Developing in a Service-oriented World W-JAX 2007

SEIACON

T L] 2007]
Where IT Aligns With Business

Gregor Hohpe | Google

Developing in a
Service-oriented World

www.eaipatterns.com

Who's Gregor?

+ Distributed systems, enterprise integration,
service-oriented architectures

- MQ, MSMQ, JMS, TIBCO, Web Services

eaipatterns.co

» Write code every day. Share knowledge « Patterns
* Articles
* Blog

through patterns.

[rm—

nterprise Solution Patterns 4
Jsing Microsoft .NET

ENTERPRISE
INTEGRATION
PATTERNS

Integration Patterns

Expertenwissen

Enterprise Integration Enterprise Best SOA
Integration Patterns Solution Software Experten-
Patterns Microsoft Press Patterns Writing | wissen
Addison-Wesley Microsoft Press APress dpunkt Verlag

2 Copyright 2007 Google, Inc

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

e —
Could It Be So Easy?

WSDL

O < ,k, Int MyMethod(String text)
soar O N - {3
ws-* O

» Buzzword compliant, but not a service-oriented
architecture

» Synchronous call stack mentality
» No interface-implementation separation

2 Copyright 2007 Google, e _

[U —
Advice for Aspiring SOA Developers

» Forget about SOAP

» Become good at PowerPoint

« Pay close attention to Starbucks

« Shred “Design Patterns” (or eBay it)
» PROLOG rocks

« Replace MDA with ADM

‘ Copyrigh 2007 Googie e _

Gregor Hohpe, Google

SEIACON

]
Where IT Aligns With Business

How Did We Get Here?

PART |

SOA =7

Same Old Architecture

Some Other Architecture

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

[————————————————————]
Service-Oriented Architecture

» Service
— Well-defined, Self-contained
— Independent of consumer context (mostly)
— Universally accessible without individual deployment

« Service-Oriented Architecture
— An architectural style
— A simple, document-oriented interaction model
— Loose(r) coupling
— Interface contracts, registry

— Functional assets reside in services, explicit
orchestration across services

: Copyright 2007 Googl, o _

]
Distributed Component Architectures

» Main driver: transparency to developer
— Remote code looks like local code

» The Distributed Object approach ignores:
— Latency (network, marshalling, applications)
— Disconnected or intermittently connected networks
— Lack of shared memory access (pointers, references)
— Partial failure and concurrency
— Independent variability between systems (coupling)

s Copyright 2007 Googl, e _

Gregor Hohpe, Google

Developing in a Service-oriented World

e E———————
Distributed Component Architectures

“The first law of distributed objects: Don’t distribute

your objects -- Martin Fowler

“Objects that interact in a distributed system need
to be dealt with in ways that are intrinsically
different from objects that interact in a single

address space.” Waldo et al, 1994

“95% transparent is not good enough. In fact, it is

worse because it deceives developers.”
-- Werner Vogels

: Copyright 2007 Googl, o _

Service Oriented Integration
Defining Characteristics

 Simplicity of interaction.
» No notion of inheritance, polymorphism, call
stack, references etc.

» No lifecycle control. Service provider manages
instances / allocations internally to suit its
needs.

» Pass fewer, more self-contained documents. A
tree structure (e.g., XML) is well suited for this.

* More amenable to asynchronous interaction.

1 Copyright 2007 Googl, e _

Gregor Hohpe, Google

W-JAX 2007

Developing in a Service-oriented World W-JAX 2007

[T E———.,
Service Oriented Integration
Considerations

* Progress through Regress?

Is the simplified interaction model sufficient?
(WS-%)

Are the contracts expressive enough?

Are we getting it right this time around?

When is SOA not appropriate?

| Copyright 2007 Google, e _

SEIACON

— I ST
‘Where IT Aligns With Business

What Now?

PART Il

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

[————————————————————]
The Human Side of Service-Orientation

« Architectural style is based on patterns and
intent, not technology selection.

« SOAP vs. Binary is only a very small part of the
SOA puzzle.

» Conversation models, asynchrony, document-
orientation, granularity, decoupling,
management, etc. are much more important.

1 Copyright 2007 Googl, o _

I E———
The Human Side of Service-Orientation

» Loose coupling means shared architectural
vision and intent are critical.

« SOA is primarily an agreement on what not to
do.

* Your compiler can’t tell you if you violated SOA
principles.

* |In the near term, this means documentation.
Yes, PowerPoint!

1 Copyright 2007 Googl, e _

Gregor Hohpe, Google

Developing in a Service-oriented World

SOA on Architect's Napkin 3

Endpoint

Orchestration Application

Message

-

<&
<

Document
@

=
k3

<
<

Bl

Transform

Conversation

Application

—

Copyright 2007 Google ne _

SOA on Developer's Napkin (3

Object-Document Event-based

: Endpoin .
Mapping i’ro rammin
Orchestration A%plicationg

Application

Declarative
Programming

Protocol
Design

Copyight2007 Google, _

Gregor Hohpe, Google

W-JAX 2007

Developing in a Service-oriented World W-JAX 2007

S
New Programming Models in SOA

» Event-based, Asynchronous Programming

— Explicit state management

— Sequencing, timing uncertainty
 Declarative Programming

— Execution path chosen at run-time

— XSLT, Rules engines
» Object-Document Mapping

— Analogous to O-R mapping: subtle, but important
* Process Modeling

— Many concurrent, long-running instances

— No two-phase-commit style transactions

1 Copyright 2007 Google, Inc

“Doodleware” Only Limited Help

For example

— Graphical process editors

— Graphical transformation editors
We love pictures

Programming in pictures tedious
— Scalability issues

— Diff, Merge mostly unsupported

Often a thin veneer over a complex
(or unfamiliar) programming paradigm “EAI Art”

1 Copyright 2007 Googl, e _

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

S
Understanding Technology

+ Syntax

— Basic language mechanism

— Artefact of crude input devices

Constructs

— "Vocabulary": Objects, Classes, Interfaces, Inheritance, etc.
— Easily explained but no guidance on good design
Principles

— Separation of Concerns, Open-Closed, etc.

— Help evaluate a solution

Patterns

— Null Object, Decorator, Model-View-Controller

— Concrete design guidance based on principles

1 Copyright 2007 Googl, o _

e EEEE—
Patterns — 10 Years After GoF

* “Mind sized” chunks of information
(Ward Cunningham)

« Human-to-human communication

« Good solution to a common problem within a
specific context

» Expresses intent (the “why” vs. the “how”)
« Observed from actual experience
« NOT:

— A firm rule —always a time when not to use
— Copy-paste

— Isolated. Part of a Pattern La
2 Copyright 2007 Google, Inc

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

T —|
Why Revisit Patterns?

* New programming models bring new patterns.

« Patterns are expressed using the constructs of
the underlying architectural style (e.g. OO,
SOA).

 Patterns can help discover higher levels of
abstraction.

+ Ultimately some of these patterns can be
implemented in the platform.

» This is usually an iterative process.

2 Copyright 2007 Googl, o _

]
Focus on Interaction

* In the OO world interaction is essentially free

» Powerful structural mechanisms: inheritance,
composition, aggregation

 In the SOA world more focus shifts to

interaction. Structural composition mechanisms
are limited.

"The lines are becoming boxes now."
-- Ralf Westphal

2 Copyright 2007 Googl, e _

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

T —|
Thinking Asynchronously

Order Mgmt Shipping Order Mgmt Shipping
Web Site i Inventory : Web Site : Inventory :
New Order: New Order, : i : :
> < _’D
New Order —>|:|
Ack D : :
idle [~ — *D
: i New Order_: : _’D f
; : i - i :
s ||, oy
D<— L i1
@l TR
Synchronous (Call Stack) Asynchronous (Pipeline)

2 Copyright 2007 Googl, o _

Conversations

» Series of related messages between parties
» Choreography (e.g. WS-CDL)
» Describing conversation state and rules
 Protocol design Conversation

State

Internal State:

Internal State:

) S Order-, Waiting for
Processing —_—> L
{ Invoice] Payment

Payment _
\% __ _I\)/_ _k- 7 > % Internal State:
< __ r_|n_..f§_.,.~=_ _ Making Drinks

2 Copyight 2007 Google e _

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

T —|
Exception Handling

« “Starbucks does not use two-phase commit”
— Compensation
— Retry
— Write-off
« Throughput over latency
— “Wider bridges, not faster cars”

» Optimize for happy day scenario

2 Copyright 2007 Googl, o _

Composability

"The ability to build new things from existing pieces."

2 Copyight 2007 Google e _

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

[———————————————
Composition Considerations

* Introduces a new layer into the system: the
composition layer
» Deserves to be a 1st class citizen:
— Language
— Tools
— Tests

“Great composers are few and far in between.”
-- Gregor's Ramblings

2 Copyright 2007 Googl, o _

e ——
Bottom Up vs. Top Down

* Loosely coupled systems enable independent
variability

« System can evolve locally without breaking

» Evolution can lead to surprises

» Therefore, extract accurate state of the system:
— Design-time analysis
— Run-time observation

» “Reverse” MDA

2 Copyight 2007 Google e _

Gregor Hohpe, Google

Developing in a Service-oriented World W-JAX 2007

[]
Run-time Observation ewwin

Channel X
A | bPo-amm-{ | B

<

» Component endpoints send
status messages to a Control
Bus

* Invisible to applications

+ Central component collects
publication and subscription

d ata Dependencies
* Map onto a Directed Graph Model
Mapper
metamodel
. Nodes: A, B Directed
« Use AT&T GraphViz to layout Graph
a Vlsual representatlon |Va|idation| | Renderer |—| GraphViz |
17 v

Errors / A X
. [AF—{B]| Image
Warnings E A 9

Visualization — Example Input

RV ool TN - oL/ T — ol
ot [orderEmcnedcama " J| ™ JpotBevOrderChamel Input [GoldBevOrderChannel

Oupit roiBevOdeompiedtran | Ovipst [oBevOeCorpeedcar
Output: [emChanne!
]
o»0
= i |
iy [edoms

EEE

Ecoﬁee Shop Aggregator: =101 x|
I‘m“’ Input: |completeditemChannel o
E »0

Output: [completedOrderChannel

Delay:

- I
‘Cha'd foderChannel ‘ L ree / wire Tap =lolx| =
Received Messages:
Input [ooidBevOrieCompitadcharnel
Sz Send Orcer
Ouput [oorpitedtonCramd
ltems: [CoFFEE <!

LATTE

FRAPP LCINO -

|3 Totaltems="2">COFFEE</tem>
|3 Totalhems="2">(ATTE</tem>

SCOFFEE</tem>
SFRAPPUCINO</

3 Copyright 2007 Google, Inc

Gregor Hohpe, Google

Developing in a Service-oriented World

Visualization — Example Output

[oo |

hotbevarderchannel o1Bav
orderchannel orderenrichedchannel itemchannel B
Customer SplitOrder RouteHotCold | coldbevorderchannel

ColdBev

hotbeviogchannal

hotbevordercompletedchannel completeditemchannel

completedorderchannel
Logger completedOrderChanne!

coldbevorderzompletedzhannel
coldbeviagchanne!

R R
Model Validation

3 Message Flow Visualizer - Microsoft Internet Explorer

{ Fle Edt Vien Favortes Tools Help
i0-O RRAG Ahe 2% W-URO
. g _ Customer
Turn On Refresh Tl
order

| Channel

| =

I
&) N i My Computer orders
A Message Flow Validation - Microsoft Internet Explorer Channel

DRl Edb Vs Favortss Tooks Help [

-0 HRG PO RRM-URD

Logger

INFORMATION. The message graph has 2 disconnected parts

&) Done < i My Computer

3 Copyright 2007 Google, Inc

Gregor Hohpe, Google

2 Copyright 2007 Google, e _

W-JAX 2007

Developing in a Service-oriented World W-JAX 2007

e —
Domain-Specific Languages

 Finding generic languages to support these
programming models is hard

« It also makes the languages complex and the
learning curve steep (see XSLT)

« “Language Workbenches” may help us create
our smaller domain-specific languages
Intentional Programming

— JetBrains Meta Programming System (MPS)

— Visual Studio 2005

— See article on http://www.martinfowler.com/

2 Copyright 2007 Googl, o _

]
In Summary

» SOA brings new and unfamiliar:
— Architectural Styles
— Programming Models
— Best Practices
— Patterns
— Testing Approaches
— Management Approaches

» The collective learning cycle will take some time

« The vendors and specs are sometimes ahead
(or amiss) of the real issues

s Copyright 2007 Googl, e _

Gregor Hohpe, Google

Developing in a Service-oriented World

Enterprise Integration Patterns

Language of 65 patterns

Consistent vocabulary
and notation

Focuses on asynchronous
messaging

Many more patterns

to harvest:

— Conversations
Orchestrations

Error Handling

Complex Transformations
Rules Engines

www.EnterpriselntegrationPatterns.com

ENTERPRISE
INTEGRATION
PATTERNS

Copyright 2007 Google, Inc

Gregor Hohpe, Google

W-JAX 2007

