
Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 1

Conversations between Loosely

Coupled Systems

Gregor Hohpe

gregor@hohpe.com

Today's Conversation

Coupling

Messaging

Conversations

Describing Conversations

Standards

Patterns

Resources

Questions

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 2

Coupling (Once Again)

Looser Coupling

= Fewer Dependencies

= More Independent Variability

“How do you make two

systems loosely coupled?

Don't connect them.”

-- David Orchard, BEA

Technology Dependency

Location Dependency

Data Format Dependency

Semantic Dependency

Temporal Dependency

Interaction Style Dependency

Messaging

• Systems communicate via

Channels

• Location-independent
channel names

• “Fire-and-forget”

• Simplified interaction

�Level of indirection

�Location decoupling

�Temporal decoupling

�Conversational decoupling

System

B

System

A
Message

Channel
(Queue)

The Poster Child of Loose Coupling

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 3

So Far, So Good, But…

• Messaging is loosely coupled, composable,
elegant, scalable etc.

• But is sending a simple message enough?

• Multi-step Interactions

– quote, order, shipment, invoice, payment, refund

• Distributed Transactions

– 2-phase commit, long-running transactions

• Error handling

– compensation, retry

Conversation = Series of Related Messages

• Conversations can span seconds, hours, days

• Multiple conversation instances at the same time

• Messages belonging to one conversation are
correlated (typically through identifier)

Order

Invoice

Payment

Drinks

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 4

Why Do We Care?

• OOAD focuses on structural aspects of the solution

(inheritance, composition, aggregation)

• SOA shifts attention to interaction (messaging,

stateless servers)

• Messages are expensive

• Part of an expressive contract between parties

• Conversation rules impact coupling

Describing Conversations

• Message Exchange Patterns

• Endpoint Process

• Choreography

• Temporal Logic

Order

Invoice

Payment

Drinks

Endpoint Endpoint

Messages

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 5

Message Exchange Patterns

• Perspective of Service Provider

• Single Requestor

• Described as linear sequence of
input-output elements

• Documented by Example

• Part of WSDL 1.1

• More in WSDL 2.0

Solicit-Response

One-way

Request-Response

Notification

(Fault)

(Fault)

Endpoint Processes

• A process supports the desired exchange of messages
through send and receive activities

• Each conversation corresponds to one process instance

• Each participant has a (potentially different) process

definition

Order

Invoice

Payment

Drinks

Conversation
State

Conversation
State

Internal State:
Processing
Payment

Internal State:
Processing
Payment

Internal State:
Waiting for
Payment

Internal State:
Waiting for
Payment

Internal State:

Making Drinks

Internal State:

Making Drinks

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 6

Public and Private Processes

• The private process is more complex than the public

process

• Details of the private process may not be shared

Process "Inheritance" – verify

compliance of a private process

with a public process template

(Wil v.d. Aalst)

Public process sends & receives

messages and invokes private

processes through orchestration

Choreography

• Describe the interaction as a flow of messages:
sequence, parallel, choice

• Conversational state machine

• Generate endpoint processes from the conversation model

• Not limited to 2 participants

Conversation State

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 7

Temporal Logic

• Describes rules of the conversation as predicates

• Operators X (next), G (globally), U(until), F(eventually)

• Declarative

• Can be used to verify message exchanges

G(Order ⇒ F(Invoice ∧ Drinks))
G(Invoice ⇒ F(Payment))

Standards – WS-BPEL

• Business Process Execution Language

• Process-oriented Composition

• Describe endpoint processes

• Executable through process engine

• Composite service exposed via WSDL

• Sending and receiving of messages,
control constructs, control links

• Correlation, compensation,
dead path elimination

<process/>
<partnerLinks/>

<correlations/>

<invoke/>
<receive/>
<reply/>

<sequence/>
<switch/>
<flow/>
<while/>

<pick/>

<catch/>
<compensate/>

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 8

Standards – WS-BPEL

Process
Template

Process
Engine

Process
Instances

Port
Mapping

Conversation

<process name=“service”>
<sequence>
<receive partnerlink=“…”/>
<assign …/>
<reply partnerlink=“…”/>

</sequence>
</process>

<process name=“service”>
<sequence>
<receive partnerlink=“…”/>
<assign …/>
<reply partnerlink=“…”/>

</sequence>
</process>

Standards – WS-CDL

• Choreography Description Language

• Used to describe conversation “activities”

• Declarative, not executable, can be used to validate

• Generate endpoint processes

• Global view of all interactions
between participants

• Time-out, extracting tokens

from messages

• Roles
• Relationships

• Work Units
• Activities

• Sequence
• Parallel
• Choice

• Interaction
• Channel

• From / To
• Operation

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 9

Standards – WS-CDL

WS-CDL

BPEL Java

Model

Company A Company B

Specification

"Compiler"

Implementation

Specification - SSDL

• SOAP Service Description Language

• Multiple Protocol Frameworks

– MEP

– CSP

– Rules

– Sequencing
Constraints

• www.ssdl.org

<rls:rule>
<ssdl:msgref ref="Invoice" direction="out" />
<rls:condition>
<rls:and>
<ssdl:msgref ref="Order" direction="in" />
<rls:not>
<ssdl:msgref ref="Invoice" direction="out" />
</rls:not>
</rls:and>
</rls:condition>
</rls:rule>

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 10

Description Languages

• Provide syntax and base vocabulary to express
conversations

• Are intended for consumption by machines

• Enable a broad range of solutions

• Do not tell us how to design a "good" conversation

• Or for that matter, what distinguishes a "good"
conversation from a "bad" one

Conversation Patterns

• Provide vocabulary at a higher level of abstraction

• Are intended for consumption by humans

• Investigate a specific usage scenario at a time

• Catalog common scenarios and offer solutions

• Focus on design intent and trade-offs

"A pattern is a mind-sized chunk of

information"
--Ward Cunningham

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 11

Request-Reply

• Simplest conversation

• Single Conversation state: waiting for reply, complete

• More complicated once error conditions considered

Awaiting
Answer

Conversation
State Chart

Request

Response

Consumer Provider

• Sender can repeat request n times

• Provider has to be idempotent

• Sender might receive responses after it gave up

• Example: RosettaNet Implementation Framework (RNIF)

Request-Reply with Retry

Consumer Provider

Request

Response

Request (Resend)
∆t Awaiting

Answer

Conversation
State Chart

[timeout]

[response] [yes]

FailedSuccess

max
retry?

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 12

Layered Conversation Protocols

done

Send Request

Wait for Reply

[timeout]

max
retry?

[no]

failed

[received]

[yes]

Req.

Request

Retry

Retry

Reply

Request

Reply

(Fault)

Awaiting
Response

Top Layer

Bottom Layer

Choose

Dynamic Discovery

1. Broadcast request for provider

2. Provider(s) consider whether to respond (load, suitability)

3. Interested providers send responses

4. Requestor chooses “best” provider from responses

5. Requestor initiates interaction with chosen provider

• Examples: DHCP, TIBCO Repository discovery

Provider
1

Provider
1

Provider
2

Provider
2

Provider
3

Provider
3

Pub-Sub

Request

1

2

Consider

3 Respond
4

5 Interact

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 13

Subscribe-Notify (Multi-responses)

• Subscriber expresses interest in receiving notifications

• Subscriber receives messages until a stop condition is reached:

– Subscriber sends a stop request

– A deadline is reached without the subscriber renewing interest

– Subscriber does not respond to requests from provider

– Provider notifies subscriber of end of transmission

• Example: WS-Eventing, WS-Notification

Subscriber Provider

Express Interest

Notify

Renewal Confirm

Lease

(Renew Interval)

Renewing Interest

• “Lease” model

• Heartbeat / keep-alive

• Subscriber has to renew
actively

• Example: Jini

• “Magazine Model”

• Subscriber can be simple

• Provider has to manage

state for each subscriber

Register

Renew Interest

Automatic Expiration

Renewal Request

Register

Renewal Request

Subscriber Provider

ProviderSubscriber

∆t

∆t

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 14

Reaching Consensus

• Coordinated conversation

• Coordinator tracks responses from each participant, makes
a decision and then broadcasts the decision

• Example:

– Two-phase commit

Rec. 1Rec. 1

Rec. 2Rec. 2

Rec. 3Rec. 3

CoordinatorCoordinator

Action1

2

3
4

Vote

Decide
Propagate

Summary

• Interaction steps into the foreground

• New languages to describe conversations

• Process-focused or declarative

• New set of design patterns

• Focus on motivation and forces over language

syntax

Conversations Between Loosely Coupled Systems

© 2006 Gregor Hohpe 15

Resources - Print
Enterprise Integration Patterns
Gregor Hohpe, Bobby Woolf

Addison-Wesley, 2004

Essential Business
Process Modeling

Havey
O'Reilly, 2005

Issues in Agent
Communication

Dignum (Ed.)
Springer, 2000

Web Services
Alonso et al.

Springer, 2004

Service-Oriented
Architecture

Erl
Prentice Hall, 2005

Business Process
Execution Language

Juric
Packt, 2006

Resources - Online

• www.eaipatterns.com/ramblings.html

– My Blog

• www.serviceinteraction.com

– Animated interaction patterns

• www.conversationpatterns.com

– To go live soon

• www.ssdl.org

I'm Feeling Lucky

