop there. It encourages you to get even
more modular.

For instance, if teams are sharing infrastructure, even making
changes to something simple like an nginx reverse proxy can cause
headaches. The right balance of easy-to-customize for a particular
team, yet generalizable to all shared needs, might prove evasive. In
Kubernetes, by contrast, you can cleanly separate the configuration

10 | Chapter 2: Tackling the Code

https://12factor.net
https://12factor.net
https://nginx.com

pieces into a ConfigMap, and isolate previously mixed use cases into
their own deployments.

If a problem occurs in one deployment update, it won’t affect the
others. While it might have been too much hassle to have so many
small deployments running around before, Kubernetes encourages
and enables it. This is illustrated in Figure 2-2.

Figure 2-2. Kubernetes can help smooth over operational challenges by
keeping workloads separate from one another and the underlying
infrastructure.

Likewise, applications and the infrastructure code that surrounds
them don’t have to spend nearly as much effort fretting about how
they are run in production. A regularly scheduled batch job is a
good example. In your legacy systems, the code of the job itself
might be performing operations such as querying a data store to
ensure that only one job is being run at a time. That batch job might
also log to an esoteric location and, generally, have a fairly cryptic
(yet critical) operational lifecycle. In Kubernetes, by contrast, a lot of
those concerns are handled by a standardized move to the Job
resource. Users can use standard Kubernetes tools to check logs,
Kubernetes itself will schedule the job appropriately according to the
user-specified config, and any needed secrets or config already

Separation of Concerns | 11

https://oreil.ly/AIWP-
https://oreil.ly/srEqo

provided for other workloads on Kubernetes can be reused without
commingling.

Containerization and Artifact Storage
It’s usually not very long into a deployment of containers that a lot
of questions emerge about where exactly your images should be
kept, how they should be kept, and how they should be secured.
Because distribution of images was one of the things that propelled
the modern container movement forward in the first place, you
should hardly be surprised.

It’s not uncommon for teams to start off simply by sharing Docker‐
files, which contain a simple but composable way of describing how
your container images should be built. This basic technique allows
developers to hit the ground running fast, because building and test‐
ing the images locally, as well as sharing them to a remote registry, is
drop-dead easy. Unfortunately, what works well in the fast and loose
world of local development doesn’t necessarily line up with the
needs you’re going to have when you go to build and run images in
intermediate environments and production.

It’s natural for your team to then grow and evolve from that basic
state as they continue to move forward. First, you might start off
with a bit of shell glue and multiple Dockerfiles. You might then find
yourselves in hot water as you reinvent the wheel in your own
test-and-build systems, and such a system often gets brittle to main‐
tain. That will naturally lead you to explore other options, such as
Cloud Native Buildpacks. Cloud Native Buildpacks offer a prescrip‐
tive solution that helps you balance control between developers and
operators, compliance requirements, and maintainability.

You will also need to decide where you’ll store your container
images by choosing an image registry. While there is a simple open
source Docker registry available, there are also projects with a lot to
offer on top of simple storage such as Harbor, a registry sponsored
by the Cloud Native Computing Foundation (CNCF). Harbor
doesn’t just store and serve your container images—it also secures
your builds by scanning and signing them. Your team also needs
to weigh the cost of operating an open source image registry like
Harbor against the option to use a vendor’s solution.

12 | Chapter 2: Tackling the Code

https://buildpacks.io
https://goharbor.io

Prepare for Running On Kubernetes
How do you need to modify or build your application so it can
run effectively on Kubernetes? There are a lot of considerations,
including:

• Is your logging ready to go?
• Do you have liveness, readiness, and metrics endpoints set up?
• What’s the best way to architect the application’s pieces with

Kubernetes resources?

In this section, we’ll discuss the nuts and bolts to consider when
porting your application to run effectively on Kubernetes.

Logging
When adopting Kubernetes, you’ll have to rethink logging for your
applications. Kubernetes expects processes to write their logs to the
console, not to an arbitrary file on the system somewhere as is often
the case with legacy apps. It’s no surprise, of course, that logs are an
extremely popular way to gain access to information about what’s
happening inside an application. By adopting the best practices of
container logging, we can make sure they’re not just available for
access, but indexed and highly searchable too.

Emitting lines of output to a log is a natural reflex for developers,
and handling logging is well within the sphere of most operators’
core competencies. When adopting cloud native practices, however,
the traditional notion of what will happen with logs is no longer
present. Any given app has a number of things that could go wrong,
such as the underlying node crashing, that would make its logging
output unavailable if it was simply written to the local system.

When such an event happens, Kubernetes will reschedule the pro‐
cess, but administrators still need to be able to access the logs to
understand what has been happening with the app. So your apps will
need to be changed to log to the console as Kubernetes expects. If
you have a lot of control over how logging is done, this can likely be
handled at the application level. This might be a simple code change
to write to the console instead of to a local file. If the underlying app
is more of a black box, you might have to find an alternative way to
redirect the output.

Prepare for Running On Kubernetes | 13

Once logs are set up to make Kubernetes happy, the possibilities of
what comes next are endless, such as sending to a centralized log
aggregator. More discussion on this will follow in Chapter 5.

Lifecycle Endpoints
One of the ways Kubernetes expects you to conform to its model of
how the world should work is by adding special endpoints to your
code that expose information to the outside world about what’s
going on in your program. These will allow Kubernetes to make
infrastructure decisions (such as whether to reschedule a Pod or
when to start sending it traffic), and integrate with monitoring sys‐
tems for better visibility into what’s going on. Figure 2-3 shows a
diagram of what some of these preparations end up looking like in
practice.

Figure 2-3. As you move your application to Kubernetes, you’ll have to
think about adding custom code to integrate with the “hooks” Kuber‐
netes gives you to enable new automation and monitoring.

Some things to consider include liveness endpoints and readiness
endpoints for liveness and readiness probes. Sometimes there’s
nothing quite like a good old-fashioned restart to fix problems that

14 | Chapter 2: Tackling the Code

https://oreil.ly/siTfh

are happening in a live application, but having to manually step in
and do this is annoying. Is there a way we can communicate to
Kubernetes that it should take care of that on its own? This is the
function that liveness probes serve. After all, little is better equipped
to report on an application’s internal state than the application itself.
With a liveness endpoint, we can request Kubernetes to restart our
Pod if we hit an undesirable state.

Likewise with readiness probes, we can ensure that traffic is not sent
to our app until it’s ready. While it might be live in the sense that it is
technically running and not in a broken state, it might have to do
some setup work or have other delays before it’s ready to serve traf‐
fic when it is started. Readiness probes allow you to break out this
part of the deploy lifecycle with more granularity and ensure that
when traffic is routed to your app, it’s truly ready to serve it.

You’re likely also going to want to expose metrics information for
monitoring, which will allow you to track everything from how
many HTTP requests your application is receiving to how many
errors it has encountered. A common approach for this is to expose
a /metrics endpoint that Prometheus (an open source time series
database) can scrape. You can likely even leverage existing libraries
for Prometheus to get a lot of statistics without needing to do much
legwork. While properly porting applications takes time and
patience, it will pay off down the line in operations.

Rearchitecting for Kubernetes
There’s no two ways around it—even just writing the specifications
for your applications to run on Kubernetes will require some preci‐
sion and elbow grease. Your team will probably soon find them‐
selves knee-deep in the markup language used to define Kubernetes
components (YAML), and though it might be intimidating at first,
eventually understanding and generating sophisticated specs will be
second nature. It will, however, require some planning to make sure
you are conforming everything properly to the shape that Kuber‐
netes expects.

It’s not always clear what the mapping from a legacy system to
a Kubernetes construct should be. Should this be a Deployment,
which is mostly for stateless services? Should it be a DaemonSet that
will run on every host? Or does it need to be something even
more custom? Brainstorming the architecture with your team and

Prepare for Running On Kubernetes | 15

https://prometheus.io
https://oreil.ly/5zNF3
https://oreil.ly/tBQKt

exploring your options will be needed to get the best result. Choos‐
ing the right boundaries for where to split things into their own con‐
tainers or Pods will be something you’ll have to tackle as well.

A lot of legacy monitoring systems, for instance, expect to have the
ability to run some type of process side-by-side with the thing
they’re monitoring. It might be the best fit for those type of use cases
to have a sidecar container that runs directly next to your app in the
same Pod, so the monitoring system can access the things it needs to
collect telemetry data. You’ll have to make sure to integrate that in
the specifications you write for Kubernetes.

Networking is one area that will probably require some whiteboard
sessions before implementation. There are a lot of questions to
address: What is the best way for your services to to talk to each
other and to the outside world? Should you go for something fully
open source or should you go for a vendor solution? Are you better
off configuring everything yourself or are there ecosystem projects
you can leverage? We’ll discuss networking further in Chapter 3.

If you want to adopt distributed tracing (which we will discuss in
Chapter 4), you’ll need to update the code of the apps themselves to
collect and send that data, a process called code instrumentation.
This will allow you to visualize the flow of one request as it moves
through multiple services and understand when one service is slow‐
ing down another.

These hurdles might look like fun challenges to some folks as they
adopt new infrastructure, and they also might look like a risky slog
to others. At any rate, it’s true that we can’t simply assume running
applications on Kubernetes will be a straightforward lift-and-shift. It
requires rethinking the way that we have done things previously. On
the other side, however, is a better world where we have higher
availability, applications structured according to industry best prac‐
tices, and a happier engineering team.

16 | Chapter 2: Tackling the Code

CHAPTER 3

Tackling the Infrastructure

Given the enormous momentum and energy in the Kubernetes
community, it’s no surprise that end users have tinkered with
deploying it on every platform from ARM, to embedded, to high-
performance supercomputers. So, there are no shortage of options
available for teams to evaluate when considering the important and
fundamental question—once you’ve made a decision to run Kuber‐
netes, where and how do you run the dang thing? Additionally, given
that many teams are not Kubernetes experts, how are they supposed
to evaluate the various options available? These questions will have a
huge impact on your organization’s success or failure in adopting
Kubernetes.

Where and How to Run Kubernetes
Ultimately, most teams need to carefully and honestly evaluate their
business needs, and weigh them against the various costs and bene‐
fits of possible solutions such as:

• Running your own Kubernetes cluster(s)
• Running on a cloud provider’s Kubernetes service
• Running on premises using a trusted vendor’s Kubernetes

offering

Every team needs to decide for themselves what the right solution is,
but in general, it’s safest to assume that deep knowledge in Kuber‐
netes is not and should not become a core competency of your

17

https://oreil.ly/sQZNl
https://oreil.ly/sQZNl

business. It’s important to weigh the natural instincts engineers have
to adopt new technology, learn more, and understand how their
component systems work with a balance that encourages us to make
smarter decisions about how much we can accomplish by simply
investing with a knowledgeable partner to operate the systems
instead.

To that end, having infrastructure-focused engineers make time for
experimentation with the platform using tools such as minikube,
Amazon Web Services Elastic Kubernetes Service (AWS EKS), and
kubeadm during their sprints can be a good engineering investment.
Using the many Kubernetes provisioning tools available can allow
your team to dip their toes in the water with lower-stakes environ‐
ments like development, test, and staging. It will also allow your
team to get a realistic feel for the challenges of operating the plat‐
form in production. Your team might gain an appreciation for let‐
ting someone else handle the specifics, or come away with a renewed
confidence in their own ability as they jump the hurdles of com‐
mand line configuration, ensuring proper networking for the clus‐
ter, digging through administrative YAML, and so on. If there is
buy-in from engineering to move forward with a specific Kuber‐
netes distribution, the team can then be freed to do more productive
tasks.

In these early experiments and evaluations, you will have some par‐
ticular administrative concerns you want to pay attention to. In the
rest of this chapter, we’ll discuss the considerations of how many
and what type of Kubernetes clusters you should deploy, networking
issues your team should consider, and how your team should think
about storage.

Bare Metal, Cloud Provider, or Bring-Your-
Own?
Trade-offs you have to weigh when considering where to operate
your Kubernetes cluster include operational expense, scalability, and
platform independence. For instance, let’s say you want to roll your
own cluster. You might be tempted to glue together various ecosys‐
tem projects, but leaning heavily on open source tools has its issues.
Downstream projects will often need to move at the same blistering
pace as the upstream core Kubernetes if they’re going to remain
stable and usable. That journey may not be smooth for end users as

18 | Chapter 3: Tackling the Infrastructure

https://oreil.ly/UVt1H
https://oreil.ly/MB1mQ
https://oreil.ly/qBa4p

migrations can sometimes go haywire. The reality of open source
projects is that they will sometimes prioritize making workable
project decisions over a smooth upgrade process for end users.

Using a vendor’s distribution of Kubernetes can alleviate many
issues that crop up with trying to do it all yourself, albeit with its
own concerns such as lock-in or a lack of flexibility. With Kuber‐
netes, it’s possible to deploy and manage distributed workloads
without even touching the underlying machinery if someone else
sets it up for you. A Kubernetes vendor will often have a blessed
path for this type of setup for you to move forward with and addi‐
tional goodies on top. It’s often a good bet that using a managed
Kubernetes platform, be it in the cloud or in the datacenter, will save
you far more money than it will cost you in the long run. Not every‐
one, of course, has the luxury of using such a product, but for those
who can, we recommend it.

Thanks to the constructs Kubernetes has to isolate workloads
without the overhead of virtualization, it might be tempting to ditch
virtualization entirely and go for a bare metal setup. While poten‐
tially a good fit for some use cases, this is rarely a good strategy to go
all-in on. Virtualization and cloud offer so many benefits that they
are generally well worth the costs they impose. After all, every cloud
provider out there is using virtualization of some form to hyperscale
their own Kubernetes offerings.

With VMs, the process to provision new nodes is simple. By con‐
trast, in the physical realm you have to be prepared with unused
server racks ready to go, which is costly. VMs also free you from
having to worry about hardware compatibility issues, and spinning
up new instances from a pre-configured template is trivial. Likewise,
everything from monitoring to storage to software updates is made
easier by the use of VMs due to the abundance of solutions and flex‐
ibility provided by the hypervisor.

Number of Clusters and Size
It’s likely, of course, that your team is going to have more than just
one monster Kubernetes cluster that every workload is run on.
Some decisions about where and how to split out workloads will
have to be made. Luckily, you won’t necessarily need a new Kuber‐
netes cluster for each team or project—Kubernetes namespaces,
which offer a way to group related resources together, help you stay

Number of Clusters and Size | 19

https://oreil.ly/iEcNn

organized and separate out workloads for different purposes. With
namespaces, you can have a clean distinction in your cluster
between user and system workloads, various teams, and various
projects.

While namespaces are helpful, you might still find yourself in situa‐
tions where you need to align clusters across different environ‐
ments. Heterogenous environments such as a workload destined for
on-premises and a workload destined for the cloud are some places
you will need to deploy separate clusters. While theoretically feasi‐
ble, the operational logistics of making a hybrid cloud or multi-
cloud approach might be too much of a pain, and it might make
more sense to split those workloads out into separate clusters
entirely.

How about the number of nodes, and what type of nodes, you’ll
deploy in the cluster? There are limits on how large one Kubernetes
cluster can grow. There’s also an upper bound on the total number
of Pods, containers, and Pods per node to consider. In addition to
sizing the cluster appropriately, you’ll want to invest some effort fig‐
uring where in the right balance lies for your organization between
fewer large nodes and comparatively large swarms of small ones.
You can, of course, mix node types and flexibly schedule Pods across
different types as needed.

Networking
Configuring application networking can be a pain. Traditionally,
processes would listen on a static or dynamically assigned port, but
managing port allocations with both methods has issues. Statically
assigned ports might require the operator(s) to maintain a spread‐
sheet or database about who is listening where, which is both tedi‐
ous and error prone. Dynamically assigned ports solve some of
these issues by choosing a place to listen arbitrarily, but require the
downstream services to somehow find out what those locations are.
Kubernetes solves these problems elegantly with its service-to-
service networking model.

In Kubernetes networking, every Pod gets its own IP address, and
that IP address can be assumed to have certain properties. This is
highly compatible with porting applications that previously used to
run on VMs to run in containers, since the networking model is
similar. For any given Pod to communicate with another, it simply

20 | Chapter 3: Tackling the Infrastructure

https://oreil.ly/Wd9zf

has to access the IP address of the destination Pod. It’s rare, however,
that Pods will talk directly without using intermediate Service
resources, which function as a gateway for service-to-service com‐
munication.

End users of Kubernetes can take advantage of constructs specific to
their underlying infrastructure to accomplish this by making use of
a plug-in conforming to the Container Networking Interface (CNI).
CNI plug-ins run within a Kubernetes cluster and handle the details
of underlying network machinery, i.e., they enable Pod-to-Pod com‐
munication. That opens up the door for a variety of implementa‐
tions including, ones that lean on proprietary platforms and ones
that should work when deployed to any type of infrastructure.

The flexibility of the CNI is a big blessing. So how do you know
which one to choose? That will depend on your team’s unique needs.
If there’s one native to the cloud platform you’re deploying on,
selecting that one is probably prudent. Indeed, many Kubernetes
distributions have already made this choice for you, freeing you
from have to worry about that in the first place. Failing that, con‐
sider what’s most important to you in selecting such a critical piece
of infrastructure.

Is it performance and observability? If so, Cilium might be up your
alley as it has performed well in benchmarks. Is it simplicity that
you’re after? Flannel might be more your speed. Encryption and
security? Take a look at Weave Net. Reviewing the list in the Kuber‐
netes documentation and experimenting with a few different CNI
installations to get a feel for their operational lifecycle is advised.

Load Balancing and Ingress
To have high availability for any app, whether it’s an externally-
facing server or an internal tool, you will need to set up and config‐
ure load balancing for your cluster. You will also need to ensure
services can communicate with each other. You might be familiar
with setting up and configuring a traditional load balancer by edit‐
ing its configuration to indicate which backends it should direct
traffic to, but things in Kubernetes work a little differently than you
may be accustomed to.

For starters, groups of Pods can be exposed to other Pods within the
cluster using the Kubernetes Service abstraction. By defining a Ser‐
vice for your deployment, a stable IP address will be assigned to the

Networking | 21

https://oreil.ly/Zijc9
https://oreil.ly/SVowO
https://cilium.io
https://oreil.ly/Zu6J3
https://oreil.ly/RPBeR
https://oreil.ly/IWdZJ
https://oreil.ly/IWdZJ
https://oreil.ly/oGM0j
https://oreil.ly/JQHD9

group of Pods, and depending on configuration, a DNS entry too.
This enables service-to-service communication. But once we have
services successfully communicating with each other, how do we
expose them to the outside world?

One possible way to do so is by defining the service as a NodePort
type to forward a port from the Kubernetes host to the Pod, but that
brings us back to the many problems associated with static port
assignment we discussed in the previous section. Instead, we likely
want to choose between a LoadBalancer type for our service or
using an Ingress object. What’s the difference?

A Load Balancer Service type will dynamically create an external
load balancer once created using the Kubernetes API, so it’s best
suited for cases when that’s the desired result. Usually, the platform
on which you are running Kubernetes will have the “correct” type of
load balancer configured by default (e.g., AWS Application Load
Balancer (ALB) when running on AWS), and additional configura‐
tion options can be set through the use of additional metadata in
your YAML specification. Over the lifecycle of your deployment,
Kubernetes will take care of rotating Pods in and out as backends for
the LoadBalancer automatically as needed.

Ingress, by contrast, is a completely separate API object type that
can be used to create processes within the cluster that can handle
load balancing, SSL termination, and name-based virtual hosting.
Using Ingress is likely favorable to using LoadBalancer in many
cases, since creating an external load balancer usually has extra
costs. Ingress also has an appeal when it comes to portability—if
you’re using an open source solution like nginx, it can be picked up
and used on another Kubernetes cluster with relative ease, even if it’s
on a different platform.

Storage
Earlier, we alluded to the fact that stateless workloads are a better
choice for migrating to Kubernetes first than stateful ones. Why?
What about workloads that are stateful by nature such as databases,
or would require too much effort to port to be completely stateless?

To answer these questions, let’s first look at the architecture of
Kubernetes itself. Kubernetes is a system dedicated to helping engi‐
neers deliver resilient and scalable applications, and to accomplish

22 | Chapter 3: Tackling the Infrastructure

https://oreil.ly/wjV4F
https://oreil.ly/C7DEH
https://oreil.ly/Vcr6W
https://oreil.ly/qGpZ1
https://oreil.ly/qGpZ1
https://oreil.ly/4ylZd
https://oreil.ly/4ylZd
https://oreil.ly/jJjoi

this, it has a specific set of expectations of apps that run on it. One of
these is that a Pod could be terminated and restarted on another
node at any time due to an eviction, a changed definition, or an
infrastructure failure. That presents unique complications for state‐
ful workloads—this operation might be destructive and unrecovera‐
ble for them if handled poorly. To address these challenges, the
Kubernetes project has worked hard to make Kubernetes a friendly
place to run stateful apps with a few different constructs.

One such construct is that access to more sophisticated storage
capabilities than the default overlay filesystem is accessible using the
API. Existing underlying storage created outside of Kubernetes can
be modeled in the API and “claimed” by apps within Kubernetes
using Persistent Volumes. Volumes can even be created on the fly by
Kubernetes itself using dynamic provisioning. Apps that are stateful
but can handle a reschedule, such as caches, can use ephemeral vol‐
umes to request temporary storage on either the underlying host
filesystem or in an external volume (such as a mounted block stor‐
age device). At a higher level, abstractions such as StatefulSet then
can help to tie all of these lower-level pieces together into a common
operational framework.

Through all of this, Kubernetes offers a rich suite of built-in storage
classes that enable support for common storage systems, such as
AWS Elastic Block Store (EBS), vSphere volumes, and Ceph RADOS
Block Device (RBD). You are not limited to the built-in classes
either. Kubernetes has a Container Storage Interface (CSI) where
drivers can be defined for arbitrary backing storage systems. While
usually such customizability won’t be needed thanks to the compre‐
hensiveness of the built-in drivers, it’s no small feat that the Kuber‐
netes community has made this component pluggable and it’s
something that just might save your team’s bacon if you end up hav‐
ing custom storage needs.

As you can see from the discussion in this chapter, Kubernetes offers
many powerful tools in its belt but requires that the user configure
everything heavily for maximum effectiveness. Doing as much
homework as possible at understanding the ideal Kubernetes archi‐
tecture for your own unique infrastructure needs will be required to
succeed with adoption.

Storage | 23

https://oreil.ly/5jWrB
https://oreil.ly/jbPLx
https://oreil.ly/jbPLx
https://oreil.ly/S7JQr
https://oreil.ly/jaYwe
https://oreil.ly/jaYwe
https://oreil.ly/JNaLh

CHAPTER 4

Operations and Security

If you don’t secure Kubernetes and its associated networking com‐
ponents, your business might get cryptojacked or worse. Likewise,
just getting the applications onto the platform in the first place is
only the first step in a long production lifetime—good monitoring is
critical to make sure they keep running fast and smoothly. In this
section, we’ll cover operations and security challenges and possible
solutions you should investigate while adopting Kubernetes.

Authentication and Authorization
Operations in Kubernetes entail a lot of challenges around client
authentication and authorization. After all, how do you, the operator
of a Kubernetes cluster, know and trust that the Kubernetes client
attempting to connect and perform API calls is who they say they
are and should be trusted? Authentication is the process of ensuring
that the client making the request has a particular identity. Authori‐
zation is the process of making sure that, once authenticated, the
client has permission to perform the action they’re attempting.

These concepts are important for automation on top of Kubernetes
as well as manual operator access because permissions should
always be scoped down as much as possible. After all, cluster admin
access on Kubernetes is root-level access on the whole cluster—
otherwise, Kubernetes wouldn’t be able to perform all the operations
it needs to deliver its end results.

25

https://oreil.ly/-Ztee

Kubernetes provides some constructs for managing these issues, but
has limitations too. For instance, Kubernetes does not have any
notion of a user account. Everything must be managed using certifi‐
cates, role-based access control (RBAC), and service accounts, which
are a way of defining a particular set of API permissions that a Pod
running on the cluster is authorized for.

If an external client makes a request to the Kubernetes API, the API
will check the certificates presented by that client to find out which
user is making the request, and determine if the user has the correct
permissions based on the cluster’s RBAC configuration. While
Kubernetes assumes that an external system manages the user
accounts, it infers which user is making the request from the presen‐
ted certificate, and checks whether the user has the right permission
to perform the operation based on the RBAC config. For organiza‐
tions that need to integrate with a form of external identity source
such as Active Directory, Kubernetes also supports OpenID Connect
(OIDC), a flavor of OAuth 2.0 that allows integration with such
identity platforms. Just as we have discussed previously, integrating
OIDC will require additional effort if you decide to roll your own
cluster instead of using a pre-configured offering.

For workloads that are running within the cluster and need to per‐
form operations using the Kubernetes API, such as updating the
container image used by a pod, service accounts are used to grant the
correct permissions. In fact, all Pods have a default service account,
and it’s important to check that the default one on your cluster is
scoped down. While you generally want to restrict permissions, you
might have other use cases where it’s OK for Pods to have higher
privileges. For instance, you might have a deployment bot that rolls
out new versions of an app every hour, and it will need its service
account configured correctly to enable this.

As with many aspects of Kubernetes, the documentation for both
authentication and authorization are important to review in detail as
you move forward. Those will help guide you towards ensuring that
access to critical systems such as the Kubernetes API are safe.

Monitoring and Tracing
Monitoring and tracing play a key role in delivering on the promise
of an optimal vertex between speed and safety. Taken together, mon‐
itoring and tracing broadly define what is known as observability:

26 | Chapter 4: Operations and Security

https://oreil.ly/P6HZN
https://oreil.ly/RBk_s
https://oreil.ly/Lj-8O
https://oreil.ly/AT5k3
https://oreil.ly/26mSq
https://oreil.ly/_U6fs

the ability to ask questions of your systems and understand what is
happening within them. The underlying source of a given issue
might be a “good” (lots of interest in your public website) or “bad”
(accidentally triggering expensive SQL commands that take down
your system) root cause, but either way, you need to be able to
understand what is occurring so your operators can fix it. Monitor‐
ing and tracing are necessities for the “measure everything”
approach many DevOps teams take—not just for reacting to prob‐
lems, but for improving the general health of your service and influ‐
encing ongoing development.

Distributed tracing is a technique that can help you achieve this goal.
Tracing allows you to visualize the lifecycle of one request as it flows
through different components of the system. Tracing is especially
important if we’re rolling out microservices, a popular architectural
pattern separating apps into small decoupled services.

How do you want to approach monitoring and tracing in Kuber‐
netes? Many teams start simply with infrastructure metrics monitor‐
ing. Seeing a big spike in metrics such as CPU usage, memory, or
number of jobs waiting in a queue can be a big hint that something
is way off in your systems. This might be handled a little differently
than you’re accustomed to, though, as you’ll need to shift your focus
away from the node level and towards the Pod and application level.
This type of metrics deployment is readily achievable in many ways
including by using open source systems such as Prometheus, which
is a scrape-based system that gathers information from Pods every
15 seconds.

Prometheus is far from the be-all and end-all of monitoring, but it’s
a lovely option to have available because previously the availability
of robust metrics time series databases was slim. Prometheus has
heaps of solutions available for everything under the sun from use
cases that need to push data instead of following the pull-based
model, alerting, and creating gorgeous dashboards with Grafana.

Once you have monitoring set up, integrating a tracing system is a
logical next step. Jaeger, which is depicted in Figure 4-1, is a CNCF
project that enables you to send traces from libraries embedded
within your applications based upon the idea of span blocks describ‐
ing what’s happening over time and how long it’s taking. Based on
this data, you can search for what’s slow or having errors in your

Monitoring and Tracing | 27

https://prometheus.io
https://oreil.ly/CylCz
https://oreil.ly/CylCz
https://oreil.ly/2aPhI
https://grafana.com

programs, and follow along with what happened at each step in a
call that spanned multiple services.

Figure 4-1. The waterfall view in a tracing system shows you what
happened in your apps over time. Each span represents a timed chunk
of work.

Jaeger offers a great all-in-one mode to get started, so it’s an easy
way to experiment and get your legs under you as you begin to
explore the landscape of tools and standards such as OpenTeleme‐
try. When it comes time to use tracing in production, you could
scale up Jaeger by using a data store such as Cassandra or you could
send your tracing data to a vendor such as Honeycomb. There are a
lot of options available—give them a spin and see if your team will
benefit from adopting tracing.

Log Aggregation
When managing production operations, dealing with logs is inevita‐
ble. Not only are they the most common way for your company’s
applications to output data describing what’s happening within your
apps, they are often your only way to figure out what’s happening
inside the black boxes your system relies on (such as the daemons of
Kubernetes itself). Traditionally, processes might log to inconsistent
places within your infrastructure, as depicted in Figure 4-2. Logs
might end up in a system journal, a file in /var/log, or some other
destination altogether.

28 | Chapter 4: Operations and Security

https://opentelemetry.io
https://opentelemetry.io
https://oreil.ly/F7_hR

Logs in Kubernetes are a whole different ball game from what you
might be accustomed to. We discussed porting your apps to log the
Kubernetes way in Chapter 2. So what happens once that’s set up?

Figure 4-2. Managing logs is a perennial infrastructure pain.

Once the containers are configured properly, you need to extract
those logs and make them useful. Kubernetes has some command
line options available for viewing logs, but very little in the way of
getting them all at a glance. Looking up logs from various parts of
the system can be tedious and confusing. Given the ephemeral
nature of containers, the Pod might be rescheduled and the logs
gone by the time an operator gets a chance to look over what hap‐
pened. Storing your logs in a centralized system is, therefore, impor‐
tant for operational, regulatory, and compliance reasons. Centralized
logging is a way of importing all the logs from your Pods into one
storage system for access and querying.

So what does tackling centralized logging look like? Figure 4-3
shows a diagram illustrating the basic principles.

In centralized logging, all logs (for both applications and the system
level) are forwarded to a centralized storage system (such as Elastic‐
search) that indexes them and makes them available for easy search‐
ing. Often, there will be intermediate or post hoc processing applied
as well to add structure and make diving through the logs to find the
relevant information easier for end users.

Intermediate layers like Cribl and fluentd can also be used to for‐
ward or “tee” the logs to various locations. For instance, one might
want to archive all logs to system storage as they come in as well as
forwarding them to an indexing system for free-form search.

Log Aggregation | 29

https://elastic.co
https://elastic.co
https://cribl.io
https://fluentd.org

Figure 4-3. Kubernetes opens up new options for centralizing logging
infrastructure.

Once the basic architecture is set up, you can tune to your heart’s
content. For instance, you might add more custom rules that parse
structure out of otherwise flat plain-text logs. You could also set up
indexes for fast searching on relevant fields in that parsed structure.
Eventually, your team might even consider sophisticated techniques,
such as running machine learning on logs, to identify problems
before they affect uptime. The centralization of logs has many bene‐
fits and, especially since Kubernetes has and encourages a lot more
moving pieces than older techniques, will help your team to trouble‐
shoot production issues more quickly.

Scaling
A few options exist for scaling a Kubernetes cluster and the work‐
loads running on it. Usually, you want to focus on scaling out the
Pods that define your deployment. To that end, you have the option
of vertical scaling, where you increase the amount of resources avail‐
able for the underlying processes, as well as horizontal scaling, where
you increase the number of independent replicas of the service.
Horizontal scaling in particular is one of the core tenets of cloud-
native applications.

Vertical scaling is the type of scaling you’re likely familiar with from
legacy systems. To scale vertically, first you will need to make sure
that the underlying machines have resources available to handle it.

30 | Chapter 4: Operations and Security

Once you have confirmed this, you can define new resource limits
for the deployment in question and reapply the specification. Kuber‐
netes will automatically take care of terminating the old underpow‐
ered Pods and rescheduling the newly beefy Pods where they can
claim the resources they need. That method might well take you
pretty far on its own, and if you happen to be running in the cloud,
it’s probably pretty straightforward to bump up the instance type to
accommodate. This can, of course, be done as a rolling operation
where Kubernetes reschedules workloads as you power cycle the old
machines to change their type.

Unlike the scaling up performed in legacy systems, it’s more likely
you will find yourself scaling out in Kubernetes by deploying more
replicas across the cluster with horizontal scaling. Using horizontal
scaling, you will increase the replica count of your Pods and let the
Kubernetes manager do its thing and start scheduling more Pods.
Just like simple architecture practices can often end up working fine
for a very long time in a web application, this basic framework can
get your team very far, and early effort on a deployment is best
invested elsewhere. It’s not too hard to know when you might want
to scale out when you have good monitoring like we mentioned pre‐
viously, because your system will be reaching saturation points for
metrics like CPU and memory.

Horizontal scaling is particularly fundamental for cloud native
applications, and it requires a rearchitecting of applications to
ensure that they will continue to perform well under this model.
While it may be a bigger lift than the old “throw resources at the
problem” approach, it helps improve goals such as availability, relia‐
bility, and performance. With horizontal scaling, your system will be
able to handle a failure of some parts of the system better. As we
have discussed previously, Kubernetes’s rescheduling upon hardware
failure hits much less hard in a world where you are not dependent
on powerful pieces of specific hardware. Likewise, horizontal scaling
can help with performance—an operation slowing the process down
in one replica will have a smaller blast radius, and may even get
taken out of the load balancing rotation entirely if it can’t respond to
its defined probes.

When it comes time to get more sophisticated, Kubernetes has some
nifty options on tap. The Horizontal Pod Autoscaler will run calcu‐
lations based on your system metrics to determine when Kubernetes
should go off and scale up on its own without any need for manual

Scaling | 31

https://oreil.ly/Zxgnj
https://oreil.ly/oCo4I

operator intervention. As you can imagine, this takes some fine tun‐
ing to dial in properly. Set the thresholds too tight, and you’ll sud‐
denly have a much larger fleet on your hands, burning resources
that it doesn’t need to. Set them too loose, and the system will be
frustratingly sluggish. As with all things, experimentation will help
unveil where there might be a good fit for you in autoscaling.

Kubernetes also has all sorts of clever bells and whistles for users to
be as specific as possible about how important an application is. For
instance, as your team gets more comfortable with resource limits, it
might start looking into operations such as setting Pod Disruption
Budgets. Pod Disruption Budgets limit the number of Pods of a
replicated application that can be down simultaneously. This can
help ensure that very critical and sensitive applications continue to
run with high availability when Kubernetes’s powerful but aggressive
reconciliation magic is happening behind the scenes.

Upgrades
Once you have a Kubernetes cluster that you’re using for real work‐
loads, you’ll eventually have to deal with the topic of upgrading the
underlying cluster. Kubernetes is a fast moving project and new ver‐
sions come down the pike about once a quarter. Your team will need
to be prepared to handle the upgrade process, for many reasons
from securing vulnerabilities to enabling the latest and greatest fea‐
tures to play with.

What will need to be upgraded, and how should you handle it? The
answer to those questions depends on which type of Kubernetes dis‐
tribution you’re using. A big advantage of a managed or vendor-
provided Kubernetes solution is that this can largely be taken care of
for you—sometimes without your team even noticing or incurring
downtime. In the cloud, providers will often perform such
an upgrade for you, or make it as easy as clicking a button. A
Kubernetes solution that lives on-premises likely won’t upgrade
automatically, but it will provide a clear pathway forward, even if
that includes working directly with folks from your vendor to safely
roll out the change. There are middle ground options, too, such as
using an open source tool that handles some of these processes for
you, such as Rancher.

If the cluster was created with a tool like kubeadm, on the other
hand, you may be in for a long and multiple step process to properly

32 | Chapter 4: Operations and Security

https://oreil.ly/X5moi
https://oreil.ly/X5moi
https://rancher.com

upgrade the cluster (for instance, you can take a look at kubeadm’s
upgrade process). You’ll have to verify which operations are safe to
perform in which order (“Can a manager node on this future ver‐
sion operate with worker nodes on previous ones?”), and make sure
that workloads are properly drained and separated from the compo‐
nents that are actively changing. You may need to concern yourself
with updating a component such as etcd, which is the shared mem‐
ory system of a Kubernetes cluster. You will also need to religiously
stay on top of upgrades over time because skipping a version is
likely to result in problems. That’s a lot of work for your team to
take on!

Even with the best preparation in the world, things can sometimes
go wrong. When you go to upgrade Kubernetes, and in the cluster
lifecycle in general, having a clear picture of what a recovery process
looks like in the event of a failure is key. We’ll discuss how to think
about handling that in the next section.

Business Continuity and Disaster Recovery
Your business might be accustomed to doing things a certain way
when it comes to business continuity and disaster recovery, but
dealing with these in Kubernetes is a totally different animal. Some
on your team might claim that disaster recovery planning can be
handled simply by snapshotting live VMs. Backups are certainly
necessary, but not sufficient. It makes sense to have a snapshot of
things like a database’s state, but what happens when you need to
restore it? Is your team prepared for that, and have you done a
restore lately to verify that it’s possible? Snapshots might have been a
crutch your team could lean on before, but the concerns when oper‐
ating a Kubernetes cluster will be different.

Instead of worrying about protecting individual nodes, in Kuber‐
netes you shift your focus to a higher level up. After all, in the case
of a node failure in Kubernetes, the Pods will just get rescheduled,
and your service will have minimal downtime. You need to have a
bigger picture perspective for recovering from disasters. For
instance, how many manual steps would you have to take to restore
the whole system from scratch? In the cloud, you should be able to
get pretty far with the push of a proverbial button. You should be
taking the time to root out manually created or administrated com‐
ponents and replace them with automation wherever possible.

Business Continuity and Disaster Recovery | 33

https://oreil.ly/N-ctk

You also need to understand what happens in the event of an outage
or catastrophe in varied environments and how your team will
adapt. Can the Pods from one environment be seamlessly run in
another, either by rescheduling or by reapplying your spec? Or do
you need to be prepared for additional steps in such a forced migra‐
tion? Your team should be prepared with automation and runbooks
to guide them in the case of such an event. In the next section, you’ll
see how following best practices such as GitOps makes this process
of redeploying workloads easier, especially stateless ones. This is one
of many benefits of the infrastructure as code principle, which we
will also discuss.

Lastly, you don’t have to tackle the challenge of Kubernetes backups
and restores alone. You don’t need to throw your hands up in the air
and eschew backups or disaster recovery simply because your busi‐
ness has switched to Kubernetes and the old ways no longer apply.

Operations and security in Kubernetes, like many aspects of the
platform, will reward the careful planner and punish the impatient.
So take the time to make sure your Kubernetes cluster is secured,
hardened, and operationally sound. It will help you and your team
sleep better at night.

34 | Chapter 4: Operations and Security

CHAPTER 5

People and Process

Adopting a DevOps Culture
DevOps is both a mindset and a set of practices, and your team
might be all over the map in terms of making progress towards its
adoption. DevOps is all about collaboration between previously dis‐
parate departments—developers working more closely with opera‐
tors to ship software more quickly and deliver higher quality. The
promise of such a movement has led a lot of vendors to imply that
DevOps is something that can be purchased and staffers to infer that
it’s someone who can be hired, but it has to be a cultural transforma‐
tion first and foremost.

Because DevOps is not something you can buy off the shelf, organi‐
zations must turn inwardly and be honest with themselves about
how they can adopt a DevOps culture and encourage the type of
behavior they’re looking to get from it. So how can you do that? One
step is to survey your organization and where you are today, and
sketch out a piecemeal roadmap towards greater collaboration and
agility. For instance, as we mentioned in Chapter 1, you can start
forming some bridge teams that function as SRE-lite units. You can
and should get started without dramatically shaking up the way
your organization functions.

Your team needs to get in the habit of praising work that makes life
better for everyone. Instead of giving all the accolades to heroic con‐
tributors who pushed user-facing changes, your team needs to shift
towards valuing work that automates common tasks and makes

35

deployments more reliable. If leadership values and praises
increased collaboration over solo acrobatics, the individual contrib‐
utors will get the hint and start shifting their focus.

Likewise, we need a way to quantify and track our progress, such as
agreeing on some common goals around mean time to resolution,
deployment frequency, and how much downtime is acceptable.
Many teams are finding value out of setting programmatically
tracked service-level objectives—quantifiable performance goals for
your apps that will help your team understand how things have been
going lately and where they could do better. Your team will, of
course, hone in on improving these metrics to the detriment of
other needs if they are fretted about too aggressively, so they need to
serve as guides that are open to changing rather than as holy law.

It’s also important to build empathy for the folks on the other side of
the fence, be they in Development or in Operations. Operations,
perhaps unfairly having gained a reputation for being a buzzkill and
slowing the shipment of new things down, needs to cultivate an atti‐
tude of how they will help developers ship new software quickly, not
why they can’t. Developers, by contrast, need to develop a shared
sense of pain and ownership with the operations team. A fantastic
way to build this is to make developers pick up the pager and be on
call for production issues. While it won’t whet their appetite to move
quickly, it will help them see the challenges of doing so for reliability
and learn to adapt their application code to be reliable before it hits
production.

You can have great DevOps, you can have a great team, and you can
have great architecture. All these things are possible in enterprises,
just as they are elsewhere. Best of all, those are all just pieces of the
bigger picture. You and your team can be a part of creating and lev‐
eraging the open standard of great enterprise IT in Kubernetes.

Immutable Infrastructure
Large organizations are obsessed with safety and with protecting
their existing position in the market. It should come as a shock to us
all, then, that it has been so commonplace for operators within those
organizations to constantly log into their systems and perform man‐
ual changes to the infrastructure. Not only does this type of work‐
flow have a lot of risks, it’s also inefficient and maddening for
the operators themselves. How can we migrate from these legacy

36 | Chapter 5: People and Process

https://oreil.ly/x5Uro

workflows to a better way? One way is by adopting the principle of
immutable infrastructure.

Immutable infrastructure is the notion that once a system has been
defined and applied, it should not be changed without also updating
the definitions. Users shouldn’t be SSHing into a server and making
changes on their own. This can manifest in a variety of ways. One
way is that teams will create “golden” VM images by snapshotting
VMs that boot up with everything already installed and configured.
While there might be some minor mutations on the local filesystem
or state supported through an attached block device, generally it’s
expected that nothing new will be installed or configured. This helps
to ensure the operational lifecycle remains sane and predictable.

New container technologies take the idea of a golden filesystem
image to its logical extreme. As we’ve discussed, they enable build‐
ing those images out quickly as well as easily sharing them across
various environments using a registry. One of the most difficult
things about production troubleshooting has always been to deduce
what’s different in the state between production, staging, and devel‐
opment environments. With golden container images, businesses
can make fantastic progress at chipping away at the surface area of
that problem. Stateful applications will still require some finesse, but
their state can largely be confined to a small surface area and every‐
thing else can remain immutable.

The practice of immutable infrastructure is not only confined to
making golden images. New trends such as the GitOps philosophy
encourage users to encode everything from top to bottom in your
infrastructure in a declarative way, tracked and version-controlled
using a system such as Git. That way, a number of benefits are con‐
ferred by default. You can easily see who made what changes to the
infrastructure and when because Git and its surrounding technolo‐
gies have a built-in auditing trail. You should also be able to roll
back to a previous state of the infrastructure with minimal hassle
because Git makes such an operation trivial at the code level. This is
directly tied to the concept of having everything as code, which we
will discuss in the next section.

Immutable Infrastructure | 37

https://oreil.ly/LdfMH

Everything As Code
Each Kubernetes cluster has a unique life of its own. It is birthed
into this world, whether by connecting the components by hand or
by a single API call. Then, it has to effectively continue to operate
and run workloads. While it might be tempting to do everything in
this lifecycle by hand to get going quickly, having the patience to fol‐
low an everything as code principle and codify it instead can result in
huge benefits to you and your team. Following this principle means
that everything you rely on, including your infrastructure, pipelines,
test suite, and more, are tracked as version-controlled code that can
be automatically redeployed at will without manual intervention.

For instance, let’s say everything is going great with your team
deploying and operating your Kubernetes cluster, when suddenly a
team has a new requirement to deploy an entirely separate cluster in
a specific geographic region. If you haven’t “documented” the pro‐
cess you used to create your other cluster(s) by defining the infra‐
structure as code, you’ll be in hot water when it comes to stamping
out such a new cluster. On the other hand, if your team has every‐
thing committed to Git and ready to go as a templated deployment
manifest, the process will be relatively straightforward and easy in
comparison. Likewise, the issues don’t stop once the cluster is
deployed—what if something changes in the “root” cluster, such as a
security patch, and that change needs to be applied to the new clus‐
ter as well? Challenges like needing to deploy a mirrored environ‐
ment are more common than novice operators might think due to
the complex regulatory climate we find ourselves in, and investing a
few hours now to save weeks of time down the line often is a wise
choice.

Updates and Patches Across the Stack
Any container-based infrastructure is a layer cake of sorts, starting
with a foundation at a physical computing level and working its way
up through various abstraction layers from hypervisors, to underly‐
ing orchestration components such as the ones Kubernetes com‐
bines, to the final workloads running atop the cluster. All too often,
it’s the case that the people and processes responsible for managing
these various layers do not share responsibilities and do not
naturally coordinate amongst themselves. This can cause tension
when the time comes to update or modify part or all of the stack.

38 | Chapter 5: People and Process

Even the Kubernetes layer itself has many layers that can be hairy to
manage. For example, let’s consider what operating a production
instance of Kubernetes is like if you are running your own Kuber‐
netes distribution. Your life is made a little bit easier by the use of
tools like kubeadm, but there is no one-stop shop for all of your
cluster automation needs and the choices you will have to make. Are
you comfortable assuming the responsibility if an error made in
managing the stack results in another team’s workloads becoming
inoperable? Are you making the right decisions for pluggable com‐
ponents we’ve discussed previously, such as networking, storage, and
scaling? Are you going to make opinionated choices about what
should be done yet another layer up with systems such as Helm, or
will you decide to expose the underlying cluster directly to end
users?

These decisions will need to be carefully managed while aligning key
stakeholders, including the leadership and the engineers who will
deal with the consequences of your decisions. You don’t want to end
up in a situation where the engineers who are end users of your plat‐
form are in open rebellion against the decisions you’ve made and
work around you, building out yet another layer of shadow infra‐
structure and defeating goals you might be striving for such as uni‐
formity in deployments. Likewise, you will need to understand who
gets paged when something goes wrong, what the procedures will be
to fix software, and what your team will do when a critical patch
needs to be released for security or stability purposes.

If one team alone is responsible for managing the Kubernetes clus‐
ter(s), that will simplify things a bit, but if there are multiple teams,
the division of responsibilities will have to be made clear. Of course,
your team could decide to skip that particular hassle and use a turn‐
key vendor distribution instead. A turnkey distribution of Kuber‐
netes will alleviate some of the burden on your team, but still entails
relationships to manage. Of course, there’s always the question wait‐
ing for you at the end of setting up all these underlying layers of
what will happen when developers actually start rolling out code on
top of Kubernetes. Do they write the manifests and deploy the code
themselves? Do we make everyone use a shared framework that gen‐
erates YAML for them and/or standardizes on something like
buildpack-based images? Who gets paged when a deploy goes bad?
These are all questions that someone will have to answer eventually,
and it’s best to address them in advance.

Updates and Patches Across the Stack | 39

https://oreil.ly/7xp3I
https://helm.sh

Developers are likely to have to take more responsibility than they’re
accustomed to. A traditional model might entail larger updates at
the code level and less frequent deploys, but with fewer changes to
the underlying dependencies. A container-based deployment, by
contrast, practically eggs developers on to change underlying depen‐
dencies and deploy more frequently, and that entails additional
responsibility that they need to be ready to bite off. Like a supercar,
Kubernetes can help you go fast and have fun, but also requires
planning for the cost of maintenance and the learning curve. Not
everyone is comfortable or well-trained enough to drive it, and
especially for developers who might be new to operational concerns,
you need to think twice before handing over the keys.

Fleet Management
You’re likely to end up with multiple Kubernetes clusters. This fact
of life, naturally, raises the question of how exactly all these fleets of
machines will be managed. Both technical and human challenges
will need to be tackled. As we’ve discussed previously, there’s always
a balance between letting folks have direct access to infrastructure
and operational consistency. The last thing you want is many differ‐
ent ways of doing the same thing deployed side by side.

First, we suggest you turn your focus to the human side of the
house. Map out what environments make sense to group together,
which ones have special considerations, and which people will be
the owners responsible for handling each environment as your team
moves forward with a rollout of Kubernetes. You want to avoid
nasty shocks down the line where some subsection of infrastructure
wasn’t planned to be integrated in the rollout, resulting in duct-tape-
style fixes, as well as infrastructure no-man’s lands where the owners
aren’t clear.

Once this landscape has been plotted and a loose strategy has been
defined, teams can begin brainstorming how they will manage the
intermediate layers that are required for Kubernetes to operate effec‐
tively but aren’t necessarily part of Kubernetes itself. A healthy fleet
will have answers for the questions we previously discussed vis-à-vis
the infrastructure layer cake. Fleet management is about managing
the nodes that will become part of Kubernetes clusters as much as it
is about the clusters themselves. Do you have solutions available
for bare metal server instances to be provisioned? How about VM

40 | Chapter 5: People and Process

templates? The more of this that operators within your organization
can confidently reach for off the shelf, the better off your team
will be.

In addition to the organizational concerns, there is open source and
proprietary software available that can help faciliate the manage‐
ment of multiple clusters. For instance, cluster federation is a feature
of Kubernetes being worked on by a Special Interest Group. Federa‐
tion helps users with multiple distinct Kubernetes clusters to man‐
age them more centrally. A sample of the architecture in such a
federated setup is depicted in Figure 5-1.

Figure 5-1. While complicated, the dream of managing multiple dis‐
tinct Kubernetes clusters from one control pane is slowly becoming
reality. This diagram shows the architecture for the current working
proposal for cluster federation in upstream Kubernetes.

Fleet Management | 41

https://oreil.ly/eF8OK

Continuous Integration, Delivery, and
Deployment
When adopting a DevOps mindset and Kubernetes, it’s almost inevi‐
table that you’ll find yourself crossing paths with the practices of
continuous integration, continuous delivery, and continuous deploy‐
ment. Continuous integration is the practice of merging code
changes with the upstream as quickly as possible and verifying that
they do not introduce any issues. This can be done by running an
automated test suite constantly to check if the new code breaks any
of the team’s tests, which specify how the app should behave. These
tests can not only be run on the main branch of your code reposi‐
tory, but on the individual developers’ pull requests as well, ensuring
that no obviously bad code ever makes it upstream.

Continuous delivery is the practice of leveraging this state of contin‐
uous integration to ensure that code making it into the version con‐
trol system is available in a deployable state. Not only can we
automate our test suite to merge code more safely, we can automate
the whole process of building its associated artifacts, such as JAR
files, container images, and deployment manifests. This practice has
a natural friend in Kubernetes, whose attitude of automating as
much as possible and storing deployments declaratively is a good fit
to enable this practice. The end goal of continuous delivery is to be
able to wave a magic wand and have a new version of software deliv‐
ered to end users, fast. Thanks to the safety offered by continuous
integration, this can be done more safely and with fewer operational
headaches.

Continuous deployment is an even more radical step in this direc‐
tion, where all changes are deployed to higher environments shortly
after landing in the upstream branch and passing tests. This might
imply a staging environment where operators perform final smoke
checks before green lighting a production deployment, or it might
even be a deployment directly to production. This encourages a
fluid workflow for engineers and customers as an idea can move
from experiment to change request to production rapidly. Failed
builds will, of course, not be deployed until manual intervention
from an operator gets everything back to normal.

While it might seem scary to deploy software constantly, and indeed
might be too big of a jump for many teams to adopt immediately,

42 | Chapter 5: People and Process

the practice of deploying continuously actually helps releases to be a
lot less scary. Problems can be fixed and remediated as they happen,
instead of accumulating unseen for months between releases. This
might require a shift in mindset as we have discussed, where engi‐
neers have to take more production ownership, and the idea might
be a hard sell at first, but often increases morale as developers can
actually touch and affect their code running in production.

Like it or not, to stay competitive your organization will have to
adopt some of these practices to stay competitive in a world where
more businesses than ever are deploying quality software quickly.
The good news is that these changes can be adopted incrementally,
and they can be adopted alongside Kubernetes as your team moves
forward with that. As you tackle challenges such as making sure
each code release has its own container image built, you will likely
find that continuous delivery pipelines grow organically. Doing
those types of operations continuously will become second nature to
your team, and your software will be better off for it—code quality
will be rigorously checked by the test suite, expected to adhere to
certain practices, such as infrastructure as code to fit in with the
automation systems for delivery, and maybe even some day deliv‐
ered just as quickly as it’s written and approved.

Wrap-Up
There are a lot of challenges when deploying Kubernetes to produc‐
tion, but none are insurmountable. Armed with a bit of grit and the
knowledge set out in this book and elsewhere, you and your team
really can make effective change and have a great DevOps culture.
Containers are an important part of the modern DevOps story, and
your organization can benefit from their use, but you need to plan
carefully. Following the Kubernetes blog can help you keep your
eyes on what’s happening in the community and what you need to
be prepared for. And, of course, there’s no substitute for lots of
hands-on experience.

So, fire up those test environments, get your hands dirty with a real
live Kubernetes cluster, and don’t forget to have fun too! You, your
company, and your infrastructure have a great future ahead of you.

Wrap-Up | 43

https://oreil.ly/Qm8Vp

Acknowledgments
Special thanks to Chip Zoller (@chipzoller) of Dell Technologies and
Keith Lee (@KeithRichardLee) of VMware for their deep Kubernetes
and infrastructure expertise. Your crisp vision, experience, and gen‐
erosity of time to advise and edit countless revisions were invaluable.

About the Author
Nathan LeClaire is a Go programmer and author living in San
Francisco, CA. He participated firsthand in the development of con‐
tainer technology at Docker and got to know Kubernetes and related
systems well. In his free time, he likes to cook steak, drink whiskey,
and listen to the Grateful Dead.

https://twitter.com/chipzoller
https://twitter.com/KeithRichardLee

	Cover
	Dell Technologies/VMware
	Copyright
	Table of Contents
	Chapter 1. What Problems Are You Solving and Are You Ready?
	Is the Business Ready?
	Are the People Ready?
	Are Your Systems Ready?
	Modern Applications Initiative
	Cloud Native Applications Are About “How”
	Identifying the Low-Hanging Fruit of Apps

	Chapter 2. Tackling the Code
	Separation of Concerns
	Containerization and Artifact Storage
	Prepare for Running On Kubernetes
	Logging
	Lifecycle Endpoints
	Rearchitecting for Kubernetes

	Chapter 3. Tackling the Infrastructure
	Where and How to Run Kubernetes
	Bare Metal, Cloud Provider, or Bring-Your-Own?
	Number of Clusters and Size
	Networking
	Load Balancing and Ingress

	Storage

	Chapter 4. Operations and Security
	Authentication and Authorization
	Monitoring and Tracing
	Log Aggregation
	Scaling
	Upgrades
	Business Continuity and Disaster Recovery

	Chapter 5. People and Process
	Adopting a DevOps Culture
	Immutable Infrastructure
	Everything As Code
	Updates and Patches Across the Stack
	Fleet Management
	Continuous Integration, Delivery, and Deployment
	Wrap-Up

	Acknowledgments
	About the Author

