Software Visualization and Model Generation

TheServerSide 4>|
JAVA SYMPOSIUM | >

Software Visualization and

Model Generation

Erik Doernenburg Gregor Hohpe
Software Developer Software Engineer
ThoughtWorks, Inc. Google, Inc.

TheServerSide 4>|
JAVA SYMPOSIUM | >

Where are the most defects?

‘ann mustang.ipr = [= [mustang] =
P Al

~@l2|5G (X RE [, LI T e

nnnnn

[asges of getimstance in Project Fies |

0

v || e g || T

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide 4>|
JAVA SYMPOSIUM | >

Which way do the messages flow?

It onpetedtenCramal

Output: [oompetedOrdeChannet

=lolx|

E»o
8

=

Tep [odBeviogChamd

FFEE/bems

TheServerSide 4>|
JAVA SYMPOSIUM | >

A picture says more than 1000 words

The amount of information in current systems is
beyond what we can handle (understand?)

Often we are only interested in a specific angle
° Relationship between classes — not the entire source

°* Number of messages flowing — not the message content

We’re good at a spotting patterns in images...

Being able to control large-scale systems is an illusion.
But we can observe what is happening...

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | >

Where do we get the picture from?

Models created upfront convey a vision but usually
don’t reflect reality

Generating a complete model for large systems is
nearly impossible

Systems evolve locally, often uncontrolled
* Particularly true for loosely coupled, dynamic systems (SOA)

The best picture very much depends on the question
you are trying to answer
* We need tools that make it easy to create ad-hoc models

TheServerSide <>|
JAVA SYMPOSIUM | >

Visualizing Software

source code running system

A —(___ > B

raw data |
Scanner/Parser g 's)llj 3 Instrumentation

Mapper
model diagram
(NodeS' A B X
Edges: X(A- Renderer (B

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | >

Five Steps

Select Meta-model
Inspection / Instrumentation
Mapping to Model
Visualization / Output

Validation / Analysis

TheServerSide <>|
JAVA SYMPOSIUM | >

1. Select Meta-model

“A model that describes a model”
* The elements a model can be composed of
* How to combine these elements

Example: meta-model for a class diagram
* A class is a box with name, methods, fields,...
* Available connectors: association, inheritance, aggregation...
* Rules: no circles in inheritance etc.

Sounds more scientific than it really is

Usually pick from a few popular candidates

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide 4>|
| >

JAVA SYMPOSIUM

Common Metamodels

M,
®xyz ®roo
@®Bar
M,

Metrics (Quantitative)

Class|

M1

M2

M3

Foo

3.4

3.8

6.5

Bar

5.0

0.0

10.0

Directed Graph

Process Model
(e.g. Petri Net)

TheServerSide 4>|
| >

JAVA SYMPOSIUM

2. Inspection / Instrumentation

Static Analysis

Inspect System Design

Source code

Configuration repository

Scan / Parse into
intermediate format

Dvnamic Analysis

Inspect Running System

Profiling

Listen to messages
Log files

Network sniffer

Compiler decorator

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | >

3. Mapping to Model

Map the gathered data onto the meta-model

Senders Receivers
Comp. | Channel Comp. | Channel
A X c X
B Y (o Y
. |
Example: Messaging System Mol

* Capture send / receive actions
° Map onto directed graph Nodes: A, B, C

Edges: X(A>

Graph Model

TheServerSide <>|
JAVA SYMPOSIUM | >

4. Visualization / Output

Example: GraphViz Dot
* Automated graph layout tool
* Takes textual input, produces many graphics formats
* Developed by AT&T, Common Public License

Example: Codecrawler
* Object-Oriented reverse engineering

* Polymetric views of metrics @Foo
* Hotspots, complexity, inheritance, M,
data storage, etc. .Bar

¢ All views are interactive

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | =

5. Validation / Analysis

A model is useful for more than pretty pictures
Can apply rules against the model

Example: Directed Graph

4 O
egee gl
Identify circles Identify islands Identify leaf nodes
(in domain models) (in dependency graphs)

TheServerSide <>|
JAVA SYMPOSIUM | =

Example: Object Dependencies

Static analysis: Spring bean configuration

SpringViz, a small XSLT sheet, maps bean
configuration to input for GraphViz Dot

Mapping and format hard-coded in style sheet

Really simple but really useful

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | >

Example: Component Dependencies

Dynamic Analysis: JAR references

Decorate compiler with custom Ant task to get
dependencies on a JAR level

Map to a Directed Graph
Render with GraphViz Dot as clickable SVG

Navigate through model

TheServerSide <>|
JAVA SYMPOSIUM | >

Example: Code Crawler, System Complexity

Static analysis: Source code analysis

Code Crawler imports XMl and calculates metrics
* NOA, NOM, WLOC

Renders polymetric System Complexity view

* Width, height, color used for metrics
* Position used for tree layout of inheritance

Goal of this view is to classify inheritance hierarchies
* Subsystems
* Large stand-alone classes

Can use other views to understand inner workings of
specific hierarchies

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide 4>|
JAVA SYMPOSIUM | >

Example: Asynchronous Messaging

Processes
communicate by
sending messages
across channels

~loix|

op Aggreg
etedtenCranme

o
o0
i [ronpetedOdeCrame.

OrderID: 5
ftems: [Corree =
LATTE

FRAPPLCIND -

E =y

A

Channel X

TheServerSide 4>|
JAVA SYMPOSIUM | >

. . . Endpoint Endpoint
Visualization O

J

Dynamic Analysis:
Instrument Message Sender and
Receiver

Collect publication and
subscription data centrally

Model

Mapper

Map to a Directed Graph model
Nodes: A, B Graph
Edges: X(A->B) Model

Render with GraphViz Dot
| GraphViz |—| Rendererl

Re-render as model changes image

© 2006 Erik Doernenburg & Gregor Hohpe

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | >

Message Flow Graph

hotbevorderchannel otBev

orderchannel orderenrichedchannel itemchannel
Customer ComputeNumltems SplitOrder RouteHotCold | coldbevorderchannel

oldBev

i

hotbeviogchannel

hotbevordercompletedchannel

HotBevTee completeditemchannel
coldbevordercompletedehanne

ColdBevTee coldbevlogchannel

completedorderchannel
ggregat Logger completedOrderChannel
Logger coldBevLogChannel

TheServerSide <>|
JAVA SYMPOSIUM | >

Example: Process Mining
A system performs a series of activities for each case
(process instance)
Goal: create a process model from running system

Approach: Analyze activity logs and create process
model

Meta-model: Petri Net

Variety of algorithms, e.g. a-Algorithm (Wil v.d. Aalst)

© 2006 Erik Doernenburg & Gregor Hohpe

10

Software Visualization and Model Generation

TheServerSide <>|
JAVA SYMPOSIUM | =

Process Mining Example

Case| Activity] Log File
A Place

|::> Mapper |::>

Transition

Process Model

Process-Aware information Systems, Dumas et al.

OO PR XWX =ROCGAINDNRIN==WWN =

OO mw o000 0ow>0O0|wum > >

TheServerSide <>|
JAVA SYMPOSIUM | =

What's Next?

Applies to many levels
* Single module source code
® Multiple modules

* Whole systems

Diagrams hard to scale to huge systems
* Interactive zoom / drill-down

* Annotation-aided visualization

As systems become larger and more dynamic tools like
this become a necessity

© 2006 Erik Doernenburg & Gregor Hohpe

11

Software Visualization and Model Generation

TheServerSide 4>|
JAVA SYMPOSIUM | >

Resources

Tools

* http://www.graphviz.org (Dot)

* http://www.samoht.com/wiki/wiki.pl?SpringViz

* http://www.eaipatterns.com (Messaging visualization)

Wil v.d. Aalst: Process Aware Information Systems,
Wiley, 2005

* www.processmining.org (Process Mining Tool)

Michele Lanza’s work (CodeCrawler)

* http://www.inf.unisi.ch/faculty/lanza

TheServerSide 4>|
JAVA SYMPOSIUM | >

Questions
2.

© 2006 Erik Doernenburg & Gregor Hohpe 12

