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1 Continuous displacement field

We implemented the moving least squares (MLS) interpolation method to obtain

a continuously differentiable displacement field from a discrete DIC displacement

field of experiments [1]:

u(x) = PT (x)a(x), (1)

where u(x) = [ur, uz] is the target continuous displacement field, PT (x) is a

polynomial basis and a(x) is the corresponding coefficients of the basis. x is the

continuous position vector. Because of the cylindrical symmetry of the drop-

impact geometry, x = (r, z) with r = 0 and z = 0 at the initial impact point.

The negative z direction points along the direction of the impact velocity of

drops. We adopted a cubic basis PT = [1, r, z, r2, z2, rz, r3, z3, r2z, rz2]. The
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coefficients of the target function at x was obtained by minimizing the weighted

least-square error,

L(x) =

n∑
i=1

f(x− bi)
[
PT (bi)a(bi)− w(bi)

]2
, (2)

where w is the discrete DIC displacement field from experiments. bi indicates

the discrete DIC coordinates with a total n = 540 points in our experiments.

f(x− bi) is the weighted function defined as [2]:

f(x− bi) =


exp(1−d2/d2m)−1

e−1 for d ≤ dm
0 for d > dm

(3)

where d = |x−bi| is the distance between the continuous position x and bi. dm

is a cut-off distance dm = 2
∑m
i=1 |x − bi|/m. m determines the fitting range,

which was fixed at m = 43 in this study. The minimization of Eq. (2) gives

u(x) = PT (x)a(x) = PT (x)A−1(x)B(x)w, (4)

where

A(x) =

n∑
i=1

f(x− bi)P (bi)P
T (bi),

B(x) = [f(x− b1)P (b1), ..., f(x− bn)P (bn)].

2 Impact pressure

PDMS gels are nearly incompressible with Poisson’s ratio close to 0.5, which

leads to a large λ. On the other hand, the bulk strain εb is close to 0. Therefore,

the impact pressure cannot be accurately determined from the product of λεb

in the linear constitutive equation

σij = λεbδij + 2Gεij , (5)

To overcome the difficulty, we adopted the quasi-steady-state assumption [1].

Specifically, λεb is replaced by an undetermined term −µ in Eq. (5),

σij = −µδij + 2Gεij , (6)
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Supplementary Figure 1: Impact pressure measurements. Red arrows
indicate the integration path for calculating the pressure at point x from the
reference point at x0.

Under the quasi-steady-state assumption, the stress tensor obeys:

3∑
j=1

∂σij
∂xj

= 0. (7)

As a result, µ can be calculated as:

µ(x) = µ(x0) +G

∫ x

x0

(
∇2u

)
· ds +G [εb(x)− εb(x0)] , (8)

where x0 sets a reference point for integration. We chose the reference point at

the top layer z = 0 with r as large as possible away from the impact point at

short times. Taking p(x0) = σzz(x0) = 0, we have µ(x0) = 2Gεzz(x0). Finally,

the pressure can be obtained

p(x) = −G
∫ x

x0

(
∇2u

)
· ds +G [εb(x)− εb(x0)] + 2G [εzz(x)− εzz(x0)] . (9)

Here, the integration path goes from the reference point x0 to x, as shown in

Supplementary Fig. 1.

To verify the quasi-steady-state assumption, we compared the ratio of the

inertial force to the elastic force per unit volume for solid-sphere impact:

R =

∣∣∣∣∣ρs ∂
2uz

∂t2

∂σzz

∂z

∣∣∣∣∣ , (10)
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where ρs is the density of the PDMS gels. R is less than about 2% near the

impact axis where the impact pressure is above the noise level. Consistent

with the estimate, the impact pressure of solid spheres calculated based on the

quasi-steady-state assumption quantitatively matches that of the finite-element

simulations without the assumption (Fig. 2b of the main text). As the time

scale of solid-sphere impact is much shorter than that of drop impact under

comparable impact conditions, the quasi-steady-state assumption should work

even better for drop impact. Lastly, it is worth of noting that the calculation

of shear stress—the quantity most relevant to surface erosion—does not rely

upon the quasi-steady-state assumption and therefore is immune to the errors

associated with the assumption.

3 Theory and numerical solutions

The deformation of an elastic medium at small strains is described by the Navier-

Lamé equation:

(λ+ 2G)∇(∇ · u)−G∇× (∇× u) + F = ρs
∂2u

∂t2
, (11)

where λ = Eν/[(1 + ν)(1− 2ν)] is the Lamé coefficient and G = E/[2(1 + ν)] is

the shear modulus. ρs, E and ν are the density, Young’s modulus and Poisson’s

ratio of the medium, respectively. u = (ur, uθ, uz) is the displacement of the

medium in a cylindrical coordinate. F is the body force per unit volume. Since F

is small compared with the impact stress, we ignore the term. In the cylindrical

coordinate, an axisymmetric Navier-Lamé equation reduces to

(λ+ 2G)∂r

[
1

r
∂r(rur) + ∂zuz

]
+G∂z(∂ruz − ∂zur) = ρs

∂2ur
∂t2

(12)

(λ+ 2G)∂z

[
1

r
∂r(rur) + ∂zuz

]
−G1

r
∂r[r(∂ruz − ∂zur)] = ρs

∂2uz
∂t2

. (13)

A full analytic solution that mechanically couples the dynamics of an impact-

ing drop with a deformable elastic impacted substrate is prohibitively difficult

from the mathematical point of view. To the best of our knowledge, no at-

tempt has been made in solving such a complicated problem. To take the first

step and tackle a relatively easier problem, we determine the deformation of

the elastic medium under the impact of a liquid drop by adopting the theoret-

ical prediction of the pressure and shear stress distributions of incompressible
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drops on infinitely rigid substrates [3]. This approximation can be considered as

the one-way coupling between the impacting drop and the impacted substrate,

where the substrate deforms under the impact stress of the liquid drop but does

not modify the impact stress. This is justified when the deformation of the

substrate is small like in the case of our experiments, and its accuracy increases

with the stiffness of the material. The semi-quantitative agreement between the

measured shear stress distributions and the theoretical prediction (Eq. (3) of

the main text) away from the singular region suggests that the one-way approx-

imation can qualitatively capture the dynamics of impacted substrates under

drop impact.

Under the one-way approximation, we apply the pressure and shear distri-

butions of incompressible drops on infinitely rigid substrates without the effect

of ambient air as the boundary conditions of Eqs. (12) and (13):

σrz|z=0 =


√

6
π3

1
ReρU

2 2rD
3UDt−2r2 for r ≤ rt

0 for r > rt
(14)

σzz|z=0 =

 3
√
2

2π ρU
2 D√

3UDt−2r2 for r ≤ rt
0 for r > rt,

(15)

where ρ, U and D are the density, the impact velocity and the diameter of

the liquid drop, respectively. rt =
√

6UDt/2 is the position of the turning

point, where the pressure and shear stress diverge and exhibit the finite-time

singularity [3]. Note that the shear stress σrz|z=0 is a factor 1/
√
Re ∼ 7× 10−3

smaller than the impact pressure σzz|z=0. Thus, the impact pressure is the

leading factor controlling the deformation of the impacted substrate (Fig. 4d-f

and the associated discussion in the main text).

To make the equations dimensionless, we propose the following scaling, t ∼
DM2/U , u ∼ DM2, (r, z) ∼ DM , (λ,G) ∼ E and σ ∼ ME ∼ E1/2(ρU2)1/2.

Here, we introduce a Mach number M ≡ U
√
ρs/E, which compares the speed

of the impacting drop U with the characteristic speed of sound of the elastic

medium
√
E/ρs. For example, the speed of the body P wave is vp = C

√
E/ρs,

where C =
√

(1− ν)/[(1 + ν)(1− 2ν)] = 4.1 ∼ O(1) for an elastic material

with Poisson’s ratio ν = 0.49. M = 0.292 in our experiments.

The proposed scaling yields the following boundary value problem of partial
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differential equations:

(λ+ 2G)∂r

[
1

r
∂r(rur) + ∂zuz

]
+G∂z(∂ruz − ∂zur) =

∂2ur
∂t2

(16)

(λ+ 2G)∂z

[
1

r
∂r(rur) + ∂zuz

]
−G1

r
∂r[r(∂ruz − ∂zur)] =

∂2uz
∂t2

, (17)

and

σrz|z=0 =


√

6
π3

1
Re

ρ
ρs

2r
3t−2r2 for r ≤ rt

0 for r > rt
(18)

σzz|z=0 =

 3
√
2

2π
ρ
ρs

1√
3t−2r2 for r ≤ rt

0 for r > rt,
(19)

where all the quantities are now dimensionless with the turning point at rt =√
6t/2. The resulting equations and boundary conditions are independent of

M in terms of the scaled variables. The scaling suggests that the shear force

should scale as Fd ∼ σD2 ∼ E1/2(ρU2)1/2D2, matching our experimental mea-

surements at different E (Fig. 5b of the main text). Note that the density ratio

between the liquid and the gel ρ/ρs ∼ O(1) in our experiments.

We numerically solve Eqs. (16) and (17) with the boundary conditions

Eqs. (18) and (19) using the finite element method (Methods). To avoid the

singularity at rt, we impose a small cut-off δ:

σrz|z=0 =


√

6
π3

1
Re

ρ
ρs

2r
3(1+δ)t−2r2 for r ≤ rt

0 for r > rt
(20)

and

σzz|z=0 =


3
√
2

2π
ρ
ρs

1√
3(1+δ)t−2r2

for r ≤ rt

0 for r > rt.
(21)

We choose δ = 0.1 for our numerical simulations, as a good convergence of

solutions is achieved for the chosen spatial resolution.

The solutions of the radial and vertical displacements of the surface of the

elastic medium, ur(r, z = 0, t) and uz(r, z = 0, t), are shown in Supplementary

Figs. 2a and b. The in-phase propagation of the disturbance of ur and uz are the

characteristic feature of the surface Rayleigh wave. The wave emerges around

tc ≈ 0.1, consistent with the experimental observation. Moreover, the surface

wave is sharp and concentrated with a well-defined peak propagating along the
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Supplementary Figure 2: Numerical solutions of the surface wave
induced by the impact of a liquid drop and by the impact of a solid
sphere. a and b The kymograph of the radial displacement of the impacted
surface ur(r, t) and the vertical displacement of the impacted surface uz(r, t)
induced by the impact of a liquid drop. c and d The kymograph of ur(r, t)
and uz(r, t) induced by the impact of a solid sphere. ur(r, t) and uz(r, t) are
normalized by the diameter of the impactors D. The red dashed lines in a and b
indicate the position of the turning point where pressure and shear stress reach
maximum. In contrast, the pressure maximum is stationary and fixed at r = 0
for the solid-sphere impact in c and d.

surface radially at a speed VR, agreeing with the theoretical prediction of the

speed of the Rayleigh wave. This sharp wave arises from the resonance when

the speed of the stress maxima is close to the speed of the Rayleigh wave near

tc. The surface wave decays much slower than the body wave and therefore

dominates the surface disturbance in the far field.

To compare with the surface wave induced by the impact of a solid sphere,

we apply the Hertzian contact force in the dimensionless form [4]

F =
2
√

2

3

M2

1− ν2
t3/2 (22)

on the surface of the elastic medium over a small region of r0 = 0.1 around

the impact axis. Here, we assume that the deformation of the solid sphere is

negligible compared with that of the elastic medium and the vertical displace-

ment x ≈ Ut at short times based on the experimental observation [5]. In

comparison with the impact stress of liquid drops (Eqs. (18) and (19)), Eq. (22)

is stationary in space and does not exhibit either the finite-time singularity or

the shock front associated with the turning point at small t. With a stationary
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stress maximum, the resonance in drop impact does not occur in solid-sphere

impact either. Supplementary Figures 2c and d show the numerical solutions

of the surface displacements, ur(r, z = 0, 0) and uz(r, z = 0, 0), of solid-sphere

impact. Different from the shock-induced sharp surface wave of drop impact,

the Rayleigh wave of solid-sphere impact emits continuously from r = 0 upon

the impact at t = 0 and is much broader and more diffusive in nature.
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