Gib Essentials Developer’s Guide to Gib

Configuration

S git config user.name <username>
S git config user.email <email>

S git config pull.rebase <false|true>

S git config --global <any-command>

Basics

S gitinit

S git clone <url>

S git clone <URL> name

S git add <file_name>

S git add <fileglob>

S gitadd .

S git status

S git commit -m "<message>

Branching

S git branch <branch_name>

S git branch -m <branch_name> <new_name>
S git branch -M <branch_name> <new_name>
S git checkout <branch>

S git checkout -b <branch>

S git merge <branch>

S git rebase <branch>

S gitlog
S gitlog -n

S gitlog --oneline

S gitlog --graph

Defines the username for the user of the current repository (local config) as a key-value pair.
Defines the email for the user of the current repository (local config) as a key-value pair.
Sets the default behavior of pull operations - to merge or rebase for the current repository.

The *--global flag changes the scope of the configuration from the local *config file (current repository) to all
repositories on your machine.

Initializes a Git repository in the current directory.

Clones a remote Git repository into the current directory, under a directory with the name of the remote one.
Clones a remote Git repository into the current directory, under a directory called “‘name’.

Adds an updated file with the given filename, from the working tree to the staging area.

Adds the matching updated files from the working tree to the staging area.

Adds all the updated files from the working tree to the staging area.

Prints status of modified files in your working tree - marking them as staged, unstaged and tracked respectively.
Creates a commit with the given message for the changes in the staging area.

Creates a new branch, with the specified branch name. Cannot create two branches with the same name.
Renames branch.

Force rename branch. If duplicate names exist, the branch you're renaming will override the old one.

Checks out (sets working tree) to the specified branch.

Creates a new branch, and checks out to it. Convenience command that combines the two before this.
Merges the specified branch into the one you're currently checked out on.

Reapplies the commits of the branch you're currently checked out on, on top of the branch you specify in the
method.

Logs all commits in the currently checked out branch, with commit object info.

Logs the last n’ commits in the currently checked out branch, with commit object info.

Logs all commits in the currently checked out branch, with each commit in a single line containing only hash and
message.

Visualizes the logged commits in the CLI.



Gib Essentials Developer’s Guide to Gib

Remote Branches
S git fetch <remote> <branch>

S git fetch <remote> <remote_branch>:<local_branch>

S git pull <remote> <branch>

S git pull <remote> <remote_branch>:<local_branch>

S git pull -u <remote> <branch>
S git pull
S git push <remote> <branch>

S git push <remote> <local_branch>:<remote_branch>

S git push -u <remote> <branch>
S git push

Advanced

S git stash push

S git stash

S git stash pop

S git stash apply

S git stash apply | pop stash@{0}
S git stash list

S git tag <tag>

S git tag -d <tag>

S git tag -a <tag>

S git push <remote> <tag>

S git checkout <tag>

S git diff <file>

S git diff <commitl> <commit2>
S git diff <branch1> <branch2>
S git add -i

Updates the relevant local *origin/branch’ with the content of the given remote repository's branch.
Updates specified local “origin/branch’ with the content of the specified remote repository's branch.
Performs a fetch of the given branch from the given remote repository, then merges the result in the relevant
branch of the local repository.

Pull from the specified remote branch into the specified local branch.

Sets up upstream between the local and remote branch.

Pulls from the branch, and into the branch you've linked via the " -u" flag.

Sends the commits of the relevant local branch to the given branch of the given repository.
Explicitly set the branch you push from and to.

Same as regular pushing, but sets the remote branch as the upstream of the current one.

Same as the previous one, but uses upstream of the current branch.

Saves the indexed changes into the stash (a dedicated local space for in-progress work).
Saves unstaged changes in the “stash’ for temporary storage.

Reapplies previously saved change from the stash and removed it from it.
Reapplies previously saved change from the stash, and keeps it in the stash.
Applies/pops the given stash from the list of stashed changed. Latest is"0'.
Lists all saved stashes.

Gives a label to "HEAD'.

Deletes tag.

Create Tag object, not just label.

Push tag to remote repository.

Checkout to given tag. Usually, in detached HEAD mode.

Check difference between staged and unstaged file states.

Check difference between commits.

Check difference between branches.

Interactive staging mode.



Gib Essentials Developer’s Guide to Gib

Reverting and Changing History

S git cherry-pick <reference> Creates a copy of the given commit, under a brand new hash.

S git rebase -i <reference> Reapplies the current branch's commits onto the given reference, but allows for specific actions on each commit.
S git reset <reference> Resets a branch to the given commit, making changes uncommitted. Defaults to ‘reset --mixed'.

S git reset --hard <reference> Resets a branch to given commit, discarding changes.

S git reset --soft <reference> Resets a branch to given commit, keeping changes staged.

S git revert <reference> Creates an anti-commit of the given commit, making a new commit in the history with the opposite changes.

S git revert --continue Continue reverting after solving revert conflict.

S git revert --abort Abort reverting.

S git commit --amend -m "new message" Edit latest commit.

Common Errors

e Pushing before pulling while there are new changes on the remote repository.
Solution: Pull changes before pushing our own.

e Merging or rebasing while there are changes in the staging area.
Solution: Either commit or stash changes before merging, rebasing or pulling.

e Committing wrong files, or wrong message.
Solution: *S git commit -amend -m "new message'", after*S git add file' after adding relevant files.

e Made a typo in the branch name.
Solution: 'S git branch -m branch-name new-name'.

e Unstage files or directories from index.
Solution: 'S git reset HEAD'.



