
02 February 2022

FOSSEPS Pilot Project

Identifying critical open source software used by European Public Services

Context and Survey Guidelines

The FOSSEPS Pilot Project

OSPO, DIGIT B3

EUROPEAN COMMISSION

DIGIT-OSPO@ec.europa.eu

FOSSEPS (Free Open Source Software for European Public Services) is the project name adopted for the Pilot project:

Europe-wide solutions for free and open source software use by public services in the EU (budget line PP 01 21 04)

Scope

To identify Europe’s

most critical open

source software

Collect Critical

Software information

from 30-50 European

Public Services and

create an inventory

3

What exactly is critical software?

In this project "Critical software" is software that is significantly important for European Public services
(EPS) and whose continued usage and existence is at risk.

The importance of a software item can be due to it being widely used inside an organisation or because
it supports key processes for this organisation.

From a usage perspective: the software may not be well supported via internal support contracts or via
inadequate/poor responses from the software community that maintains it.

From a sustainability perspective: the software’s continued existence may be threatened due to the
poor health of the software project community and their inability to maintain it.

Help us protect the open source software Europe runs on

This FOSSEPS Pilot project aims to fix this, and build an initial inventory of critical software.

That will help to establish which software is most critical to European Public Services  so that we

can collectively secure it, sustain it and protect it.

We can’t do this without you, and we encourage you to participate by completing a survey. The next

few pages will explain how you can do that. If you need help, please contact the following people:

1. Inno3: Camille MOULIN (cmoulin@inno3.fr)

2. FOSSEPS Project, DIGIT, EC: Saranjit ARORA (DIGIT-OSPO@ec.europa.eu)

3. OSPO, DIGIT, EC: Miguel DIEZ-BLANCO (DIGIT-OSPO@ec.europa.eu)

Note: Inno3 and Deloitte are subcontractors on this project.

All European Public Services use open source software to some extent. But do we know our

most critical components?

Sadly, the answer is NO… many public administrations do not have an inventory of their

open source, and so cannot easily identify their critical software!

Credit: Image courtesy of XKCD.com

https://joinup.ec.europa.eu/collection/fosseps/news/fosseps-pilot
https://questionnaires.inno3.cricket/index.php?r=survey/index&sid=695576&lang=en
mailto:cmoulin@inno3.fr
mailto:DIGIT-OSPO@ec.europa.eu
mailto:DIGIT-OSPO@ec.europa.eu
https://www.explainxkcd.com/wiki/index.php/2347:_Dependency

5

Our proposed steps to find critical software

• Also contains questions about open source
management

• Identify critical open source software
• Identify critical software dependencies

1. Answer FOSSEPS Project Survey

2a. EPS Analyses and Extracts Data 4. Combine with already known critical software+

6. Publish an inventory of Europe’s most critical software

2b. EPS Uploads spreadsheets to survey
5. Speak with critical software projects and to

confirm problems and explore solutions

7. Publish proposed solutions to fix issues that cause software criticality

• We already have a list of widely known critical
software

• Consolidate data
• Identify recursive dependencies

3. Analyse received data files

European Public Services European Commission

3. Analyse received data files

4. Combine with already known critical software

How you can help

1. Answer Survey questions

2. Identify your critical software and software dependencies

3. Prepare and upload your two spreadsheets

Getting started

Survey questions We have purposely designed a short survey, and added help text to make the questions self-explanatory.

Identifying my critical software
This is the primary objective. Right now, European Public Services do not know their critical software. So your

answers will help us create a Europe-wide picture.

Simplest way
Get a group of people round a table, brainstorm, and write some potential candidates, and fill in the

spreadsheets.

Small effort

Getting a list of key software your organisation uses, look for the most used, and compare support contracts.

What’s missing? Ask your developers what they think is really crucial for your organisations. Ask, if this software

vanishes, can we survive?

Medium effort
Look at each data source – applications, infrastructure, cloud, virtual machines. Try and create extracts, and do

some number crunching. Follow the guidelines below.

Large effort
Create a complete open source software inventory and follow the steps suggested below. Look at what the

European Commission did in its own inventory process. Download the recently improved inventory methodology.

Filling in the spreadsheets Fill in the spreadsheets as best you can. If in doubt, email us and we can set up a call.

https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/2022-02/EC%20FOSS%20Inventory%20Methodology%20%28Revision%202021%29_0.pdf

Handling Survey Questions

1. Use the help text accompanying the survey questions

2. See if the definitions on the next page help

3. Email us for help

Key Definitions

When we mention “open source” we mean software licensed according to the Open Source

Definition (https://opensource.org/osd) and to the Free Software Definition

(https://www.gnu.org/philosophy/free-sw.html). “Proprietary” means non open source

software.

Open source, proprietary software

In the context of software development, “dependencies” is a generic term to describe third

party code on which you rely to create your own application. They can be libraries (easily

reusable pieces of code) or frameworks (consistent sets of libraries embodying a

methodology).

Dependencies, libraries, frameworks

The dependencies that you use can themselves have dependencies, thus creating a tree of

recursive dependencies. Modern development tools allow to automatically download the

transitive dependencies of the “first level dependencies” (i.e. the ones that you declare

explicitly).

Recursive, first level dependencies

Infrastructure is a generic term to designate applications that serve as a base for other

(business) applications to work correctly: this includes application servers (like Apache

Tomcat), databases server (like PostgreSQL), directories (like OpenLDAP), or operating

systems (like Debian GNU/Linux).

Infrastructure

A software is “dual licensed” when it is made available under two different licenses, one

open source and one proprietary, but they cover the same product (e.g. MySQL).

Open Core software is available in two versions, one open source (often called “Community

Edition”) and one proprietary with additional features (e.g. Gitlab).

Dual licensed, Open Core software

https://opensource.org/osd
https://www.gnu.org/philosophy/free-sw.html

Identifying Critical Software

1. Study the slides/pages below

2. Talk to people in your organisation

3. Email us for help and we can set up a call

2a. Identify your critical software

Many European public services and institutions such as the European

Commission have, to varying degrees, created inventories of their open

source software, tools, business applications and critical software.

Though helpful, having a complete open source software inventory is not

a pre-requisite. You can start wherever you are right now.

It’s the same conceptual process whether you are a small, medium,

national or pan-European public body.

Follow the suggested steps described next to identify your

organisation’s most critical open source software

1. Identify critical software

2. Identify critical software dependencies

2a. EPS Analyses and Extracts Data

2a.1 The process for identifying applications
and infrastructure software

Steps to create spreadsheet # 1: Identify your critical applications and infrastructure software

1. Identify critical open source software

2. Identify critical software dependencies

2a. EPS Analyses and Extracts Data

Do you have

an inventory?
Extracted

software list

Extract from

IT systems

Which software

do they use?

Identify your

critical

processes

Software

with support

contracts

Software

without support

contracts

Filter out proprietary software

Software

downloaded by

developers

Which is the

most used

software?

Arrive at the list of the most

important open source software

Collect additional information about

each critical software for the CSV file

Is this software critical? i.e. in

danger of being unsupported?

Arrive at the list of the most

critical open source software

Fill in and submit spreadsheet #1

Source files

2a.1 The process for identifying applications
and infrastructure software…

Contact the head of IT, who can facilitate an extraction of the
list of software used.

Step 1: Get a list of your

software items

Additional information will likely be available from the technical teams who use and operate the concerned open source

software.
Step 5: Collect additional

information about the

software

Step 2: Identify the most

important ones

The person who has provided you with the list of elements in step 1 should be able to tell you which software is Free and

Open Source or not. The goal is to only retain the 10 to 20 most important ones.
Step 3: Filter out the

proprietary ones

Identify if you have a support contract for each piece of software, from the software asset management, the IT department

or the procurement department. Identify the critical state of the open source project by asking technical teams in contact

with it.

Step 4: Evaluate the

potential critical state

Contact your Software Asset Manager, they may have

an inventory already.

Select the most deployed ones and the ones which support the most important services provided by your organisation.

The product owner/product manager of each critical service will know about the software used by their service or will be

able to identify the person who has this information.

Medium-Large organisation Small organisation

1. Identify critical open source software

2. Identify critical software dependencies

2a. EPS Analyses and Extracts Data

Step 1: Where to look for

open source data

Open source software data can be found in the following places: data centres, departmental systems/servers, virtual machines, end user

and developer pcs, cloud systems, mobile devices, network switches, routers etc. Data can be equally widespread to include: operating

systems such as gnu/Linux (various distributions), applications running on servers for performance, messaging, email and connectivity,

software development tools and frameworks and user desktop tools such as web browsers, utilities, office suites, password managers; etc.

2a.2 The process for identifying dependencies
(libraries and frameworks)

Steps to create spreadsheet # 2: Identify your critical software dependencies

1. Identify critical open source software

2. Identify critical software dependencies

2a. EPS Analyses and Extracts Data

Do you develop

applications

in house?

Extracted list

of in-house

applications

Software

with support

contracts

Software

without support

contracts

Filter out proprietary software
Identify which applications are

the most important

Arrive at the list of the most

important open source libraries /

frameworks

Collect additional information about

each critical library/framework for the

CSV file

Are these libraries/framework

critical? i.e. in danger of being

updated/unsupported?

Arrive at the list of the most

critical open source

library/framework

Fill in and submit spreadsheet #2

Identify which main

frameworks/libraries your

applications depend on

Note: the EC can figure out recursive dependencies from the named open source libraries and frameworks you use.

2a.2 The process for identifying dependencies
(libraries and frameworks)…

Contact the person of the IT team in charge of Software
Development.

Step 1: Get a list of in-house

applications

Additional information will likely be available from the technical teams who operate the concerned open source software.Step 5: Collect additional

information about the

software

Step 2: Identify the most

important ones and their

dependencies

The person who has provided you with the list of elements in step 2 should be able to tell you which software is free and

open source. The goal is to only retain the 10 to 20 of the most important dependencies ones across all your applications.
Step 3: Filter out the

proprietary ones

Identify if you have a support contract for each dependency, from the software asset management, the IT department or

the procurement department. Then identify the critical state of the open source project by asking technical teams in contact

with it.

Step 4: Evaluate the

potential critical state

Contact your Software Asset Manager, or the CIO/Head

of IT to identify the groups with significant software

development activity.

Select the software most deployed and ones which support the most important services provided by your organisation.

The product owner/product manager of each application will know about the main libraries and frameworks they depend

on. Please note that our focus is on first level dependencies and not the whole tree of recursive dependencies.

Medium - Large organisation Small organisation

1. Identify critical open source software

2. Identify critical software dependencies

2a. EPS Analyses and Extracts Data

Who should I contact in my organisation

Open Source expert/s Will help you throughout the survey

CIO / CTO Will help you with general information and to identify the right contact persons for specific topics

Software asset manager Will help you identify the most used software, as well as other information like support contracts, etc.

Dedicated technical teams Will help you get detailed informations on specific software

Product owners / product managers

of services / processes
Will help you identify applications/infrastructure used by their respective services

Product owners / product managers

of in-house software developments
Will help you identifying frameworks/libraries used by their respective applications

Procurement department Will help you identifying support contracts

FAQs/Advice – 1

Most used means that the software is widely used inside the organisation; critical means that

it supports key processes. But in our case, we need to check the sustainability/health of the

most used/critical software. If anything is not right, lets put it on the critical list.

What is the difference between most used software and

critical software?

Call us, we can help you. Our contact information is at the end.We don’t understand the needed output?

Your data is safe and we just want software namesI am worried about security, sensitivity.

You will understand which software is critical for your organisation, how well it is supported,

and also help protect European Public Services by helping us/them collectively identify and

protect their critical open source software.
What will we get out of this?

FAQs/Advice – 2

Most important processes are the ones necessary for your organisation to perform its core duty.How do I figure out my most important processes?

We have listed key roles of who should be able to help you inside your organisation. If you can’t

complete all the survey, just send us the information you can get.
This looks difficult and a lot of work!

Yes, you can. This is the simplest use case and it will still be useful to us. However, a more

through process may flush out non-obvious critical software.

Can I just take a blank piece of paper and write out my most

critical software?

The survey itself is quite brief, but gathering the information to fill the spreadsheet may take you

several hours over several days of elapsed time.
How much time will this exercise take?

We are looking for your top 10-20 software, but you may need to list more to get the most

important/critical ones.
How many critical software do you need?

Yes, if the open source project itself has maintenance issues from the software community that

looks after its evolution and growth.

If a software has a valid support contract, can it still be

critical?

Yes.Should we include open core or dual-licensed software?

Filling in the spreadsheets

1. Most fields are self-explanatory

2. Study pages below for descriptions of key fields

3. Feel free to leave out optional fields

4. Email us for help

Guidance on filling in fields in Spreadsheet #1

If its www.postgresql.org then do not, if its an obscure one, the URL will help us to properly identify the

software.

URLs – why should I fill this? It seems rather a

clerical job!

We don’t need an exact number, just an order of magnitude.Number of instances

This helps us understand the relative usage of open source in your organisation. For example, if you have 10

PostgreSQL servers running, alongside 10 MariaDB servers and 15 Oracle DB servers, the total servers

would be 35. We are aware that this could be cumbersome, so if you have another way of counting (e.g. the

size of the instances, etc.), please feel free to use it.

Total number of instances of this type of software

(both open source and proprietary). Why do you

need this, especially the proprietary one?

In this context, “important” is measured on an arbitrary scale for “Critical” to “Low”. “Critical” would mean that

the dysfunction of the concerned instance of this open source item would have a severe impact on a key

service you are delivering.

Maximum degree of importance of this software

project for your organisation

The governance type of an open source project has a important impact on its sustainability model. Only the

two major types are proposed as a possible response:

• Vendor driven: Some projects are maintained and mainly developed by a single company, which also acts

as a software vendor (e.g. https://about.gitlab.com/).

• Community driven: This is the most common type of open source project. They can be governed as part of

a foundation (tomcat.apache.org/) or have an informal governance (e.g. samba.org/samba/team/).

• “I don’t know”: It is important for us to know your level of awareness of this, so don’t hesitate to choose this

option if it matches your situation.

Open source project’s governance type

Guidance on filling in fields in Spreadsheet #1…contd.

This is ranked on an 5 degree arbitary scale. It can be based on your impression of the responsiveness, facts

you might have been made aware of, etc.
Your assessment of the health of this project

This question is key for us to understand how the usage of this open source item is secured inside your

organisation, and also how this securisation contributes to the sustainability of the open source project itself.

• Vendor / Maintainer of the project: For community-driven projects, there is no single entity governing the

project, but a group of contributors. The most active, regular and long term contributors, are generally

called “maintainers”. They often work for companies who sell support contracts.

• Company unrelated to the project: Any company can legally sell support for open source projects. Generic

IT service companies sometimes sell contract support for open source even if they don’t, or rarely,

contribute to the project.

• Internal: your internal team can participate to a project’s community and ask for support on public

discussions channels, for free but with no assurance of getting an answer.

• None : if your are not aware of any specific support for this project in your organisation

Type of support contract your organisation has

for this open source project

In case your team is involved with a open source project, we would be interested in knowing about the nature

of your involvement. The possible types of contribution are:

• Code: this can be submitting simple patches or full features (details can be given in the following field)

• Non-code: this can be documentation, translation, QA (tests, bug reporting/triaging), support,

communication, etc.

• Financial sponsorship for the project: donating money directly to the project

• Financial sponsorship of the project foundation: donating money to the umbrella organisation that

hosts the project (like the Apache Foundation)

Your contribution to this open source project

Guidance on filling in fields in Spreadsheet #2

This is the approximate number of applications that rely on this framework/library. We don’t need an exact

number, just an order of magnitude.

Number of applications this dependency is used

in [Mandatory]

In this context, “important” is measured on an arbitrary scale for “Critical” to “Low”. “Critical” would mean that

the dysfunction of the applications using this open source framework/library would have a severe impact on a

key service you are delivering.

Example: If you have 10 applications relying on the django framework, 9 used for low impact internal services

and 1 used for a key service to the citizens, then the rating for the open source framework/library would be

“Critical”.

Maximum degree of importance of the

applications using this open source

library/framework [Mandatory]

23

Thank you

© European Union, 2022

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are not owned by the EU, permission

may need to be sought directly from the respective right holders.

Contacts

1. Inno3: Camille MOULIN (cmoulin@inno3.fr) Note: Inno3 and Deloitte are subcontractors on this project.

2. FOSSEPS Project, DIGIT, EC: Saranjit ARORA (DIGIT-OSPO@ec.europa.eu)

3. OSPO, DIGIT, EC: Miguel DIEZ-BLANCO (DIGIT-OSPO@ec.europa.eu)

https://creativecommons.org/licenses/by/4.0/
mailto:cmoulin@inno3.fr
mailto:DIGIT-OSPO@ec.europa.eu
mailto:DIGIT-OSPO@ec.europa.eu

