
Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 1

Software Visualization and
Model Generation

Erik Doernenburg

Software Developer

ThoughtWorks, Inc.

Gregor Hohpe

Software Engineer

Google, Inc.

Where are the most defects?

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 2

Which way do the messages flow?

A picture says more than 1000 words

� The amount of information in current systems is

beyond what we can handle (understand?)

� Often we are only interested in a specific angle

• Relationship between classes – not the entire source

• Number of messages flowing – not the message content

� We’re good at a spotting patterns in images…

Being able to control large-scale systems is an illusion.

But we can observe what is happening…

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 3

Where do we get the picture from?

� Models created upfront convey a vision but usually

don’t reflect reality

� Generating a complete model for large systems is

nearly impossible

� Systems evolve locally, often uncontrolled

• Particularly true for loosely coupled, dynamic systems (SOA)

� The best picture very much depends on the question

you are trying to answer

• We need tools that make it easy to create ad-hoc models

Visualizing Software

AA BB

Renderer A B
XNodes: A, B

Edges: X(A->B)

running system

model

source code

InstrumentationScanner/Parser

diagram

Mapper

A pub X
B sub X

raw data

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 4

Five Steps

1. Select Meta-model

2. Inspection / Instrumentation

3. Mapping to Model

4. Visualization / Output

5. Validation / Analysis

1. Select Meta-model

� “A model that describes a model”

• The elements a model can be composed of

• How to combine these elements

� Example: meta-model for a class diagram

• A class is a box with name, methods, fields,…

• Available connectors: association, inheritance, aggregation…

• Rules: no circles in inheritance etc.

� Sounds more scientific than it really is

� Usually pick from a few popular candidates

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 5

Common Metamodels

Process Model

(e.g. Petri Net)

…………

10.00.05.0Bar

6.53.83.4Foo

M3M2M1Class

M1

M2

Foo

Bar

xyz

M1

Tree

Directed GraphMetrics (Quantitative)

2. Inspection / Instrumentation

� Inspect System Design

� Source code

� Configuration repository

� Scan / Parse into

intermediate format

� Inspect Running System

� Profiling

� Listen to messages

� Log files

� Network sniffer

� Compiler decorator

Static Analysis Dynamic Analysis

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 6

3. Mapping to Model

� Map the gathered data onto the meta-model

� Example: Messaging System

• Capture send / receive actions

• Map onto directed graph

Mapper

YB

XA

ChannelComp.

YC

XC

ChannelComp.

Senders Receivers

Nodes: A, B, C
Edges: X(A�C)

Y(B�C)

Graph Model

4. Visualization / Output

� Example: GraphViz Dot

• Automated graph layout tool

• Takes textual input, produces many graphics formats

• Developed by AT&T, Common Public License

� Example: Codecrawler

• Object-Oriented reverse engineering

• Polymetric views of metrics

• Hotspots, complexity, inheritance,

data storage, etc.

• All views are interactive

M1

M2

Foo

Bar

xyz

M3

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 7

5. Validation / Analysis

� A model is useful for more than pretty pictures

� Can apply rules against the model

� Example: Directed Graph

Identify circles Identify islands

(in domain models)

Identify leaf nodes

(in dependency graphs)

Example: Object Dependencies

� Static analysis: Spring bean configuration

� SpringViz, a small XSLT sheet, maps bean

configuration to input for GraphViz Dot

� Mapping and format hard-coded in style sheet

� Really simple but really useful

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 8

Example: Component Dependencies

� Dynamic Analysis: JAR references

� Decorate compiler with custom Ant task to get

dependencies on a JAR level

� Map to a Directed Graph

� Render with GraphViz Dot as clickable SVG

� Navigate through model

Example: Code Crawler, System Complexity

� Static analysis: Source code analysis

� Code Crawler imports XMI and calculates metrics

• NOA, NOM, WLOC

� Renders polymetric System Complexity view

• Width, height, color used for metrics

• Position used for tree layout of inheritance

� Goal of this view is to classify inheritance hierarchies

• Subsystems

• Large stand-alone classes

� Can use other views to understand inner workings of

specific hierarchies

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 9

Example: Asynchronous Messaging

Processes

communicate by

sending messages

across channels

AA

Channel X

BB

Visualization

� Dynamic Analysis:

Instrument Message Sender and

Receiver

� Collect publication and

subscription data centrally

� Map to a Directed Graph model

� Render with GraphViz Dot

� Re-render as model changes

AA
Channel X

Endpoint Endpoint

BB

A pub XA pub X B sub XB sub X

Control Bus

TrackerTracker

RendererRenderer

ImageA B

A � X

X � B

X

Pub-sub
Data

Model
Mapper

Model
Mapper

Nodes: A, B

Edges: X(A->B)

Graph
Model

GraphVizGraphViz

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 10

Message Flow Graph

Example: Process Mining

� A system performs a series of activities for each case

(process instance)

� Goal: create a process model from running system

� Approach: Analyze activity logs and create process

model

� Meta-model: Petri Net

� Variety of algorithms, e.g. α-Algorithm (Wil v.d. Aalst)

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 11

Process Mining Example

D4

D5

E5

B4

D3

C3

D1

C4

A5

D2

B2

A4

C2

C1

B1

B3

A3

A2

A1

ActivityCase

A

B

C

E

DMapper

Log File

Process Model

Place

Transition

Token

Process-Aware information Systems, Dumas et al.

What’s Next?

� Applies to many levels

• Single module source code

• Multiple modules

• Whole systems

� Diagrams hard to scale to huge systems

• Interactive zoom / drill-down

• Annotation-aided visualization

� As systems become larger and more dynamic tools like

this become a necessity

Software Visualization and Model Generation

© 2006 Erik Doernenburg & Gregor Hohpe 12

Resources

� Tools

• http://www.graphviz.org (Dot)

• http://www.samoht.com/wiki/wiki.pl?SpringViz

• http://www.eaipatterns.com (Messaging visualization)

� Wil v.d. Aalst: Process Aware Information Systems,

Wiley, 2005

• www.processmining.org (Process Mining Tool)

� Michele Lanza’s work (CodeCrawler)

• http://www.inf.unisi.ch/faculty/lanza

Questions

?

