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Where are the most defects?
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Which way do the messages flow?
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A picture says more than 1000 words

The amount of information in current systems is
beyond what we can handle (understand?)

Often we are only interested in a specific angle
° Relationship between classes — not the entire source

°* Number of messages flowing — not the message content

We’re good at a spotting patterns in images...

Being able to control large-scale systems is an illusion.
But we can observe what is happening...
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Where do we get the picture from?

Models created upfront convey a vision but usually
don’t reflect reality

Generating a complete model for large systems is
nearly impossible

Systems evolve locally, often uncontrolled
* Particularly true for loosely coupled, dynamic systems (SOA)

The best picture very much depends on the question
you are trying to answer
* We need tools that make it easy to create ad-hoc models
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Visualizing Software
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Five Steps

Select Meta-model
Inspection / Instrumentation
Mapping to Model
Visualization / Output

Validation / Analysis
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1. Select Meta-model

“A model that describes a model”
* The elements a model can be composed of
* How to combine these elements

Example: meta-model for a class diagram
* A class is a box with name, methods, fields,...
* Available connectors: association, inheritance, aggregation...
* Rules: no circles in inheritance etc.

Sounds more scientific than it really is

Usually pick from a few popular candidates
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Common Metamodels
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2. Inspection / Instrumentation

Static Analysis

Inspect System Design

Source code

Configuration repository

Scan / Parse into
intermediate format

Dvnamic Analysis

Inspect Running System

Profiling

Listen to messages
Log files

Network sniffer

Compiler decorator
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3. Mapping to Model

Map the gathered data onto the meta-model

Senders Receivers
Comp. | Channel Comp. | Channel
A X c X
B Y (o Y
. |
Example: Messaging System Mol

* Capture send / receive actions
° Map onto directed graph Nodes: A, B, C

Edges: X(A>

Graph Model
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4. Visualization / Output

Example: GraphViz Dot
* Automated graph layout tool
* Takes textual input, produces many graphics formats
* Developed by AT&T, Common Public License

Example: Codecrawler
* Object-Oriented reverse engineering

* Polymetric views of metrics @Foo
* Hotspots, complexity, inheritance, M,
data storage, etc. .Bar

¢ All views are interactive
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5. Validation / Analysis

A model is useful for more than pretty pictures
Can apply rules against the model

Example: Directed Graph

4 O
egee gl
Identify circles Identify islands Identify leaf nodes
(in domain models) (in dependency graphs)
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Example: Object Dependencies

Static analysis: Spring bean configuration

SpringViz, a small XSLT sheet, maps bean
configuration to input for GraphViz Dot

Mapping and format hard-coded in style sheet

Really simple but really useful
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Example: Component Dependencies

Dynamic Analysis: JAR references

Decorate compiler with custom Ant task to get
dependencies on a JAR level

Map to a Directed Graph
Render with GraphViz Dot as clickable SVG

Navigate through model
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Example: Code Crawler, System Complexity

Static analysis: Source code analysis

Code Crawler imports XMl and calculates metrics
* NOA, NOM, WLOC

Renders polymetric System Complexity view

* Width, height, color used for metrics
* Position used for tree layout of inheritance

Goal of this view is to classify inheritance hierarchies
* Subsystems
* Large stand-alone classes

Can use other views to understand inner workings of
specific hierarchies
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Example: Asynchronous Messaging

Processes
communicate by
sending messages
across channels
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Dynamic Analysis:
Instrument Message Sender and
Receiver

Collect publication and
subscription data centrally

Model

Mapper

Map to a Directed Graph model
Nodes: A, B Graph
Edges: X(A->B) Model

Render with GraphViz Dot
| GraphViz |—| Rendererl

Re-render as model changes image
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Message Flow Graph
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Example: Process Mining
A system performs a series of activities for each case
(process instance)
Goal: create a process model from running system

Approach: Analyze activity logs and create process
model

Meta-model: Petri Net

Variety of algorithms, e.g. a-Algorithm (Wil v.d. Aalst)
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Process Mining Example
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A Place
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Transition

Process Model

Process-Aware information Systems, Dumas et al.
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What's Next?

Applies to many levels
* Single module source code
® Multiple modules

* Whole systems

Diagrams hard to scale to huge systems
* Interactive zoom / drill-down

* Annotation-aided visualization

As systems become larger and more dynamic tools like
this become a necessity
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Resources

Tools

* http://www.graphviz.org (Dot)

* http://www.samoht.com/wiki/wiki.pl?SpringViz

* http://www.eaipatterns.com (Messaging visualization)

Wil v.d. Aalst: Process Aware Information Systems,
Wiley, 2005

* www.processmining.org (Process Mining Tool)

Michele Lanza’s work (CodeCrawler)

* http://www.inf.unisi.ch/faculty/lanza
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Questions
2.
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