
 

Git Essentials Developer’s Guide to Git 
Cheat Sheet 

 

Configuration  

$ git config user.name <username> Defines the username for the user of the current repository (local config) as a key-value pair. 
$ git config user.email <email> Defines the email for the user of the current repository (local config) as a key-value pair. 
$ git config pull.rebase <false|true> Sets the default behavior of pull operations - to merge or rebase for the current repository. 

$ git config --global <any-command> 
The `--global` flag changes the scope of the configuration from the local `config` file (current repository) to all 
repositories on your machine. 

  

Basics  

$ git init Initializes a Git repository in the current directory. 
$ git clone <url> Clones a remote Git repository into the current directory, under a directory with the name of the remote one. 
$ git clone <URL> name Clones a remote Git repository into the current directory, under a directory called `name`. 
$ git add <file_name> Adds an updated file with the given filename, from the working tree to the staging area. 
$ git add <fileglob> Adds the matching updated files from the working tree to the staging area. 
$ git add . Adds all the updated files from the working tree to the staging area. 
$ git status Prints status of modified files in your working tree - marking them as staged, unstaged and tracked respectively. 
$ git commit -m "<message> Creates a commit with the given message for the changes in the staging area. 

  

Branching  

$ git branch <branch_name> Creates a new branch, with the specified branch name. Cannot create two branches with the same name. 
$ git branch -m <branch_name> <new_name> Renames branch. 
$ git branch -M <branch_name> <new_name> Force rename branch. If duplicate names exist, the branch you're renaming will override the old one. 
$ git checkout <branch> Checks out (sets working tree) to the specified branch. 
$ git checkout -b <branch> Creates a new branch, and checks out to it. Convenience command that combines the two before this. 
$ git merge <branch> Merges the specified branch into the one you're currently checked out on. 

$ git rebase <branch> 
Reapplies the commits of the branch you're currently checked out on, on top of the branch you specify in the 
method. 

$ git log Logs all commits in the currently checked out branch, with commit object info. 
$ git log -n Logs the last `n` commits in the currently checked out branch, with commit object info. 

$ git log --oneline 
Logs all commits in the currently checked out branch, with each commit in a single line containing only hash and 
message. 

$ git log --graph Visualizes the logged commits in the CLI. 

#1 

 



 

Git Essentials Developer’s Guide to Git 
Cheat Sheet 

  

Remote Branches  

$ git fetch <remote> <branch> Updates the relevant local `origin/branch` with the content of the given remote repository's branch. 
$ git fetch <remote> <remote_branch>:<local_branch> Updates specified local `origin/branch` with the content of the specified remote repository's branch. 

$ git pull <remote> <branch> 
Performs a fetch of the given branch from the given remote repository, then merges the result in the relevant 
branch of the local repository. 

$ git pull <remote> <remote_branch>:<local_branch> Pull from the specified remote branch into the specified local branch. 
$ git pull -u <remote> <branch> Sets up upstream between the local and remote branch. 
$ git pull Pulls from the branch, and into the branch you've linked via the `-u` flag. 
$ git push <remote> <branch> Sends the commits of the relevant local branch to the given branch of the given repository. 
$ git push <remote> <local_branch>:<remote_branch> Explicitly set the branch you push from and to. 
$ git push -u <remote> <branch> Same as regular pushing, but sets the remote branch as the upstream of the current one. 
$ git push Same as the previous one, but uses upstream of the current branch. 
  

Advanced  

$ git stash push Saves the indexed changes into the stash (a dedicated local space for in-progress work). 
$ git stash Saves unstaged changes in the `stash` for temporary storage. 
$ git stash pop Reapplies previously saved change from the stash and removed it from it. 
$ git stash apply Reapplies previously saved change from the stash, and keeps it in the stash. 
$ git stash apply | pop stash@{0} Applies/pops the given stash from the list of stashed changed. Latest is `0`. 
$ git stash list Lists all saved stashes. 
$ git tag <tag> Gives a label to `HEAD`. 
$ git tag -d <tag> Deletes tag. 
$ git tag -a <tag> Create Tag object, not just label. 
$ git push <remote> <tag> Push tag to remote repository. 
$ git checkout <tag> Checkout to given tag. Usually, in detached HEAD mode. 
$ git diff <file> Check difference between staged and unstaged file states. 
$ git diff <commit1> <commit2> Check difference between commits. 
$ git diff <branch1> <branch2> Check difference between branches. 
$ git add -i Interactive staging mode. 
  
  

#2 

 



 

Git Essentials Developer’s Guide to Git 
Cheat Sheet 

  

Reverting and Changing History  

$ git cherry-pick <reference> Creates a copy of the given commit, under a brand new hash. 
$ git rebase -i <reference> Reapplies the current branch's commits onto the given reference, but allows for specific actions on each commit. 
$ git reset <reference> Resets a branch to the given commit, making changes uncommitted. Defaults to `reset --mixed`. 
$ git reset --hard <reference> Resets a branch to given commit, discarding changes. 
$ git reset --soft <reference> Resets a branch to given commit, keeping changes staged. 
$ git revert <reference> Creates an anti-commit of the given commit, making a new commit in the history with the opposite changes. 
$ git revert --continue Continue reverting after solving revert conflict. 
$ git revert --abort Abort reverting. 
$ git commit --amend -m "new message" Edit latest commit. 
 

Common Errors 

 Pushing before pulling while there are new changes on the remote repository.  
Solution: Pull changes before pushing our own. 
 

 Merging or rebasing while there are changes in the staging area.  
Solution: Either commit or stash changes before merging, rebasing or pulling. 
 

 Committing wrong files, or wrong message. 
Solution: `$ git commit -amend -m "new message"`, after `$ git add file` after adding relevant files. 
 

 Made a typo in the branch name. 
Solution: `$ git branch -m branch-name new-name`. 
 

 Unstage files or directories from index. 
Solution: `$ git reset HEAD`. 

#3 

 


