
Concepts View
CLASP — Comprehensive, Lightweight Application Security Process — is an activity-
driven, role-based set of process components whose core contains formalized best
practices for building security into your existing or new-start software development
lifecycles in a structured, repeatable, and measurable way.

CLASP is the outgrowth of years of extensive field work in which system resources of
many development lifecycles were methodically decomposed in order to create a
comprehensive set of security requirements. These resulting requirements form the
basis of CLASP’s best practices which allow organizations to systematically address
vulnerabilities that, if exploited, can result in the failure of basic security services — e.g.,
confidentiality, authentication, and access control.

• Adaptability of CLASP to Existing Development Processes
CLASP is designed to allow you to easily integrate its security-related activities
into your existing application development processes. Each CLASP activity is
divided into discrete process components and linked to one or more specific
project roles. In this way, CLASP provides guidance to project participants —
e.g., project managers, security auditors, developers, architects, testers, and
others — that is easy to adopt to their way of working; this results in
incremental improvements to security that are easily achievable, repeatable,
and measurable.

• CLASP Vulnerability Lexicon
CLASP also contains a comprehensive Vulnerability Lexicon that helps
development teams avoid/remediate specific designing/coding errors that can
lead to exploitable security services. The basis of this Lexicon is a highly
flexible taxonomy — i.e., classification structure — that enables development
teams to quickly locate Lexicon information from many perspectives: e.g.,
problem types (i.e., basic causes of vulnerabilities); categories of problem
types; exposure periods; avoidance and mitigation periods; consequences of
exploited vulnerabilities; affected platforms and programming languages; risk
assessment.

• Automated Analysis Tools
Much of the information in the CLASP Vulnerability Lexicon can be enforced
through use of automated tools using techniques of static analysis of source
code.

Version Date: 31 March 2006
2

CLASP Concepts View — Overview of CLASP Process

Overview of CLASP Process
This section provides an overview of CLASP’s structure and of the dependencies
between the CLASP process components and is organized as follows:

• CLASP Views

• CLASP Resources

• Vulnerability Use Cases

CLASP Views
The CLASP process is presented through five high-level perspectives called CLASP
Views. These views are broken down into activities which in turn contain process
components. This top-down organization by View > Activity > Process Component
allows you to quickly understand the CLASP process, how CLASP pieces interact, and
how to apply them to your specific software development lifecycle.

These are the CLASP Views:

• Concepts View

• Role-Based View

• Activity-Assessment View

• Activity-Implementation View

• Vulnerability View

The following figure shows the CLASP Views and their interactions:

Version Date: 31 March 2006
3

CLASP Concepts View — Overview of CLASP Process

Version Date: 31 March 2006
4

CLASP Concepts View — Overview of CLASP Process

CLASP Resources
The CLASP process supports planning, implementing and performing security-related
software development activities. The CLASP Resources provide access to artifacts that
are especially useful if your project is using tools to help automate CLASP process
pieces.

This table lists the name and location of CLASP Resources delivered with CLASP and
indicates which CLASP Views they can support:

CLASP Resources Location

• Basic Principles in Application Security (all Views) Resource A

• Example of Basic Principle: Input Validation (all Views) Resource B

• Example of Basic-Principle Violation: Penetrate-and-Patch Model
(all Views)

Resource C

• Core Security Services (all Views; especially III) Resource D

• Sample Coding Guideline Worksheets (Views II, III & IV)
Note: Each worksheet can be pasted into a MS Word document.

Resource E

• System Assessment Worksheets (Views III & IV)
Note: Each worksheet can be pasted into a MS Word document.

Resource F

• Sample Road Map: Legacy Projects (View III) Resource
G1

• Sample Road Map: New-Start Projects (View III) Resource
G2

• Creating the Process Engineering Plan (View III) Resource H

• Forming the Process Engineering Team (View III) Resource I

• Glossary of Security Terms (all Views) Resource J

Version Date: 31 March 2006
5

CLASP Concepts View — Overview of CLASP Process

Vulnerability Use Cases
The CLASP Vulnerability Use Cases depict conditions under which security services
can become vulnerable in software applications. The Use Cases provide CLASP users
with easy-to-understand, specific examples of the cause-and-effect relationship
between security-unaware design/source coding and possible resulting vulnerabilities in
basic security services — e.g., authentication authorization, confidentiality, availability,
accountability, and non-repudiation.

The CLASP Vulnerability Use Cases are based on the following common component
architectures:

• Monolithic UNIX

• Monolithic mainframe

• Distributed architecture (HTTP[S] & TCP/IP)

It is recommended to understand the CLASP Use Cases as a bridge from the Concepts
View of CLASP to the Vulnerability Lexicon (in the Vulnerability View) since they
provide specific examples of security services becoming vulnerable in software
applications

The following diagram depicts a recommended position of the Use Cases within the
CLASP process:

Version Date: 31 March 2006
6

CLASP Concepts View — Overview of CLASP Process

Version Date: 31 March 2006
7

CLASP Concepts View — CLASP Best Practices

CLASP Best Practices
If security vulnerabilities built into your applications’ source code survive into
production, they can become corporate liabilities with broad and severe business
impact on your organization. In view of the consequences of exploited security
vulnerabilities, there is no reasonable alternative to using best practices of application
security as early as possible in — and throughout — your software development
lifecycle.

To be effective, best practices of software application security must have a reliable
process to guide a development team in creating and deploying a software application
that is as resistant as possible to security vulnerabilities.

Within a software development project, the CLASP Best Practices are the basis of all
security-related software development activities — whether planning, designing or
implementing — including the use of all tools and techniques that support CLASP.

These are the CLASP Best Practices:

• Institute awareness programs.
Essential security concepts and techniques may be foreign to your
organization’s software developers and others involved in application

Version Date: 31 March 2006
8

CLASP Concepts View — CLASP Best Practices

development and deployment. So it is imperative at the outset to educate
everyone involved. It is critical that project managers — as the driving force
behind most application development or upgrade projects — consider security
to be an important project goal, both through training and accountability.
Awareness programs can be readily implemented, using external expert
resources, as appropriate, and deliver a high return by helping to ensure that
other activities promoting secure software will be implemented effectively.

• Perform application assessments.
While it’s true that you cannot test security into an application, application
testing and assessments should still be a central component of your overall
security strategy. Assessments — particularly automated tests — can find
security problems not detected during code or implementation reviews, find
security risks introduced by the operational environment, and act as a defense-
in-depth mechanism by catching failures in design, specification or
implementation. Test and assessment functions are typically owned by a test
analyst or by the QA organization but can span the entire life cycle.

• Capture security requirements.
Ensure that security requirements have the same level of “citizenship” as all
other “must haves.” It’s easy for application architects and project managers to
focus on functionality when defining requirements, since they support the
greater purpose of the application to deliver value to the organization. Security
considerations can easily go by the wayside. So it is crucial that security
requirements be an explicit part of any application development effort. Among
the factors to be considered:

• An understanding of how applications will be used, and how they might be
misused or attacked.

• The assets (data and services) that the application will access or provide,
and what level of protection is appropriate given your organization’s
appetite for risk, regulations you are subject to, and the potential impact on
your reputation should an application be exploited.

• The architecture of the application and probable attack vectors.

• Potential compensating controls, and their cost and effectiveness.

• Implement secure development practices.
Defined security activities, artifacts, guidelines and continuous reinforcement
should become part of your organization’s overall culture.

• Build vulnerability remediation procedures.
It is especially important in the context of application updates and
enhancements to define which steps will be taken to identify, assess, prioritize
and remediate vulnerabilities.

Version Date: 31 March 2006
9

CLASP Concepts View — CLASP Best Practices

• Define and monitor metrics.
You cannot manage what you cannot measure. Unfortunately, implementing
an effective metrics monitoring effort can be a difficult undertaking. Despite
this, metrics are an essential element of your overall application security effort.
They are crucial in assessing the current security posture of your organization,
help focus attention on the most critical vulnerabilities, and reveal how well —
or poorly — your investments in improved security are performing.

• Publish operational security guidelines.
Security does not end when an application is completed and deployed in a
production environment. Making the most out of existing network and
operational security investments requires that you inform and educate those
tasked with monitoring and managing the security of running systems with
advice and guidance on the security requirements your application demands,
and how best to make use of the capabilities you’ve built into your application.

Version Date: 31 March 2006
10

CLASP Concepts View — CLASP and Security Policies

CLASP and Security Policies
CLASP is a field-proven, comprehensive SDLC process guide that derives from years
of cooperation with development teams in resolving security-related issues. CLASP not
only implements best practices of application security but also — due to its experience
past and present in the field — continually refines application-security best practices.

As a result, a high-level view of CLASP can also help increase awareness of the
importance of implementing application security on these organizational levels, from the
bottom up: > best practices of application-security > application-security policy > IT
security policy > operations security policy > corporate security policy.

Version Date: 31 March 2006
11

CLASP Concepts View — What is a Security Vulnerability?

What is a Security Vulnerability?
CLASP defines a security vulnerability as a flaw in a software environment — especially
in an application — that allows an attacker to assume privileges within the user's

Version Date: 31 March 2006
12

CLASP Concepts View — What is a Security Vulnerability?

system, utilize and regulate its operation, compromise the data it contains, and/or
assume trust not granted to the attacker.

A security vulnerability occurs in a software application when any part of it allows a
breach of the security policy governing it.

CLASP identifies 104 underlying problem types that form the basis of security
vulnerabilities in application source code. An individual problem type in itself is often not
a security vulnerability; frequently it is a combination of problems that create a security
condition leading to a vulnerability in the source code. CLASP divides the 104 problem
types into 5 high-level categories. Each problem type may have more than one parent
category.

CLASP defines a consequence of an exploited or exploitable vulnerability as a failure in
one or more of these basic security services:

• Authorization (resource access control)

• Confidentiality (of data or other resources)

• Authentication (identity establishment and integrity)

• Availability (denial of service)

• Accountability

• Non-repudiation

The following figure shows in which phases of the software development lifecycle a
security-related vulnerability can occur and also which points in an operational system
an attack can target.

Version Date: 31 March 2006
13

CLASP Concepts View — What is a Security Vulnerability?

Version Date: 31 March 2006
14

CLASP Concepts View — Overview of CLASP Taxonomy

Overview of CLASP Taxonomy
The CLASP taxonomy is a high-level classification of the CLASP process, divided into
the following classes for better evaluation and resolution of security vulnerabilities in
source code:

• Problem types underlying security-related vulnerabilities.

• Categories into which the problem types are divided for diagnostic and
resolution purposes.

• Exposure periods (i.e., SDLC phases) in which vulnerabilities can be
inadvertently introduced into application source code.

• Consequences of exploited vulnerabilities for basic security services.

• Platforms and programming languages which may be affected by a
vulnerability.

• Resources required for attack against vulnerabilities.

• Risk assessment of exploitable/exploited vulnerabilities.

• Avoidance and mitigation periods (i.e., SDLC phases) in which preventative
measures and countermeasures can be applied.

The following figure illustrates the CLASP taxonomy and the relationship between its
parts:

Version Date: 31 March 2006
15

CLASP Concepts View — Overview of CLASP Taxonomy

Version Date: 31 March 2006
16

CLASP Concepts View — Applying CLASP Components

Applying CLASP Components
This page describes a possible sequence for applying CLASP components, using the
Sample Coding Guidelines (CLASP Resource E) as a basis.

The steps below describe a possible sequence for applying CLASP components
depicted in the figure above:

• Read the CLASP Concepts View to gain an overview of the CLASP process.

• In the Concepts View, pay special attention to the page Description of CLASP
Process. This page contains a diagram showing, among other things, the
location of the 104 CLASP problem types (i.e., basic causes of vulnerabilities),
the five high-level, source-code-related categories by which they are
organized, and the consequences of exploitable security vulnerabilities for
security services.

• Read the CLASP Sample Coding Guidelines thoroughly and select a subset of
them relevant to your specific software development project. These guidelines
contain a set of security-related coding standards to be applied to your project.

• Apply the remaining CLASP Resources throughout the planning, design,
construction, and testing process, as needed.

Version Date: 31 March 2006
17

CLASP Concepts View — Applying CLASP Components

• Use the Sample Coding Guidelines to select a subset of the 104 CLASP
problem types (i.e., basic causes of vulnerabilities) — located in the CLASP
Vulnerability View — which are most important to your project.

• Familiarize yourself with the CLASP Role-Based View, which provides an
overview of the project roles associated with applying the selected subset of
Sample Coding Guidelines, and assign these guidelines to your relevant
project personnel — e.g., designer, security auditor, implementers.

• Consider the subset of vulnerabilities selected in part though the Sample
Coding Guidelines when using the Activity-Assessment View to assess and
select the desired subset of 24 activities contained in the Activity-
Implementation View.

Version Date: 31 March 2006
18

CLASP Concepts View — CLASP and IT Internal Controls

CLASP and IT Internal Controls
A significant number of the internal controls required by the Sarbanes-Oxley Act for
assurance of accurate and reliable corporate financial reporting are located in the IT
area.

The figure below shows how CLASP can help secure the IT internal controls that are
necessary to assure the integrity of data in financial applications within the scope of
security-related software development projects.

Version Date: 31 March 2006
19

CLASP Concepts View — CLASP and IT Internal Controls

This figure centers on Sarbanes-Oxley sections 302, 404 and 409:

Role-Based View
This section contains role-based introductions to the CLASP method and provides a
high-level view to project managers of how they and their project team should approach
security issues. This section also introduces the basic responsibilities they have. These
are meant to be concise introductions that are a starting point for employees when they
first need to address software security.

Version Date: 31 March 2006
2

CLASP Role-Based View — Table: Roles and Related Activities

Table: Roles and Related Activities
The table below relates the security-related project roles to the 24 CLASP activities.
See also “Activity-Assessment View” and “Activity-Implementation View.”

CLASP Activities Related Project Roles

Institute security awareness program • Project Manager

Monitor security metrics • Project Manager

Specify operational environment • Owner: Requirements Specifier

• Key Contributor: Architect

Identify global security policy • Requirements Specifier

Identify resources and trust boundaries • Owner: Architect

• Key Contributor: Requirements
Specifier

Identify user roles and resource capabilities • Owner: Architect

• Key Contributor: Requirements
Specifier

Document security-relevant requirements • Owner: Requirements Specifier

• Key Contributor: Architect

Detail misuse cases • Owner: Requirements Specifier

• Key Contributor: Stakeholder

Identify attack surface • Designer

Apply security principles to design • Designer

Research and assess security posture of
technology solutions

• Owner: Designer

• Key Contributor: Component Vendor

Annotate class designs with security
properties

• Designer

Specify database security configuration • Database Designer

Perform security analysis of system
requirements and design (threat modeling)

• Security Auditor

Integrate security analysis into source
management process

• Integrator

Implement interface contracts • Implementer

Version Date: 31 March 2006
3

CLASP Role-Based View — Table: Roles and Related Activities

CLASP Activities Related Project Roles

Implement and elaborate resource policies
and security technologies

• Implementer

Address reported security issues • Owner: Designer

• Fault Reporter

Perform source-level security review • Owner: Security Auditor

• Key Contributor: Implementer;
Designer

Identify, implement and perform security tests • Test Analyst

Verify security attributes of resources • Tester

Perform code signing • Integrator

Build operational security guide • Owner: Integrator

• Key Contributor: Designer; Architect;
Implementer

Manage security issue disclosure process • Owner: Project Manager

• Key Contributor: Designer

Version Date: 31 March 2006
4

CLASP Role-Based View — Project Manager

Project Manager
Software security efforts are rarely successful without buy-in from the project manager.
In most organizations, security will not be a concern to individual project members if left
to their own devices. Part of the reason is because the skills required to be effective at
secure development do not overlap much with traditional development skills. Another
reason is because most development is feature-driven, whereas — beyond basic
integration of technologies such as SSL — security rarely shows up as a feature.

The project manager generally has several key responsibilities in this space:

• First among them is promoting awareness. Usually all team members will need
to have basic exposure to the application security strategy, and often several
team members will need significant training, as few people have the necessary
skills in their toolbox.

• Additionally, the project manager should promote awareness outside his team.
The rest of the organization needs to understand the impact of application
security on the business, such as schedule trade-offs and security risks that
the team may not address.

• Another primary responsibility of the project manager is monitoring the health
of the organization. Generally, this involves defining a set of basic business
matrices and applying them on a regular basis.

Project managers are encouraged to review sections A through F of the CLASP
Resources.

Version Date: 31 March 2006
5

CLASP Role-Based View — Requirements Specifier

Requirements Specifier
The requirements specifier has these major tasks:

• He is first responsible for detailing business requirements that are security
relevant, particularly those things that will need to be considered by an
architect. In most organizations, these two roles will work closely on security
concerns and will generally iterate frequently.

• After the team has identified a candidate architecture, the requirements
specifier should look at the resources present in that architecture and
determine what the protection requirements for those resources are. CLASP
promotes a structured approach to deriving these requirements, categorizing
resources into protection levels, and addressing each core security service for
each protection level.

• Particularly when using a protection-level abstraction, it is possible to reuse
security requirements across projects. This not only saves a tremendous
amount of time for requirements specifiers; it also prompts organizations to
compare the relative security of multiple projects.

• In organizations that develop use cases, a requirements specifier can also
specify misuse cases, which demonstrate to the stakeholder the major security
considerations that manifest themselves in the system design. For example,
they may document mitigation technologies and how they impact the user, as
well as risks that may still be present in a system, thereby allowing the
stakeholder to develop compensating controls at an operational level.

Requirements specifiers traditionally do not have the breadth of security expertise
necessary to build highly effective security requirements. For that reason, we
recommend reading CLASP Resources A, B, C and D thoroughly.

Version Date: 31 March 2006
6

CLASP Role-Based View — Architect

Architect
In an ideal world, the architect simply figures out how — at an architectural level —
necessary security technologies integrate into the overall system. This includes network
security requirements, such as firewalls, VPNs etc. For this reason, the architect should
explicitly document trust assumptions in each part of the system — usually by drawing
trust boundaries (e.g., network traffic from outside the firewall is untrusted, but local
traffic is trusted). Of course, these boundaries must be a reflection of business require-
ments. For instance, high-security applications should not be willing to trust any
unencrypted shared network media.

Security requirements should come from the requirements specifier. To facilitate better
security requirements, the architect should:

• Only need to understand the security implications of technologies well enough
that he does not introduce any overt security errors.

• Enumerate all resources in use by a system — preferably to the deepest level
of detail possible.

• Further supporting the building of security requirements, he should identify the
roles in the system that will use each resource.

• He should identify the basic operations on each resource.

• The architect should also be prepared to help people understand how
resources interact with each other through the lifetime of the system.

Version Date: 31 March 2006
7

CLASP Role-Based View — Designer

Designer
The primary responsibility of the designer is to keep security risks out of the application,
whenever possible. This responsibility has many facets:

• First, he must figure out what technologies will satisfy security requirements
and research them well enough to determine how to use those technologies
properly.

• Second, if a security flaw is found in the application, it is usually up to the
designer to assess the consequences and determine how to best address the
problem.

• Finally, the designer needs to help support measuring the quality of application
security efforts. Generally, this involves providing data that can be used as
metrics or as a foundation for an application security review.

For example, the designer should explicitly document the “attack surface” of an
application — which is roughly equal to the entry points to an application that may be
visible to an attacker. This data can be used in a metric roughly akin to traditional
software complexity metrics; it is also an excellent starting point for those who are
looking to determine whether there are exploitable risks in software.

Designers have the most security-relevant work of all the traditional development roles:

• They should push back on requirements that may have unrecognized security
risks.

• They need to give implementers a roadmap in order to minimize the risk of
errors requiring an expensive fix.

• They also need to understand the security risks of integrating third-party
software.

• In addition, they are generally the point person for responding to security risks
identified in the software.

Thus, designers should maintain a high level of security awareness; we recommend
reading CLASP Resources A, B, C and D thoroughly.

Version Date: 31 March 2006
8

CLASP Role-Based View — Implementer

Implementer
Traditionally, application development is handled in an ad-hoc manner, and it is the
implementer who must carry the bulk of the security expertise. Ultimately, this is
because — in ad-hoc development — developers double as designers.

In a highly structured development environment, most implementers should be building
to specification and conferring with designers when there are undocumented
considerations. In such an environment, the security responsibilities of a developer are
fairly minimal — primarily following coding standards and documenting the system well
enough to make it easier for third parties to determine whether the software is as
secure as it should be. Sometimes the documentation will be aimed at the end-users,
helping to ensure that they know how to use the product securely.

For developers who perform any design tasks, we strongly recommend understanding
designer activities by reading Appendices A and B and reviewing the Vulnerability
database (Vulnerability View).

Version Date: 31 March 2006
9

CLASP Role-Based View — Test Analyst

Test Analyst
In a structured development organization, security should not have a great impact on
the overall processes used. The test organization should still be testing to requirements,
implementing regression suites, and so on.

In practice, this will generally require new testing tools that are specifically geared
toward security because traditional tools are not good at ferreting out security risks.

Ultimately, beyond tool training and learning about risks well enough to be able to check
for them, testing groups do not need to be security experts.

Version Date: 31 March 2006
10

CLASP Role-Based View — Security Auditor

Security Auditor
The basic role of a security auditor is to examine the current state of a project and try to
assure the security of the current state of the project:

• When examining requirements, the auditor will attempt to determine whether
the requirements are adequate and complete.

• When looking at a design, the auditor will generally attempt to determine
whether there are any implications that could lead to vulnerabilities.

• In addition, when looking at an implementation, the auditor will generally
attempt to find overt security problems, which should be mappable to
deviations from a specification.

Rarely is being a project security auditor a full time job. Often, developers with a
particular interest or skill in security perform auditing. Sometimes, organizations have
an audit organization focused on other regulatory compliance, and these people will
perform security review.

It is usually better to avoid reviewing one’s own designs or one’s own code since it can
be difficult to see the forest for the trees.

Activity-Assessment View
For organizations that have never formally dealt with software-security issues, the
numerous activities defined in CLASP may look quite formidable. Yet there is no need
for an organization to implement all of the activities defined by CLASP. It is perfectly
reasonable to add activities one at a time, focusing on ones that are the most
appropriate and have the most benefit-for-cost.

The purpose of the Activity-Assessment View section is to lessen the burden on a
project manager and his process engineering team by giving guidance to help assess
the appropriateness of CLASP activities. We do this by providing the following
information for each activity:

• Information on activity applicability. For example, some activities are only
applicable when building applications that will use a back-end database. Other
activities are not appropriate for maintaining legacy software that wasn’t
designed with security in mind.

• A discussion of risks associated with omitting the activity. This includes a
rating of the overall impact of the activity, relative to other CLASP activities.

• An indication of implementation cost — in terms of both the frequency of the
activity and the man-hours per iteration. Currently, the man-hour estimates are
only rough approximations based on limited experience deploying CLASP and
similar activities.We note where an activity will contain steps that are not
critical to completing the task but can help provide higher assurance levels.
Where appropriate, we discuss the availability of automation technologies for
activities that would otherwise be performed manually.

The 24 CLASP activities to be assessed by the project manager and process
engineering team are detailed below.

CLASP also has an impact on several key traditional software engineering activities,
such as requirements specification. CLASP does not materially change the steps within
such activities. Instead, it recommends extensions to common artifacts and provides
implementation guidance for security-specific content.

Version Date: 31 March 2006
2

CLASP Activity-Assessment View — Table: Roles and Related Activities

Table: Roles and Related Activities
The following table relates the security-related project roles to the 24 CLASP activities
to be assessed.

CLASP Activity Related Project Role

Institute security awareness program • Project Manager

Monitor security metrics • Project Manager

Specify operational environment • Owner: Requirements Specifier
• Key Contributor: Architect

Identify global security policy • Requirements Specifier

Identify resources and trust boundaries • Owner: Architect
• Key Contributor: Requirements

Specifier

Identify user roles and resource capabilities • Owner: Architect
• Key Contributor: Requirements

Specifier

Document security-relevant requirements • Owner: Requirements Specifier
• Key Contributor: Architect

Detail misuse cases • Owner: Requirements Specifier
• Key Contributor: Stakeholder

Identify attack surface • Designer

Apply security principles to design • Designer

Research and assess security posture of technology
solutions

• Owner: Designer
• Key Contributor: Component

Vendor

Annotate class designs with security properties • Designer

Specify database security configuration • Database Designer

Perform security analysis of system requirements and
design (threat modeling)

• Security Auditor

Integrate security analysis into source management
process

• Integrator

Implement interface contracts • implementer

Implement and elaborate resource policies and
security technologies

• implementer

Version Date: 31 March 2006
3

CLASP Activity-Assessment View — Table: Roles and Related Activities

CLASP Activity Related Project Role

Address reported security issues • Owner: Designer
• Fault Reporter

Perform source-level security review • Owner: Security Auditor
• Key Contributor: implementer;

Designer

Identify, implement and perform security tests • Test Analyst

Verify security attributes of resources • Tester

Perform code signing • Integrator

Build operational security guide • Owner: Integrator
• Key Contributor: Designer;

Architect; implementer

Manage security issue disclosure process • Owner: Project Manager
• Key Contributor: Designer

Version Date: 31 March 2006
4

CLASP Activity-Assessment View — Institute security awareness program

Institute security awareness program

Purpose: • Ensure project members consider security to be an
important project goal through training and
accountability.

• Ensure project members have enough exposure to
security to deal with it effectively.

Owner: Project Manager

Key contributors:

Applicability: All projects

Relative impact: Very high

Risks in omission: • Other activities promoting more secure software
are less likely to be applied effectively.

• Accountability for mistakes is not reasonable.

Activity frequency: Ongoing

Approximate man
hours:

• 160 hours for instituting programs.
• 4 hours up-front per person.
• 1 hour per month per person for maintenance.

Version Date: 31 March 2006
5

CLASP Activity-Assessment View — Monitor security metrics

Monitor security metrics

Purpose: • Gauge the likely security posture of the ongoing
development effort.

• Enforce accountability for inadequate security.

Owner: Project Manager

Key contributors:

Applicability: All projects

Relative impact: High

Risks in
omission:

No concrete basis for measuring the effectiveness of
security efforts.

Activity
frequency:

Weekly or monthly.

Approximate
man hours:

• 160 hours for instituting programs.
• 2 to 4 hours per iteration for manual collection.
• 1 with automating tools.

Version Date: 31 March 2006
6

CLASP Activity-Assessment View — Specify operational environment

Specify operational environment

Purpose: Document assumptions and requirements about the
operating environment so that the impact on security can
be assessed.

Owner: Requirements Specifier

Key contributors: Architect

Applicability: All projects

Relative impact: Medium

Risks in
omission:

• Risks specific to the deployment environment may
be overlooked in design.

• May not properly communicate to users the design
decisions with security impact.

Activity
frequency:

Generally, once per iteration.

Approximate
man hours:

• 20 man hours in the first iteration.
• < 4 hours per iteration in maintenance.

Version Date: 31 March 2006
7

CLASP Activity-Assessment View — Identify global security policy

Identify global security policy

Purpose: • Provide default baseline product-security business
requirements.

• Provide a means of comparing the security posture
of different products across an organization.

Owner: Requirements Specifier

Key contributors:

Applicability: Most appropriate for larger organizations with many
developmental efforts that are to be held to the same
standard but can easily be effective in any organization
developing software.

Relative impact: Low

Risks in
omission:

• Wider organizational security requirements may not
be understood — such as compliance to standards.

• Difficult to make meaningful comparisons in
security posture among projects.

Activity
frequency:

Generally, once per project.

Approximate
man hours:

• 120 man hours to identify organizational require-
ments.

• 40 hours per project to incorporate requirements.

Version Date: 31 March 2006
8

CLASP Activity-Assessment View — Identify resources and trust boundaries

Identify resources and trust boundaries

Purpose: Provide a structured foundation for understanding the
security requirements of a system.

Owner: Architect

Key contributors: Requirements Specifier

Applicability: All projects

Relative impact: High

Risks in
omission:

• Design process will consider these items intuitively,
and overlook important resources. That is, the
design process becomes much more ad hoc.

• Intuitive consideration is still an application of this
activity, without the benefit of structure or
documentation. Not performing the activity at all
leads to inability to perform other CLASP design
activities, thereby pushing the cost of initial security
assurance to more expensive parts of the lifecycle.

Activity
frequency:

Generally, once per iteration.

Approximate
man hours:

• Usually 8 hours in the first iteration.
• < 3 hours in subsequent iterations.

Version Date: 31 March 2006
9

CLASP Activity-Assessment View — Identify user roles and resource capabilities

Identify user roles and resource capabilities

Purpose: Define system roles and the capabilities/resources that the
role can access.

Owner: Architect

Key contributors: Requirements Specifier

Applicability: All projects

Relative impact: Medium

Risks in
omission:

• Access control mechanisms are more likely to be
underspecified.

• Identified protection mechanisms on resources may
not adequately protect all capabilities.

Activity
frequency:

Usually, once per iteration.

Approximate
man hours:

Dependent on the number of resources, but generally less
than 80 hours in the initial iteration; then proportional
based on significant changes and additions in each
iteration — usually less than 10 hours.

Version Date: 31 March 2006
10

CLASP Activity-Assessment View — Document security-relevant requirements

Document security-relevant requirements

Purpose: Document business-level and functional requirements for
security.

Owner: Requirements Specifier

Key contributors: Architect

Applicability: All projects, particularly new application development but
also legacy systems.

Relative impact: Very High

Risks in
omission:

• Security services for system resources are
extremely likely to be addressed in an ad-hoc man-
ner and have significant gaps as a result.

Activity
frequency:

As needed, at least once per iteration.

Approximate
man hours:

• If using capabilities, generally up to 120 man hours,
depending on the number of capabilities.

• If using resources, up to 80 man hours, depending
on the level of detail of requirement specification.

Version Date: 31 March 2006
11

CLASP Activity-Assessment View — Detail misuse cases

Detail misuse cases

Purpose: • Communicate potential risks to stakeholder.
• Communicate rationale for security-relevant deci-

sions to stakeholder.

Owner: Requirements Specifier

Key contributors: Stakeholder

Applicability: Best suited only to organizations that already apply use
cases extensively.

Relative impact: Low

Risks in
omission:

Customers will not understand the system security risks
and requirements of the project adequately through design
and implementation, which can potentially lead to
increased security exposure.

Activity
frequency:

As required, typically occurring multiple times per iteration
and most frequently in Inception and Elaboration iterations.

Approximate
man hours:

Generally, one hour per misuse case that is changed per
iteration.

Version Date: 31 March 2006
12

CLASP Activity-Assessment View — Identify attack surface

Identify attack surface

Purpose: Specify all entry points to a program in a structured way to
facilitate analysis.

Owner: Designer

Key contributors:

Applicability: When exposure metrics are desirable and whenever using
structured security analysis such as threat-modeling or
source-code review.

Relative impact: High

Risks in
omission:

This is another activity that is often performed implicitly.
Failure to document will generally result in an ad-hoc
treatment or duplication of work in other activities where
the data is needed and can result in a failure to consider
important entry points.

Activity
frequency:

As needed; usually once after design, and ongoing during
elaboration.

Approximate
man hours:

• Usually 5 to 20 man-hours in the initial iteration for
small-to-medium sized software systems.

• Up to 120 man-hours for complex systems contain-
ing many off-the-shelf components.

Version Date: 31 March 2006
13

CLASP Activity-Assessment View — Apply security principles to design

Apply security principles to design

Purpose: • Harden application design by applying security-
design principles.

• Determine implementation strategies for security
services.

• Design secure protocols and APIs.

Owner: Designer

Key contributors:

Applicability: All applications

Relative impact: High

Risks in
omission:

Unanticipated security problems introduced early in design
— even if using an extensive set of security requirements.

Activity
frequency:

Usually once in the initial iteration, with incremental
changes as needed in subsequent iterations.

Approximate
man hours:

• In the initial iteration, approximately 40 to 60 man
hours for a small project, 80 to 120 for a medium
project, and 200 to 300 for a large project.

• Generally, no more than 15% of the cost in subse-
quent iterations.

Version Date: 31 March 2006
14

CLASP Activity-Assessment View — Research and assess security posture of technology solutions

Research and assess security posture of
technology solutions

Purpose: • Assess security risks in third-party components.
• Determine how effectively a technology is likely to

alleviate risks.
• Identify lingering security risks in chosen security

technologies.

Owner: Designer

Key contributors: Component Vendor

Applicability: Any time third-party software is integrated into system
development.

Relative impact: High

Risks in
omission:

• Security risks in third-party software can potentially
compromise system resources, where compensat-
ing controls could have been identified or alternate
technologies chosen.

• Security flaws not introduced by your development
organization can still lead to damage to your brand.

Activity
frequency:

As necessary.

Approximate
man hours:

Vendor-dependent; from 2 to 40 hours per acquired
technology.

Version Date: 31 March 2006
15

CLASP Activity-Assessment View — Annotate class designs with security properties

Annotate class designs with security
properties

Purpose: Elaborate security policies for individual data fields.

Owner: Designer

Key contributors:

Applicability: Particularly useful in environments using mandatory
access control enforcement technologies; is also useful for
shops using UML class diagrams.

Relative impact: Low

Risks in
omission:

Implementer error in implementing access control policy.

Activity
frequency:

Generally just once; then in iterations where the underlying
data design of a class changes.

Approximate
man hours:

Generally < 1 man-hour per class initially, with minimal as-
needed maintenance.

Version Date: 31 March 2006
16

CLASP Activity-Assessment View — Specify database security configuration

Specify database security configuration

Purpose: • Define a secure default configuration for database
resources that are deployed as part of an imple-
mentation.

• Identify a recommended configuration for database
resources for databases that are deployed by a
third party.

Owner: Database Designer

Key contributors:

Applicability: Whenever a system can make use of a stand-alone
relational database, but particularly when the system is to
be deployed or managed internal to the developing
organization.

Relative impact: Medium to High

Risks in
omission:

Operational security errors in database configuration. This
is a very common occurrence.

Activity
frequency:

As necessary, generally once per iteration.

Approximate
man hours:

• 40 to 80 man-hours depending on the database.
• There are existing tools to assist with automating

this task.

Version Date: 31 March 2006
17

CLASP Activity-Assessment View — Perform security analysis of system requirements and design (threa
modeling)

Perform security analysis of system
requirements and design (threat modeling)

Purpose: • Assess likely system risks timely and cost-effec-
tively by analyzing the requirements and design.

• Identify high-level system threats that are not docu-
mented in requirements or supplemental documen-
tation.

• Identify inadequate or improper security require-
ments.

• Assess the security impact of non-security require-
ments.

Owner: Security Auditor

Key contributors: Architect; Designer

Applicability: Most applicable before software is implemented, but some
sort of architectural analysis is a prerequisite to any
effective security analysis.

Relative impact: Very High

Risks in
omission:

• No ability to assess likely level of security risk.
• No ability to assess success of secure design

efforts.

Activity
frequency:

Generally, once after initial design and a significant revisit
after implementation, with incremental modifications at
regular checkpoints in development.

Approximate
man hours:

• 120 hours for the initial model, with approximately 5
man hours per iteration of maintenance.

• 40 man-hours for a significant revisit.
• Automating technologies exist to support this task.

Version Date: 31 March 2006
18

CLASP Activity-Assessment View — Integrate security analysis into source management process

Integrate security analysis into source
management process

Purpose: Automate implementation-level security analysis and
metrics collection.

Owner: Integrator

Key contributors:

Applicability: Whenever using a source-control system and a
programming environment supported by automating tools
that can act as stand-alones. Automating tools are usually
dependent on source languages and OS platform.

Relative impact: Medium

Risks in
omission:

• Regular metrics data will not be collected as speci-
fied.

• Implementation reviews are more likely to be over-
looked or deferred.

• Manual labor can have a negative impact on
project scheduling.

Activity
frequency:

Once per project.

Approximate
man hours:

Dependent on the automating technology and the process.
Generally, 20 man hours total.

Version Date: 31 March 2006
19

CLASP Activity-Assessment View — Implement interface contracts

Implement interface contracts

Purpose: • Provide unit-level semantic input validation.
• Identify reliability errors in a structured way at the

earliest opportunity

Owner: Implementer

Key contributors:

Applicability: Performable on any well-defined programmer interface.
Existing technologies provide slight automation for some
OO languages (including Java).

Relative impact: High

Risks in
omission:

Incomplete input validation, particularly for security-critical
data.

Activity
frequency:

Ongoing throughout implementation.

Approximate
man hours:

Generally, 5 minutes per parameter (per function or
method), whenever a parameter is changed.

Version Date: 31 March 2006
20

CLASP Activity-Assessment View — Implement and elaborate resource policies and security
technologies

Implement and elaborate resource policies
and security technologies

Purpose: Implement security functionality to specification.

Owner: Implementer

Key contributors:

Applicability: All software

Relative impact: Very high

Risks in
omission:

Arbitrary risk exposure.

Activity
frequency:

Ongoing, as necessary.

Approximate
man hours:

Widely variable, based on policy and technology.

Version Date: 31 March 2006
21

CLASP Activity-Assessment View — Address reported security issues

Address reported security issues

Purpose: Ensure that identified security risks in an implementation are
properly considered.

Owner: Designer

Key contributors: Fault Reporter

Applicability: All software

Relative impact: High

Risks in
omission:

Lack of process behind addressing reported problems often
leads to incomplete fixes or introduction of additional
security risks.

Activity
frequency:

Any time an unanticipated risk is identified in the system.

Approximate
man hours:

Generally, 8-16 hours in investigation, plus iteration time on
other activities for remediation.

Version Date: 31 March 2006
22

CLASP Activity-Assessment View — Perform source-level security review

Perform source-level security review

Purpose: Find security vulnerabilities introduced into
implementation.

Owner: Security Auditor

Key contributors: Implementer; Designer

Applicability: All software

Relative impact: Very High

Risks in
omission:

• Security risks introduced in implementation or
those missed in design review will not be identified
prior to deployment.

• Health of secure software development effort can
not be measured adequately, thereby leading to a
lack of individual accountability.

Activity
frequency:

Either on a regular (weekly or monthly) basis or on
candidate-release builds.

Approximate
man hours:

• Per man-hour, an auditor can generally review 100
to 400 lines of code.

• Automating technologies exist that can reduce the
cost to about one man-hour per 10,000 lines of
code.

Version Date: 31 March 2006
23

CLASP Activity-Assessment View — Identify, implement, and perform security tests

Identify, implement, and perform security
tests

Purpose: • Find security problems not detected by
implementation review.

• Find security risks introduced by the operational
environment.

• Act as a defense-in-depth mechanism, catching
failures in design, specification, or implementation.

Owner: Test Analyst

Key contributors:

Applicability: All development efforts.

Relative impact: Medium for full-lifecycle CLASP implementation; high for
other development.

Risks in
omission:

Security risks that would have been identified during
testing will instead be identified by others during
deployment. Some risks might possibly manifest as actual
exploitations during deployment.

Activity
frequency:

Generally, once per testable requirement, plus ongoing
regression testing.

Approximate
man hours:

• 1 to 2 man-hours per requirement for test identifica-
tion.

• 2 to 5 man-hours per test identified for implementa-
tion.

• Thereafter, ongoing costs associated with running
the test.

• Tools exist to automate parts of this activity.

Version Date: 31 March 2006
24

CLASP Activity-Assessment View — Verify security attributes of resources

Verify security attributes of resources

Purpose: Confirm that software conforms to previously defined
security policies.

Owner: Tester

Key contributors:

Applicability: All software

Relative impact: Medium

Risks in
omission:

Configuration of the software’s operational environment
may leave unanticipated security risks, particularly to
attackers with direct access to underlying resources that
the software also uses directly — i.e., underlying machine
or the network.

Activity
frequency:

Once per candidate build.

Approximate
man hours:

• 2-4 man hours for small and medium projects.
• 10-20 man hours for large projects.

Version Date: 31 March 2006
25

CLASP Activity-Assessment View — Perform code signing

Perform code signing

Purpose: Provide the stakeholder with a means of validating the origin
and integrity of the software.

Owner: Integrator

Key contributors:

Applicability: Particularly when software is being distributed via an
untrusted medium — such as HTTP.

Relative impact: Low

Risks in
omission:

Customers receive a distribution of software that is
illegitimate and includes malware.

Activity
frequency:

Once per release build.

Approximate
man hours:

• 4 man hours for credential acquisition.
• 1 man hour per use.

Version Date: 31 March 2006
26

CLASP Activity-Assessment View — Build operational security guide

Build operational security guide

Purpose: • Provide stakeholder with documentation on opera-
tional security measures that can better secure the
product.

• Provide documentation for the use of security func-
tionality within the product.

Owner: Integrator

Key contributors: Designer; Architect; Implementer

Applicability: All software

Relative impact: Medium

Risks in
omission:

• Users may fail to install assumed or required com-
pensating control for a known risk.

• Users could accidently misconfigure software in a
way that thwarts their security goals.

• Users may not be exposed to security risks that
they should understand, perhaps by right.

Activity
frequency:

Ongoing, particularly during design and in preparation for
deployment.

Approximate
man hours:

40 man hours — in addition to documentation activities
driven by other activities.

Version Date: 31 March 2006
27

CLASP Activity-Assessment View — Manage security issue disclosure process

Manage security issue disclosure process

Purpose: • Communicate effectively with outside security
researchers when security issues are identified in
released software, facilitating more effective pre-
vention technologies.

• Communicate effectively with customers when
security issues are identified in released software.

Owner: Project Manager

Key contributors: Designer

Applicability: All software with external exposure.

Relative impact: Low

Risks in
omission:

Security researchers finding problems in your software
may damage your brand without adequate warning.

Activity
frequency:

As necessary.

Approximate
man hours:

Generally, 4 man-hours a week through the life of
response.

Activity-Implementation View
At the core of CLASP are 24 security-related activities that can be integrated into a
software development process. The activities phase translates into executable software
the subset of the 24 security-related activities which were assessed and accepted in the
implementation phase.

CLASP also has an impact on several key traditional software engineering activities,
such as requirements specification. CLASP does not materially change the steps within
such activities. Instead, it recommends extensions to common artifacts and provides
implementation guidance for security-specific content.

Version Date: 31 March 2006
2

CLASP Activity-Implementation View — Table: Roles and Related Activities

Table: Roles and Related Activities
The following table relates the security-related project roles to the 24 CLASP activities
to be implemented.

CLASP Activity Related Project Role

Institute security awareness program • Project Manager

Monitor security metrics • Project Manager

Specify operational environment • Owner: Requirements Specifier

• Key Contributor: Architect

Identify global security policy • Requirements Specifier

Identify resources and trust boundaries • Owner: Architect

• Key Contributor: Requirements
Specifier

Identify user roles and resource capabilities • Owner: Architect

• Key Contributor: Requirements
Specifier

Document security-relevant requirements • Owner: Requirements Specifier

• Key Contributor: Architect

Detail misuse cases • Owner: Requirements Specifier

• Key Contributor: Stakeholder

Identify attack surface • Designer

Apply security principles to design • Designer

Research and assess security posture of
technology solutions

• Owner: Designer

• Key Contributor: Component Vendor

Annotate class designs with security
properties

• Designer

Specify database security configuration • Database Designer

Perform security analysis of system
requirements and design (threat modeling)

• Security Auditor

Integrate security analysis into source
management process

• Integrator

Implement interface contracts • Implementer

Version Date: 31 March 2006
3

CLASP Activity-Implementation View — Table: Roles and Related Activities

CLASP Activity Related Project Role

Implement and elaborate resource policies
and security technologies

• Implementer

Address reported security issues • Owner: Designer

• Fault Reporter

Perform source-level security review • Owner: Security Auditor

• Key Contributor: Implementer; Designer

Identify, implement and perform security tests • Test Analyst

Verify security attributes of resources • Tester

Perform code signing • Integrator

Build operational security guide • Owner: Integrator

• Key Contributor: Designer; Architect;
implementer

Manage security issue disclosure process • Owner: Project Manager

• Key Contributor: Designer

Version Date: 31 March 2006
4

CLASP Activity-Implementation View — Project Manager: Responsibilities

Project Manager: Responsibilities
The initial activities belong to the project manager. While his duties do not represent a
significant time commitment, they do reflect the CLASP philosophy that effective
security practices require organizational buy-in. For example, introducing a security
awareness program should be about more than simply training developers that will be
dealing with security functionality directly.

Everyone that has exposure into the development lifecycle should receive basic
awareness training that will allow them to understand the macro-level issues that can
impact a business. Particularly, people need to understand the immediate costs
associated with security-related activities as well as the long-term benefits of an
improved security posture. Otherwise, when a project begins to slip, security activities
will risk being the first to be deferred if they do not have a concrete impact on the core
feature set.

Version Date: 31 March 2006
5

CLASP Activity-Implementation View — Requirements Specifier: Responsibilities

Requirements Specifier: Responsibilities
The primary security duty of a requirements specifier is to identify at a high level the
core security model for the application. For example, the requirements specifier
determines which resources might be at risk, the roles and responsibilities of users that
may access those resources, and the potential consequences if these resources are
compromised.

Not only do these activities provide a context for making choices about how to deal with
particular security issues throughout the development lifecycle; these activities also
define a framework for accountability that a project manager can apply if security
problems are ultimately found in system design.

Version Date: 31 March 2006
6

CLASP Activity-Implementation View — Implementer: Responsibilities

Implementer: Responsibilities
Most of the security activities traditionally assigned to implementers are actually best
handled by the software architects and designers. Most software security issues can be
addressed at architecture and design time, which is far more cost effective. This also
allows an organization to concentrate security expertise among a very few of the most
trusted members of the development organization.

Version Date: 31 March 2006
7

CLASP Activity-Implementation View — Security Auditor: Responsibilities

Security Auditor: Responsibilities
Several key tasks are owned by a security auditor, which is a new role that CLASP
introduces into the software development lifecycle. The invention of this role
emphasizes the fact that development teams can easily get too close to its own
systems to analyze them effectively.

Independent third-party security assessments are currently commonly accepted as a
best practice. These assessments are also one of the simplest and most cost-effective
measures that an organization can take to improve the security posture of its
development efforts — whether the independent third party is a firm dedicated to
security assessments or simply consists of members from another product team within
the same organization.

Version Date: 31 March 2006
8

CLASP Activity-Implementation View — Institute security awareness program

Institute security awareness program

Purpose: • Ensure project members consider security to be an important
project goal through training and accountability.

• Ensure project members have enough exposure to security to
deal with it effectively.

Role: Project Manager

Frequency: Ongoing

Provide security training to all team members
Before team members can reasonably be held accountable for security issues, you
must ensure they have had adequate exposure to those issues. Additionally, even
those members of the team that do not directly deal with security issues should be
aware of the project’s security practices.

This is best done with a training program. Everyone on the team should receive training
introducing them to basic security concepts and secure development process that is
used within the organization.

Additionally, people within the organization should receive training targeted to their role.
For example, Developers should receive detailed training on common basic causes and
mitigation techniques, particularly as they relate to the development and deployment
environment. Additionally, both developers and testers should receive training for
automation tools that they should use in the course of doing their jobs.

Promote awareness of the local security setting
Everyone on a development project should be familiar with the security requirements of
the system, including the basic threat model. When such documents are produced, they
should be distributed and presented to team members, and you should solicit and
encourage feedback from all parties on the team.

When other security-relevant documentation is produced — e.g., as code analysis
results — that documentation should be made available to the team, even if not every
member is required to review it.

Additionally, you should ensure that security implications are considered whenever a
new requirement emerges. It is a best practice to explicitly address at the end of any
technical meeting whether there are security ramifications.

Version Date: 31 March 2006
9

CLASP Activity-Implementation View — Institute security awareness program

Finally, we recommend promoting a culture where your team is externally security
aware. Watch security news sources and/or article aggregators for security-relevant
news that is related to your project at the end of any technical meeting — or appoint a
designee to do this. Forward to your team anything that seems relevant to your project.
This includes not only flaws in products you use on your project, but also interesting
news, flaws, or other results that you feel will maintain awareness and/or further
educate your team.

Institute accountability for security issues
Traditional accountability within development organizations is based primarily on
schedule and quality. Security should be treated in much the same way as any other
quality consideration.

First, the team should be given security goals. It is reasonable to expect that a team
member will not be responsible for introducing “standard” risks into the system, without
documenting and escalating those risks before introducing them. This recognizes that
security is not a “black-and-white” issue — i.e., there will always be some security risk
in the system. It also helps ensure that development team members will consider and
document any risks that are considered acceptable.

When the project manager becomes aware of a new security risk that was not caught
before introducing it into the system, it is important that he not decide arbitrarily whether
or not the risk should have been identified in advance. Instead, we recommend having
in place a list of risks that can be used as a baseline. For example, developers should
be given a list of coding security standards — such as the list in CLASP Resource E —
that they are periodically assessed against. All members of the team should also be
held accountable on the basis of a database of basic causes of vulnerabilities.

Note that sometimes security accountability may affect schedule accountability — i.e.,
finding a security issue that requires remediation can have a negative impact on
schedule. We recommend that, whenever the decision is made to remediate a security
risk in a way that will impact schedule, the accountability for the schedule slip should be
tied to the accountability for the security problem.

Additionally, it is the responsibility of the project manager to ensure adoption of security
activities into the development lifecycle and ensure that they are given the desired level
of attention. Team members must, again, be accountable for performing these activities
to a satisfactory level.

Appoint a project security officer
An excellent way to increase security awareness throughout the development lifecycle
is to designate a team member as the project security officer, particularly someone who
is enthusiastic about security.

Version Date: 31 March 2006
10

CLASP Activity-Implementation View — Institute security awareness program

The role of this person (or persons) can vary depending on the development
organization but should encompass at least the first two of the following duties:

• Serve as a repository of security expertise for other project members.

• Take into account security concerns through the SDLC — such as during
design meetings.

• Review work of other team members, as if an external security auditor,
performing security assessments when appropriate.

Generally, independent auditors are far more effective than internal auditors, regardless
of the level of security expertise, even if independent auditors are still inside the same
company. Ultimately, more review is also preferable as a defense-in-depth measure.

Institute rewards for handling of security issues
Accountability is a necessity for raising security awareness, but another highly effective
way is to institute reward programs for doing a job well done with regard to security. For
example, it is recommended to reward someone for following security guidelines
consistently over a period of time — particularly if the result is that no incidents are
associated with that person.

Additionally, if team members identify important security risks that were not found in the
course of standard auditing practices, these insights should be rewarded.

Version Date: 31 March 2006
11

CLASP Activity-Implementation View — Monitor security metrics

Monitor security metrics

Purpose: • Gauge the likely security posture of the ongoing development
effort.

• Enforce accountability for inadequate security.

Role: Project Manager

Frequency: Ongoing

Identify metrics to collect
There is a wealth of metrics about a program that can offer insight into the likely
security posture of an application. However, the goal of metrics collection goes beyond
simply determining likely security posture; it also aims at identifying specific areas in a
system that should be targets for improvement.

Metrics are also important for enforcing accountability — i.e., they should be used to
measure the quality of work done by teams or individual project members. The
information can be used to determine, for example, which projects need expert
attention, which project members require additional training, or who deserves special
recognition for a job well done.

One disadvantage of using metrics for accountability is that, when creating your own
metric, it can take time to build confidence in a set of them. Generally, one proposes a
metric and then examines its value over a number of projects over a period of time
before building confidence that, for example, .4 instead of .5 is just as bad as .6 is just
as good.

That does not make metrics useless. If the metric always satisfies the property that
adding more risk to the program moves the metric in the proper direction, then it is
useful, because a bar can be set for team members to cross, based on instinct, and
refined over time, if necessary. One need not worry about the exact meaning of the
number, just one’s position relative to some baseline.

As a part of identifying metrics for monitoring teams and individuals, one must clearly
define the range of artifacts across which the metrics will be collected. For example, if
individual developers are responsible for individual modules, then it is suitable to collect
metrics on a per-module level. However, if multiple developers can work on the same
module, either they need to be accountable as a team, or metrics need to be collected
— for example, based on check-ins into a version control system.

The range of metrics one can collect is vast and is easy to tailor to the special needs of
your organization. Standard complexity metrics such as McCabe metrics are a useful

Version Date: 31 March 2006
12

CLASP Activity-Implementation View — Monitor security metrics

foundation because security errors become more likely as a system or component gets
more complex.

One of the key requirements for choosing a metric is that it be easy to collect.
Generally, it is preferable if the metric is fully automatable; otherwise, the odds that your
team will collect the metric on a regular basis will decrease dramatically.

There are metrics tailored specifically to security. For example, here are some basic
metrics that can be used across a standard development organization:

• Worksheet-based metrics. Simple questionnaires — such as the system
assessment worksheet in CLASP Resource F — can give you a good
indication of your organizational health and can be a useful metric for
evaluating third-party components that you want to integrate into your organi-
zation or product. Questions on that worksheet can be divided into three
groups: “critical,” “important,” and “useful”; then a simple metric can be based
on this grouping. For example, it is useful enough to simply say that, if any
critical questions are not answered to satisfaction, the result is a “0”.
The value of worksheet-based metrics depends on the worksheet and the ease of
collecting the data on the worksheet. Generally, this approach works well for
evaluating the overall security posture of a development effort but is too costly for
measuring at any finer level of detail.

• Attack surface measurement. The attack surface of an application is the
number of potential entry points for an attack. The simplest attack surface
metric is to count the number of data inputs to the program or system —
including sockets, registry lookups, ACLs, and so on. A more sophisticated
metric would be to weight each of the entry points based on the level of risk
associated with them. For example, one could assign a weight of 1.0 to an
externally visible network port where the code supporting the port is written in
C, 0.8 for any externally visible port in any other language, and then assign
lesser ratings for ports visible inside a firewall, and small weightings for those
things accessible only from the local machine. Choosing good weights requires
sufficient data and a regression analysis, but it is reasonable to take a best
guess.
Attack surface is a complex topic, but a useful tool. See CLASP Resource A for a
detailed discussion on the topic.
Metrics based on attack surface can be applied to designs, individual
executables, or whole systems. They are well suited for evaluating architects and
designers (and possibly system integrators) and can be used to determine
whether an implementation matches a design.
Even with a weighted average, there is no threshold at which an attack surface
should be considered unacceptable. In all cases, the attack surface should be
kept down to the minimum feasible size, which will vary based on other

Version Date: 31 March 2006
13

CLASP Activity-Implementation View — Monitor security metrics

requirements. Therefore, the weighted average may not be useful within all
organizations.

• Coding guideline adherence measurement. Organizations should have
secure programming guidelines that implementers are expected to follow.
Often, they simply describe APIs to avoid. To turn this into a metric, one can
weight guidelines based on the risk associated with it or organizational
importance, and then count the occurrences of each call. If more detailed
analysis tools are available, it is reasonable to lower the weighting of those
constructs that are used in a safe manner — perhaps to 0.
While high-quality static analysis tools are desirable here, simple lexical scanners
such as RATS are more than acceptable and sometimes even preferable.

• Reported defect rates. If your testing organization incorporates security tests
into its workflow, one can measure the number of defects that could potentially
have a security impact on a per-developer basis. The defects can be weighted,
based on their potential severity.

• Input validation thoroughness measurement. It is easy to build a metrics
collection strategy based on program features to avoid. Yet there are many
things that developers should be doing, and it is useful to measure those as
well. One basic secure programming principle is that all data from untrusted
sources should go through an input validation routine. A simple metric is to
look at each entry point and determine whether input validation is always being
performed for that input.
If your team uses a set of abstractions for input validation, a high-level check is
straightforward. More accurate checks would follow every data flow through the
program.
Another factor that can complicate collection is that there can be different input
validation strategies — as discussed extensively in CLASP Resource B.
Implementations can be judged for quality, based on the exact approach of your
team.

• Security test coverage measurement. It can be difficult to evaluate the
quality of testing organizations, particularly in matters of security. Specifically,
does a lack of defects mean the testers are not doing their jobs, or does it
mean that the rest of the team is doing theirs?
Testing organizations will sometimes use the concept of “coverage” as a
foundation for metrics. For example, in the general testing world, one may strive
to test every statement in the program (i.e., 100% statement coverage), but may
settle for a bit less than that. To get more accurate, one may try to test each
conditional in the program twice, once when the result is true and once when it is
false; this is called branch coverage.
Directly moving traditional coverage metrics to the security realm is not optimal,
because it is rarely appropriate to have directed security tests for every line of

Version Date: 31 March 2006
14

CLASP Activity-Implementation View — Monitor security metrics

code. A more appropriate metric would be coverage of the set of resources the
program has or accesses which need to be protected. Another reasonable metric
is coverage of an entire attack surface. A more detailed metric would combine the
two: For every entry point to the program, perform an attainability analysis for
each resource and then take all remaining pairs of entry point and resource and
check for coverage of those.

Identify how metrics will be used
This task often goes hand-in-hand with choosing metrics, since choice of metric will
often be driven by the purpose. Generally, the goal will be to measure progress of either
a project, a team working on the project, or a team member working on a team.

Besides simply identifying each metric and how one intends to apply it, one should
consider how to use historical metrics data. For example, one can easily track security-
related defects per developer over the lifetime of the project, but it is more useful to look
at trends to track the progress of developers over time.

For each metric identified, it is recommended to ask: “What does this mean to my
organization right now?” and “What are the long-term implications of this result?”. That
is, it is recommended to draw two baselines around a metric: an absolute baseline that
identifies whether the current result is acceptable or not, and a relative baseline that
examines the metric relative to previous collections. Identified baselines should be
specific enough that they can be used for accountability purposes.

Additionally, one should identify how often each metric will be collected and examined.
One can then evaluate the effectiveness of the metrics collection process by monitoring
how well the schedule is being maintained.

Institute data collection and reporting strategy
A data reporting strategy takes the output of data collection and then produces reports
in an appropriate format for team consumption. This should be done when selecting
metrics and should result in system test requirements that can be used by those people
chosen to implement the strategy.

Implementing a data collection strategy generally involves: choosing tools to perform
collection; identifying the team member best suited to automate the collection (to
whatever degree possible); identifying the team member best suited to perform any
collection actions that can not be automated; identifying the way data will be
communicated with the manager (for example, through a third-party product, or simply
through XML files); and then doing all the work to put the strategy in place.

Data collection strategies are often built around the available tools. The most coarse
tools are simple pattern matchers — yet tools like this can still be remarkably effective.
When using such tools, there are multiple levels at which one can collect data. For

Version Date: 31 March 2006
15

CLASP Activity-Implementation View — Monitor security metrics

example, one can check individual changes by scanning the incremental change as
stored in your code repository (i.e., scan the “diffs” for each check-in), or one can check
an entire revision, comparing the results to the output from the last revision.

More sophisticated tools will generally impose requirements on how you collect data.
For example, analysis tools that perform sophisticated control and data flow analysis
will not be able to work on incremental program changes, instead requiring the entire
program.

Where in the lifecycle you collect metrics is also tool-dependent. For example, many
per-system metrics can be collected using dynamic testing tools — such as network
scanners and application sandboxes, which are applied while the system is running.
Code coverage tools also require running the program and therefore must be collected
during testing (or, occasionally, deployment).

But static code scanners can produce metrics and can be run either at check-in time or
during nightly builds. Tools like RATS that perform only the most lightweight of analysis
may produce less accurate results than a true static analysis tool but have the
advantage that they can operate over a patch or “diff” — as opposed to requiring the
entire program. This makes assigning problems to team members much simpler.

Periodically collect and evaluate metrics
Periodically review the output of metrics collection processes (whether automated or
manual). Act on the report, as appropriate to your organization. In order to maintain
high security awareness, it can be useful to review metrics results in group meetings.

If it becomes clear — in the course of reviewing data produced by metrics — that those
metrics do not adequately capture data needed to evaluate the project, teams or team
members, use this information to iterate on the metrics collection process.

Version Date: 31 March 2006
16

CLASP Activity-Implementation View — Specify operational environment

Specify operational environment

Purpose: • Document assumptions and requirements about the operating
environment, so that the impact on security can be assessed.

Role: Requirements Specifier

Frequency: As necessary; generally, once per iteration.

An operational environment specification allows team members to understand the
operational context that they need to consider for designing protection mechanisms or
building operational security guides. Much of the data required for an operational
environment specification will already be produced in defining business requirements,
and specifying the operational environment will often result in identifying new require-
ments.

Generally, this activity will result in changes to existing requirements and specifications,
if necessary. However, it is also reasonable to produce stand-alone documentation. An
operational environment worksheet is provided in CLASP Resource F.

Identify requirements and assumptions related to
individual hosts
A host-level operational environment specification should identify anything that could
potentially be security-relevant to other team members. In most circumstances, the
large majority of considerations will be addressed by assuming nothing. For example, it
is rare that, beyond the core OS, one will take actions to ensure that particular pieces of
software will not be running on a machine, even if that software might pose a threat.

Still, there are properties that are worth specifying, even beyond hardware platforms
and OS. For example, it is worth specifying which user the software is expected to run
as, since this has security implications.

One can also enforce prerequisites, as long as they are necessary to product
functionality. Any such prerequisites should be identified as early as possible. If the
project is expected to interact with important system components or libraries that come
bundled with the OS, it is recommended to note this as well, not only because those
may be additional sources of risk to the resources the application exports, but also
because the software should be concerned about the security of resources it is capable
of using.

Additionally, one should consider what optional functionality might be in the
environment that could have a security impact — positive or negative — that your
project could explicitly leverage or protect, as necessary.

Version Date: 31 March 2006
17

CLASP Activity-Implementation View — Specify operational environment

Example: Your customer base is government-focused and is likely to have a dynamic
policy enforcement environment available. Note that — since providing policies for such
an environment might be a way to remediate significant risks for those users — you can
also serve other users by recommending a dynamic policy-enforcement environment to
them. On the other hand, if your software is dependent on a component that is known to
be risky, such as Microsoft’s IIS server, it is good to know about the risk up-front.

Identify requirements and assumptions related to
network architecture
In some environments, one can assume particular things about network topology, such
as the existence and configuration details of a firewall or a single-sign-on mechanism.
Often, however, assumptions cannot be made.

As with host-related concerns, it is recommended to define not only those things that
will or will not be in the environment but also those things that may have an impact
(either positive or negative) if present in the environment. For example, many
applications assume implicitly that there is no network-attached storage, or if there is, it
has its own security measures in place that make it as secure as the local disk. That is
often not the case; and this is a concern that should ultimately be entered into an
operational security guide if the risk is not addressed at the application level.

Additionally, focus on those network resources that must be present for the system to
correctly function — such as a database, and possibly available bandwidth. Also, if your
customers are expected to want integration with centralized authentication servers or
other network resources, this should be noted as a requirement.

Version Date: 31 March 2006
18

CLASP Activity-Implementation View — Identify global security policy

Identify global security policy

Purpose: • Provide default baseline product security business require-
ments.

• Provide a way to compare the security posture of different prod-
ucts across an organization.

Role: Requirements Specifier

Frequency: As necessary; generally, at least once per iteration.

Build a global project security policy, if
necessary
If the organization is lacking a global project security policy, then the CISO, head of
engineering and managers of significant projects (or the equivalents) should work
together to determine whether a policy is valuable, and if so, produce the policy. It is
generally a good idea to maintain this policy as a group, although it is particularly
reasonable to entrust it to a single individual when the head of engineering has a strong
security background.

Particularly in large organizations with many separate projects, it is useful to have a set
of baseline security requirements for software projects. Not only does this ease the
burden of requirements specifiers in the long term, it also provides a way to compare
the security posture of applications within the organization, and can be a framework for
per-project accountability.

If some projects are deployed on the company’s network, such requirements are even
more valuable since they serve as a concrete documentation of internal procedures that
documentation teams should be following. Some organizations even have separate
policies for both internally deployed software and externally delivered software.

A global project security policy should detail a minimum baseline for protecting data
resources, with respect to the basic security services. It can (and should) break
resources up into categories (or specific technologies), providing different guidance for
each, where appropriate. Such guidance should include when to apply technologies as
well as how to apply technologies when they are used on a project.

When designing such requirements, one should avoid making choices that are arbitrary,
and potentially limiting. For example, it is fine to specify a particular minimum key size
for a cryptographic algorithm, but a policy shouldn’t disallow a project from choosing
larger keys, unless there is a strong reason for it.

Version Date: 31 March 2006
19

CLASP Activity-Implementation View — Identify global security policy

We provide a sample list of global security requirements in CLASP Resource D and in
Activity-Implementation View (activity: “Identify global security policy”).

Determine suitability of global requirements to
project
For each of the requirements in the global requirement list, one should determine
whether it is appropriate to the project. If it is not appropriate to the project, that fact
should be documented explicitly. Preferably, this would be done by maintaining an
annotated copy of the global requirements document, so that one can easily
demonstrate coverage of the global policy. However, it is also reasonable to incorporate
irrelevant requirements directly into a requirements document, with an annotation
indicating that it is believed to be irrelevant to the project, but must be followed per the
global policy, if it becomes relevant.

If the global requirement is relevant to the project, determine how it is relevant:

• The global requirement is already addressed by one or more of the other
system requirements. In this case, one should denote explicitly that the global
requirement is addressed, and which project requirement(s) address it. This
can be done either on a marked up version of the global policy, or in place in
the system requirements document, depending on the organization’s
preferences.

• The global requirement contradicts the project requirements (implicit or
explicit). Generally, this should result in a change of the project requirements.
If not, it should be escalated beyond the project to the global policy
maintainer(s), resulting either in a change of the global requirements or an
exception that gets explicitly documented.

• The global requirement does not contradict existing requirements, but has not
yet been addressed. The requirements specifier should determine how to
incorporate the requirement. Sometimes the global requirement can be copied
directly, and sometimes it will need to be elaborated. Often, however, global
requirements will provide general, high-level guidance that an individual project
may elaborate. For example, a global requirement may be to allow any
cryptographic algorithm that was a finalist in the AES competition with 128-bit
keys or larger for providing symmetric confidentiality, but a particular system
may specify AES with 256 bit keys.

Version Date: 31 March 2006
20

CLASP Activity-Implementation View — Identify resources and trust boundaries

Identify resources and trust boundaries

Purpose: • Provide a structured foundation for understanding the security
requirements of a system.

Role: Architect

Frequency: As needed; at least once per iteration.

Identify network-level design
Describe the architecture of the system from the perspective of the network.
Particularly, identify any components that could possibly be located on different logical
platforms. For example, client software should be identified, as well as middleware and
any database. If there is both middleware and a database, which might possibly live on
a separate machine, they should be identified as logically separate.

As part of denoting components, denote trust boundaries. For example, the firewall is
often a trust boundary — the client machines on the outside are less trustworthy.
Individual hosts are often trust boundaries, and many multi-user systems can have
multiple trust boundaries internally. Trust boundaries should be mapped to system roles
that can be granted that level of trust.

A network-level design should be codified with a diagram in order to facilitate
communication. This should be the same kind of diagram one would put on a
whiteboard when asked about the architecture. The document should be kept up-to-
date with changes and additions to the architecture. Particularly, as you identify
protection mechanisms for resources and data links, you should annotate the diagram
with these mechanisms.

Identify data resources
Identify data resources that may be used by a program. In conjunction with the next
activity, this should ultimately be broken down into individual capabilities related to each
resource. When the information is known, break down each resource as granularly as
possible — e.g., by identifying individual database tables, instead of simply the
database as a whole.

This information should be documented separately to facilitate analysis, but may be
incorporated directly into business requirements.

Sample resources include:

• Databases and database tables

Version Date: 31 March 2006
21

CLASP Activity-Implementation View — Identify resources and trust boundaries

• Configuration files

• Cryptographic key stores

• ACLs

• Registry keys

• Web pages (static and dynamic)

• Audit logs

• Network sockets / network media

• IPC, Services, and RPC resources

• Any other files and directories

• Any other memory resource

Note: Network media is a resource of its own. Data resources will often be stored in
memory, placed onto a wire, received in memory on the other end, and then stored on
disk. In such a scenario, we often will not want to address the security of the data in a
vacuum, but instead in the context of the resource the data is inhabiting. In the network
media, we need to specify how to protect that data when it traverses the media, which
may be done generically or specifically to the media.

Version Date: 31 March 2006
22

CLASP Activity-Implementation View — Identify user roles and resource capabilities

Identify user roles and resource capabilities

Purpose: • Define system roles and the capabilities/resources that the role
can access.

Role: Architect

Frequency: As needed; at least once per iteration.

Identify distinct capabilities
Intelligent role division requires understanding the things in a system that users may be
able to do (capabilities). Even if there is a heavy disposition to use a very limited
number of roles, there is much value in identifying possible capabilities, then applying
the principle of least privilege by binding capabilities to roles only when necessary. For
example, even if the primary role abstraction is “user”, it is perfectly valid to restrict
sensitive operations to a subset of those users.

Capabilities are interesting operations on resources that should be mediated via an
authorization/access control mechanism. For example, the obvious capabilities for a file
on a file system are: read, write, execute, create, and delete. However, there are other
operations that could be considered “meta-operations” that are often overlooked,
particularly: reading and writing file attributes, setting file ownership, and establishing
access control policy to any of these operations.

Map system roles to capabilities
Roles are a way of mapping sets of capabilities to classes of users. Traditionally,
people have thought of roles only at the highest level, breaking them down into
administrator, users and guest, or whatever natural division suits the system. This is a
reasonable high-level abstraction, but in many systems it does not serve the principle of
least privilege, which states that one should have the minimal privileges necessary, and
no more.

On the other end of the spectrum, one can define one role for every set of resource
capabilities one might want to allow. But that can quickly get complex if users need to
be able to assign capabilities to other users dynamically. As a result, it is usually best to
map roles to static sets of capabilities. This should be done by specifying the default set
of capabilities for the role as well as the maximum set of capabilities for the role.

In most situations, the system itself is an implicit role (or set of roles) that has all
capabilities and mediates access to them — particularly in a client-server application.

Version Date: 31 March 2006
23

CLASP Activity-Implementation View — Identify user roles and resource capabilities

Role to capability mappings can be expressed as requirements stating that the given
role should have access to a particular set of capabilities. Optionally, role information
can be captured in a separate artifact.

Identify the attacker profile (attacker roles and
resources)
When defining system requirements, one must have a good model specifying where
threats could originate. Particularly, one should attempt to identify potential groups that
could be a threat as well as the gross resources one expects them to have.

For example, one should consider acknowledging the following attacker roles in an
architecture:

• Insiders — particularly those who have physical access to the building where
critical infrastructure is kept. Most crimes are caused by people with some sort
of insider access, including friends, building workers etc. While many insider
attacks are due to some form of disgruntlement, more often they are crimes of
opportunity.

• “Script Kiddies” — are those people who leverage exploits that are easy to find
in the underground community. This group generally targets widely deployed
software systems, due to the ready availability of exploits and targets. Such
systems are often present as components in more complex systems.

• Competitors — who may have a reasonable budget and may be willing to fund
illegal or borderline activity that is unlikely to be traced back to them (e.g., due
to outsourcing to Russia).

• Governments — who are generally extraordinarily well funded.

• Organized crime — who choose few targets based on financial gain but are
well funded.

• Activists — who will target organizations that are particularly unliked. This
threat vector is easy to ignore, but could be a source of risk. For example,
there are non-traditional activists, such as those that target security companies
perceived to be untalented.

An attacker profile should be documented independently but could be incorporated into
business requirements.

Version Date: 31 March 2006
24

CLASP Activity-Implementation View — Document security-relevant requirements

Document security-relevant requirements

Purpose: • Document business-level and functional requirements for secu-
rity.

Role: Requirements specifier

Frequency: As needed; at least once per iteration.

In this activity, we describe how to take a resource-centric approach to deriving
requirements. This approach results in much better coverage of security requirements
than do ad-hoc or technology-driven methods. For example, many businesses will
quickly derive the business requirement “Use SSL for security,” without truly
understanding what requirements they are addressing. For example, is SSL providing
entity authentication, and if so, what is getting authenticated, and with what level of
confidence? Many organizations overlook this, and use SSL in a default mode that
provides no concrete authentication.

All requirements (not simply security requirements) should be SMART+ requirements
— i.e., they should follow a few basic properties:

• Specific. There should be as detailed as necessary so that there are no
ambiguities in the requirement. This requires consistent terminology between
requirements.

• Measurable. It should be possible to determine whether the requirement has
been met, through analysis, testing, or both.

• Appropriate. Requirements should be validated, thereby ensuring that they not
only derive from a real need or demand but also that different requirements
would not be more appropriate.

• Reasonable. While the mechanism or mechanisms for implementing a
requirement need not be solidified, one should conduct some validation to
determine whether meeting the requirement is physically possible, and
possible given other likely project constraints.

• Traceable. Requirements should also be isolated to make them easy to
track/validate throughout the development lifecycle.

SMART requirements were originally defined by Mannion and Keepence. We have
modified the acronym. The original “A” was “Attainable”, meaning physically possible,
whereas “Reasonable” was specific to project constraints. We have combined these
two requirements since their separation is somewhat arbitrary and since we believe
there should be a focus on appropriateness. Due to this change, we distinguish our
refinement as SMART+ requirements.

Version Date: 31 March 2006
25

CLASP Activity-Implementation View — Document security-relevant requirements

The original paper on SMART requirements is good elaboration on these principles.
See http://www.win.tue.nl/~wstomv/edu/2ip30/references/smart-requirements.pdf.

Document explicit business requirements
Security requirements should be reflected in both business and functional requirements.
Generally, business requirements will focus on demands from the customer and
demands that are internal to the organization. As a result, business requirements may
be somewhat unstructured.

A starting point for internally driven requirements can be taken from a global security
policy, if present. Be aware that individual projects may have specific requirements that
are not covered by the global policy or are in conflict with it.

Since customers often are not adequately security-aware, one should not expect to
derive an exemplary set of security requirements through customer interaction. It is
recommended to explicitly bring up issues that may become important with system
users after deployment, particularly:

• Preferred authentication solutions;

• Preferred confidentiality solutions for network traffic;

• Preferred confidentiality solutions for long-term storage of key data; and

• Privacy concerns (particularly for personal data).

Develop functional security requirements
Functional security requirements should show how the basic security services are
addressed for each resource in the system, and preferably on each capability on each
resource. This generally calls for abstraction to make the process manageable. Security
requirements should be, wherever possible, abstracted into broad classes, and then
those classes can be applied to all appropriate resources/capabilities. If there are still
resources or capabilities that do not map to the abstractions, they can be handled indi-
vidually.

For example, end-user data that is generally considered highly sensitive can often be
placed into a “User-Confidential” class, whereas public data could be placed into a
“User-Public” class. Requirements in the first class would tend to focus on
circumstances in which access to that data can be granted to other entities.

Classes can be applied either to data resources or to individual capabilities by
specifying a requirement that the specific resource or capability should be handled in
accordance with the security policy of the particular protection class. When applied to
data resources, requirements should be specified in the abstracted class for any
possible capability, even if some data elements will not have the capability.

Version Date: 31 March 2006
26

CLASP Activity-Implementation View — Document security-relevant requirements

Whereas most data resources will lump into a few reasonable abstractions, it is often
the case that other system resources such as the network, local memories, and
processors do not conform to user data requirements.

 For each identified category, specify protection requirements on any resource in that
category, relative to the basic security services:

• Authorization (access control): What privileges on data should be granted to
the various roles at various times in the life of the resource, and what
mechanisms should be in place to enforce the policy. This is also known as
access control and is the most fundamental security service. Many other
traditional security services (authentication, integrity, and confidentiality)
support authorization in some way.

• Consider here resources outside the scope of your system that are in the
operating environment which need to be protected — such as administrative
privileges on a host machine.

• Authentication and integrity: How is identity determined for the sake of access
to the resource, and must the resource be strongly bound to an identity? For
example, on communication channels, do individual messages need to have
their origin identified, or can data be anonymous?
Generally, requirements should specify necessary authentication factors and
methods for each endpoint on a communication channel and should denote any
dependencies, such as out-of-band authentication channels — which should be
treated as a separate system resource.
Integrity is usually handled as a subset of data origin authentication. For example,
when new data arrives over a communication channel, one wants to ensure that
the data arrived unaltered (whether accidentally or maliciously). If the data
changes on the wire (whether by accident or malice), then the data origin has
changed. Therefore, if we validate the origin of the data, we will determine the
integrity of the data as well.
This illustrates that authentication — if it is necessary in a system — must be an
ongoing service. An initial authentication is used to establish identity, but that
identity needs to be reaffirmed with each message.
Identity is the basis for access control decisions. A failure in authentication can
lead to establishing an improper identity, which can lead to a violation of access
control policy.

• Confidentiality (including privacy): Confidentiality mechanisms such as
encryption are generally used to enforce authorization. When a resource is
exposed to a user, what exactly is exposed: the actual resource or some
transformation? Requirements should address what confidentiality mechanism
is required and should identify how to establish confidentiality — usually
requiring identity establishment.

Version Date: 31 March 2006
27

CLASP Activity-Implementation View — Document security-relevant requirements

• Availability: Requirements should focus on how available a resource should be
for authorized users.

• Accountability (including non-repudiation): What kind of audit records need to
be kept to support independent review of access to resources/uses of
capabilities — i.e., what logging is necessary? Remember that log files are
also a data resource that need to be specified and protected.

After building a set of abstractions and mapping it to resources, one needs to ensure
that all resources (and preferably capabilities) have adequate coverage for security
requirements. This generally entails walking through each resource identified in the
system and attempting to determine whether there are special requirements relative to
each of the core security services.

The output should not only consist of security requirements, but also documentation of
what threats were considered. Considered threats should be documented on a per-
resource — or per-capability — basis and should address each security service. These
should be cataloged in the threat model.

Explicitly label requirements that denote
dependencies
All external dependencies should be captured in requirements to whatever degree
reasonable. All third-party components used should be specified. Any required
functionality in the operational environment specification should be specified.

Any requirements denoting external dependencies should be explicitly labeled as such
in order to facilitate subsequent analysis.

Determine risk mitigations (compensating
controls) for each resource
At the business requirement level, one generally identifies what resources need to be
protected — i.e., what risks on individual resources need to be addressed — and may
document customer-driven technology decisions for ways to mitigate risks on those
resources.

Functional requirements should specify what mechanisms should be put in place to
provide security services on resources. Such mechanisms address particular risks. A
requirements specifier should not worry about determining specific risks. This means
that the requirements specifier should not spend too much time identifying how
particular services might be compromised. Instead, he should prefer specifying general
mechanisms that assume any method of compromise.

Version Date: 31 March 2006
28

CLASP Activity-Implementation View — Document security-relevant requirements

While this may not address all risks, it shifts the need for security expertise into the
analysis process (usually, architectural analysis). Of course, as risks that are more
granular are identified, requirements and mitigations should be updated.

Functional security requirements should focus on how potential security risks are to be
addressed in a system. As with business requirements, functional security requirements
can be derived in a structured way from either a set of resources (including those that
are not explicitly data resources, such as the CPU) or, preferably, a set of capabilities
defined over a set of resources.

Risks on capabilities differ throughout the lifetime of a system, and when specifying
functional requirements for protecting data, one should explicitly consider this. If and
when data-flow diagrams are available for the system, one should trace each resource
through the diagram, assessing risk relative to each core security service at each step,
particularly assessing whether currently identified controls are valid at each trust level.

It can be useful to carefully consider data flow through the system as opposed to just
data considered statically. Realistically, requirements on that data can change,
depending on the subsystem in which the data is passing — particularly as the data
passes through system trust boundaries.

Particularly, one should realize that data belonging to one user could often have
accidental (unauthorized) flows to other users in the system and to people with insider
access to the system. Seek to protect data as soon as feasible and for as long as
possible — particularly, while data is in storage.

For each resource capability tracked through the system, identify on trust boundaries
what risks could be considered (iterating through the basic security services), then
identify solutions for addressing those risks. If an action is to be taken as part of the
system being built, document it as a functional requirement, mapping it explicitly to the
capability, resource, and any relevant business requirements.

 If no protection is to be implemented in the context of the system, the risk should be
documented for the benefit of the end user. Additionally, when feasible, one should
recommend compensating controls — mitigation techniques that can be implemented
by the customer. Similarly, even when risks are addressed internal to the system, there
will generally be lesser lingering risks, and these too should be documented in an
operational security guide. See the activity on Building operational security guide for
more detail.

One should iterate on security requirements as new risks are presented — such as
through risk analysis.

Version Date: 31 March 2006
29

CLASP Activity-Implementation View — Document security-relevant requirements

Resolve deficiencies and conflicts between
requirement sets
Many systems will have multiple levels of requirements, all of which will address
security. For example, a project may have a set of business requirements, a set of
functional requirements, and a set of global requirements that are effectively
requirements for the project — particularly if they are not directly incorporated into
either of the other artifacts.

One should map each set of requirements to the others in order to determine omissions
and conflicts. For example, one can annotate a copy of global requirements, specifying
which business or functional requirements map to each global requirement by iterating
through the business or functional requirements that are security-relevant.

Conflicts, when noticed, should be resolved as appropriate. If a global requirement is to
be exempted, an organization should have an approval process involving the owner of
the global requirements and resulting in explicit sign-off. Otherwise, conflicts should be
resolved by mutual agreement of appropriate contributors.

 When business requirements fail to address a global requirement, or functional
requirements fail to elaborate on business requirements adequately, create a new
requirement as appropriate.

Version Date: 31 March 2006
30

CLASP Activity-Implementation View — Detail misuse cases

Detail misuse cases

Purpose: • Communicate potential risks to stakeholder.
• Communicate rationale for security-relevant decisions to stake-

holder.

Role: Requirements Specifier

Frequency: As required; typically occurring multiple times per iteration, and
most frequently in Inception and Elaboration iterations.

Identify misuse cases
Misuse cases are identical to use cases, except that they are meant to detail common
attempted abuses of the system. Like use cases, misuse cases require understanding
the actors that are present in the system. Those actors should be mapped to
capabilities, if possible. Misuse cases should be designed for each actor, and one
should also consider uses cases for nefarious collaborating actors.

As with normal use cases, one should expect misuse cases to require adjustment over
time. Particularly, it is common to start with high-level misuse cases, and refine them as
the details of the system are better understood.

Determining misuse cases generally constitutes a brainstorming activity. There are
three good starting points for structured brainstorming:

• First, one can start with a pre-existing knowledge base of common security
problems and determine whether an attacker may have cause to think such a
vulnerability is possible in the system. Then, one should attempt to describe
how the attacker will leverage the problem if it exists.

• Second, one can brainstorm on the basis of a list of system resources. For
each resource, attempt to construct misuse cases in connection with each of
the basic security services: authentication, confidentiality, access control,
integrity, and availability.

• Third, one can brainstorm on the basis of a set of existing use cases. This is a
far less structured way to identify risks in a system, yet is good for identifying
representative risks and for ensuring the first two approaches did not overlook
any obvious threats. Misuse cases derived in this fashion are often written in
terms of a valid use and then annotated to have malicious steps.

Version Date: 31 March 2006
31

CLASP Activity-Implementation View — Detail misuse cases

Describe misuse cases
A system will have a number of predefined roles, and a set of attackers that might
reasonably target instances of the system under development. These together should
constitute the set of actors that should be considered in misuse cases.

As with traditional use cases, you should establish which actors interact with a use case
— and how they do so — by showing a communicates-association. Also as traditionally
done, one can divide use cases or actors into packages if they become too unwieldy.

Important misuse cases should be represented visually, in typical use case format, with
steps in a misuse set off (e.g., a shaded background), particularly when the misuse is
effectively an annotation of a legitimate use case.

Those misuse cases that are not depicted visually but are still important to
communicate to the user should be documented, as should any issues not handled by
the use case model.

Identify defense mechanisms for misuse cases
As one identifies defense mechanisms for various threats specified in a use case
model, one should update the use case model to illustrate the defense mechanism. If
there is no identified mechanism at a particular point in time, the use case should be
annotated to say so.

Defense mechanisms either should map directly to a functional requirement, or, if the
defense mechanism is user-dependent, to an item in an operational security guide.

Evaluate results with stakeholders
Review and discuss the misuse case with stakeholders, so that they have a clear
understanding of the misuse case and agree that it is an adequate reflection of their
requirements.

Version Date: 31 March 2006
32

CLASP Activity-Implementation View — Identify attack surface

Identify attack surface

Purpose: • Specify all entry points to a program in a structured way to
facilitate analysis.

Role: Designer

Frequency: As needed; usually once after design, and ongoing during
elaboration.

The attack surface can be defined explicitly in requirements, but is generally defined in
the threat model document.

Identify system entry points
The system attack surface is the collection of possible entry points for an attacker.
Generally, when performing a network-level design, one will already have defined the
components with which an attacker can interact, giving the highest-level notion of entry
points.

In this task, define the specific mechanisms through which anyone could interact with
the application regardless of their role in the system. For example, document all
network ports opened, all places where the file system is touched, any local UI
elements, any inter-procedural communication points, and any public methods that can
be called externally while the program is running.

For each entry point, provide an unambiguous description and a unique identifier.
Generally, this information — as well as the supporting information collected below —
can be stored in a table-based format much like a requirements matrix.

Program entry points should be documented as they are identified. Often, as a project
transitions from specification to elaboration, entry points become more granular. This
increased granularity should be handled by defining attack surfaces hierarchically. For
example, data communication over a network port will have a corresponding handler in
the code where input from the network socket is read and will sometimes have multiple
handlers. Such handlers should be identified as input points that are parented under the
specific network socket.

Another example is a web application. There may be one or more ports that are entry
points, and there may be multiple web pages on the port that are entry points. Also,
each web page may have one or more forms that are entry points.

Version Date: 31 March 2006
33

CLASP Activity-Implementation View — Identify attack surface

Map roles to entry points
For each point in the attack surface, identify all roles that could possibly access the
entry point. This should map to trust boundaries previously defined — i.e., all entry
points in the same trust boundary should have the same set of roles attached.
Otherwise, ensure that there really is a control enforcing access control to the resource
and update trust boundaries appropriately.

Map resources to entry points
For each entry point, document the resources that should be accessible from that entry
point — and capabilities that should be accessible if the system is specified to this level.
This will facilitate building data flow diagrams, if part of your process. It will also
facilitate security analysis — as will data flow diagrams, if available.

Version Date: 31 March 2006
34

CLASP Activity-Implementation View — Apply security principles to design

Apply security principles to design

Purpose: • Harden application design by applying security design princi-
ples.

• Identify security risks in third-party components.

Role: Designer

Frequency: As necessary; at least once per iteration

Refine existing application security profile
This activity is performed on an existing design. If it follows other CLASP activities, the
team will have done the following before this point:

• Identified resources in the system and capabilities on those resources;

• Identified roles in the system;

• Identified trust boundaries; and

• Identified requirements for providing security services on a resource-by-
resource basis, throughout the lifetime of the resource.

Often, all of this information will be identified in the requirements. If any of the
information is not present, it should be produced at this time.

If the information does exist, it should be updated to account for additional detail and
refinements that have since been added to the architecture.

At the end of this subtask, one should understand the security needs for each role
resource in the system, throughout the complete lifetime of the application, including
security requirements for data links and long-term data storage.

Determine implementation strategy for security
services
Security requirements should specify what needs to be done in relation to core security
services. The purpose of design is to elaborate on how those requirements will be met.

Identify solutions for meeting security requirements at each identified point in the design
by adhering to the following principles:

• Look for third-party solutions, starting the search with a preference for well-
vetted off-the-shelf solutions to untrusted solutions or in-house solutions. For

Version Date: 31 March 2006
35

CLASP Activity-Implementation View — Apply security principles to design

example, when cryptography is viewed as a solution to a problem, look first to
see if there are recent standards from well-regarded standards bodies that
address the problem.
For example, the recent trend for standards by organizations such as the IETF,
IEEE, ITU, and NIST is to adopt well-vetted research ideas into standards, then
bring in external security review. Do enough diligence to build confidence that the
research community is not worried about the standard. If no good standard exists,
try to leverage software that has a clear lineage from peer-reviewed academic
research and avoid designing your own solutions without the guidance of a well-
respected cryptographer.

• When considering off-the-shelf technologies, perform a risk assessment of the
technology before designing it into the system, as discussed in the next
activity. When choosing to integrate the technology, go back and integrate
additional security requirements into the product requirements as appropriate.

• Design appropriate validation mechanisms — input validation, authentication,
and authorization — wherever data can enter a system or cross a trust
boundary. For example, in a multi-tier system with a firewall, it is insufficient to
perform either input validation or authentication on data of external origin,
because insiders behind the firewall would be able to inject data without being
validated.
A more reasonable solution is to validate on every architectural tier and to pass
credentials securely between architectural components.

• Ensure that identified solutions address risks to the desired degree. For
example, input validation routines that only perform basic pattern matching and
do not perform syntactic validation can often be circumvented. See the
discussion in CLASP Resource B on input validation.

• Prefer the simplest solution that meets requirements. Complex solutions tend
to both have additional inherent risks and be harder to analyze.

• When multiple security solutions are necessary to better alleviate risks — i.e.,
a single solution is left with risk that still needs to be mitigated using another
solution — be sure that, if there is an instance of a risk that one of the
solutions can address, the risk does get addressed. For example, if using
multiple authentication factors such as passwords and smart cards, a user
should need to validate using both technologies, instead of simply one.
If this “defense-in-depth” strategy is taken, the attacker has to thwart both
authentication mechanisms. Otherwise, the system is only as good as the weaker
of the two mechanisms — the “weakest-link” principle.

• Look for ways to minimize exposure if defenses are somehow compromised:
e.g., fine-grained access control, trusted systems, or operational controls such
as backups, firewalls, and the like.

Version Date: 31 March 2006
36

CLASP Activity-Implementation View — Apply security principles to design

Build hardened protocol specifications
While it is desirable to use high-level protocols for security such as SSL/TLS, most
applications will ultimately define their own semantics and thus their own protocols
when communicating.

No matter how simple, protocols that are developed in-house should be well-specified
so that they can be analyzed. They should always be rigid in what they accept. This
means that the method for performing input validation should be apparent in the
protocol specification.

A cryptographer should analyze any system containing new protocols for secure
communication or identity establishment authored by the development organization.
Protocols should also be as simple as feasible so as to be as easy to analyze as is
feasible.

One should also specify what happens on error conditions. Generally, when errors are
not related to well-known classes of accidental user error, it is best to fail safely and
reset, even if there is minimal lack of availability created, because secure recovery from
unexpected and infrequent classes of errors is generally quite difficult to perform.

Design hardened interfaces
API interfaces themselves define protocols, and should be treated in the same way,
with well-defined specifications, including specifications defining valid input. Note that
— as discussed in the Input Validation concept — checking the range of each
parameter in isolation is not always a sufficient specification. Be thorough in defining
under which circumstances data is semantically valid. For example, if the first param-
eter affects what values are valid for the second parameter, this should be noted in a
specification.

APIs should also come with well-specified error handling mechanisms. Callers should
be forced to deal with unusual conditions when they occur. Particularly, do not specify
use of error codes that a developer will often ignore. Instead, specify use of an
exception that — if all else fails — will be caught at the top level; in this case, the
program should fail securely and reset.

Additionally, one should focus on exporting a few simple APIs, which will minimize the
attack surface.

Version Date: 31 March 2006
37

CLASP Activity-Implementation View — Research and assess security posture of technology solutions

Research and assess security posture of
technology solutions

Purpose: • Assess security risks in third-party components.
• Determine how effective a technology is likely to be at

alleviating risks.

Role: Designer

Frequency: As necessary.

Get structured technology assessment from
vendor
If a technology is to be integrated into your system — even if it is for the purposes of
mitigating risk in your own system — you will generally assume the risks associated
with that technology.

For this reason (among others), it is most desirable to assess the security risks of such
components in the same way as your own software. Vendors are rarely cooperative in
giving the access required for this; and in cases where they are (e.g., open source
software), the effort involved in a full assessment is rarely cost-effective.

Instead, one will generally want to collect relevant data that will provide insight into the
likely security posture of software through interaction with the vendor. See CLASP
Resource F for a sample “self-assessment worksheet” that either the vendor can fill out,
or (more often) you can fill out, based on interaction with the vendor.

A good product assessment worksheet should give insight into the following:

• At a high level, what are the trust boundaries, resources, and roles in the
system?

• Has an independent assessment been performed by a respected third-party?
And if so, what business risks did it identify, and what has changed since the
assessment?

• What are the security qualifications of the development team?

• What are the major areas of risk in the product?

• What were the security requirements that were used for development (implicit
and explicit)?

Version Date: 31 March 2006
38

CLASP Activity-Implementation View — Research and assess security posture of technology solutions

This assessment should essentially be a structured interview with the purpose of
collecting as much documentation as possible about the product and the process used
to develop that product.

Perform security risk assessment
Perform due diligence on the vendor-reported assessment information to the degree
possible. For example, validate data with other customers and/or through information
available on the Internet.

Perform a requirements analysis from the material collected to assess resource risks
that may be present but that are not addressed by the product. For any risk that would
not be acceptable if incorporated into your effort, identify possible mitigating controls,
the likely cost to implement, and who would need to implement the control —
particularly if it is the vendor.

If desirable, attempt to resolve risks with the vendor. Based on the assessment, make a
determination on whether to proceed with the technology.

Receive permission to perform security testing
of software
A way to gain additional confidence in software is to test it. However, testing software
for security vulnerabilities may be in violation of a software licensing agreement. To
avoid any potential issues, vendor acknowledgement should be sought.

Perform security testing
Perform security testing as described in the CLASP activity Identify, implement and
perform security tests.

Version Date: 31 March 2006
39

CLASP Activity-Implementation View — Annotate class designs with security properties

Annotate class designs with security
properties

Purpose: • Elaborate security policies for individual data fields.

Role: Designer

Frequency: Once per iteration

Map data elements to resources and capabilities
Each data element in the system should have a security policy for it that is defined by
the system requirements and design, either explicitly or explicitly. While security
requirements should be defined on a per-resource or a per-capability basis, data
elements will often not be a resource on their own, but will be a component of a more
abstractly defined resource.

Each data element should be mapped back to the requirements to determine the
requirements on that data in relation to the basic security services. Often, this task will
lead to a refinement of requirements.

For example, consider a system that defines user data as a resource. There may be an
access control requirement stating the data should be available only to the individual
user and the administrator — except as allowed by the user. In such an example, it may
be that not all data should have this flexibility. Maybe the user could choose to export
his name and address to others but not his social security number.

Realistically, such refinement of requirements happens frequently, and in an agile
environment, these changes may not be incorporated directly into requirements; in this
case, documenting information either in a class diagram or as a structured annotation to
the code helps ensure correct implementation and facilitates review.

Annotate fields with policy information
Note that access control policy on a resource depends on the operation on that
resource (i.e., the capability). In a class diagram, capabilities are generally identified by
methods operating on that data.

Data fields should define the owning role or roles and should also define generically
which role or roles have access to which basic capabilities throughout the lifetime of the
data — e.g., read, write, modify, execute, assign permissions to a capability, and add or
transfer ownership.

Version Date: 31 March 2006
40

CLASP Activity-Implementation View — Annotate class designs with security properties

An important goal of such a specification is to allow an auditor to determine whether
data could ever flow in a way that violates the access control policy. The policy should
be as coarse as possible to make it easy to specify and check.

A coarse policy will often require exceptions to implement a policy that is more complex.
That is, there may be conditions where it may be valid to pass data in a way that would
not be allowed by a high-level policy. For example, consider a simple policy that user
data should not go to other users. Instead of specifying fine-grained capabilities around
granting read and write access, one can mark the data as relaxable.

Points where such decisions are made are called relaxation points. How relaxation can
occur should be well specified in the requirements, and the number of points in the
program should be minimized to lessen the chance of error and facilitate analysis.

 If policy relaxation should never be necessary for a data element, it should be
annotated as non-relaxable. Otherwise, it should be annotated as relaxable, along with
a description under the conditions where relaxation can occur; this may be done by
identifying a requirement by reference.

Annotate methods with policy data
Methods operate on data, and may use one or more capabilities on that data. Methods
should be annotated to identify which operations they perform on data, and whether
they are relaxation points for any data element.

Version Date: 31 March 2006
41

CLASP Activity-Implementation View — Specify database security configuration

Specify database security configuration

Purpose: • Define a secure default configuration for database resources
that are deployed as part of an implementation.

• Identify a recommended configuration for database resources
for databases that are deployed by a third party.

Role: Database Designer

Frequency: As necessary; generally once per iteration.

Identify candidate configuration
Choose a candidate database configuration for the database.

While an out-of-the-box configuration is an acceptable starting point, it is usually more
efficient to start with a third-party baseline or to go through a process to identify a
candidate baseline. For example, see the NIST database security checklist:
http://csrc.nist.gov/pcig/cig.html.

In the case of third-party deployments, the configuration will generally be defined
relative to the default configuration.

Validate configuration
For the resources specified that interact with the database, validate that the baseline
configuration properly addresses the security requirements for that data.

Also, unnecessary functionality (e.g., stored procedures) can introduce unanticipated
risk vectors. Practice the principle of least privilege by removing unnecessary
functionality from the configuration.

In the case of third-party deployments, it is sufficient to specify which functionality is
absolutely necessary in the operational security guide, then to recommend that all other
features be disabled.

If appropriate, perform testing with a database configuration tool for any candidate
platforms to determine non-obvious security risks to resources. Again, make changes to
the configuration if necessary, and documenting them in the operational security guide,
if appropriate.

Version Date: 31 March 2006
42

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

Perform security analysis of system
requirements and design (threat modeling)

Purpose: • Assess likely system risks in a timely and cost-effective manner
by analyzing the requirements and design.

• Identify high-level system threats that are documented neither
in requirements nor in supplemental documentation.

• Identify inadequate or improper security requirements.
• Assess the security impact of non-security requirements.

Role: Security Auditor

Frequency: As needed; generally, once initial requirements are identified; once
when nearing feature complete.

Develop an understanding of the system
Before performing a security analysis, one must understand what is to be built. This
task should involve reviewing all existing high-level system documentation. If other
documentation such as user manuals and architectural documentation exists, it is
recommended to review that material as well.

To facilitate understanding when the auditor is not part of the project team, it is
generally best to have a project overview from a person with a good customer-centric
perspective on the project — whom we assume is the requirements specifier.

If feasible, documentation should be reviewed both before and after such a review so
that the auditor has as many opportunities to identify apparent constancies as possible.
If documentation is only to be read once, it is generally more effective to do so after a
personal introduction.

Anything that is unclear or inconsistent should be presented to the requirements
specifier and resolved before beginning analysis.

Determine and validate security-relevant
assumptions
Systems will be built with assumptions about the attacker and the environment in which
the software will be deployed. If the proper CLASP activities have been incorporated
into the development process, the following key information should be documented
before starting a requirements assessment:

Version Date: 31 March 2006
43

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

• A specification of the operational environment;

• A high-level architectural diagram indicating trust boundaries;

• A specification of resources and capabilities on those resources; this may be
incorporated into the requirements;

• A specification of system users and a mapping of users to resource
capabilities; this also may be incorporated into the requirements;

• An attack surface specification, to whatever degree elaborated;

• Data flow diagrams, if available;

• An attacker profile (again, this may be part of the requirements); and

• Misuse cases, if any.

With the exception of misuse cases, if the development process does not produce all of
these artifacts, the security auditor should do so. Sometimes reviewers will forego data-
flow diagrams, because the flow of data is well understood on the basis of the
architectural diagram.

If the artifacts have been produced previously, the auditor should validate the security
content of these documents, particularly focusing on inconsistencies, technical
inaccuracies, and invalid assumptions. Particularly, review should address the question
of whether the attacker profile is accurate since many organizations are not attentive
enough to insider risks.

Any assumptions that are implicit should be validated and then incorporated into project
documentation.

Review non-security requirements
For requirements that are not explicitly aimed at security, determine whether there are
any security implications that are not properly addressed in the security requirements.
This is best done by tracing resources that are relevant to a requirement through a
data-flow diagram of the system and assessing the impact on each security service.

When there are security implications, identify the affected resource(s) and security
service(s), and look to see if there is a requirement explicitly addressing the issue.

If you are using a correlation matrix or some similar tool, update it as appropriate after
tracing each requirement through the system.

Also, correlate system resources with external dependencies, ensuring that all
dependencies are properly listed as a resource. Similarly, perform a correlation analysis
with the attack surface, making sure that any system entry points in third-party software
are reflected.

Version Date: 31 March 2006
44

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

Assess completeness of security requirements
Ensure that each resource (or, preferably, capability) has adequate requirements
addressing each security service. A best practice here is to create a correlation matrix,
where requirements are on one axis and security services on capabilities (or resources)
are on another axis. For each security requirement, one notes in the appropriate boxes
in the matrix which requirements have an impact.

The matrix should also denote completeness of requirements, particularly whether the
security service is adequately addressed. As threats are identified in the system that
are not addressed in the requirements by compensating controls, this documents what
gaps there are in the requirements.

Identify threats on assets/capabilities
Iterate through the assets and/or capabilities. For each security service on each
capability, identify all potential security threats on the capability, documenting each
threat uniquely in the threat model.

In an ideal world, one would identify all possible security threats under the assumption
of no compensating controls. The purpose is to demonstrate which threats were
considered, and which controls mitigate those threats. However, one should not get too
specific about threats that are mitigated adequately by compensating controls.

To achieve this balance, one identifies a threat and works to determine whether the
threat can be applied to the system (see next subtask). If the auditor determines that
the threat cannot be turned into a vulnerability based on controls, avoid going into
further detail.

For example, a system may use a provably secure authenticated encryption system in
conjunction with AES (e.g., GCM-AES) with packet counters to protect against replay
attacks. There are many ways that the confidentiality of this link might be thwartable if
this system were not in place. But since the tools are used properly, the only possible
threat to confidentiality is breaking AES itself, which is a result of the GCM security
proof. Since — assuming that the tools are used correctly — all possible on-the-wire
threats are mitigated except for this one, threat analysis should focus on determining
whether the tool was used correctly and not on determining what threats might exist if
the tool is used incorrectly (or if a different tool is used).

Identifying security threats is a structured activity that requires some creativity since
many systems have unique requirements that introduce unique threats. One looks at
each security service and ask: “If I were an attacker, how could I possibly try to exploit
this security service?”. Any answer constitutes a threat.

Many threats are obvious from the security service. For example, confidentiality
implemented using encryption has several well-known threats — e.g., breaking the
cipher, stealing keying material, or leveraging a protocol fault. However, as a baseline,

Version Date: 31 March 2006
45

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

use a list of well-known basic causes of vulnerabilities as a bare minimum set of threats
to address — such as the set provided with CLASP. Be sure to supplement this with
your own knowledge of the system.

This question of how to subvert security services on a resource needs to be addressed
through the lifetime of the resource, from data creation to long-term storage. Assess the
question at each trust boundary, at the input points to the program, and at data storage
points.

Determine level of risk
Use threat trees to model the decision-making process of an attacker. Look particularly
for ways that multiple conditions can be used together to create additional threats.

This is best done by using attack trees (CLASP Resource A). Attack trees should
represent all known risks against a resource (which is the root of the tree), the
relationships between multiple risks (particularly, can risks be combined to result in a
bigger risk), and then should characterize the likelihood of risk and the impact of risk on
the business to make decisions possible.

Risk assessment can be done using a standard risk formula for expected cost analysis,
but the data is too complex to gather for most organizations. Most organizations will
want to assign relative values to important concerns and use a weighted average to
determine a risk level.

Most of the important concerns going into such an average can be identified using
Microsoft’s DREAD acronym:

• Damage potential. If the problem is exploited, what are the consequences?

• Reproducibility. How often does an attempt to exploit a vulnerability work, if
repeated attempts have an associated cost. This is asking: What is the cost to
the attacker once he has a working exploit for the problem? In some cases, a
vulnerability may only work one time in 10,000, but the attacker can easily
automate attempts at a fixed additional cost.

• Exploitability. What is the cost to develop an exploit for the problem? Usually
this should be considered incredibly low, unless there are mitigating
circumstances.

• Affected users. What users are actually affected if an exploit were to be widely
available?

• Discoverability. If unpatched, what is the worst-case and expected time frame
for an attacker to identify the problem and begin exploiting it (generally assume
a well-informed insider risk with access to your internal process in the first
case, and a persistent, targeted reverse engineer in the second).

Version Date: 31 March 2006
46

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

Additionally, proper risk assessment requires an estimation of the following factors:

• The effectiveness of current compensating controls. If the control is always
effective, there is little point in drilling down farther after that fact is well
documented.

• The cost associated with implementing compensating controls — as the cost
of remediation — must be balanced against the expected loss.

For existing compensating controls, map them to the specific threat you have identified
that they addressed, denoting any shortcomings in the control.

If it is unclear, use data flow diagrams and available resources to determine where the
threat is or is not adequately addressed, focused particularly on storage, input points
(the attack surface), and trust boundaries (generally, network connections).

Unfortunately, detailed values for each of these concerns are difficult to attain. Best
practice is to assign relative values on a tight scale (for example: 0-10), and assign
weights to each of the categories. Particularly, damage potential and affected users
should generally be weighted most highly.

For each risk identified in the system, use the present information to make a
determination on remediation strategy, based on business risk. At a bare minimum,
make a determination such as: “Must fix before deployment”; “Must identify and
recommend a compensating control”; “Must document the problem”; or “No action
necessary”.

Identify compensating controls
For each identified risk with inadequate compensating controls, identify any feasible
approaches for mitigating the risk and evaluate their cost and effectiveness.

Evaluate findings
The auditor should detail methodology and scope, and report on any identified security
risks that may not have been adequately addressed in the requirements.

Additionally, for any risks, the auditor should recommend a preferred strategy for
implementing compensating controls and should discuss any alternatives that could be
considered.

If any conflicts or omissions are brought to light during requirement review, the security
auditor should make recommendations that are consistent with project requirements.

The security auditor should be available to support the project by addressing problems
adequately.

Version Date: 31 March 2006
47

CLASP Activity-Implementation View — Perform security analysis of system requirements and design
(threat modeling)

The project manager is responsible for reviewing the findings, determining whether the
assessments are actually correct to the business, and making risk-based decisions
based on this information. Generally, for those problems that the project manager
chooses to address, the risk should be integrated into the project requirements and
tasking.

Version Date: 31 March 2006
48

CLASP Activity-Implementation View — Integrate security analysis into source management process

Integrate security analysis into source
management process

Purpose: • Automate implementation-level security analysis and metrics
collection.

Role: Integrator

Frequency: As required

Select analysis technology or technologies
There are a number of analysis technologies that could be integrated into the
development process. One broad way to categorize them is dividing them into two
classes:

• Dynamic analysis tools, which require running the program in order to perform
an analysis, often in its full operational context for maximum effectiveness; and

• Static analysis tools, which analyze the program entirely without running the
program.

Generally, dynamic analysis tools are better suited to be run manually as part of the
quality assurance process, as they require running many tests to exercise the code
thoroughly, and often those tests must be driven by a human.

There are several available static analysis tools.

Determine analysis integration point
Source code analysis can be integrated into source management as part of the check-
in process, as part of the build process, or independently. CLASP recommends
integrating it into check-in and into build, using efficient but less accurate technology to
avoid most problems early, and deeper analysis on occasional builds to identify more
complex problems.

Integration at check-in can be used to prevent check-in of code into a primary branch
that does not meet coding standards or to assign potential new security defects to
committers. The first goal is not well suited to legacy software applications, unless a
baseline of tool output is used for comparison. The second goal also requires baseline
output used for comparison that is updated incrementally.

Version Date: 31 March 2006
49

CLASP Activity-Implementation View — Integrate security analysis into source management process

Deep analysis can be done as a result of check-in, but frequent deep analysis is not
necessary. Developers should get more immediate feedback; security auditors should
get more detailed feedback, but not as frequently as with every check-in.

Integrate analysis technology
Analysis technology should be integrated into the source management process in an
automated way if possible. If the technology does not support such integration out-of-
the-box, one could consider building integration. Otherwise, it must be performed
manually, which will generally rule out per-check-in analysis.

Integrating analysis technology should involve the following:

• Producing a version of the source to be tested which is suitable for input into
the analysis tool. Most analysis tools will require the code to compile as well as
instructions for turning the code into an actual executable, even though the
executable is not run.

• Performing the analysis.

• Eliminating results that have been previously reported by the tool and have yet
to be resolved.

• Presenting any new results or the lack of results to the appropriate parties —
usually the developer or the security auditor. This may occur through a
common interface, such as a bug tracking system. Potential problems should
go through a single process for reported security problems.

• Storing information about the analysis for use in future analyses, and also
store any metrics collection.

Version Date: 31 March 2006
50

CLASP Activity-Implementation View — Implement interface contracts

Implement interface contracts

Purpose: • Provide unit-level semantic input validation.
• Identify reliability errors in a structured way at the earliest point

in time.

Role: Implementer

Frequency: As needed; generally as functions or methods are modified.

Interface contracts are also commonly known as assertions. They can be a formidable
tool for preventing security problems — particularly if applied consistently, and
rigorously.

In many application development processes, interface contracts are not enabled in
production software. They are removed by habit in order to improve efficiency. If the
efficiency impact is nominal for the project, CLASP strongly recommends leaving such
checks in the code for the sake of security.

Otherwise, checks of security critical parameters should be implemented using a
permanent mechanism, such as code directly at the top of the function, as discussed in
activities below.

Implement validation and error handling on
function or method inputs
For each method or function visible outside its compilation unit, specify in code what the
expectations are for valid input values. One should validate that each input variable has
a valid value in and of itself, and should determine validity in relation to other inputs.
Validation checks should contain no side effects. Failures should be handled as
specified in design. See CLASP Resource B for the concept on input validation.

Input variables should not be constrained to parameters. Any variable read by the
function or method should be considered an input variable — including global variables,
and class and method variables. Note that some interface contract facilities will allow
specifying invariants for an entire class — i.e., things that must always be true about
class data before and after each method invocation — once.

Version Date: 31 March 2006
51

CLASP Activity-Implementation View — Implement interface contracts

Implement validation on function or method
outputs
Perform the same validation between relationships before exiting a function or method.
Output specifications are meant to provide a clear behavioral specification to calling
code to prevent accidental misuse.

Generally, output validation code is most useful in implementation. It is reasonable to
disable such code for deployment or even use pseudo-code if absolutely necessary.

Version Date: 31 March 2006
52

CLASP Activity-Implementation View — Implement and elaborate resource policies and security
technologies

Implement and elaborate resource policies
and security technologies

Purpose: • Implement security functionality to specification.

Role: Implementer

Frequency: As necessary.

Review specified behavior
The developer should identify any remaining ambiguities in the specification of security
properties or technologies, including any further information necessary to build a
concrete implementation.

Perceived ambiguities should be addressed with the designer.

Implement specification
As with most development, implementers should build software to specification. Even
when security is a concern, this is not different. As is the case when implementing
traditional features, the implementer should ensure that all coding guidelines are met —
especially security guidelines.

Version Date: 31 March 2006
53

CLASP Activity-Implementation View — Address reported security issues

Address reported security issues

Purpose: • Ensure that identified security risks in an implementation are
properly considered.

Role: Designer

Frequency: As required.

Assign issue to investigator
When a security issue is identified in a system, further investigation should be assigned
to the appropriate designer if it can be determined from known information about the
problem. Otherwise, it should be assigned to the chief architect until the determination
of the most appropriate designer can be made.

Assess likely exposure and impact
If the problem exists in released software and was reported by a security researcher,
attempt to reproduce the exploit in order to determine whether the vulnerability actually
exists. If it cannot be reproduced, work with the researcher to determine whether the
problem does not actually exist or whether it could have been a side effect of something
in the researcher’s test environment.

When reproducing the exploit is too difficult or when there is no risk of disclosure, at
least determine whether there is enough evidence to demonstrate that the vulnerability
is likely to exist.

Determine the circumstances when the vulnerability could potentially be exploited in
order to get a sense of the overall risk level, focusing on the following:

• Which builds of the product contain the risk, if any?

• Which configuration options are required in order for the risk to exist?

• What must the operational environment look like for the risk to be relevant?

This information will allow you to determine how many customers will — or would be —
at risk.

Determine what the worst case and likely consequences are for the risk. From this
information, determine how responding to this risk will be handled from a resourcing
perspective. That is, will it be handled at all, immediately, or at a particular point in
time? Further: Will there be an effort to provide more immediate remediation guidelines
to customers while a permanent patch is being devised?

Version Date: 31 March 2006
54

CLASP Activity-Implementation View — Address reported security issues

If the risk involves software that may be in use by other vendors in their products,
contact either the vendors directly or a coordinating body — such as the CERT
(Computer Emergency Response Team) coordination center.

Determine and execute remediation strategies
Identify how the problem is to be addressed, in the short term and in the long term, if
the short-term solution is not a permanent fix. Incorporate the task of addressing the
problem into the development lifecycle if appropriate.

If part or all of the remediation strategy involves implementing external controls, task an
appropriate party to document the implementation of those controls in the operational
security guide.

The architect should review all remediation strategies that impact the code base before
they are implemented in order to ensure that they are valid in the context of the entire
system.

Validation of remediation
Perform testing to ensure that the risk was properly addressed. This should include
production of regression tests meant to detect the vulnerability if accidentally
introduced. See the CLASP activity on testing for more information.

Version Date: 31 March 2006
55

CLASP Activity-Implementation View — Perform source-level security review

Perform source-level security review

Purpose: • Find security vulnerabilities introduced into implementation.

Role: Security Auditor

Frequency: Incrementally, at the end of each implementation iteration.

Scope the engagement
It is rarely possible to look at each line of code in a system, particularly if someone
needs to understand its relationship with every other line. Therefore, it is important to
collect as much information as feasible about the system architecture and overall
development process in order to help scope out the areas that merit the most attention.

The auditor should always start by collecting the most recent documentation for the
system — including requirements, architecture, API docs, and user manuals. If previous
steps in the process were followed, the material needed to scope a source-level
security review should have already been produced and would be included in this
material. The auditor should ensure that all documentation seems to be present and
should work to collect anything that is not. While the auditor can perform an initial sanity
check of the material collected, this check should not be the initial focus since much of
the auditing work will involve performing such validation.

The auditor should be collecting the following material (and generally producing it if it
does not exist):

• System requirements and specification. An auditor is expected to identify
places where security requirements are violated and to make
recommendations for remediating risks.

• A threat profile for the system. Possible threats: governments, employees, etc.,
and the associated capabilities they are assumed to have.

• Any previous assessments, including architectural assessments.

The data one should be capturing in the scoping of the engagement is collected in the
assessment worksheet in CLASP Resource F.

If the auditor did not produce the threat profile — or if the threat profile is not current —,
one should perform an incremental assessment, focusing on changes and
shortcomings in the original.

Version Date: 31 March 2006
56

CLASP Activity-Implementation View — Perform source-level security review

Run automated analysis tools
Automated analysis may be incorporated into the build process, in which case the
auditor can use results from a current analysis, instead of running an additional
analysis.

Evaluate tool results
For each potential risk identified by the tool, assess whether the risk is relevant to the
development effort. Risks that are not relevant should be marked as not relevant for
one of the following reasons:

• The risk is mitigated by an existing or recommended compensating control that
is not within the scope of analysis for the tool.

• The risk is not in the threat profile for the program. For example, attacks that
require local user access to the same machine running the software may have
already been deemed outside the scope of consideration.

• The risk is a false positive in the analysis itself.

Evaluating the results requires tool-dependent processes. Determining absolutely
whether a tool result is a real vulnerability or a false positive is often not necessary, as it
often involves attempting to craft an exploit. Instead, the investigator should deem it a
likely risk in the case of those risks that the investigator cannot rule out as a risk based
on examining the tool output and the code.

For those risks that are relevant, determine impact and recommend remediation
strategies in the same manner as performing an architectural analysis, documenting
results in an implementation security review report.

Identify additional risks
Analysis tools are not capable of finding all security risks in software. Many classes of
risk can be identified in an architectural analysis that is not conclusively controlled.
Additionally, some classes of risk may not be considered in an architectural analysis
because they are artifacts of implementation error.

Compose a list of possible risks by reviewing both those risks identified in the
architectural analysis and a database of common risks. See the CLASP Vulnerability
database in the section CLASP Vulnerability View.

For each potential risk, identify system resources that might be susceptible to the risk.
Follow execution through the code from any relevant input points to the data resource,
looking at each appropriate point whether there is a likely instantiation of the risk.

Version Date: 31 March 2006
57

CLASP Activity-Implementation View — Perform source-level security review

As with examining tool output, the investigator should not look to prove risk beyond a
doubt. Identifying likely risks is sufficient, where a likely risk is one that the auditor
cannot rule out on the basis of a detailed manual analysis of the code.

Determine the impact of likely risks that are identified and recommend remediation
strategies in the same manner as if performing an architectural analysis, documenting
results in an implementation security review report.

Version Date: 31 March 2006
58

CLASP Activity-Implementation View — Identify, implement, and perform security tests

Identify, implement, and perform security
tests

Purpose: • Find security problems not found by implementation review.
• Find security risks introduced by the operational environment.
• Act as a defense-in-depth mechanism, catching failures in

design, specification, or implementation.

Role: Test Analyst

Frequency: As necessary; generally multiple times per iteration.

Identify security tests for individual requirements
For any requirement previously identified to have security relevance, identify an
implementable testing strategy, looking to provide as complete assurance as possible
and noting that some testing may be best performed statically — which is therefore
potentially outside the scope of the actual QA organization. However, it is a good idea
to dynamically test even those things that are assured statically, particularly if some-
thing in the operational environment could adversely affect the original test result.

Build these security tests into your test plan as with any other test. For example, specify
the frequency at which the test should be run.

See the security testing techniques in CLASP Resources A, B and C.

Identify resource-driven security tests
Usually, a system will not have resource-driven security requirements, or those
requirements will somehow be inadequate if only in minor ways.

If necessary, identify the resources available to the system on the basis of the
architectural documentation and use of the software.

For each resource, identify whether that resource was addressed adequately by
testable security requirements — i.e., that it had testable protection mechanisms in
place for the core security services.

Note that in many cases security requirements will be left implicit, leaving the tester or
analyst to guess what a violation of security policy entails. In such cases, the analyst
should particularly focus on identifying tests that can ferret out non-obvious users of
resources. That is, identify tests that will determine which system roles can gain access
to each resource, paying attention to the case of unauthorized parties, as well as valid

Version Date: 31 March 2006
59

CLASP Activity-Implementation View — Identify, implement, and perform security tests

users attempting to access the resources that should only be accessible to the owning
user.

Again, integrate any identified tests into the existing test plan.

Identify other relevant security tests
Using a common testing checklist, determine what other security tests are appropriate
to the system. For an example, see the checklists in the book How to Break Software
Security by Whittaker and Thompson.

Missing tests will point out a weakness in the resource-driven security requirements,
and the gap should be communicated to the requirement specifier. Often, these gaps
will be a failure in specifying the operational security requirements. If security testing
determines that the security depends on the operational environment, or if it is obvious
that security depends on the operational environment, then the test analyst should
inform the owner of the operational security guide, who should document the issue
appropriately.

Implement test plan
Implement the test plan as normal. For example, the test plan may indicate acquiring
tools, writing test scripts, or other similar activity.

Execute security tests
Perform the identified security tests as specified in the test plan.

Version Date: 31 March 2006
60

CLASP Activity-Implementation View — Verify security attributes of resources

Verify security attributes of resources

Purpose: • Confirm that software abides by previously defined security poli-
cies.

Role: Tester

Frequency: Once per iteration.

Check permissions on all static resources
Using a standard install on a clean system, inspect the permissions and access controls
placed on all resources owned by the system, including files and registry keys. The
permissions granted by the system’s default install should exactly match those put forth
by the resource specifier in the security requirements, or from the global security policy.

If no specific permissions are identified by resources, determine whether roles other
than the owning role can access the resource, based on its permissions.

Any deviation from specified or expected behavior should be treated as a defect.

Profile resource usage in the operational context
The requirements, a security profile the or operational security guide should specify
what resources the system should be able to access. When performing functional and
non-functional testing, use profiling tools to determine whether the software abides by
the policy. In particular, look for the following:

• Access to network resources (local ports and remote addresses) that are — or
appear to be — invalid.

• Access to areas of the local file system outside the specification.

• Access to other system data resources, including registry keys and inter-
process communications.

• Use of system privileges in situations that are not specified.

Again, any deviation from specified or expected behavior should be treated as a defect.

Version Date: 31 March 2006
61

CLASP Activity-Implementation View — Perform code signing

Perform code signing

Purpose: • Provide the stakeholder with a way to validate the origin and
integrity of the software.

Role: Integrator

Frequency: Once per release build.

Obtain code signing credentials
A prerequisite for code signing are credentials that establish your identity to a trusted
third party. Most PKI (public key infrastructure) vendors (also known as certification
authorities, or CAs), offer Software publishing Certificates (i.e., code signing
credentials), including Verisign. Process for obtaining credentials differs, depending on
the CA.

Identify signing targets
Signatures are generally performed on a unit that contains all parts of an application,
such as a single archive file (JAR, WAR, or CAB). Generally, the unit is an installable
package. Any other granularity requires multiple signature checks per application install,
which is inconvenient for the end user.

Sign identified targets
Running the code signing tools usually will automatically add a signature to the
packaging unit, which can then be distributed directly.

Version Date: 31 March 2006
62

CLASP Activity-Implementation View — Build operational security guide

Build operational security guide

Purpose: • Provide stakeholder with documentation on operational security
measures that can better secure the product.

• Provide documentation for the use of security functionality
within the product.

Role: Implementer

Frequency: Once per iteration.

 In the course of conception, elaboration, and evaluation, there will generally be many
items identified that should be communicated to one or more roles at deployment. This
information should all be collected in a role-driven implementation guide that addresses
security concerns.

Document pre-install configuration requirements
Begin by documenting the environmental requirements that must be satisfied before the
system is installed. See the task on operational environment assumptions for more
detail.

Document application activity
Document any security-relevant use of resources, including network ports, files on the
file system, registry resources, database resources etc. See the activity on Resource
identification for more detail.

Document the security architecture
Document the threat profile assumed in design and the high-level security functionality
of the system as relevant to the user — including authentication mechanisms, default
policies for authentication and other functions, and any security protocols that are
mandatory or optional. For protocols used, document the scope of their protection.

Document security configuration mechanisms
List, and explain all security configuration options present in the system, and make note
of their default and recommended settings. Be explicit about how they work, referencing
any technologies utilized.

Version Date: 31 March 2006
63

CLASP Activity-Implementation View — Build operational security guide

Document significant risks and known
compensating controls
Any known security risks that the customer may find reasonable should be
documented, along with recommended compensating controls, such as recommended
third party software that can mitigate the issue, firewall configurations, or intrusion
detection signatures.

Version Date: 31 March 2006
64

CLASP Activity-Implementation View — Manage security issue disclosure process

Manage security issue disclosure process

Purpose: • Communicate effectively with outside security researchers
when security issues are identified in released software,
facilitating more effective prevention technologies.

• Communicate effectively with customers when security
issues are identified in released software.

Role: Project Manager

Frequency: As needed.

Many security researchers find security problems in software products, often by
intentional investigation. Except in a very few cases, researchers will release
information about the security vulnerability publicly, usually to either the BUGTRAQ
mailing lists or the Full Disclosure mailing list.

Most security researchers act responsibly in that they attempt to give the software
vendor adequate time to address the issue before publicly disclosing information. This
activity addresses how to interface with responsible security researchers.

Industry best-practice guidance for responsible security vulnerability research can be
found at: http://www.whitehats.ca/main/about_us/policies/draft-christey-wysopal-vuln-
disclosure-00.txt

Provide means of communication for security
issues
If reasonable, the communication mechanism should be published on the vendor web
site in a security area devoted to the product since this is where researchers will first
look.

Otherwise, vendors should be prepared to handle security alerts at the following
standard addresses:

• security@

• secalert@

• contact@

• support@

• sales@

Version Date: 31 March 2006
65

CLASP Activity-Implementation View — Manage security issue disclosure process

• info@

• The listed domain contact information.

A researcher attempting to be responsible may still not be well informed, and so may
only try one of these addresses. Some researchers will only attempt communication
until they successfully send the vendor an E-mail that does not bounce. Sometimes that
E-mail will be sent to a high-volume alias or to an individual who receives a high volume
of E-mail, such as the CEO or CTO.

A central security response alias should be established, such as security@ or
secalert@ and published on the web site if possible. Additionally, owners of various E-
mail addresses that might receive security alerts should be notified of the central alias
and be asked to forward any relevant communication.

Acknowledge receipt of vulnerability disclosures
On receipt of the vulnerability disclosure, respond with acknowledgement of receipt, as
well as a reasonable timetable for addressing the vulnerability. This should never take
more than a calendar week from receipt and should generally be handled as quickly as
possible.

The time line should indicate at a bare minimum when the vendor expects to be able to
provide remediation for the problem, if validated. Responsible security researchers
often will inform the vendor that they will go public if the time frame given is seen as an
attempt to keep the information from the public. Generally, target 30 days, but let the
researcher know that you may require 30 to 60 days more if circumstances warrant.
Also, inform him that you expect the researcher to act responsibly by not disclosing
before you can ready a remediation strategy for customers (as long as you act in a
reasonable time frame), and show that you are doing so in such a way that the
researcher can determine good faith.

Good faith is best shown by providing weekly status updates, which should be offered
in the acknowledgement E-mail.

If the vulnerability is found in a version of the software that is no longer supported, this
should be communicated. However, you should attempt to ascertain whether the
vulnerability affects supported versions of the software, and this fact should also be
communicated to the researcher.

The process and policies for security disclosure should be communicated clearly to the
researcher, either by E-mail or by publishing it on the web, in which case the web page
should be referenced in the E-mail.

Version Date: 31 March 2006
66

CLASP Activity-Implementation View — Manage security issue disclosure process

Address the issue internally
The reported vulnerability should be entered into the process for dealing with reported
security issues. Communication information for the researcher should be passed along,
in case further contact is necessary to better understand the report.

The researcher should be given the opportunity to test any remediation strategies
implemented before they are distributed publicly. The researcher will generally make an
effort to determine whether the vulnerability has been addressed adequately. In cases
where it is not addressed adequately, the researcher should give the vendor additional
time to address the problem, if required.

Communicate relevant information to the
researcher
As the issue is internally addressed, the vendor should provide the researcher with the
following information on update, as the information becomes available:

• Whether the vulnerability has been reproduced.

• Timing and distribution mechanism for any patches or fixed releases.

• Work-arounds to the problem for those that will be unwilling or unable to patch
in a timely fashion.

Additionally, if a longer resolution period is necessary, then this should be
communicated to the researcher. If the time frame is already 45 days from report, the
researcher will be unlikely to grant an extension unless the vendor can clearly
demonstrate to the researcher that the problem requires extensive changes, usually as
the result of a fundamental design change. The vendor will also likely need to show that
there are no adequate mitigating controls, which will generally require demonstrating
why the researcher’s proposed work-arounds are inadequate.

Provide a security advisory and customer access
to remediation
The vendor should provide its own security advisory of the issue, but may also choose
only to endorse the researcher’s advisory, after assuring that it contains adequate
information for customers to protect themselves.

If the advisory only points to compensating controls, not an actual fix, it should provide
a time line and distribution information for a permanent fix.

The advisory should also present an overview of the problem, denoting what resources
are at risk, as well as information on how to assess whether an installation is at risk.

Version Date: 31 March 2006
67

CLASP Activity-Implementation View — Manage security issue disclosure process

Vulnerability View
It would be convenient if security problems in software fell neatly into categories that we
could dissect and reason about. Unfortunately, almost any reliability bug can also be a
security bug — if the circumstances are right. Capturing the core of a risk sometimes
requires understanding a broad architectural issue, and sometimes it requires
understanding a highly specific detail of coding.

In the CLASP Vulnerability Lexicon, we have attempted to catalog any themes that lead
to security problems and to do this at all appropriate levels. As a result, there are a lot
of things in the Lexicon that are not often security concerns, or more precisely are only
security concerns when some — potentially rare — condition is met.

Version Date: 31 March 2006
2

CLASP Vulnerability View — Overview of CLASP Taxonomy

Overview of CLASP Taxonomy
The CLASP taxonomy is a high-level classification of the CLASP process, divided into
the following classes for better evaluation and resolution of security vulnerabilities in
source code:

• Problem types (i.e., basic causes) underlying security-related vulnerabilities.

• Categories into which the problem types are divided for diagnostic and resolution
purposes.

• Exposure periods (i.e., SDLC phases) in which vulnerabilities can be
inadvertently introduced into application source code.

• Consequences of exploited vulnerabilities for basic security services.

• Platforms which may be affected by a vulnerability.

• Resources required for attack against vulnerabilities.

• Risk assessment of exploitable/exploited vulnerabilities.

• Avoidance and mitigation periods (i.e., SDLC phases) in which preventative
measures and countermeasures can be applied.

Version Date: 31 March 2006
3

CLASP Vulnerability View — Diagram of Taxonomy

Diagram of Taxonomy
The following figure shows the interaction of the evaluation and resolution classes
within the CLASP taxonomy:

Version Date: 31 March 2006
4

CLASP Vulnerability View — Diagram of Taxonomy

Version Date: 31 March 2006
5

CLASP Vulnerability View — Classes in CLASP Taxonomy

Classes in CLASP Taxonomy
The CLASP taxonomy is a high-level classification of the CLASP process, divided into
classes. These classes enable the software development team to better evaluate and
resolve security-related problems. The CLASP classes are:

• CLASP Problem Types

• Categories of Problem Types

• Exposure Periods

• Consequences of Vulnerabilities

• Platforms

• Resources for Attack

• Risk Assessment

• Avoidance and Mitigation Periods

• Other Recorded Information

CLASP Problem Types
We find that individual types of security flaws can — at the highest levels — be
introduced for many reasons, including: poor or misunderstood requirements; improper
specification; sloppy implementation; flawed components; malicious introduction, etc.
Such a breakout — although it is not conducive to organizing software-security
problems in an easily understandable way — accurately reflects how, where, and why
flaws occur.

Since this taxonomy does not classify individual instances of problems, it really is, to
some degree, a catalogue of potential basic causes (or contributing causes).

CLASP identifies 104 underlying problem types — i.e., basic causes — that form the
basis of security vulnerabilities in application source code. An individual problem type in
itself is often not a security vulnerability; frequently it is a combination of problems that
create a security condition leading to a vulnerability in the source code.

Our notion of problem type matches to the notion of “basic cause” — except that we
note that individual vulnerabilities are often composed of multiple problems that
combine to create a security condition. The individual problems are often not security
flaws in and of themselves.

Version Date: 31 March 2006
6

CLASP Vulnerability View — Classes in CLASP Taxonomy

Categories of Problem Types
The problem types in CLASP are individually documented within a very broad set of
“categories” but interrelate in a way that is mostly hierarchical. The breakout categories
was chosen to be as natural as possible to practitioners in the space, making it
somewhat ad hoc. In particular, there are many implicit categories. For example, we
define top-level categories, most of which could be considered subcategories of
“generic logical flaws,” yet this category does little to advance understanding about
actual security issues.

CLASP divides the 104 problem types — i.e., basic causes of vulnerabilities — into five
high-level categories. Each problem type may have more than one parent category.
These categories are:

• Range and Type Errors

• Environmental Problems

• Synchronization & Timing Errors

• Protocol Errors

• General Logic Errors

These top-level categories each have their own entries. Subcategories (i.e., problem
types) are largely hierarchical (i.e., one problem type relates to one “parent” category),
although there are some cases where a specific problem type has multiple parents.

Exposure Periods
Another means for evaluating problems is the “exposure period.” In CLASP, exposure
period refers to the times in the software development lifecycle when the bug can be
introduced into a system. This will generally be one or more of the following:
requirements specification; architecture and design; implementation; and deployment.

Failures introduced late in the lifecycle can often be avoided by making different
decisions earlier in the lifecycle. For example, deployment problems are generally
misconfigurations — and as such can often be explicitly avoided with different up-front
decisions.

Version Date: 31 March 2006
7

CLASP Vulnerability View — Classes in CLASP Taxonomy

Consequences of Vulnerabilities
Another class for evaluating problems is the consequence of the flaw. A vulnerability in
the source code can lead to a failure of a security service. This is a high-level view of
the security services that can fail due to vulnerabilities in source code:

• Authorization (resource access control)

• Confidentiality (of data or other resources)

• Authentication (identity establishment and integrity)

• Availability (denial of service)

• Accountability

• Non-repudiation

This is a more structured way of thinking about security issues than typically used. For
example, buffer overflow conditions are usually availability problems because they tend
to cause crashes, but often an attacker can escalate privileges or otherwise perform
operations under a given privilege that were implicitly not allowed (e.g., overwriting
sensitive data), which is ultimately a failure in authorization. In many circumstances, the
failure in authorization may be used to thwart other security services, but that is not the
direct consequence.

Whether a problem is considered “real” or exploitable is dependent on a security policy
that is often implicit. For example, users might consider a system that leaks their
personal data to be broken (a lack of privacy, a confidentiality failure). Yet the system
designer may not consider this an issue. When evaluating a system, the evaluator
should consider the specified requirements and also consider likely implicit
requirements of the system users.

Similarly, an important aspect to evaluate about the consequence is “severity.” While
we give some indication of Severity ranges, the ultimate determination can only be
made on the basis of a set of requirements — and different participants may have
different requirements.

Platform
An indication of what platforms may be affected. Here, we use the term in a broad
sense. It may mean programming language (e.g., some vulnerabilities common in C
and C++ are not possible in other languages), or it may mean operating system, etc.

Version Date: 31 March 2006
8

CLASP Vulnerability View — Classes in CLASP Taxonomy

Resources for Attack
Which resources must the attacker have to exploit an issue? For example, does the
attack require local access to the machine running the application? This information can
be used to determine whether a particular risk may apply to a given system.

Risk Assessment
There are two categories under Risk Assessment:

• Severity — A relative indication of how critical the problem tends to be in a
system, when exploitable.

• Likelihood of exploit — If a particular problem exists in code, what is the likelihood
that it will result in an exploitable security condition, given common system
requirements?

Avoidance and Mitigation Periods
We provide a high-level overview of some of the more important techniques — and the
SDLC periods where they can occur — for avoiding or mitigating a problem, broken
down by where in the development lifecycle the technique is generally applied.

Further Recorded Information
CLASP currently records the following additional information about vulnerability classes:

• Overview — A brief summary of the problem.

• Discussion — A discussion of key points that can help understand the issue.

• Examples — For many problems, we give simple examples to better illustrate the
problem. We also try to note real-world instances of the vulnerability (i.e., real
software that has fallen victim to the problem).

• Related problems — Beyond the obvious, sometimes multiple entries refer to the
same basic kind of problem but are specific instances. For example, “buffer
overflow” gets its own entry, but we also have entries for many specific kinds of
buffer overflow that are subject to different exploitation techniques (e.g., heap

Version Date: 31 March 2006
9

CLASP Vulnerability View — Classes in CLASP Taxonomy

overflow and stack overflow), and we have entries for many reliability problems
that can cause a logic error resulting in a buffer overflow.

Version Date: 31 March 2006
10

CLASP Vulnerability View — Category 1: Range & Type Errors

Category 1: Range & Type Errors
This section introduces the vulnerability Problem Types organized under the problem
type “range and type errors.“

Buffer overflow

Overview
A buffer overflow condition exists when a program attempts to put more data in a buffer
than it can hold or when a program attempts to put data in a memory area past a buffer.
In this case, a buffer is a sequential section of memory allocated to contain anything
from a character string to an array of integers.

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to

lack of availability are possible, including putting the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can be used to
execute arbitrary code, which is usually outside the scope of a program’s implicit
security policy.

• Other: When the consequence is arbitrary code execution, this can often be used
to subvert any other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe-string libraries and container
abstractions could be introduced.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be
deployed, depending on environment.

Required resources
Any

Version Date: 31 March 2006
11

CLASP Vulnerability View — Category 1: Range & Type Errors

Severity
Very High

Likelihood of exploit
High to Very High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

• Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio / GS flag. Unless this
provides automatic bounds checking, it is not a complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Buffer overflows are one of the best known types of security problem. The best solution
is enforced run-time bounds checking of array access, but many C/C++ programmers
assume this is too costly or do not have the technology available to them. Even this
problem only addresses failures in access control — as an out-of-bounds access is still
an exception condition and can lead to an availability problem if not addressed.

Some platforms are introducing mitigating technologies at the compiler or OS level. All
such technologies to date address only a subset of buffer overflow problems and rarely
provide complete protection against even that subset. It is more common to make the
workload of an attacker much higher — for example, by leaving the attacker to guess
an unknown value that changes every program execution.

Examples
There are many real-world examples of buffer overflows, including many popular
“industrial” applications, such as e-mail servers (Sendmail) and web servers (Microsoft
IIS Server).

In code, here is a simple, if contrived example:

void example(char *s) {
 char buf[1024];
 strcpy(buf, s);
}
int main(int argc, char **argv) {
 example(argv[1]);

Version Date: 31 March 2006
12

CLASP Vulnerability View — Category 1: Range & Type Errors

}

Since argv[1] can be of any length, more than 1024 characters can be copied into the
variable buf.

Related problems
• Stack overflow

• Heap overflow

• Integer overflow

Version Date: 31 March 2006
13

CLASP Vulnerability View — Category 1: Range & Type Errors

“Write-what-where” condition

Overview
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary
location, often as the result of a buffer overflow.

Consequences
• Access control (memory and instruction processing): Clearly, write-what-where

conditions can be used to write data to areas of memory outside the scope of a
policy. Also, they almost invariably can be used to execute arbitrary code, which
is usually outside the scope of a program’s implicit security policy.

• Availability: Many memory accesses can lead to program termination, such as
when writing to addresses that are invalid for the current process.

• Other: When the consequence is arbitrary code execution, this can often be used
to subvert any other security service.

Exposure period
• Requirements: At this stage, one could specify an environment that abstracts

memory access, instead of providing a single, flat address space.

• Design: Many write-what-where problems are buffer overflows, and mitigating
technologies for this subset of problems can be chosen at this time.

• Implementation: Any number of simple implementation flaws may result in a write-
what-where condition.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Very High

Version Date: 31 March 2006
14

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit
High

Avoidance and mitigation
• Pre-design: Use a language that provides appropriate memory abstractions.

• Design: Integrate technologies that try to prevent the consequences of this
problems.

• Implementation: Take note of mitigations provided for other flaws in this taxonomy
that lead to write-what-where conditions.

• Operational: Use OS-level preventative functionality integrated after the fact. Not
a complete solution.

Discussion
When the attacker has the ability to write arbitrary data to an arbitrary location in
memory, the consequences are often arbitrary code execution. If the attacker can
overwrite a pointer’s worth of memory (usually 32 or 64 bits), he can redirect a function
pointer to his own malicious code.

Even when the attacker can only modify a single byte using a write-what-where
problem, arbitrary code execution can be possible. Sometimes this is because the
same problem can be exploited repeatedly to the same effect. Other times it is because
the attacker can overwrite security-critical application-specific data — such as a flag
indicating whether the user is an administrator.

Examples
The classic example of a write-what-where condition occurs when the accounting
information for memory allocations is overwritten in a particular fashion.

Here is an example of potentially vulnerable code:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char *buf1 = (char *) malloc(BUFSIZE);
 char *buf2 = (char *) malloc(BUFSIZE);

 strcpy(buf1, argv[1]);
 free(buf2);
}

Vulnerability in this case is dependent on memory layout. The call to strcpy() can be
used to write past the end of buf1, and, with a typical layout, can overwrite the
accounting information that the system keeps for buf2 when it is allocated. This

Version Date: 31 March 2006
15

CLASP Vulnerability View — Category 1: Range & Type Errors

information is usually kept before the allocated memory. Note that — if the allocation
header for buf2 can be overwritten — buf2 itself can be overwritten as well.

The allocation header will generally keep a linked list of memory “chunks”. Particularly,
there may be a “previous” chunk and a “next” chunk. Here, the previous chunk for buf2
will probably be buf1, and the next chunk may be null. When the free() occurs, most
memory allocators will rewrite the linked list using data from buf2. Particularly, the “next”
chunk for buf1 will be updated and the “previous” chunk for any subsequent chunk will
be updated. The attacker can insert a memory address for the “next” chunk and a value
to write into that memory address for the “previous” chunk.

This could be used to overwrite a function pointer that gets dereferenced later,
replacing it with a memory address that the attacker has legitimate access to, where he
has placed malicious code, resulting in arbitrary code execution.

There are some significant restrictions that will generally apply to avoid causing a crash
in updating headers, but this kind of condition generally results in an exploit.

Related problems
• Buffer overflow

• Format string vulnerabilities

Version Date: 31 March 2006
16

CLASP Vulnerability View — Category 1: Range & Type Errors

Stack overflow

Overview
A stack overflow condition is a buffer overflow condition, where the buffer being
overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a
function).

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to

lack of availability are possible, including putting the program into an infinite loop.

• Access control (memory and instruction processing): Buffer overflows often can
be used to execute arbitrary code, which is usually outside the scope of a
program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can often be used
to subvert any other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Very high

Version Date: 31 March 2006
17

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit
Very high

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

• Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio / GS flag. Unless this
provides automatic bounds checking, it is not a complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
There are generally several security-critical data on an execution stack that can lead to
arbitrary code execution. The most prominent is the stored return address, the memory
address at which execution should continue once the current function is finished
executing. The attacker can overwrite this value with some memory address to which
the attacker also has write access, into which he places arbitrary code to be run with
the full privileges of the vulnerable program.

Alternately, the attacker can supply the address of an important call, for instance the
POSIX system() call, leaving arguments to the call on the stack. This is often called a
return into libc exploit, since the attacker generally forces the program to jump at return
time into an interesting routine in the C standard library (libc).

Other important data commonly on the stack include the stack pointer and frame
pointer, two values that indicate offsets for computing memory addresses. Modifying
those values can often be leveraged into a “write-what-where” condition.

Examples
While the buffer overflow example above counts as a stack overflow, it is possible to
have even simpler, yet still exploitable, stack based buffer overflows:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char buf[BUFSIZE];

 strcpy(buf, argv[1]);
}

Version Date: 31 March 2006
18

CLASP Vulnerability View — Category 1: Range & Type Errors

Related problems

• Parent categories: Buffer overflow

• Subcategories: return address overwrite, stack pointer overwrite, frame pointer
overwrite.

• Can be: Function pointer overwrite, array indexer overwrite, write-what-where
condition, etc.

Version Date: 31 March 2006
19

CLASP Vulnerability View — Category 1: Range & Type Errors

Heap overflow

Overview
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten
is allocated in the heap portion of memory, generally meaning that the buffer was
allocated using a routine such as the POSIX malloc() call.

Consequences
• Availability: Buffer overflows generally lead to crashes. Other attacks leading to

lack of availability are possible, including putting the program into an infinite loop.

• Access control (memory and instruction processing): Buffer overflows often can
be used to execute arbitrary code, which is usually outside the scope of a
program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can often be used
to subvert any other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Very High

Version Date: 31 March 2006
20

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit

• Availability: Very High

• Access control (instruction processing): High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

• Pre-design through Build: Canary style bounds checking, library changes which
ensure the validity of chunk data, and other such fixes are possible, but should
not be relied upon.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Heap overflows are usually just as dangerous as stack overflows. Besides important
user data, heap overflows can be used to overwrite function pointers that may be living
in memory, pointing it to the attacker’s code.

Even in applications that do not explicitly use function pointers, the run-time will usually
leave many in memory. For example, object methods in C++ are generally implemented
using function pointers. Even in C programs, there is often a global offset table used by
the underlying runtime.

Examples
While the buffer overflow example above counts as a stack overflow, it is possible to
have even simpler, yet still exploitable, stack-based buffer overflows:

#define BUFSIZE 256

int main(int argc, char **argv) {
 char *buf;

 buf = (char *)malloc(BUFSIZE);
 strcpy(buf, argv[1]);
}

Related problems
• Write-what-where

Version Date: 31 March 2006
21

CLASP Vulnerability View — Category 1: Range & Type Errors

Buffer underwrite

Overview
A buffer underwrite condition occurs when a buffer is indexed with a negative number,
or pointer arithmetic with a negative value results in a position before the beginning of
the valid memory location.

Consequences
• Availability: Buffer underwrites will very likely result in the corruption of relevant

memory, and perhaps instructions, leading to a crash.

• Access Control (memory and instruction processing): If the memory corrupted
memory can be effectively controlled, it may be possible to execute arbitrary
code. If the memory corrupted is data rather than instructions, the system will
continue to function with improper changes, ones made in violation of a policy,
whether explicit or implicit.

• Other: When the consequence is arbitrary code execution, this can often be used
to subvert any other security service.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Version Date: 31 March 2006
22

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Implementation: Sanity checks should be performed on all calculated values used
as index or for pointer arithmetic.

Examples
The following is an example of code that may result in a buffer underwrite, should find()
returns a negative value to indicate that ch is not found in srcBuf:

int main() {
 ...
 strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
 ...
}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-
where condition.

Related problems
• Buffer Overflow (and related issues)

• Integer Overflow

• Signed-to-unsigned Conversion Error

• Unchecked Array Indexing

Version Date: 31 March 2006
23

CLASP Vulnerability View — Category 1: Range & Type Errors

Wrap-around error

Overview
Wrap around errors occur whenever a value is incriminated past the maximum value for
its type and therefore “wraps around” to a very small, negative, or undefined value.

Consequences
• Availability: Wrap-around errors generally lead to undefined behavior, infinite

loops, and therefore crashes.

• Integrity: If the value in question is important to data (as opposed to flow), simple
data corruption has occurred. Also, if the wrap around results in other conditions
such as buffer overflows, further memory corruption may occur.

• Access control (instruction processing): A wrap around can sometimes trigger
buffer overflows which can be used to execute arbitrary code. This is usually
outside the scope of a program’s implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: If the flow of the system, or the protocols used, are not well defined, it
may make the possibility of wrap-around errors more likely.

• Implementation: Many logic errors can lead to this condition.

Platform
• Language: C, C++, Fortran, Assembly

• Operating System: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Version Date: 31 March 2006
24

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Design: Provide clear upper and lower bounds on the scale of any protocols
designed.

• Implementation: Place sanity checks on all incremented variables to ensure that
they remain within reasonable bounds.

Discussion
Due to how addition is performed by computers, if a primitive is incremented past the
maximum value possible for its storage space, the system will fail to recognize this, and
therefore increment each bit as if it still had extra space.

Because of how negative numbers are represented in binary, primitives interpreted as
signed may “wrap” to very large negative values.

Examples
See the Examples section of the problem type Integer overflow for an example of wrap-
around errors.

Related problems
• Integer overflow

• Unchecked array indexing

Version Date: 31 March 2006
25

CLASP Vulnerability View — Category 1: Range & Type Errors

Integer overflow

Overview
An integer overflow condition exists when an integer, which has not been properly
sanity checked is used in the determination of an offset or size for memory allocation,
copying, concatenation, or similarly. If the integer in question is incremented past the
maximum possible value, it may wrap to become a very small, or negative number,
therefore providing a very incorrect value.

Consequences
• Availability: Integer overflows generally lead to undefined behavior and therefore

crashes. In the case of overflows involving loop index variables, the likelihood of
infinite loops is also high.

• Integrity: If the value in question is important to data (as opposed to flow), simple
data corruption has occurred. Also, if the integer overflow has resulted in a buffer
overflow condition, data corruption will most likely take place.

• Access control (instruction processing): Integer overflows can sometimes trigger
buffer overflows which can be used to execute arbitrary code. This is usually
outside the scope of a program’s implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced. (This will only prevent the transition from integer
overflow to buffer overflow, and only in some cases.)

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Version Date: 31 March 2006
26

CLASP Vulnerability View — Category 1: Range & Type Errors

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

• Design: Use of sanity checks and assertions at the object level. Ensure that all
protocols are strictly defined, such that all out of bounds behavior can be
identified simply.

• Pre-design through Build: Canary style bounds checking, library changes which
ensure the validity of chunk data, and other such fixes are possible but should not
be relied upon.

Discussion
Integer overflows are for the most part only problematic in that they lead to issues of
availability. Common instances of this can be found when primitives subject to overflow
are used as a loop index variable.

In some situations, however, it is possible that an integer overflow may lead to an
exploitable buffer overflow condition. In these circumstances, it may be possible for the
attacker to control the size of the buffer as well as the execution of the program.

Recently, a number of integer overflow-based, buffer-overflow conditions have surfaced
in prominent software packages. Due to this fact, the relatively difficult to exploit
condition is now more well known and therefore more likely to be attacked. The best
strategy for mitigation includes: a multi-level strategy including the strict definition of
proper behavior (to restrict scale, and therefore prevent integer overflows long before
they occur); frequent sanity checks; preferably at the object level; and standard buffer
overflow mitigation techniques.

Examples
Integer overflows can be complicated and difficult to detect. The following example is an
attempt to show how an integer overflow may lead to undefined looping behavior:

short int bytesRec = 0;
char buf[SOMEBIGNUM];

while(bytesRec < MAXGET) {
 bytesRec += getFromInput(buf+bytesRec);

Version Date: 31 March 2006
27

CLASP Vulnerability View — Category 1: Range & Type Errors

}

In the above case, it is entirely possible that bytesRec may overflow, continuously
creating a lower number than MAXGET and also overwriting the first MAXGET-1 bytes
of buf.

Related problems
• Buffer overflow (and related vulnerabilities): Integer overflows are often exploited

only by creating buffer overflow conditions to take advantage of.

Version Date: 31 March 2006
28

CLASP Vulnerability View — Category 1: Range & Type Errors

Integer coercion error

Overview
Integer coercion refers to a set of flaws pertaining to the type casting, extension, or
truncation of primitive data types.

Consequences
• Availability: Integer coercion often leads to undefined states of execution resulting

in infinite loops or crashes.

• Access Control: In some cases, integer coercion errors can lead to exploitable
buffer overflow conditions, resulting in the execution of arbitrary code.

• Integrity: Integer coercion errors result in an incorrect value being stored for the
variable in question.

Exposure period
• Requirements specification: A language which throws exceptions on ambiguous

data casts might be chosen.

• Design: Unnecessary casts are brought about through poor design of function
interaction

• Implementation: Lack of knowledge on the effects of data casts is the primary
cause of this flaw

Platform
• Language: C, C++, Assembly

• Platform: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Version Date: 31 March 2006
29

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: A language which throws exceptions on ambiguous
data casts might be chosen.

• Design: Design objects and program flow such that multiple or complex casts are
unnecessary

• Implementation: Ensure that any data type casting that you must used is entirely
understood in order to reduce the plausibility of error in use.

Discussion
Several flaws fall under the category of integer coercion errors. For the most part, these
errors in and of themselves result only in availability and data integrity issues. However,
in some circumstances, they may result in other, more complicated security related
flaws, such as buffer overflow conditions.

Examples
See the Examples section of the problem type Unsigned to signed conversion error for
an example of integer coercion errors.

Related problems
• Signed to unsigned conversion error

• Unsigned to signed conversion error

• Truncation error

• Sign-extension error

Version Date: 31 March 2006
30

CLASP Vulnerability View — Category 1: Range & Type Errors

Truncation error

Overview
Truncation errors occur when a primitive is cast to a primitive of a smaller size and data
is lost in the conversion.

Consequences
• Integrity: The true value of the data is lost and corrupted data is used.

Exposure period
• Implementation: Truncation errors almost exclusively occur at implementation

time.

Platform
• Languages: C, C++, Assembly

• Operating platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Implementation: Ensure that no casts, implicit or explicit, take place that move

from a larger size primitive or a smaller size primitive.

Discussion
When a primitive is cast to a smaller primitive, the high order bits of the large value are
lost in the conversion, resulting in a non-sense value with no relation to the original
value. This value may be required as an index into a buffer, a loop iterator, or simply
necessary state data. In any case, the value cannot be trusted and the system will be in
an undefined state.

Version Date: 31 March 2006
31

CLASP Vulnerability View — Category 1: Range & Type Errors

While this method may be employed viably to isolate the low bits of a value, this usage
is rare, and truncation usually implies that an implementation error has occurred.

Examples
This example, while not exploitable, shows the possible mangling of values associated
with truncation errors:

#include <stdio.h>

int main() {
 int intPrimitive;
 short shortPrimitive;

 intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1)));
 shortPrimitive = intPrimitive;

 printf("Int MAXINT: %d\nShort MAXINT: %d\n",
 intPrimitive, shortPrimitive);
 return (0);
}

The above code, when compiled and run, returns the following output:

Int MAXINT: 2147483647
Short MAXINT: -1

A frequent paradigm for such a problem being exploitable is when the truncated value is
used as an array index, which can happen implicitly when 64-bit values are used as
indexes, as they are truncated to 32 bits.

Related problems
• Signed to unsigned conversion error

• Unsigned to signed conversion error

• Integer coercion error

• Sign extension error

Version Date: 31 March 2006
32

CLASP Vulnerability View — Category 1: Range & Type Errors

Sign extension error

Overview
If one extends a signed number incorrectly, if negative numbers are used, an incorrect
extension may result.

Consequences
• Integrity: If one attempts to sign extend a negative variable with an unsigned

extension algorithm, it will produce an incorrect result.

• Authorization: Sign extension errors — if they are used to collect information from
smaller signed sources — can often create buffer overflows and other memory
based problems.

Exposure period
• Requirements section: The choice to use a language which provides a framework

to deal with this could be used.

• Implementation: A logical flaw of this kind might lead to any number of other
flaws.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use a sign extension library or standard function to extend

signed numbers.

Version Date: 31 March 2006
33

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: When extending signed numbers fill in the new bits with 0 if the
sign bit is 0 or fill the new bits with 1 if the sign bit is 1.

Discussion
Sign extension errors — if they are used to collect information from smaller signed
sources — can often create buffer overflows and other memory based problems.

Examples
In C:

struct fakeint {
 short f0;
 short zeros;
};
struct fakeint strange;
struct fakeint strange2;

strange.f0=-240;
strange2.f0=240;

strange2.zeros=0;
strange.zeros=0;

printf("%d %d\n",strange.f0,strange);
printf("%d %d\n",strange2.f0,strange2);

Related problems
Not available.

Version Date: 31 March 2006
34

CLASP Vulnerability View — Category 1: Range & Type Errors

Signed to unsigned conversion error

Overview
A signed-to-unsigned conversion error takes place when a signed primitive is used as
an unsigned value, usually as a size variable.

Consequences
• Availability: Incorrect sign conversions generally lead to undefined behavior, and

therefore crashes.

• Integrity: If a poor cast lead to a buffer overflow or similar condition, data integrity
may be affected.

• Access control (instruction processing): Improper signed-to-unsigned conversions
without proper checking can sometimes trigger buffer overflows which can be
used to execute arbitrary code. This is usually outside the scope of a program’s
implicit security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Accessor functions may be designed to mitigate some of these logical
issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Version Date: 31 March 2006
35

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: Choose a language which is not subject to these
casting flaws.

• Design: Design object accessor functions to implicitly check values for valid sizes.
Ensure that all functions which will be used as a size are checked previous to use
as a size. If the language permits, throw exceptions rather than using in-band
errors.

• Implementation: Error check the return values of all functions. Be aware of implicit
casts made, and use unsigned variables for sizes if at all possible.

Discussion
Often, functions will return negative values to indicate a failure state. In the case of
functions which return values which are meant to be used as sizes, negative return
values can have unexpected results. If these values are passed to the standard
memory copy or allocation functions, they will implicitly cast the negative error-
indicating value to a large unsigned value.

In the case of allocation, this may not be an issue; however, in the case of memory and
string copy functions, this can lead to a buffer overflow condition which may be
exploitable.

Also, if the variables in question are used as indexes into a buffer, it may result in a
buffer underflow condition.

Examples
In the following example, it is possible to request that memcpy move a much larger
segment of memory than assumed:

int returnChunkSize(void *) {
 /* if chunk info is valid, return the size of usable memory,
 * else, return -1 to indicate an error
 */

}

int main() {
 ...
 memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
 ...
}

If returnChunkSize() happens to encounter an error, and returns -1, memcpy will
assume that the value is unsigned and therefore interpret it as MAXINT-1, therefore
copying far more memory than is likely available in the destination buffer.

Version Date: 31 March 2006
36

CLASP Vulnerability View — Category 1: Range & Type Errors

Related problems

• Buffer overflow (and related conditions)

• Buffer underwrite

Version Date: 31 March 2006
37

CLASP Vulnerability View — Category 1: Range & Type Errors

Unsigned to signed conversion error

Overview
An unsigned-to-signed conversion error takes place when a large unsigned primitive is
used as an signed value — usually as a size variable.

Consequences
• Availability: Incorrect sign conversions generally lead to undefined behavior, and

therefore crashes.

• Integrity: If a poor cast lead to a buffer underwrite, data integrity may be affected.

• Access control (instruction processing): Improper unsigned-to-signed
conversions, often create buffer underwrite conditions which can be used to
execute arbitrary code. This is usually outside the scope of a program’s implicit
security policy.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Accessor functions may be designed to mitigate some of these logical
issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Low to Medium

Version Date: 31 March 2006
38

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Design: Ensure that interacting functions retain the same types and that only safe
type casts must occur. If possible, use intelligent marshalling routines to translate
between objects.

• Implementation: Use out-of-data band channels for transmitting error messages if
unsigned size values must be transmitted. Check all errors.

• Build: Pay attention to compiler warnings which may alert you to improper type
casting.

Discussion
Although less frequent an issue than signed-to-unsigned casting, unsigned-to-signed
casting can be the perfect precursor to dangerous buffer underwrite conditions that
allow attackers to move down the stack where they otherwise might not have access in
a normal buffer overflow condition.

Buffer underwrites occur frequently when large unsigned values are cast to signed
values, and then used as indexes into a buffer or for pointer arithmetic.

Examples
While not exploitable, the following program is an excellent example of how implicit
casts, while not changing the value stored, significantly changes its use:

#include <stdio.h>

int main() {
 int value;
 value = (int)(~((int)0) ^ (1 << (sizeof(int)*8)));

 printf("Max unsigned int: %u %1$x\nNow signed: %1$d %1$x\n",
 value);
 return (0);
}
The above code produces the following output:
Max unsigned int: 4294967295 ffffffff
Now signed: -1 ffffffff

Note how the hex value remains unchanged.

Related problems
• Buffer underwrite

Version Date: 31 March 2006
39

CLASP Vulnerability View — Category 1: Range & Type Errors

Unchecked array indexing

Overview
Unchecked array indexing occurs when an unchecked value is used as an index into a
buffer.

Consequences
• Availability: Unchecked array indexing will very likely result in the corruption of

relevant memory and perhaps instructions, leading to a crash, if the values are
outside of the valid memory area

• Integrity: If the memory corrupted is data, rather than instructions, the system will
continue to function with improper values.

• Access Control: If the memory corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Version Date: 31 March 2006
40

CLASP Vulnerability View — Category 1: Range & Type Errors

Avoidance and mitigation

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Implementation: Include sanity checks to ensure the validity of any values used as
index variables. In loops, use greater-than-or-equal-to, or less-than-or-equal-to,
as opposed to simply greater-than, or less-than compare statements.

Discussion
Unchecked array indexing, depending on its instantiation, can be responsible for any
number of related issues. Most prominent of these possible flaws is the buffer overflow
condition. Due to this fact, consequences range from denial of service, and data
corruption, to full blown arbitrary code execution

The most common condition situation leading to unchecked array indexing is the use of
loop index variables as buffer indexes. If the end condition for the loop is subject to a
flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or
underflow. Another common situation leading to this condition is the use of a function’s
return value, or the resulting value of a calculation directly as an index in to a buffer.

Examples
Not available.

Related problems
• Buffer Overflow (and related issues)

• Buffer Underwrite

• Signed-to-Unsigned Conversion Error

• Write-What-Where

Version Date: 31 March 2006
41

CLASP Vulnerability View — Category 1: Range & Type Errors

Miscalculated null termination

Overview
Miscalculated null termination occurs when the placement of a null character at the end
of a buffer of characters (or string) is misplaced or omitted.

Consequences
• Confidentiality: Information disclosure may occur if strings with misplaced or

omitted null characters are printed.

• Availability: A randomly placed null character may put the system into an
undefined state, and therefore make it prone to crashing.

• Integrity: A misplaced null character may corrupt other data in memory

• Access Control: Should the null character corrupt the process flow, or effect a flag
controlling access, it may lead to logical errors which allow for the execution of
arbitrary code.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Precise knowledge of string manipulation functions may prevent
this issue

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

Version Date: 31 March 2006
42

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: Ensure that all string functions used are understood fully as to
how they append null characters. Also, be wary of off-by-one errors when
appending nulls to the end of strings.

Discussion
Miscalculated null termination is a common issue, and often difficult to detect. The most
common symptoms occur infrequently (in the case of problems resulting from “safe”
string functions), or in odd ways characterized by data corruption (when caused by off-
by-one errors).

The case of an omitted null character is the most dangerous of the possible issues. This
will almost certainly result in information disclosure, and possibly a buffer overflow
condition, which may be exploited to execute arbitrary code.

As for misplaced null characters, the biggest issue is a subset of buffer overflow, and
write-what-where conditions, where data corruption occurs from the writing of a null
character over valid data, or even instructions. These logic issues may result in any
number of security flaws.

Examples
While the following example is not exploitable, it provides a good example of how nulls
can be omitted or misplaced, even when “safe” functions are used:

#include <stdio.h>
#include <string.h>

int main() {
 char longString[] = "Cellular bananular phone";
 char shortString[16];

 strncpy(shortString, longString, 16);
 printf("The last character in shortString is: %c %1$x\n",
 shortString[15]);
 return (0);
}

The above code gives the following output:

The last character in shortString is: l 6c

So, the shortString array does not end in a NULL character, even though the “safe”
string function strncpy() was used.

Related problems
• Buffer overflow (and related issues)

• Write-what-where: A subset of the problem in some cases, in which an attacker
may write a null character to a small range of possible addresses.

Version Date: 31 March 2006
43

CLASP Vulnerability View — Category 1: Range & Type Errors

Improper string length checking

Overview
Improper string length checking takes place when wide or multi-byte character strings
are mistaken for standard character strings.

Consequences
• Access control: This flaw is exploited most frequently when it results in a buffer

overflow condition, which leads to arbitrary code execution.

• Availability: Even if the flaw remains unexploded, the probability that the process
will crash due to the writing of data over arbitrary memory may result in a crash.

Exposure period
• Requirements specification: A language which is not subject to this flaw may be

chosen.

• Implementation: Misuse of string functions at implementation time is the most
common cause of this problem.

• Build: Compile-time mitigation techniques may serve to complicate exploitation.

Platform
• Language: C, C++, Assembly

• Platform: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Requirements specification: A language which is not subject to this flaw may be

chosen.

Version Date: 31 March 2006
44

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: Ensure that if wide or multi-byte strings are in use that all
functions which interact with these strings are wide and multi-byte character
compatible, and that the maximum character size is taken into account when
memory is allocated.

• Build: Use of canary-style overflow prevention techniques at compile time may
serve to complicate exploitation but cannot mitigate it fully; nor will this technique
have any effect on process stability. This is not a complete mitigation technique.

Discussion
There are several ways in which improper string length checking may result in an
exploitable condition. All of these however involve the introduction of buffer overflow
conditions in order to reach an exploitable state.

The first of these issues takes place when the output of a wide or multi-byte character
string, string-length function is used as a size for the allocation of memory. While this
will result in an output of the number of characters in the string, note that the characters
are most likely not a single byte, as they are with standard character strings. So, using
the size returned as the size sent to new or malloc and copying the string to this newly
allocated memory will result in a buffer overflow.

Another common way these strings are misused involves the mixing of standard string
and wide or multi-byte string functions on a single string. Invariably, this mismatched
information will result in the creation of a possibly exploitable buffer overflow condition.

Again, if a language subject to these flaws must be used, the most effective mitigation
technique is to pay careful attention to the code at implementation time and ensure that
these flaws do not occur.

Examples
The following example would be exploitable if any of the commented incorrect malloc
calls were used.

#include <stdio.h>
#include <strings.h>
#include <wchar.h>

int main() {
 wchar_t wideString[] = L"The spazzy orange tiger jumped ” \
 “over the tawny jaguar.";
 wchar_t *newString;

 printf("Strlen() output: %d\nWcslen() output: %d\n",
 strlen(wideString), wcslen(wideString));

 /* Very wrong for obvious reasons //
 newString = (wchar_t *) malloc(strlen(wideString));
 */

Version Date: 31 March 2006
45

CLASP Vulnerability View — Category 1: Range & Type Errors

 /* Wrong because wide characters aren't 1 byte long! //
 newString = (wchar_t *) malloc(wcslen(wideString));
 */

 /* correct! */
 newString = (wchar_t *) malloc(wcslen(wideString) *
 sizeof(wchar_t));

 /* ... */
}

The output from the printf() statement would be:

Strlen() output: 0
Wcslen() output: 53

Related problems
• Buffer overflow (and related issues)

Version Date: 31 March 2006
46

CLASP Vulnerability View — Category 1: Range & Type Errors

Covert storage channel

Overview
The existence of a covert storage channel in a communications channel may release
information which can be of significant use to attackers.

Consequences
• Confidentiality: Covert storage channels may provide attackers with important

information about the system in question.

Exposure period
• Implementation: The existence of data in a covert storage channel is largely a

flaw caused by implementers.

Platform
• Languages: All

• Operating platforms: All

Required resources
Network proximity: Some ability to sniff network traffic would be required to capitalize on
this flaw.

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Ensure that all reserved fields are set to zero before messages

are sent and that no unnecessary information is included.

Discussion
Covert storage channels occur when out-of-band data is stored in messages for the
purpose of memory reuse. If these messages or packets are sent with the unnecessary
data still contained within, it may tip off malicious listeners as to the process that
created the message.

Version Date: 31 March 2006
47

CLASP Vulnerability View — Category 1: Range & Type Errors

With this information, attackers may learn any number of things, including the hardware
platform, operating system, or algorithms used by the sender. This information can be
of significant value to the user in launching further attacks.

Examples
An excellent example of covert storage channels in a well known application is the
ICMP error message echoing functionality. Due to ambiguities in the ICMP RFC, many
IP implementations use the memory within the packet for storage or calculation.

For this reason, certain fields of certain packets — such as ICMP error packets which
echo back parts of received messages — may contain flaws or extra information which
betrays information about the identity of the target operating system.

This information is then used to build up evidence to decide the environment of the
target. This is the first crucial step in determining if a given system is vulnerable to a
particular flaw and what changes must be made to malicious code to mount a
successful attack.

Related problems
Not available.

Version Date: 31 March 2006
48

CLASP Vulnerability View — Category 1: Range & Type Errors

Failure to account for default case in switch

Overview
The failure to account for the default case in switch statements may lead to complex
logical errors and may aid in other, unexpected security-related conditions.

Consequences
• Undefined: Depending on the logical circumstances involved, any consequences

may result: e.g., issues of confidentiality, authentication, authorization, availability,
integrity, accountability, or non-repudiation.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
Undefined.

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Implementation: Ensure that there are no unaccounted for cases, when adjusting

flow or values based on the value of a given variable. In switch statements, this
can be accomplished through the use of the default label.

Discussion
This flaw represents a common problem in software development, in which not all
possible values for a variable are considered or handled by a given process. Because

Version Date: 31 March 2006
49

CLASP Vulnerability View — Category 1: Range & Type Errors

of this, further decisions are made based on poor information, and cascading failure
results.

This cascading failure may result in any number of security issues, and constitutes a
significant failure in the system. In the case of switch style statements, the very simple
act of creating a default case can mitigate this situation, if done correctly.

Often however, the default cause is used simply to represent an assumed option, as
opposed to working as a sanity check. This is poor practice and in some cases is as
bad as omitting a default case entirely.

Examples
In general, a safe switch statement has this form:

switch (value) {
 case 'A':
 printf("A!\n");
 break;
 case 'B':
 printf("B!\n");
 break;
 default:
 printf("Neither A nor B\n");
}

This is because the assumption cannot be made that all possible cases are accounted
for. A good practice is to reserve the default case for error handling.

Related problems
• Undefined: A logical flaw of this kind might lead to any number of other flaws.

Version Date: 31 March 2006
50

CLASP Vulnerability View — Category 1: Range & Type Errors

Null-pointer dereference

Overview
A null-pointer dereference takes place when a pointer with a value of NULL is used as
though it pointed to a valid memory area.

Consequences
• Availability: Null-pointer dereferences invariably result in the failure of the process.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Proper sanity checks at implementation time can serve to
prevent null-pointer dereferences

Platform
• Languages: C, C++, Assembly

• Platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: If all pointers that could have been modified are sanity-checked
previous to use, nearly all null-pointer dereferences can be prevented.

Version Date: 31 March 2006
51

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Null-pointer dereferences, while common, can generally be found and corrected in a
simply way. They will always result in the crash of the process — unless exception
handling (on some platforms) in invoked, and even then, little can be done to salvage
the process.

Examples
Null-pointer dereference issue can occur through a number of flaws, including race
conditions, and simple programming omissions. While there are no complete fixes aside
from contentious programming, the following steps will go a long way to ensure that
null-pointer dereferences do not occur.

Before using a pointer, ensure that it is not equal to NULL:

if (pointer1 != NULL) {
 /* make use of pointer1 */
 /* ... */
}

When freeing pointers, ensure they are not set to NULL, and be sure to set them to
NULL once they are freed:

if (pointer1 != NULL) {
 free(pointer1);
 pointer1 = NULL;
}

If you are working with a multi-threaded or otherwise asynchronous environment,
ensure that proper locking APIs are used to lock before the if statement; and unlock
when it has finished.

Related problems
• Miscalculated null termination

• State synchronization error

Version Date: 31 March 2006
52

CLASP Vulnerability View — Category 1: Range & Type Errors

Using freed memory

Overview
The use of heap allocated memory after it has been freed or deleted leads to undefined
system behavior and, in many cases, to a write-what-where condition.

Consequences
• Integrity: The use of previously freed memory may corrupt valid data, if the

memory area in question has been allocated and used properly elsewhere.

• Availability: If chunk consolidation occur after the use of previously freed data, the
process may crash when invalid data is used as chunk information.

• Access Control (instruction processing): If malicious data is entered before chunk
consolidation can take place, it may be possible to take advantage of a write-
what-where primitive to execute arbitrary code.

Exposure period
• Implementation: Use of previously freed memory errors occur largely at

implementation time.

Platform
• Languages: C, C++, Assembly

• Operating Platforms: All

Required resources
Any

Severity
Very High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Ensuring that all pointers are set to NULL, once the memory they

point to has been freed, can be effective strategy. The utilization of multiple or
complex data structures may lower the usefulness of this strategy.

Version Date: 31 March 2006
53

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
The use of previously freed memory can have any number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending
on the instantiation and timing of the flaw.

The simplest way data corruption may occur involves the system’s reuse of the freed
memory. In this scenario, the memory in question is allocated to another pointer validly
at some point after it has been freed. The original pointer to the freed memory is used
again and points to somewhere within the new allocation. As the data is changed, it
corrupts the validly used memory; this induces undefined behavior in the process.

If the newly allocated data chances to hold a class, in C++ for example, various function
pointers may be scattered within the heap data. If one of these function pointers is
overwritten with an address to valid shellcode, execution of arbitrary code can be
achieved.

Examples
The following example

#include <stdio.h>
#include <unistd.h>

#define BUFSIZER1 512
#define BUFSIZER2 ((BUFSIZER1/2) - 8)

int main(int argc, char **argv) {
 char *buf1R1;
 char *buf2R1;
 char *buf2R2;
 char *buf3R2;

 buf1R1 = (char *) malloc(BUFSIZER1);
 buf2R1 = (char *) malloc(BUFSIZER1);

 free(buf2R1);

 buf2R2 = (char *) malloc(BUFSIZER2);
 buf3R2 = (char *) malloc(BUFSIZER2);

 strncpy(buf2R1, argv[1], BUFSIZER1-1);
 free(buf1R1);
 free(buf2R2);
 free(buf3R2);
}

Related problems
• Buffer overflow (in particular, heap overflows): The method of exploitation is often

the same, as both constitute the unauthorized writing to heap memory.

Version Date: 31 March 2006
54

CLASP Vulnerability View — Category 1: Range & Type Errors

• Write-what-where condition: The use of previously freed memory can result in a
write-what-where in several ways.

Version Date: 31 March 2006
55

CLASP Vulnerability View — Category 1: Range & Type Errors

Doubly freeing memory

Overview
Freeing or deleting the same memory chunk twice may — when combined with other
flaws — result in a write-what-where condition.

Consequences
• Access control: Doubly freeing memory may result in a write-what-where

condition, allowing an attacker to execute arbitrary code.

Exposure period
• Requirements specification: A language which handles memory allocation and

garbage collection automatically might be chosen.

• Implementation: Double frees are caused most often by lower-level logical errors.

Platform
• Language: C, C++, Assembly

• Operating system: All

Required resources
Any

Severity
High

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Implementation: Ensure that each allocation is freed only once. After freeing a

chunk, set the pointer to NULL to ensure the pointer cannot be freed again. In
complicated error conditions, be sure that clean-up routines respect the state of
allocation properly. If the language is object oriented, ensure that object
destructors delete each chunk of memory only once.

Version Date: 31 March 2006
56

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
Doubly freeing memory can result in roughly the same write-what-where condition that
the use of previously freed memory will.

Examples
While contrived, this code should be exploitable on Linux distributions which do not ship
with heap-chunk check summing turned on.

#include <stdio.h>
#include <unistd.h>

#define BUFSIZE1 512
#define BUFSIZE2 ((BUFSIZE1/2) - 8)

int main(int argc, char **argv) {
 char *buf1R1;
 char *buf2R1;
 char *buf1R2;

 buf1R1 = (char *) malloc(BUFSIZE2);
 buf2R1 = (char *) malloc(BUFSIZE2);

 free(buf1R1);
 free(buf2R1);

 buf1R2 = (char *) malloc(BUFSIZE1);
 strncpy(buf1R2, argv[1], BUFSIZE1-1);

 free(buf2R1);
 free(buf1R2);
}

Related problems
• Using freed memory

• Write-what-where

Version Date: 31 March 2006
57

CLASP Vulnerability View — Category 1: Range & Type Errors

Invoking untrusted mobile code

Overview
This process will download external source or binaries and execute it.

Consequences
Unspecified.

Exposure period
Implementation: This flaw is a simple logic issue, introduced entirely at implementation
time.

Platform
Languages: Java and C++

Operating platform: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Avoid doing this without proper cryptographic safeguards.

Discussion
This is an unsafe practice and should not be performed unless one can use some type
of cryptographic protection to assure that the mobile code has not been altered.

Examples
In Java:

URL[] classURLs= new URL[]{new URL(“file:subdir/”)};
URLClassLoader loader = nwe URLClassLoader(classURLs);

Version Date: 31 March 2006
58

CLASP Vulnerability View — Category 1: Range & Type Errors

Class loadedClass = Class.forName(“loadMe”, true, loader);

Related problems
• Cross-site scripting

Version Date: 31 March 2006
59

CLASP Vulnerability View — Category 1: Range & Type Errors

Cross-site scripting

Overview
Cross-site scripting attacks are an instantiation of injection problems, in which malicious
scripts are injected into the otherwise benign and trusted web sites.

Consequences
• Confidentiality: The most common attack performed with cross-site scripting

involves the disclosure of information stored in user cookies.

• Access control: In some circumstances it may be possible to run arbitrary code on
a victim’s computer when cross-site scripting is combined with other flaws

Exposure period
• Implementation: If bulletin-board style functionality is present, cross-site scripting

may only be deterred at implementation time.

Platform
• Language: Any

• Platform: All (requires interaction with a web server supporting dynamic content)

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Use a white-list style parsing routine to ensure that no posted

content contains scripting tags.

Discussion
Cross-site scripting attacks can occur wherever an untrusted user has the ability to
publish content to a trusted web site. Typically, a malicious user will craft a client-side

Version Date: 31 March 2006
60

CLASP Vulnerability View — Category 1: Range & Type Errors

script, which — when parsed by a web browser — performs some activity (such as
sending all site cookies to a given E-mail address).

If the input is unchecked, this script will be loaded and run by each user visiting the web
site. Since the site requesting to run the script has access to the cookies in question,
the malicious script does also.

There are several other possible attacks, such as running “Active X” controls (under
Microsoft Internet Explorer) from sites that a user perceives as trustworthy; cookie theft
is however by far the most common.

All of these attacks are easily prevented by ensuring that no script tags — or for good
measure, HTML tags at all — are allowed in data to be posted publicly.

Examples
Cross-site scripting attacks may occur anywhere that possibly malicious users are
allowed to post unregulated material to a trusted web site for the consumption of other
valid users.

The most common example can be found in bulletin-board web sites which provide web
based mailing list-style functionality.

Related problems
• Injection problems

• Invoking untrusted mobile code

Version Date: 31 March 2006
61

CLASP Vulnerability View — Category 1: Range & Type Errors

Format string problem

Overview
Format string problems occur when a user has the ability to control or write completely
the format string used to format data in the printf style family of C/C++ functions.

Consequences
• Confidentially: Format string problems allow for information disclosure which can

severely simplify exploitation of the program.

• Access Control: Format string problems can result in the execution of arbitrary
code.

Exposure period
• Requirements specification: A language might be chosen that is not subject to this

issue.

• Implementation: Format string problems are largely introduced at implementation
time.

• Build: Several format string problems are discovered by compilers

Platform
• Language: C, C++, Assembly

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: Choose a language which is not subject to this flaw.

• Implementation: Ensure that all format string functions are passed a static string
which cannot be controlled by the user and that the proper number of arguments

Version Date: 31 March 2006
62

CLASP Vulnerability View — Category 1: Range & Type Errors

are always sent to that function as well. If at all possible, do not use the %n
operator in format strings.

• Build: Heed the warnings of compilers and linkers, since they may alert you to
improper usage.

Discussion
Format string problems are a classic C/C++ issue that are now rare due to the ease of
discovery. The reason format string vulnerabilities can be exploited is due to the %n
operator. The %n operator will write the number of characters, which have been printed
by the format string therefore far, to the memory pointed to by its argument.

Through skilled creation of a format string, a malicious user may use values on the
stack to create a write-what-where condition. Once this is achieved, he can execute
arbitrary code.

Examples
The following example is exploitable, due to the printf() call in the printWrapper()
function. Note: The stack buffer was added to make exploitation more simple.

#include <stdio.h>

void printWrapper(char *string) {
 printf(string);
}

int main(int argc, char **argv) {
 char buf[5012];
 memcpy(buf, argv[1], 5012);
 printWrapper(argv[1]);
 return (0);
}

Related problems
• Injection problem

• Write-what-where

Version Date: 31 March 2006
63

CLASP Vulnerability View — Category 1: Range & Type Errors

Injection problem (“data” used as something else)

Overview
Injection problems span a wide range of instantiations. The basic form of this flaw
involves the injection of control-plane data into the data-plane in order to alter the
control flow of the process.

Consequences
• Confidentiality: Many injection attacks involve the disclosure of important

information — in terms of both data sensitivity and usefulness in further
exploitation

• Authentication: In some cases injectable code controls authentication; this may
lead to remote vulnerability

• Access Control: Injection attacks are characterized by the ability to significantly
change the flow of a given process, and in some cases, to the execution of
arbitrary code.

• Integrity: Data injection attacks lead to loss of data integrity in nearly all cases as
the control-plane data injected is always incidental to data recall or writing.

• Accountability: Often the actions performed by injected control code are unlogged.

Exposure period
• Requirements specification: A language might be chosen which is not subject to

these issues.

• Implementation: Many logic errors can contribute to these issues.

Platform
• Languages: C, C++, Assembly, SQL

• Platforms: Any

Required resources
Any

Severity
High

Version Date: 31 March 2006
64

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: A language might be chosen which is not subject to

these issues.

• Implementation: As so many possible implementations of this flaw exist, it is best
to simply be aware of the flaw and work to ensure that all control characters
entered in data are subject to black-list style parsing.

Discussion
Injection problems encompass a wide variety of issues — all mitigated in very different
ways. For this reason, the most effective way to discuss these flaws is to note the
distinct features which classify them as injection flaws.

The most important issue to note is that all injection problems share one thing in
common — i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending
code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execu-
tion, injection problems need only for the data to be parsed.

The most classing instantiations of this category of flaw are SQL injection and format
string vulnerabilities.

Examples
Injection problems describe a large subset of problems with varied instantiations. For an
example of one of these problems, see the section Format string problem.

Related problems
• SQL injection

• Format String problem

• Command injection

• Log injection

• Reflection injection

Version Date: 31 March 2006
65

CLASP Vulnerability View — Category 1: Range & Type Errors

Command injection

Overview
Command injection problems are a subset of injection problem, in which the process is
tricked into calling external processes of the attackers choice through the injection of
control-plane data into the data plane.

Consequences
• Access control: Command injection allows for the execution of arbitrary

commands and code by the attacker.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional

requirements than calling external processes. This is minimal.

• Implementation: Exposure for this issue is limited almost exclusively to
implementation time. Any language or platform is subject to this flaw.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: If at all possible, use library calls rather than external processes to

recreate the desired functionality

• Implementation: Ensure that all external commands called from the program are
statically created, or — if they must take input from a user — that the input and
final line generated are vigorously white-list checked.

Version Date: 31 March 2006
66

CLASP Vulnerability View — Category 1: Range & Type Errors

• Run time: Run time policy enforcement may be used in a white-list fashion to
prevent use of any non-sanctioned commands.

Discussion
Command injection is a common problem with wrapper programs. Often, parts of the
command to be run are controllable by the end user. If a malicious user injects a
character (such as a semi-colon) that delimits the end of one command and the
beginning of another, he may then be able to insert an entirely new and unrelated
command to do whatever he pleases.

The most effective way to deter such an attack is to ensure that the input provided by
the user adheres to strict rules as to what characters are acceptable. As always, white-
list style checking is far preferable to black-list style checking.

Examples
The following code is wrapper around the UNIX command cat which prints the contents
of a file to standard out. It is also injectable:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
 char cat[] = "cat ";
 char *command;
 size_t commandLength;

 commandLength = strlen(cat) + strlen(argv[1]) + 1;
 command = (char *) malloc(commandLength);
 strncpy(command, cat, commandLength);
 strncat(command, argv[1], (commandLength - strlen(cat)));

 system(command);
 return (0);
}

Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the
command is executed by catWrapper with no complaint:

$./catWrapper Story.txt; ls
When last we left our heroes...
Story.txt doubFree.c nullpointer.c
unstosig.c www* a.out*
format.c strlen.c useFree*

Version Date: 31 March 2006
67

CLASP Vulnerability View — Category 1: Range & Type Errors

catWrapper* misnull.c strlength.c
useFree.c commandinjection.c nodefault.c
trunc.c writeWhatWhere.c

If catWrapper had been set to have a higher privilege level than the standard user,
arbitrary commands could be executed with that higher privilege.

Related problems
• Injection problem

Version Date: 31 March 2006
68

CLASP Vulnerability View — Category 1: Range & Type Errors

Log injection

Overview
Log injection problems are a subset of injection problem, in which invalid entries taken
from user input are inserted in logs or audit trails, allowing an attacker to mislead
administrators or cover traces of attack. Log injection can also sometimes be used to
attack log monitoring systems indirectly by injecting data that monitoring system will
misinterpret.

Consequences
• Integrity: Logs susceptible to injection can not be trusted for diagnostic or

evidentiary purposes in the event of an attack on other parts of the system.

• Access control: Log injection may allow indirect attacks on systems monitoring the
log.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional

requirements than allowing external input to be logged.

• Implementation: Exposure for this issue is limited almost exclusively to
implementation time. Any language or platform is subject to this flaw.

Platform
• Language: Any

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: If at all possible, avoid logging data that came from external inputs.

Version Date: 31 March 2006
69

CLASP Vulnerability View — Category 1: Range & Type Errors

• Implementation: Ensure that all log entries are statically created, or — if they must
record external data — that the input is vigorously white-list checked.

• Run time: Avoid viewing logs with tools that may interpret control characters in the
file, such as command-line shells.

Discussion
Log injection attacks can be used to cover up log entries or insert misleading entries.
Common attacks on logs include inserting additional entries with fake information,
truncating entries to cause information loss, or using control characters to hide entries
from certain file viewers.

The most effective way to deter such an attack is to ensure that any external input
being logged adheres to strict rules as to what characters are acceptable. As always,
white-list style checking is far preferable to black-list style checking.

Examples
The following code is a simple Python snippet which writes a log entry to a file. It does
not filter log contents:

def log_failed_login(username)
 log = open(“access.log”, ‘a’)
 log.write(“User login failed for: %s\n“ % username)
 log.close()

Normal log file output looks like:

User login failed for: guest
User login failed for: admin

However, if we pass in the following as the username:

guest\nUser login succeeded for: admin

the log would instead have the misleading entries:

User login failed for: guest
User login succeeded for: admin

If it was expected that the log was going to be viewed from within a command shell (as
is often the case with server software) we could inject terminal control characters to
cause the display to back up lines or erase log entries from view. Doing this does not
actually remove the entries from the file, but it can prevent casual inspection from
noticing security critical log entries.

Related problems
• Injection problem

Version Date: 31 March 2006
70

CLASP Vulnerability View — Category 1: Range & Type Errors

Reflection injection

Overview
Reflection injection problems are a subset of injection problem, in which external input
is used to construct a string value passed to class reflection APIs. By manipulating the
value an attacker can cause unexpected classes to be loaded, or change what method
or fields are accessed on an object.

Consequences
• Access control: Reflection injection allows for the execution of arbitrary code by

the attacker.

Exposure period
• Design: It may be possible to find alternate methods for satisfying functional

requirements than using reflection.

• Implementation: Avoid using external input to generate reflection string values.

Platform
• Language: Java, .NET, and other languages that support reflection

• Platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: It may be possible to find alternate methods for satisfying functional

requirements than using reflection.

• Implementation: Avoid using external input to generate reflection string values.

Version Date: 31 March 2006
71

CLASP Vulnerability View — Category 1: Range & Type Errors

Discussion
The most straightforward reflection injection attack is to provide the name of an
alternate class available to the target application which implements the same interfaces
but operates in a less secure manner. This can be used as leverage for more extensive
attacks. More complex attacks depend upon the specific deployment situation of the
application.

If the classloader being used is capable of remote class fetching this becomes an
extremely serious vulnerability, since attackers could supply arbitrary URLs that point at
constructed attack classes. In this case, the class doesn’t necessarily even need to
implement methods that perform the same as the replaced class, since a static
initializer could be used to carry out the attack.

If it is necessary to allow reflection utilizing external input, limit the possible values to a
predefined list. For example, reflection is commonly used for loading JDBC database
connector classes. Most often, the string class name is read from a configuration file.
Injection problems can be avoided by embedding a list of strings naming each of the
supported database driver classes and requiring the class name read from the file to be
in the list before loading.

Examples
The following Java code dynamically loads a connection class to be used for
transferring data:

// connType is a String read from an external source
Class connClass = Class.forName(connType);
HttpURLConnection conn = (HttpURLConnection)connClass.newInstance();
conn.connect();

Suppose this application normally passed “javax.net.ssl.HttpsUrlConnection”. This
would provide an HTTPS connection using SSL to protect the transferred data. If an
attacker replaced the connType string with “java.net.HttpURLConnection” then all data
transfers performed by this code would happened over an un-encrypted HTTP
connection instead.

Related problems
• Injection problem

Version Date: 31 March 2006
72

CLASP Vulnerability View — Category 1: Range & Type Errors

SQL injection

Overview
SQL injection attacks are another instantiation of injection attack, in which SQL
commands are injected into data-plane input in order to effect the execution of
predefined SQL commands.

Consequences
• Confidentiality: Since SQL databases generally hold sensitive data, loss of

confidentiality is a frequent problem with SQL injection vulnerabilities.

• Authentication: If poor SQL commands are used to check user names and
passwords, it may be possible to connect to a system as another user with no
previous knowledge of the password.

• Authorization: If authorization information is held in an SQL database, it may be
possible to change this information through the successful exploitation of an SQL
injection vulnerability.

• Integrity: Just as it may be possible to read sensitive information, it is also
possible to make changes or even delete this information with an SQL injection
attack.

Exposure period
• Requirements specification: A non-SQL style database which is not subject to this

flaw may be chosen.

• Implementation: If SQL is used, all flaws resulting in SQL injection problems must
be mitigated at the implementation level.

Platform
• Language: SQL

• Platform: Any (requires interaction with an SQL database)

Required resources
Any

Severity
Medium to High

Version Date: 31 March 2006
73

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: A non-SQL style database which is not subject to this

flaw may be chosen.

• Implementation: Use vigorous white-list style checking on any user input that may
be used in an SQL command. Rather than escape meta-characters, it is safest to
disallow them entirely. Reason: Later use of data that has been entered in the
database may neglect to escape meta-characters before use.

Discussion
SQL injection has become a common issue with database-driven web sites. The flaw is
easily detected, and easily exploited, and as such, any site or software package with
even a minimal user base is likely to be subject to an attempted attack of this kind.

Essentially, the attack is accomplished by placing a meta character into data input to
then place SQL commands in the control plane, which did not exist there before. This
flaw depends on the fact that SQL makes no real distinction between the control and
data planes.

Examples
In SQL:

select id, firstname, lastname from writers

If one provided:

Firstname: evil’ex
Lastname: Newman

the query string becomes:

select id, firstname, lastname from authors where forename = ‘evil’ex’
and surname =’newman’

which the database attempts to run as

Incorrect syntax near al’ as the database tried to execute evil.

The above SQL statement could be Coded in Java as:

String firstName = requests.getParameters(“firstName”);
String lasttName = requests.getParameters(“firstName”);
PreparedStatement writersAdd = conn.prepareStatement(“SELECT id FROM
writers WHERE firstname=firstName”);

In which some of the same problems exist.

Version Date: 31 March 2006
74

CLASP Vulnerability View — Category 1: Range & Type Errors

Related problems

• Injection problems

Version Date: 31 March 2006
75

CLASP Vulnerability View — Category 1: Range & Type Errors

Deserialization of untrusted data

Overview
Data which is untrusted cannot be trusted to be well formed.

Consequences
• Availability: If a function is making an assumption on when to terminate, based on

a sentry in a string, it could easily never terminate.

• Authorization: Potentially code could make assumptions that information in the
deserialized object about the data is valid. Functions which make this dangerous
assumption could be exploited.

Exposure period
• Requirements specification: A deserialization library could be used which provides

a cryptographic framework to seal serialized data.

• Implementation: Not using the safe deserialization/serializing data features of a
language can create data integrity problems.

• Implementation: Not using the protection accessor functions of an object can
cause data integrity problems

• Implementation: Not protecting your objects from default overloaded functions —
which may provide for raw output streams of objects — may cause data
confidentiality problems.

• Implementation: Not making fields transient can often may cause data
confidentiality problems.

Platform
• Languages: C, C++, Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Version Date: 31 March 2006
76

CLASP Vulnerability View — Category 1: Range & Type Errors

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: A deserialization library could be used which provides

a cryptographic framework to seal serialized data.

• Implementation: Use the signing features of a language to assure that
deserialized data has not been tainted.

• Implementation: When deserializing data populate a new object rather than just
deserializing, the result is that the data flows through safe input validation and that
the functions are safe.

• Implementation: Explicitly define final readObject() to prevent deserialization.

An example of this is:

private final void readObject(ObjectInputStream in)
throws java.io.IOException {
 throw new java.io.IOException("Cannot be deserialized");
}

• Implementation: Make fields transient to protect them from deserialization.

Discussion
It is often convenient to serialize objects for convenient communication or to save them
for later use. However, deserialized data or code can often be modified without using
the provided accessor functions if it does not use cryptography to protect itself.
Furthermore, any cryptography would still be client-side security — which is of course a
dangerous security assumption.

An attempt to serialize and then deserialize a class containing transient fields will result
in NULLs where the non-transient data should be. This is an excellent way to prevent
time, environment-based, or sensitive variables from being carried over and used
improperly.

Examples
In Java:

 try {
 File file = new File("object.obj");
 ObjectInputStream in = new ObjectInputStream(new
 FileInputStream(file));
 javax.swing.JButton button = (javax.swing.JButton)
 in.readObject();

Version Date: 31 March 2006
77

CLASP Vulnerability View — Category 1: Range & Type Errors

 in.close();
 byte[] bytes = getBytesFromFile(file);
 in = new ObjectInputStream(new ByteArrayInputStream(bytes));
 button = (javax.swing.JButton) in.readObject();
 in.close();
 }

 Related problems
Not available.

Version Date: 31 March 2006
78

CLASP Vulnerability View — Category 2: Environmental Problems

Category 2: Environmental Problems
This section introduces the vulnerability Problem Types organized under the problem
type “environmental problems.”

Reliance on data layout

Overview
Assumptions about protocol data or data stored in memory can be invalid, resulting in
using data in ways that were unintended.

Consequences
Access control (including confidentiality and integrity): Can result in unintended
modifications or information leaks of data.

Exposure period
Design: This problem can arise when a protocol leaves room for interpretation and is
implemented by multiple parties that need to interoperate.

Implementation: This problem can arise by not understanding the subtleties either of
writing portable code or of changes between protocol versions.

Platform
Protocol errors of this nature can happen on any platform. Invalid memory layout
assumptions are possible in languages and environments with a single, flat memory
space, such as C/C++ and Assembly.

Required resources
Any

Severity
Medium to High

Likelihood of exploit
Low

Version Date: 31 March 2006
79

CLASP Vulnerability View — Category 2: Environmental Problems

Avoidance and mitigation

• Design and Implementation: In flat address space situations, never allow
computing memory addresses as offsets from another memory address.

• Design: Fully specify protocol layout unambiguously, providing a structured
grammar (e.g., a compilable yacc grammar).

• Testing: Test that the implementation properly handles each case in the protocol
grammar.

Discussion
When changing platforms or protocol versions, data may move in unintended ways. For
example, some architectures may place local variables a and b right next to each other
with a on top; some may place them next to each other with b on top; and others may
add some padding to each. This ensured that each variable is aligned to a proper word
size.

In protocol implementations, it is common to offset relative to another field to pick out a
specific piece of data. Exceptional conditions — often involving new protocol versions
— may add corner cases that lead to the data layout changing in an unusual way. The
result can be that an implementation accesses a particular part of a packet, treating
data of one type as data of another type.

Examples
In C:

void example() {
 char a;
 char b;
 *(&a + 1) = 0;
}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have
three bytes between them because they get aligned to 32-bit boundaries.

Related problems
Not available.

Version Date: 31 March 2006
80

CLASP Vulnerability View — Category 2: Environmental Problems

Relative path library search

Overview
Certain functions perform automatic path searching. The method and results of this
path searching may not be as expected. Example: WinExec will use the space
character as a delimiter, finding “C:\Program.exe” as an acceptable result for a search
for “C:\Program Files\Foo\Bar.exe”.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of

the vulnerable program.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use other functions which require explicit paths. Making use of

any of the other readily available functions which require explicit paths is a safe
way to avoid this problem.

Version Date: 31 March 2006
81

CLASP Vulnerability View — Category 2: Environmental Problems

Discussion
If a malicious individual has access to the file system, it is possible to elevate privileges
by inserting such a file as “C:\Program.exe” to be run by a privileged program making
use of WinExec.

Examples
In C\C++:

UINT errCode = WinExec(
 "C:\\Program Files\\Foo\\Bar",
 SW_SHOW
);

Related problems
Not available.

Version Date: 31 March 2006
82

CLASP Vulnerability View — Category 2: Environmental Problems

Relying on package-level scope

Overview
Java packages are not inherently closed; therefore, relying on them for code security is
not a good practice.

Consequences
• Confidentiality: Any data in a Java package can be accessed outside of the Java

framework if the package is distributed.

• Integrity: The data in a Java class can be modified by anyone outside of the Java
framework if the packages is distributed.

Exposure period
Design through Implementation: This flaw is a style issue, so it is important to not allow
direct access to variables and to protect objects.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Data should be private static and final whenever

possible. This will assure that your code is protected by instantiating early,
preventing access and tampering.

Version Date: 31 March 2006
83

CLASP Vulnerability View — Category 2: Environmental Problems

Discussion
The purpose of package scope is to prevent accidental access. However, this
protection provides an ease-of-software-development feature but not a security feature,
unless it is sealed.

Examples
In Java:

package math;

public class Lebesgue implements Integration{

 public final Static String
youAreHidingThisFunction(functionToIntegrate){
 return ...;
}

Related problems
Not available.

Version Date: 31 March 2006
84

CLASP Vulnerability View — Category 2: Environmental Problems

Insufficient entropy in PRNG

Overview
The lack of entropy available for, or used by, a PRNG can be a stability and security
threat.

Consequences
• Availability: If a pseudo-random number generator is using a limited entropy

source which runs out (if the generator fails closed), the program may pause or
crash.

• Authentication: If a PRNG is using a limited entropy source which runs out, and
the generator fails open, the generator could produce predictable random
numbers. Potentially a weak source of random numbers could weaken the
encryption method used for authentication of users. In this case, potentially a
password could be discovered.

Exposure period
• Design through Implementation: It is important — if one is utilizing randomness for

important security — to use the best random numbers available.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Perform FIPS 140-1 tests on data to catch obvious entropy

problems.

Version Date: 31 March 2006
85

CLASP Vulnerability View — Category 2: Environmental Problems

• Implementation: Consider a PRNG which re-seeds itself, as needed from a high
quality pseudo-random output, like hardware devices.

Discussion
When deciding which PRNG to use, look at its sources of entropy. Depending on what
your security needs are, you may need to use a random number generator which
always uses strong random data — i.e., a random number generator which attempts to
be strong but will fail in a weak way or will always provide some middle ground of
protection through techniques like re-seeding. Generally something which always
provides a predictable amount of strength is preferable and should be used.

Examples
In C/C++ or Java:

while (1){
 if (OnConnection()){
 if (PRNG(...)){
 //use the random bytes
 }
 else (PRNG(...)) {
 //cancel the program
 }

Related problems
Not available.

Version Date: 31 March 2006
86

CLASP Vulnerability View — Category 2: Environmental Problems

Failure of TRNG

Overview
True random number generators generally have a limited source of entropy and
therefore can fail or block.

Consequences
• Availability: A program may crash or block if it runs out of random numbers.

Exposure period
• Requirements specification: Choose an operating system which is aggressive and

effective at generating true random numbers.

• Implementation: This type of failure is a logical flaw which can be exacerbated by
a lack of or the misuse of mitigating technologies.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low to Medium

Avoidance and mitigation
• Implementation: Rather than failing on a lack of random numbers, it is often

preferable to wait for more numbers to be created.

Discussion
The rate at which true random numbers can be generated is limited. It is important that
one uses them only when they are needed for security.

Version Date: 31 March 2006
87

CLASP Vulnerability View — Category 2: Environmental Problems

Examples
In C:

while (1){
 if (connection){
 if (hwRandom()){
 //use the random bytes
 }
 else (hwRandom()) {
 //cancel the program
 }
}

Related problems
Not available.

Version Date: 31 March 2006
88

CLASP Vulnerability View — Category 2: Environmental Problems

Publicizing of private data when using inner classes

Overview
Java byte code has no notion of an inner class; therefore inner classes provide only a
package-level security mechanism. Furthermore, the inner class gets access to the
fields of its outer class even if that class is declared private.

Consequences
• Confidentiality: “Inner Classes” data confidentiality aspects can often be

overcome.

Exposure period
Implementation: This is a simple logical flaw created at implementation time.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Using sealed classes protects object-oriented encapsulation

paradigms and therefore protects code from being extended in unforeseen ways.

• Implementation: Inner Classes do not provide security. Warning: Never reduce
the security of the object from an outer class, going to an inner class. If your outer
class is final or private, ensure that your inner class is private as well.

Discussion
A common misconception by Java programmers is that inner classes can only be
accessed by outer classes. Inner classes’ main function is to reduce the size and

Version Date: 31 March 2006
89

CLASP Vulnerability View — Category 2: Environmental Problems

complexity of code. This can be trivially broken by injecting byte code into the package.
Furthermore, since an inner class has access to all fields in the outer class — even if
the outer class is private — potentially access to the outer classes fields could be
accidently compromised.

Examples
In Java:

private class Secure(){
 private password="mypassword"
 public class Insecure(){...}
}

Related problems
Not available.

Version Date: 31 March 2006
90

CLASP Vulnerability View — Category 2: Environmental Problems

Trust of system event data

Overview
Security based on event locations are insecure and can be spoofed.

Consequences
• Authorization: If one trusts the system-event information and executes commands

based on it, one could potentially take actions based on a spoofed identity.

Exposure period
• Design through Implementation: Trusting unauthenticated information for

authentication is a design flaw.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design through Implementation: Never trust or rely any of the information in an

Event for security.

Discussion
Events are a messaging system which may provide control data to programs listening
for events. Events often do not have any type of authentication framework to allow them
to be verified from a trusted source.

Any application, in Windows, on a given desktop can send a message to any window
on the same desktop. There is no authentication framework for these messages.

Version Date: 31 March 2006
91

CLASP Vulnerability View — Category 2: Environmental Problems

Therefore, any message can be used to manipulate any process on the desktop if the
process does not check the validity and safeness of those messages.

Examples
In Java:

public void actionPerformed(ActionEvent e) {
 if (e.getSource()==button)
 System.out.println(“print out secret information”);
}

Related problems
Not available.

Version Date: 31 March 2006
92

CLASP Vulnerability View — Category 2: Environmental Problems

Resource exhaustion (file descriptor, disk space,
sockets, ...)

Overview
Resource exhaustion is a simple denial of service condition which occurs when the
resources necessary to perform an action are entirely consumed, therefore preventing
that action from taking place.

Consequences
• Availability: The most common result of resource exhaustion is denial-of-service.

• Access control: In some cases it may be possible to force a system to “fail open”
in the event of resource exhaustion.

Exposure period
• Design: Issues in system architecture and protocol design may make systems

more subject to resource-exhaustion attacks.

• Implementation: Lack of low level consideration often contributes to the problem.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low to medium

Likelihood of exploit
Very high

Avoidance and mitigation
• Design: Design throttling mechanisms into the system architecture.

• Design: Ensure that protocols have specific limits of scale placed on them.

Version Date: 31 March 2006
93

CLASP Vulnerability View — Category 2: Environmental Problems

• Implementation: Ensure that all failures in resource allocation place the system
into a safe posture.

• Implementation: Fail safely when a resource exhaustion occurs.

Discussion
Resource exhaustion issues are generally understood but are far more difficult to
successfully prevent. Resources can be exploited simply by ensuring that the target
machine must do much more work and consume more resources in order to service a
request than the attacker must do to initiate a request.

Prevention of these attacks requires either that the target system:

• either recognizes the attack and denies that user further access for a given
amount of time;

• or uniformly throttles all requests in order to make it more difficult to consume
resources more quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to
prevent the use of the system by a particular valid user. If the attacker impersonates the
valid user, he may be able to prevent the user from accessing the server in question.

The second solution is simply difficult to effectively institute — and even when properly
done, it does not provide a full solution. It simply makes the attack require more
resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of
systems which “fail open.” This means that in the event of resource consumption, the
system fails in such a way that the state of the system — and possibly the security
functionality of the system — is compromised. A prime example of this can be found in
old switches that were vulnerable to “macof” attacks (so named for a tool developed by
Dugsong). These attacks flooded a switch with random IP and MAC address
combinations, therefore exhausting the switch’s cache, which held the information of
which port corresponded to which MAC addresses. Once this cache was exhausted,
the switch would fail in an insecure way and would begin to act simply as a hub,
broadcasting all traffic on all ports and allowing for basic sniffing attacks.

Examples
In Java:

class Worker implements Executor {
 ...
 public void execute(Runnable r) {
 try {
 ...
 }
 catch (InterruptedException ie) { // postpone response

Version Date: 31 March 2006
94

CLASP Vulnerability View — Category 2: Environmental Problems

 Thread.currentThread().interrupt();
 }
 }

 public Worker(Channel ch, int nworkers) {
 ...
 }

 protected void activate() {
 Runnable loop = new Runnable() {
 public void run() {
 try {
 for (;;) {
 Runnable r = ...
 r.run();
 }
 }
 catch (InterruptedException ie) {...}
 }
 };
 new Thread(loop).start();
 }
In C/C++:

int main(int argc, char *argv[]) {
 sock=socket(AF_INET, SOCK_STREAM, 0);
 while (1) {
 newsock=accept(sock, ...);
 printf("A connection has been accepted\n");
 pid = fork();
 }

There are no limits to runnables/forks. Potentially an attacker could cause resource
problems very quickly.

Related problems
Not available.

Version Date: 31 March 2006
95

CLASP Vulnerability View — Category 2: Environmental Problems

Information leak through class cloning

Overview
Cloneable classes are effectively open classes since data cannot be hidden in them.

Consequences
• Confidentiality: A class which can be cloned can be produced without executing

the constructor.

Exposure period
• Implementation: This is a style issue which needs to be adopted throughout the

implementation of each class.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Make classes uncloneable by defining a clone function like:

public final void clone() throws java.lang.CloneNotSupportedException
{
 throw new java.lang.CloneNotSupportedException();
}

• Implementation: If you do make your classes cloneable, ensure that your clone
method is final and throw super.clone().

Version Date: 31 March 2006
96

CLASP Vulnerability View — Category 2: Environmental Problems

Discussion
Classes which do no explicitly deny cloning can be cloned by any other class without
running the constructor. This is, of course, dangerous since numerous checks and
security aspects of an object are often taken care of in the constructor.

Examples
public class CloneClient
{
 public CloneClient()
//throws java.lang.CloneNotSupportedException
 {
 Teacher t1 = new Teacher("guddu","22,nagar road");
 //...// Due some stuff to remove the teacher.
 Teacher t2 = (Teacher)t1.clone();
 System.out.println(t2.name);
 }
 public static void main(String args[])
 {
 new CloneClient();
 }
}

class Teacher implements Cloneable
{
 public Object clone() {
 try { return super.clone();
 } catch (java.lang.CloneNotSupportedException e) {
 throw new RuntimeException(e.toString());
 }
 }
 public String name;
 public String clas;
 public Teacher(String name,String clas)
 {
 this.name = name;
 this.clas = clas;

 }
}

Related problems
Not available.

Version Date: 31 March 2006
97

CLASP Vulnerability View — Category 2: Environmental Problems

Information leak through serialization

Overview
Serializable classes are effectively open classes since data cannot be hidden in them.

Consequences
• Confidentiality: Attacker can write out the class to a byte stream in which they can

extract the important data from it.

Exposure period
• Implementation: This is a style issue which needs to be adopted throughout the

implementation of each class.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: In Java, explicitly define final writeObject() to prevent

serialization. This is the recommended solution. Define the writeObject() function
to throw an exception explicitly denying serialization.

• Implementation: Make sure to prevent serialization of your objects.

Discussion
Classes which do no explicitly deny serialization can be serialized by any other class
which can then in turn use the data stored inside it.

Version Date: 31 March 2006
98

CLASP Vulnerability View — Category 2: Environmental Problems

Examples

class Teacher
{

 private String name;
 private String clas;
 public Teacher(String name,String clas)
 {
 //...//Check the database for the name and address
 this.SetName() = name;
 this.Setclas() = clas;

 }
}

Related problems
Not available.

Version Date: 31 March 2006
99

CLASP Vulnerability View — Category 2: Environmental Problems

Overflow of static internal buffer

Overview
A non-final static field can be viewed and edited in dangerous ways.

Consequences
• Integrity: The object could potentially be tampered with.

• Confidentiality: The object could potentially allow the object to be read.

Exposure period
• Design through Implementation: This is a simple logical issue which can be easily

remedied through simple protections.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Design through Implementation: Make any static fields private and final.

Discussion
Non-final fields, which are not public can be read and written to by arbitrary Java code.

Examples
In C++:

public int password r = 45;

Version Date: 31 March 2006
100

CLASP Vulnerability View — Category 2: Environmental Problems

In Java:

static public String r;

This is a uninitiated static class which can be accessed without a get-accessor and
changed without a set-accessor.

Related problems
Not available.

Version Date: 31 March 2006
101

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Category 3: Synchronization & Timing Errors
This section introduces the vulnerability Problem Types organized under the problem
type “synchronization and timing errors.”

State synchronization error

Overview
State synchronization refers to a set of flaws involving contradictory states of execution
in a process which result in undefined behavior.

Consequences
• Undefined: Depending on the nature of the state of corruption, any of the listed

consequences may result.

Exposure period
• Design: Design flaws may be to blame for out-of-sync states, but this is the rarest

method.

• Implementation: Most likely, state-synchronization errors occur due to logical
flaws and race conditions introduced at implementation time.

• Run time: Hardware, operating system, or interaction with other programs may
lead to this error.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium to High

Version Date: 31 March 2006
102

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Avoidance and mitigation

• Implementation: Pay attention to asynchronous actions in processes; and make
copious use of sanity checks in systems that may be subject to synchronization
errors.

Discussion
The class of synchronization errors is large and varied, but all rely on the same
essential flaw. The state of the system is not what the process expects it to be at a
given time.

Obviously, the range of possible symptoms is enormous, as is the range of possible
solutions. The flaws presented in this section are some of the most difficult to diagnose
and fix. It is more important to know how to characterize specific flaws than to gain
information about them.

Examples
In C/C++:

static void print(char * string) {
 char * word;
 int counter;
 fflush(stdout);
 for(word = string; counter = *word++;) putc(counter, stdout);
}

int main(void) {
 pid_t pid;
 if((pid = fork()) < 0) exit(-2);
 else if(pid == 0) print("child");
 else print("parent\n");
 exit(0);
}

In Java:

class read{
 private int lcount;
 private int rcount;
 private int wcount;

 public void getRead(){
 while ((lcount == -1) || (wcount !=0));
 lcount++;

 public void getWrite(){
 while ((lcount == -0);
 lcount--;
 lcount=-1;

Version Date: 31 March 2006
103

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

 public void killLocks(){
 if (lcount==0) return;
 else if (lcount == -1) lcount++;
 else lcount--;
 }
}

Related problems
Not available.

Version Date: 31 March 2006
104

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Covert timing channel

Overview
Unintended information about data gets leaked through observing the timing of events.

Consequences
• Confidentiality: Information leakage.

Exposure period
• Design: Protocols usually have timing difficulties implicit in their design.

• Implementation: Sometimes a timing covert channel can be dependent on
implementation strategy. Example: Using conditionals may leak information, but
using table lookup will not.

Platform
Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Whenever possible, specify implementation strategies that do not

introduce time variances in operations.

• Implementation: Often one can artificially manipulate the time which operations
take or — when operations occur — can remove information from the attacker.

Discussion
Sometimes simply knowing when data is sent between parties can provide a malicious
user with information that should be unauthorized.

Version Date: 31 March 2006
105

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Other times, externally monitoring the timing of operations can reveal sensitive data.
For example, some cryptographic operations can leak their internal state if the time it
takes to perform the operation changes, based on the state. In such cases, it is good to
switch algorithms or implementation techniques. It is also reasonable to add artificial
stalls to make the operation take the same amount of raw CPU time in all cases.

Examples
In Python:

def validate_password(actual_pw, typed_pw):
 if len(actual_pw) <> len(typed_pw):
 return 0
 for i in len(actual_pw):
 if actual_pw[i] <> typed_pw[i]:
 return 0
 return 1

In this example, the attacker can observe how long an authentication takes when the
user types in the correct password. When the attacker tries his own values, he can first
try strings of various length. When he finds a string of the right length, the computation
will take a bit longer because the for loop will run at least once.

Additionally, with this code, the attacker can possibly learn one character of the
password at a time, because when he guesses the first character right, the computation
will take longer than when he guesses wrong. Such an attack can break even the most
sophisticated password with a few hundred guesses.

Note that, in this example, the actual password must be handled in constant time, as far
as the attacker is concerned, even if the actual password is of an unusual length. This
is one reason why it is good to use an algorithm that, among other things, stores a
seeded cryptographic one-way hash of the password, then compare the hashes, which
will always be of the same length.

Related problems
• Storage covert channel

Version Date: 31 March 2006
106

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Symbolic name not mapping to correct object

Overview
A constant symbolic reference to an object is used, even though the underlying object
changes over time.

Consequences
• Access control: The attacker can gain access to otherwise unauthorized

resources.

• Authorization: Race conditions such as this kind may be employed to gain read or
write access to resources not normally readable or writable by the user in
question.

• Integrity: The resource in question, or other resources (through the corrupted one)
may be changed in undesirable ways by a malicious user.

• Accountability: If a file or other resource is written in this method, as opposed to a
valid way, logging of the activity may not occur.

• Non-repudiation: In some cases it may be possible to delete files that a malicious
user might not otherwise have access to — such as log files.

Exposure period

Platform

Required resources

Severity

Likelihood of exploit

Avoidance and mitigation

Discussion
See more specific instances.

Examples
Not available.

Version Date: 31 March 2006
107

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Related problems

• Time of check, time of use race condition

• Comparing classes by name

Version Date: 31 March 2006
108

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Time of check, time of use race condition

Overview
Time-of-check, time-of-use race conditions occur when between the time in which a
given resource is checked, and the time that resource is used, a change occurs in the
resource to invalidate the results of the check.

Consequences
• Access control: The attacker can gain access to otherwise unauthorized

resources.

• Authorization: race conditions such as this kind may be employed to gain read or
write access to resources which are not normally readable or writable by the user
in question.

• Integrity: The resource in question, or other resources (through the corrupted
one), may be changed in undesirable ways by a malicious user.

• Accountability: If a file or other resource is written in this method, as opposed to in
a valid way, logging of the activity may not occur.

• Non-repudiation: In some cases it may be possible to delete files a malicious user
might not otherwise have access to, such as log files.

Exposure period
• Design: Strong locking methods may be designed to protect against this flaw.

• Implementation: Use of system APIs may prevent check, use race conditions.

Platform
• Languages: Any

• Platforms: All

Required resources
• Some access to the resource in question

Severity
Medium

Likelihood of exploit
Low to Medium

Version Date: 31 March 2006
109

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Avoidance and mitigation

• Design: Ensure that some environmental locking mechanism can be used to
protect resources effectively.

• Implementation: Ensure that locking occurs before the check, as opposed to
afterwards, such that the resource, as checked, is the same as it is when in use.

Discussion
Time-of-check, time-of-use race conditions occur when a resource is checked for a
particular value, that value is changed, then the resource is used, based on the
assumption that the value is still the same as it was at check time.

This is a broad category of race condition encompassing binding flaws, locking race
conditions, and others.

Examples
In C/C++:

struct stat *sb;
..
lstat(“...”,sb);
// it has not been updated since the last time it was read
printf(“stated file\n”);
if (sb->st_mtimespec==...)
 print(“Now updating things\n”);
 updateThings();
}

Potentially the file could have been updated between the time of the check and the
lstat, especially since the printf has latency.

Related problems
• State synchronization error

Version Date: 31 March 2006
110

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Comparing classes by name

Overview
The practice of determining an object’s type, based on its name, is dangerous since
malicious code may purposely reuse class names in order to appear trusted.

Consequences
• Authorization: If a program trusts, based on the name of the object, to assume

that it is the correct object, it may execute the wrong program.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Languages: Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Use class equivalency to determine type. Rather than use the

class name to determine if an object is of a given type, use the getClass()
method, and == operator.

Discussion
If the decision to trust the methods and data of an object is based on the name of a
class, it is possible for malicious users to send objects of the same name as trusted
classes and thereby gain the trust afforded to known classes and types.

Version Date: 31 March 2006
111

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples

if (inputClass.getClass().getName().equals(“TrustedClassName”)) {
 // Do something assuming you trust inputClass
 // …
}

Related problems
Not available.

Version Date: 31 March 2006
112

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in switch

Overview
If the variable which is switched on is changed while the switch statement is still in
progress, undefined activity may occur.

Consequences
• Undefined: This flaw will result in the system state going out of sync.

Exposure period
• Implementation: Variable locking is the purview of implementers.

Platform
• Languages: All that allow for multi-threaded activity

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Variables that may be subject to race conditions should be

locked for the duration of any switch statements.

Discussion
This issue is particularly important in the case of switch statements that involve fall-
through style case statements — i.e., those which do not end with break.

If the variable which we are switching on change in the course of execution, the actions
carried out may place the state of the process in a contradictory state or even result in
memory corruption.

Version Date: 31 March 2006
113

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

For this reason, it is important to ensure that all variables involved in switch statements
are locked before the statement starts and are unlocked when the statement ends.

Examples
In C/C++:

#include <sys/types.h>
#include <sys/stat.h>

int main(argc,argv){
 struct stat *sb;
 time_t timer;

 lstat("bar.sh",sb);

 printf("%d\n",sb->st_ctime);
 switch(sb->st_ctime % 2){
 case 0: printf("One option\n");break;
 case 1: printf("another option\n");break;
 default: printf("huh\n");break;
 }

 return 0;
}

Related problems
• Race condition in signal handler

• Race condition within a thread

Version Date: 31 March 2006
114

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in signal handler

Overview
 Race conditions occur frequently in signal handlers, since they are asynchronous
actions. These race conditions may have any number of Problem Types and symptoms.

Consequences
• Authorization: It may be possible to execute arbitrary code through the use of a

write-what-where condition.

• Integrity: Signal race conditions often result in data corruption.

Exposure period
• Requirements specification: A language might be chosen which is not subject to

this flaw.

• Design: Signal handlers with complicated functionality may result in this issue.

• Implementation: The use of any non-reentrant functionality or global variables in a
signal handler might result in this race conditions.

Platform
• Languages: C, C++, Assembly

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements specification: A language might be chosen, which is not subject to

this flaw, through a guarantee of reentrant code.

• Design: Design signal handlers to only set flags rather than perform complex
functionality.

Version Date: 31 March 2006
115

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

• Implementation: Ensure that non-reentrant functions are not found in signal
handlers. Also, use sanity checks to ensure that state is consistent be performing
asynchronous actions which effect the state of execution.

Discussion
Signal race conditions are a common issue that have only recently been seen as
exploitable. These issues occur when non-reentrant functions, or state-sensitive actions
occur in the signal handler, where they may be called at any time. If these functions are
called at an inopportune moment — such as while a non-reentrant function is already
running —, memory corruption occurs that may be exploitable.

Another signal race condition commonly found occurs when free is called within a signal
handler, resulting in a double free and therefore a write-what-where condition. This is a
perfect example of a signal handler taking actions which cannot be accounted for in
state. Even if a given pointer is set to NULL after it has been freed, a race condition still
exists between the time the memory was freed and the pointer was set to NULL. This is
especially prudent if the same signal handler has been set for more than one signal —
since it means that the signal handler itself may be reentered.

Examples
#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>

void *global1, *global2;
char *what;

void sh(int dummy) {
 syslog(LOG_NOTICE,"%s\n",what);
 free(global2);
 free(global1);
 sleep(10);
 exit(0);
}

int main(int argc,char* argv[]) {
 what=argv[1];
 global1=strdup(argv[2]);
 global2=malloc(340);
 signal(SIGHUP,sh);
 signal(SIGTERM,sh);
 sleep(10);
 exit(0);
}

Related problems
• Doubly freeing memory

Version Date: 31 March 2006
116

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

• Using freed memory

• Unsafe function call from a signal handler

• Write-what-where

Version Date: 31 March 2006
117

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Unsafe function call from a signal handler

Overview
There are several functions which — under certain circumstances, if used in a signal
handler — may result in the corruption of memory, allowing for exploitation of the
process.

Consequences
• Access control: It may be possible to execute arbitrary code through the use of a

write-what-where condition.

• Integrity: Signal race conditions often result in data corruption.

Exposure period
• Requirements specification: A language might be chosen which is not subject to

this flaw.

• Design: Signal handlers with complicated functionality may result in this issue.

• Implementation: The use of any number of non-reentrant functions will result in
this issue.

Platform
• Languages: C, C++, Assembly

• Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: A language might be chosen, which is not subject to

this flaw, through a guarantee of reentrant code.

Version Date: 31 March 2006
118

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

• Design: Design signal handlers to only set flags rather than perform complex
functionality.

• Implementation: Ensure that non-reentrant functions are not found in signal
handlers. Also, use sanity checks to ensure that state is consistently performing
asynchronous actions which effect the state of execution.

Discussion
This flaw is a subset of race conditions occurring in signal handler calls which is
concerned primarily with memory corruption caused by calls to non-reentrant functions
in signal handlers.

Non-reentrant functions are functions that cannot safely be called, interrupted, and then
recalled before the first call has finished without resulting in memory corruption. The
function call syslog() is an example of this. In order to perform its functionality, it
allocates a small amount of memory as “scratch space.” If syslog() is suspended by a
signal call and the signal handler calls syslog(), the memory used by both of these
functions enters an undefined, and possibly, exploitable state.

Examples
See Race condition in signal handler, for an example usage of free() in a signal handler
which is exploitable.

Related problems
• Race condition in signal handler

• Write-what-where

Version Date: 31 March 2006
119

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Failure to drop privileges when reasonable

Overview
Failing to drop privileges when it is reasonable to do so results in a lengthened time
during which exploitation may result in unnecessarily negative consequences.

Consequences
• Access control: An attacker may be able to access resources with the elevated

privilege that he should not have been able to access. This is particularly likely in
conjunction with another flaw — e.g., a buffer overflow.

Exposure period
• Design: Privilege separation decisions should be made and enforced at the

architectural design phase of development.

Platform
• Languages: Any

• Platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Design: Ensure that appropriate compartmentalization is built into the system

design and that the compartmentalization serves to allow for and further reinforce
privilege separation functionality. Architects and designers should rely on the
principle of least privilege to decide when it is appropriate to use and to drop
system privileges.

Version Date: 31 March 2006
120

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
The failure to drop system privileges when it is reasonable to do so is not a vulnerability
by itself. It does, however, serve to significantly increase the Severity of other
vulnerabilities. According to the principle of least privilege, access should be allowed
only when it is absolutely necessary to the function of a given system, and only for the
minimal necessary amount of time.

Any further allowance of privilege widens the window of time during which a successful
exploitation of the system will provide an attacker with that same privilege.

If at all possible, limit the allowance of system privilege to small, simple sections of code
that may be called atomically.

Examples
In C/C++:

setuid(0);
//Do some important stuff
//setuid(old_uid);
// Do some non privlidged stuff.

In Java:

method() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 //Insert all code here
 }
 });
}

Related problems
• All problems with the consequence of “Access control.”

Version Date: 31 March 2006
121

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition in checking for certificate revocation

Overview
If the revocation status of a certificate is not checked before each privilege requiring
action, the system may be subject to a race condition, in which their certificate may be
used before it is checked for revocation.

Consequences
• Authentication: Trust may be assigned to an entity who is not who it claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may be
integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a trusted entity,
resulting in information disclosure.

Exposure period
• Design: Checks for certificate revocation should be included in the design of a

system

• Design: One can choose to use a language which abstracts out this part of the
authentication process.

Platform
• Languages: Languages which do not abstract out this part of the process.

• Operating platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Ensure that certificates are checked for revoked status before each use

of a protected resource

Version Date: 31 March 2006
122

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
If a certificate is revoked after the initial check, all subsequent actions taken with the
owner of the revoked certificate will loose all benefits guaranteed by the certificate. In
fact, it is almost certain that the use of a revoked certificate indicates malicious activity.

If the certificate is checked before each access of a protected resource, the delay
subject to a possible race condition becomes almost negligible and significantly reduces
the risk associated with this issue.

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if (X509_V_OK==foo)
//do stuff
 foo=SSL_get_veryify_result(ssl);
 //do more stuff without the check.

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
123

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Passing mutable objects to an untrusted method

Overview
Sending non-cloned mutable data as an argument may result in that data being altered
or deleted by the called function, thereby putting the calling function into an undefined
state.

Consequences
• Integrity: Potentially data could be tampered with by another function which

should not have been tampered with.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Languages: C/C++ or Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Pass in data which should not be alerted as constant or

immutable.

• Implementation: Clone all mutable data before returning references to it. This is
the preferred mitigation. This way — regardless of what changes are made to the
data — a valid copy is retained for use by the class.

Version Date: 31 March 2006
124

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
In situations where unknown code is called with references to mutable data, this
external code may possibly make changes to the data sent. If this data was not
previously cloned, you will be left with modified data which may, or may not, be valid in
the context of execution.

Examples
In C\C++:

private:
 int foo.
 complexType bar;
 String baz;
 otherClass externalClass;

public:
 void doStuff() {
 externalClass.doOtherStuff(foo, bar, baz)
 }

In this example, bar and baz will be passed by reference to doOtherStuff() which may
change them.

Related problems
Not available.

Version Date: 31 March 2006
125

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Mutable object returned

Overview
Sending non-cloned mutable data as a return value may result in that data being altered
or deleted by the called function, thereby putting the class in an undefined state.

Consequences
• Access Control / Integrity: Potentially data could be tampered with by another

function which should not have been tampered with.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Languages: C,C++ or Java

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Pass in data which should not be alerted as constant or

immutable.

• Implementation: Clone all mutable data before returning references to it. This is
the preferred mitigation. This way, regardless of what changes are made to the
data, a valid copy is retained for use by the class.

Discussion
In situations where functions return references to mutable data, it is possible that this
external code, which called the function, may make changes to the data sent. If this

Version Date: 31 March 2006
126

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

data was not previously cloned, you will be left with modified data which may, or may
not, be valid in the context of the class in question.

Examples
In C\C++:

private:
 externalClass foo;

public:
 void doStuff() {
//..//Modify foo
 return foo;
 }

In Java:

public class foo {
 private externalClass bar = new externalClass();
 public doStuff(...){
 //..//Modify bar
 return bar;
 }

Related problems
Not available.

Version Date: 31 March 2006
127

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through
error messages

Overview
Server messages need to be parsed before being passed on to the user.

Consequences
• Confidentiality: Often this will either reveal sensitive information which may be

used for a later attack or private information stored in the server.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

• Build: It is important to adequately set read privileges and otherwise operationally
protect the log.

Platform
• Languages: Any; it is especially prevalent, however, when dealing with SQL or

languages which throw errors.

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Any error should be parsed for dangerous revelations.

• Build: Debugging information should not make its way into a production release.

Version Date: 31 March 2006
128

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
The first thing an attacker may use — once an attack has failed — to stage the next
attack is the error information provided by the server.

SQL Injection attacks generally probe the server for information in order to stage a
successful attack.

Examples
In Java:

try {
 /.../
} catch (Exception e) {
 System.out.println(e);
}

Here you are passing much more data than is needed.

Another example is passing the SQL exceptions to a WebUser without filtering.

Related problems
Not available.

Version Date: 31 March 2006
129

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through
sent data

Overview
The accidental leaking of sensitive information through sent data refers to the
transmission of data which is either sensitive in and of itself or useful in the further
exploitation of the system through standard data channels.

Consequences
• Confidentiality: Data leakage results in the compromise of data confidentiality.

Exposure period
• Requirements specification: Information output may be specified in the

requirements documentation.

• Implementation: The final decision as to what data is sent is made at
implementation time.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Undefined.

Avoidance and mitigation
• Requirements specification: Specify data output such that no sensitive data is

sent.

• Implementation: Ensure that any possibly sensitive data specified in the
requirements is verified with designers to ensure that it is either a calculated risk
or mitigated elsewhere.

Version Date: 31 March 2006
130

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Discussion
Accidental data leakage occurs in several places and can essentially be defined as
unnecessary data leakage. Any information that is not necessary to the functionality
should be removed in order to lower both the overhead and the possibility of security
sensitive data being sent.

Examples
The following is an actual mysql error statement:

Warning: mysql_pconnect():
Access denied for user: 'root@localhost' (Using password: N1nj4) in
/usr/local/www/wi-data/includes/database.inc on line 4

Related problems
• Accidental leaking of sensitive information through error messages

• Accidental leaking of sensitive information through data queries

Version Date: 31 March 2006
131

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Accidental leaking of sensitive information through
data queries

Overview
When trying to keep information confidential, an attacker can often infer some of the
information by using statistics.

Consequences
• Confidentiality: Sensitive information may possibly be through data queries

accidentally.

Exposure period
• Design: Proper mechanisms for preventing this kind of problem generally need to

be identified at the design level.

Platform
Any; particularly systems using relational databases or object-relational databases.

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
This is a complex topic. See the book Translucent Databases for a good discussion of
best practices.

Discussion
In situations where data should not be tied to individual users, but a large number of
users should be able to make queries that “scrub” the identity of users, it may be
possible to get information about a user — e.g., by specifying search terms that are
known to be unique to that user.

Version Date: 31 March 2006
132

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples
See the book Translucent Databases for examples.

Related problems
Not available.

Version Date: 31 March 2006
133

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Race condition within a thread

Overview
If two threads of execution use a resource simultaneously, there exists the possibility
that resources may be used while invalid, in turn making the state of execution
undefined.

Consequences
• Integrity: The main problem is that — if a lock is overcome — data could be

altered in a bad state.

Exposure period
• Design: Use a language which provides facilities to easily use threads safely.

Platform
• Languages: Any language with threads

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation

Discussion
• Design: Use locking functionality. This is the recommended solution. Implement

some form of locking mechanism around code which alters or reads persistent
data in a multi-threaded environment.

• Design: Create resource-locking sanity checks. If no inherent locking mechanisms
exist, use flags and signals to enforce your own blocking scheme when resources
are being used by other threads of execution.

Version Date: 31 March 2006
134

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Examples
In C/C++:

int foo = 0;
 int storenum(int num)
 {
 static int counter = 0;
 counter++;
 if (num > foo)
 foo = num;
 return foo;
 }

In Java:

public classRace {
 static int foo = 0;

 public static void main() {
 new Threader().start();
 foo = 1;
 }

 public static class Threader extends Thread {
 public void run() {
 System.out.println(foo);
 }
 }
}

Related problems
Not available.

Version Date: 31 March 2006
135

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Reflection attack in an auth protocol

Overview
Simple authentication protocols are subject to reflection attacks if a malicious user can
use the target machine to impersonate a trusted user.

Consequences
• Authentication: The primary result of reflection attacks is successful authentication

with a target machine — as an impersonated user.

Exposure period
• Design: Protocol design may be employed more intelligently in order to remove

the possibility of reflection attacks.

Platform
• Languages: Any

• Platforms: All

Required resources
Any

Severity
Medium to High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Use different keys for the initiator and responder or of a different type of

challenge for the initiator and responder.

Discussion
Reflection attacks capitalize on mutual authentication schemes in order to trick the
target into revealing the secret shared between it and another valid user.

In a basic mutual-authentication scheme, a secret is known to both the valid user and
the server; this allows them to authenticate. In order that they may verify this shared
secret without sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme

Version Date: 31 March 2006
136

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

in which they each pick a value, then request the hash of that value as keyed by the
shared secret.

In a reflection attack, the attacker claims to be a valid user and requests the hash of a
random value from the server. When the server returns this value and requests its own
value to be hashed, the attacker opens another connection to the server. This time, the
hash requested by the attacker is the value which the server requested in the first
connection. When the server returns this hashed value, it is used in the first connection,
authenticating the attacker successfully as the impersonated valid user.

Examples
In C/C++:

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int
*olen) {
 const EVP_MD *m;
 EVP_MD_CTX ctx;
 unsigned char *ret;

 OpenSSL_add_all_digests();
 if (!(m = EVP_get_digestbyname(alg)))
 return NULL;
 if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE)))
 return NULL;
 EVP_DigestInit(&ctx, m);
 EVP_DigestUpdate(&ctx,buf,len);
 EVP_DigestFinal(&ctx,ret,olen);
 return ret;
}

unsigned char *generate_password_and_cmd(char *password_and_cmd){
 simple_digest("sha1",password,strlen(password_and_cmd)...);
}

 In Java:

String command = new String(“some cmd to execute & the password”)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(command.getBytes(“UTF-8”));
byte[] digest = encer.digest();

Related problems
• Using a broken or risky cryptographic algorithm

Version Date: 31 March 2006
137

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

Capture-replay

Overview
A capture-relay protocol flaw exists when it is possible for a malicious user to sniff
network traffic and replay it to the server in question to the same effect as the original
message (or with minor changes).

Consequences
• Authorization: Messages sent with a capture-relay attack allow access to

resources which are not otherwise accessible without proper authentication.

Exposure period
• Design: Prevention of capture-relay attacks must be performed at the time of

protocol design.

Platform
• Languages: All

• Operating platforms: All

Required resources
Network proximity: Some ability to sniff from, and inject messages into, a stream would
be required to capitalize on this flaw.

Severity
Medium to High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Utilize some sequence or time stamping functionality along with a

checksum which takes this into account in order to ensure that messages can be
parsed only once.

Discussion
Capture-relay attacks are common and can be difficult to defeat without cryptography.
They are a subset of network injection attacks that rely listening in on previously sent

Version Date: 31 March 2006
138

CLASP Vulnerability View — Category 3: Synchronization & Timing Errors

valid commands, then changing them slightly if necessary and resending the same
commands to the server.

Since any attacker who can listen to traffic can see sequence numbers, it is necessary
to sign messages with some kind of cryptography to ensure that sequence numbers are
not simply doctored along with content.

Examples
In C/C++:

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int
*olen) {
 const EVP_MD *m;
 EVP_MD_CTX ctx;
 unsigned char *ret;

 OpenSSL_add_all_digests();
 if (!(m = EVP_get_digestbyname(alg)))
 return NULL;
 if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE)))
 return NULL;
 EVP_DigestInit(&ctx, m);
 EVP_DigestUpdate(&ctx,buf,len);
 EVP_DigestFinal(&ctx,ret,olen);
 return ret;
}

unsigned char *generate_password_and_cmd(char *password_and_cmd){
 simple_digest("sha1",password,strlen(password_and_cmd)...);
}

 In Java:

String command = new String(“some cmd to execute & the password”)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(command.getBytes(“UTF-8”));
byte[] digest = encer.digest();

Related problems
Not available.

Version Date: 31 March 2006
139

CLASP Vulnerability View — Category 4: Protocol Errors

Category 4: Protocol Errors
This section introduces the vulnerability Problem Types organized under the problem
type “protocol errors.”

Failure to follow chain of trust in certificate validation

Overview
Failure to follow the chain of trust when validating a certificate results in the trust of a
given resource which has no connection to trusted root-certificate entities.

Consequences
• Authentication: Exploitation of this flaw can lead to the trust of data that may have

originated with a spoofed source.

• Accountability: Data, requests, or actions taken by the attacking entity can be
carried out as a spoofed benign entity.

Exposure period
• Design: Proper certificate checking should be included in the system design.

• Implementation: If use of SSL (or similar) is simply mandated by design and
requirements, it is the implementor’s job to properly use the API and all its
protections.

Platform
• Languages: All

• Platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Low

Version Date: 31 March 2006
140

CLASP Vulnerability View — Category 4: Protocol Errors

Avoidance and mitigation

• Design: Ensure that proper certificate checking is included in the system design.

• Implementation: Understand, and properly implement all checks necessary to
ensure the integrity of certificate trust integrity.

Discussion
If a system fails to follow the chain of trust of a certificate to a root server, the certificate
looses all usefulness as a metric of trust. Essentially, the trust gained from a certificate
is derived from a chain of trust — with a reputable trusted entity at the end of that list.
The end user must trust that reputable source, and this reputable source must vouch for
the resource in question through the medium of the certificate.

In some cases, this trust traverses several entities who vouch for one another. The
entity trusted by the end user is at one end of this trust chain, while the certificate
wielding resource is at the other end of the chain.

If the user receives a certificate at the end of one of these trust chains and then
proceeds to check only that the first link in the chain, no real trust has been derived,
since you must traverse the chain to a trusted source to verify the certificate.

Examples
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo))
//do stuff

Related problems
• Key exchange without entity authentication

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
141

CLASP Vulnerability View — Category 4: Protocol Errors

Key exchange without entity authentication

Overview
Performing a key exchange without verifying the identity of the entity being
communicated with will preserve the integrity of the information sent between the two
entities; this will not, however, guarantee the identity of end entity.

Consequences
• Authentication: No authentication takes place in this process, bypassing an

assumed protection of encryption

• Confidentiality: The encrypted communication between a user and a trusted host
may be subject to a “man-in-the-middle” sniffing attack

Exposure period
• Design: Proper authentication should be included in the system design.

• Design: Use a language which provides an interface to safely handle this
exchange.

• Implementation: If use of SSL (or similar) is simply mandated by design and
requirements, it is the implementor’s job to properly use the API and all its
protections.

Platform
• Languages: Any language which does not provide a framework for key exchange.

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Ensure that proper authentication is included in the system design.

Version Date: 31 March 2006
142

CLASP Vulnerability View — Category 4: Protocol Errors

• Implementation: Understand and properly implement all checks necessary to
ensure the identity of entities involved in encrypted communications.

Discussion
Key exchange without entity authentication may lead to a set of attacks known as “man-
in-the-middle” attacks. These attacks take place through the impersonation of a trusted
server by a malicious server. If the user skips or ignores the failure of authentication,
the server may request authentication information from the user and then use this
information with the true server to either sniff the legitimate traffic between the user and
host or simply to log in manually with the user’s credentials.

Examples
Many systems have used Diffie-Hellman key exchange without authenticating the
entities exchanging keys, leading to man-in-the-middle attacks. Many people using
SSL/TLS skip the authentication (often unknowingly).

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
143

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to validate host-specific certificate data

Overview
The failure to validate host-specific certificate data may mean that, while the certificate
read was valid, it was not for the site originally requested.

Consequences
• Integrity: The data read from the system vouched for by the certificate may not be

from the expected system.

• Authentication: Trust afforded to the system in question — based on the expired
certificate — may allow for spoofing or redirection attacks.

Exposure period
• Design: Certificate verification and handling should be performed in the design

phase.

Platform
• Language: All

• Operating platform: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Check for expired certificates and provide the user with adequate

information about the nature of the problem and how to proceed.

Discussion
If the host-specific data contained in a certificate is not checked, it may be possible for a
redirection or spoofing attack to allow a malicious host with a valid certificate to provide
data, impersonating a trusted host.

Version Date: 31 March 2006
144

CLASP Vulnerability View — Category 4: Protocol Errors

While the attacker in question may have a valid certificate, it may simply be a valid
certificate for a different site. In order to ensure data integrity, we must check that the
certificate is valid and that it pertains to the site that we wish to access.

Examples
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || X509_V_ERR_SUBJECT_ISSUER_MISMATCH==foo))
//do stuff

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate certificate expiration

• Failure to check for certificate revocation

Version Date: 31 March 2006
145

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to validate certificate expiration

Overview
The failure to validate certificate operation may result in trust being assigned to
certificates which have been abandoned due to age.

Consequences
• Integrity: The data read from the system vouched for by the expired certificate

may be flawed due to malicious spoofing.

• Authentication: Trust afforded to the system in question — based on the expired
certificate — may allow for spoofing attacks.

Exposure period
• Design: Certificate expiration handling should be performed in the design phase.

Platform
• Languages: All

• Platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Check for expired certificates and provide the user with adequate

information about the nature of the problem and how to proceed.

Discussion
When the expiration of a certificate is not taken in to account, no trust has necessarily
been conveyed through it; therefore, all benefit of certificate is lost.

Version Date: 31 March 2006
146

CLASP Vulnerability View — Category 4: Protocol Errors

Examples

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))
//do stuff

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Key exchange without entity authentication

• Failure to check for certificate revocation

• Using a key past its expiration date

Version Date: 31 March 2006
147

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to check for certificate revocation

Overview
If a certificate is used without first checking to ensure it was not revoked, the certificate
may be compromised.

Consequences
• Authentication: Trust may be assigned to an entity who is not who it claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may be
integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a trusted entity,
resulting in information disclosure.

Exposure period
• Design: Checks for certificate revocation should be included in the design of a

system.

• Design: One can choose to use a language which abstracts out this part of
authentication and encryption.

Platform
• Languages: Any language which does not abstract out this part of the process

• Operating platforms: All

Required resources
Minor trust: Users must attempt to interact with the malicious system.

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Ensure that certificates are checked for revoked status.

Version Date: 31 March 2006
148

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
The failure to check for certificate revocation is a far more serious flaw than related
certificate failures. This is because the use of any revoked certificate is almost certainly
malicious. The most common reason for certificate revocation is compromise of the
system in question, with the result that no legitimate servers will be using a revoked
certificate, unless they are sorely out of sync.

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
... without a get_verify_results

Related problems
• Failure to follow chain of trust in certificate validation

• Failure to validate host-specific certificate data

• Key exchange without entity authentication

• Failure to check for certificate expiration

Version Date: 31 March 2006
149

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to encrypt data

Overview
The failure to encrypt data passes up the guarantees of confidentiality, integrity, and
accountability that properly implemented encryption conveys.

Consequences
• Confidentiality: Properly encrypted data channels ensure data confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure accountability.

Exposure period
• Requirements specification: Encryption should be a requirement of systems that

transmit data.

• Design: Encryption should be designed into the system at the architectural and
design phases

Platform
• Languages: Any

• Operating platform: Any

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Requirements specification: require that encryption be integrated into the system.

• Design: Ensure that encryption is properly integrated into the system design, not
simply as a drop-in replacement for sockets.

Version Date: 31 March 2006
150

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
Omitting the use of encryption in any program which transfers data over a network of
any kind should be considered on par with delivering the data sent to each user on the
local networks of both the sender and receiver.

Worse, this omission allows for the injection of data into a stream of communication
between two parties — with no means for the victims to separate valid data from invalid.

In this day of widespread network attacks and password collection sniffers, it is an
unnecessary risk to omit encryption from the design of any system which might benefit
from it.

Examples
In C:

server.sin_family = AF_INET;
hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0)
 error("Connecting");
...

 while ((n=read(sock,buffer,BUFSIZE-1))!=-1){
 write(dfd,password_buffer,n);
.
.
.

In Java:

try {
 URL u = new URL("http://www.importantsecretsite.org/");
 HttpURLConnection hu = (HttpURLConnection) u.openConnection();
 hu.setRequestMethod("PUT");
 hu.connect();
 OutputStream os = hu.getOutputStream();
 hu.disconnect();
}
catch (IOException e) { //...

Related problems
Not available.

Version Date: 31 March 2006
151

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to add integrity check value

Overview
If integrity check values or “checksums” are omitted from a protocol, there is no way of
determining if data has been corrupted in transmission.

Consequences
• Integrity: Data that is parsed and used may be corrupted.

• Non-repudiation: Without a checksum it is impossible to determine if any changes
have been made to the data after it was sent.

Exposure period
• Design: Checksums are an aspect of protocol design and should be handled

there.

• Implementation: Checksums must be properly created and added to the
messages in the correct manner to ensure that they are correct when sent.

Platform
• Languages: All

• Platforms: All

Required resources
Network proximity: Some ability to inject messages into a stream, or otherwise corrupt
network traffic, would be required to capitalize on this flaw.

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Add an appropriately sized checksum to the protocol, ensuring that data

received may be simply validated before it is parsed and used.

• Implementation: Ensure that the checksums present in the protocol design are
properly implemented and added to each message before it is sent.

Version Date: 31 March 2006
152

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
The failure to include checksum functionality in a protocol removes the first application-
level check of data that can be used. The end-to-end philosophy of checks states that
integrity checks should be performed at the lowest level that they can be completely
implemented. Excluding further sanity checks and input validation performed by
applications, the protocol’s checksum is the most important level of checksum, since it
can be performed more completely than at any previous level and takes into account
entire messages, as opposed to single packets.

Failure to add this functionality to a protocol specification, or in the implementation of
that protocol, needlessly ignores a simple solution for a very significant problem and
should never be skipped.

Examples
In C/C++:

int r,s;
struct hostent *h;
struct sockaddr_in rserv,lserv;
h=gethostbyname("127.0.0.1");
rserv.sin_family=h->h_addrtype;
memcpy((char *) &rserv.sin_addr.s_addr, h->h_addr_list[0]
 ,h->h_length);
rserv.sin_port= htons(1008);
s = socket(AF_INET,SOCK_DGRAM,0);

lserv.sin_family = AF_INET;
lserv.sin_addr.s_addr = htonl(INADDR_ANY);
lserv.sin_port = htons(0);

r = bind(s, (struct sockaddr *) &lserv,sizeof(lserv));
sendto(s,important_data,strlen(improtant_data)+1,0
 ,(struct sockaddr *) &rserv, sizeof(rserv));

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Version Date: 31 March 2006
153

CLASP Vulnerability View — Category 4: Protocol Errors

Related problems

• Failure to check integrity check value

Version Date: 31 March 2006
154

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to check integrity check value

Overview
If integrity check values or “checksums” are not validated before messages are parsed
and used, there is no way of determining if data has been corrupted in transmission.

Consequences
• Authentication: Integrity checks usually use a secret key that helps authenticate

the data origin. Skipping integrity checking generally opens up the possibility that
new data from an invalid source can be injected.

• Integrity: Data that is parsed and used may be corrupted.

• Non-repudiation: Without a checksum check, it is impossible to determine if any
changes have been made to the data after it was sent.

Exposure period
• Implementation: Checksums must be properly checked and validated in the

implementation of message receiving.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: Ensure that the checksums present in messages are properly

checked in accordance with the protocol specification before they are parsed and
used.

Version Date: 31 March 2006
155

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
The failure to validate checksums before use results in an unnecessary risk that can
easily be mitigated with very few lines of code. Since the protocol specification
describes the algorithm used for calculating the checksum, it is a simple matter of
implementing the calculation and verifying that the calculated checksum and the
received checksum match.

If this small amount of effort is skipped, the consequences may be far greater.

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);
 clilen = sizeof(cli);
 if (inet_ntoa(cli.sin_addr)==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

In Java:

while(true) {
 DatagramPacket packet
 = new DatagramPacket(data,data.length,IPAddress, port);
 socket.send(sendPacket);
}

Related problems
• Failure to add integrity check value

Version Date: 31 March 2006
156

CLASP Vulnerability View — Category 4: Protocol Errors

Use of hard-coded password

Overview
The use of a hard-coded password increases the possibility of password guessing
tremendously.

Consequences
• Authentication: If hard-coded passwords are used, it is almost certain that

malicious users will gain access through the account in question.

Exposure period
• Design: For both front-end to back-end connections and default account settings,

alternate decisions must be made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Knowledge of the product or access to code.

Severity
High

Likelihood of exploit
Very high

Avoidance and mitigation
• Design (for default accounts): Rather than hard code a default username and

password for first time logins, utilize a “first login” mode which requires the user to
enter a unique strong password.

• Design (for front-end to back-end connections): Three solutions are possible,
although none are complete. The first suggestion involves the use of generated
passwords which are changed automatically and must be entered at given time
intervals by a system administrator. These passwords will be held in memory and
only be valid for the time intervals. Next, the passwords used should be limited at
the back end to only performing actions valid to for the front end, as opposed to

Version Date: 31 March 2006
157

CLASP Vulnerability View — Category 4: Protocol Errors

having full access. Finally, the messages sent should be tagged and
checksummed with time sensitive values so as to prevent replay style attacks.

Discussion
The use of a hard-coded password has many negative implications — the most
significant of these being a failure of authentication measures under certain
circumstances.

On many systems, a default administration account exists which is set to a simple
default password which is hard-coded into the program or device. This hard-coded
password is the same for each device or system of this type and often is not changed or
disabled by end users. If a malicious user comes across a device of this kind, it is a
simple matter of looking up the default password (which is freely available and public on
the internet) and logging in with complete access.

In systems which authenticate with a back-end service, hard-coded passwords within
closed source or drop-in solution systems require that the back-end service use a
password which can be easily discovered. Client-side systems with hard-coded
passwords propose even more of a threat, since the extraction of a password from a
binary is exceedingly simple.

Examples
In C\C++:

int VerifyAdmin(char *password) {

 if (strcmp(password, “Mew!”)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(“Mew!”)) {
 return(0)
 }
//Diagnostic Mode
 return(1);
}

Every instance of this program can be placed into diagnostic mode with the same
password. Even worse is the fact that if this program is distributed as a binary-only
distribution, it is very difficult to change that password or disable this “functionality.”

Version Date: 31 March 2006
158

CLASP Vulnerability View — Category 4: Protocol Errors

Related problems

• Use of hard-coded cryptographic key

• Storing passwords in a recoverable format

Version Date: 31 March 2006
159

CLASP Vulnerability View — Category 4: Protocol Errors

Use of hard-coded cryptographic key

Overview
The use of a hard-coded cryptographic key tremendously increases the possibility that
encrypted data may be recovered

Consequences
• Authentication: If hard-coded cryptographic keys are used, it is almost certain that

malicious users will gain access through the account in question.

Exposure period
• Design: For both front-end to back-end connections and default account settings,

alternate decisions must be made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Prevention schemes mirror that of hard-coded password storage.

Discussion
The main difference between the use of hard-coded passwords and the use of hard-
coded cryptographic keys is the false sense of security that the former conveys. Many
people believe that simply hashing a hard-coded password before storage will protect
the information from malicious users. However, many hashes are reversible (or at least
vulnerable to brute force attacks) — and further, many authentication protocols simply
request the hash itself, making it no better than a password.

Version Date: 31 March 2006
160

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C\C++:

int VerifyAdmin(char *password) {
 if (strcmp(password,”68af404b513073584c4b6f22b6c63e6b”)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(“68af404b513073584c4b6f22b6c63e6b”)) {
 return(0)
 }
//Diagnostic Mode
 return(1);
}

Related problems
• Use of hard-coded password

Version Date: 31 March 2006
161

CLASP Vulnerability View — Category 4: Protocol Errors

Storing passwords in a recoverable format

Overview
The storage of passwords in a recoverable format makes them subject to password
reuse attacks by malicious users. If a system administrator can recover the password
directly — or use a brute force search on the information available to him —, he can
use the password on other accounts.

Consequences
• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere to impersonate
the users in question.

Exposure period
• Design: The method of password storage and use is often decided at design time.

• Implementation: In some cases, the decision of algorithms for password
encryption or hashing may be left to the implementers.

Platform
• Languages: All

• Operating platforms: All

Required resources
Access to read stored password hashes

Severity
Medium to High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design / Implementation: Ensure that strong, non-reversible encryption is used to

protect stored passwords.

Version Date: 31 March 2006
162

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
The use of recoverable passwords significantly increases the chance that passwords
will be used maliciously. In fact, it should be noted that recoverable encrypted
passwords provide no significant benefit over plain-text passwords since they are
subject not only to reuse by malicious attackers but also by malicious insiders.

Examples
In C\C++:

int VerifyAdmin(char *password) {

 if (strcmp(compress(password), compressed_password)) {
 printf(“Incorrect Password!\n”);
 return(0)
 }

 printf(“Entering Diagnostic Mode…\n”);
 return(1);
}

In Java:

int VerifyAdmin(String password) {

 if (passwd.Eqauls(compress((compressed_password)) {
 return()0)
 }
//Diagnostic Mode
 return(1);
}

Related problems
• Use of hard-coded passwords

Version Date: 31 March 2006
163

CLASP Vulnerability View — Category 4: Protocol Errors

Trusting self-reported IP address

Overview
The use of IP addresses as authentication is flawed and can easily be spoofed by
malicious users.

Consequences
• Authentication: Malicious users can fake authentication information,

impersonating any IP address

Exposure period
• Design: Authentication methods are generally chosen during the design phase of

development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use other means of identity verification that cannot be simply spoofed.

Discussion
As IP addresses can be easily spoofed, they do not constitute a valid authentication
mechanism. Alternate methods should be used if significant authentication is
necessary.

Version Date: 31 March 2006
164

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);
 clilen = sizeof(cli);
 if (inet_ntoa(cli.sin_addr)==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 if ((rp.getAddress()==...) && (in==...)){
 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Related problems
• Trusting self-reported DNS name

• Using the referer field for authentication

Version Date: 31 March 2006
165

CLASP Vulnerability View — Category 4: Protocol Errors

Trusting self-reported DNS name

Overview
The use of self-reported DNS names as authentication is flawed and can easily be
spoofed by malicious users.

Consequences
Authentication: Malicious users can fake authentication information by providing false
DNS information.

Exposure period
• Design: Authentication methods are generally chosen during the design phase of

development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use other means of identity verification that cannot be simply spoofed.

Discussion
As DNS names can be easily spoofed or mis-reported, they do not constitute a valid
authentication mechanism. Alternate methods should be used if the significant
authentication is necessary.

Version Date: 31 March 2006
166

CLASP Vulnerability View — Category 4: Protocol Errors

In addition, DNS name resolution as authentication would — even if it was a valid
means of authentication — imply a trust relationship with the DNS servers used, as well
as all of the servers they refer to.

Examples
In C/C++:

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {
 memset(msg, 0x0, MAX_MSG);
 clilen = sizeof(cli);
 h=gethostbyname(inet_ntoa(cliAddr.sin_addr));
 if (h->h_name==...)
 n = recvfrom(sd, msg, MAX_MSG, 0,
 (struct sockaddr *) & cli, &clilen);
}

In Java:

while(true) {
 DatagramPacket rp=new DatagramPacket(rData,rData.length);

 outSock.receive(rp);
 String in = new String(p.getData(),0, rp.getLength());
 InetAddress IPAddress = rp.getAddress();
 int port = rp.getPort();

 if ((rp.getHostName()==...) && (in==...)){
 out = secret.getBytes();
 DatagramPacket sp =new DatagramPacket(out,out.length,
 IPAddress, port);
 outSock.send(sp);
 }
}

Related problems
• Trusting self-reported IP address

• Using referrer field for authentication

Version Date: 31 March 2006
167

CLASP Vulnerability View — Category 4: Protocol Errors

Using referrer field for authentication

Overview
The referrer field in HTTP requests can be easily modified and, as such, is not a valid
means of message integrity checking.

Consequences
• Authorization: Actions, which may not be authorized otherwise, can be carried out

as if they were validated by the server referred to.

• Accountability: Actions may be taken in the name of the server referred to.

Exposure period
• Design: Authentication methods are generally chosen during the design phase of

development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: Use other means of authorization that cannot be simply spoofed.

Discussion
The referrer field in HTML requests can be simply modified by malicious users,
rendering it useless as a means of checking the validity of the request in question. In
order to usefully check if a given action is authorized, some means of strong
authentication and method protection must be used.

Version Date: 31 March 2006
168

CLASP Vulnerability View — Category 4: Protocol Errors

Examples
In C/C++:

sock= socket(AF_INET, SOCK_STREAM, 0);
...
bind(sock, (struct sockaddr *)&server, len)
...
while (1)
newsock=accept(sock, (struct sockaddr *)&from, &fromlen);
pid=fork();
if (pid==0) {
 n = read(newsock,buffer,BUFSIZE);
...
if (buffer+...==Referer: http://www.foo.org/dsaf.html)
//do stuff

In Java:

public class httpd extends Thread{
 Socket cli;
 public httpd(Socket serv){
 cli=serv;
 start();
 }
 public static void main(String[]a){
 ...
 ServerSocket serv=new ServerSocket(8181);
 for(;;){
 new h(serv.accept());
 ...
 public void run(){
 try{
 BufferedReader reader
 =new BufferedReader(new
InputStreamReader(cli.getInputStream()));
 //if i contains a the proper referer.

 DataOutputStream o=
 new DataOutputStream(c.getOutputStream());
 ...

Related problems
• Trusting self-reported IP address

• Using the referer field for authentication

Version Date: 31 March 2006
169

CLASP Vulnerability View — Category 4: Protocol Errors

Using a broken or risky cryptographic algorithm

Overview
The use of a broken or risky cryptographic algorithm is an unnecessary risk that may
result in the disclosure of sensitive information.

Consequences
• Confidentiality: The confidentiality of sensitive data may be compromised by the

use of a broken or risky cryptographic algorithm.

• Integrity: The integrity of sensitive data may be compromised by the use of a
broken or risky cryptographic algorithm.

• Accountability: Any accountability to message content preserved by cryptography
may be subject to attack.

Exposure period
• Design: The decision as to what cryptographic algorithm to utilize is generally

made at design time.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Medium to High

Avoidance and mitigation
• Design: Use a cryptographic algorithm that is currently considered to be strong by

experts in the field.

Version Date: 31 March 2006
170

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
Since the state of cryptography advances so rapidly, it is common to find algorithms,
which previously were considered to be safe, currently considered unsafe. In some
cases, things are discovered, or processing speed increases to the degree that the
cryptographic algorithm provides little more benefit than the use of no cryptography at
all.

Examples
In C/C++:

EVP_des_ecb();

In Java:

Cipher des=Cipher.getInstance("DES...);
des.initEncrypt(key2);

Related problems
• Failure to encrypt data

Version Date: 31 March 2006
171

CLASP Vulnerability View — Category 4: Protocol Errors

Using password systems

Overview
The use of password systems as the primary means of authentication may be subject to
several flaws or shortcomings, each reducing the effectiveness of the mechanism.

Consequences
• Authentication: The failure of a password authentication mechanism will almost

always result in attackers being authorized as valid users.

Exposure period
• Design: The period of development in which authentication mechanisms and their

protections are devised is the design phase.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
High

Likelihood of exploit
Very High

Avoidance and mitigation
• Design: Use a zero-knowledge password protocol, such as SRP.

• Design: Ensure that passwords are sorted safely and are not reversible.

• Design: Implement password aging functionality that requires passwords be
changed after a certain point.

• Design: Use a mechanism for determining the strength of a password and notify
the user of weak password use.

• Design: Inform the user of why password protections are in place, how they work
to protect data integrity, and why it is important to heed their warnings.

Version Date: 31 March 2006
172

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
Password systems are the simplest and most ubiquitous authentication mechanisms.
However, they are subject to such well known attacks, and such frequent compromise
that their use in the most simple implementation is not practical. In order to protect
password systems from compromise, the following should be noted:

• Passwords should be stored safely to prevent insider attack and to ensure that —
if a system is compromised — the passwords are not retrievable. Due to
password reuse, this information may be useful in the compromise of other
systems these users work with. In order to protect these passwords, they should
be stored encrypted, in a non-reversible state, such that the original text password
cannot be extracted from the stored value.

• Password aging should be strictly enforced to ensure that passwords do not
remain unchanged for long periods of time. The longer a password remains in
use, the higher the probability that it has been compromised. For this reason,
passwords should require refreshing periodically, and users should be informed of
the risk of passwords which remain in use for too long.

• Password strength should be enforced intelligently. Rather than restrict
passwords to specific content, or specific length, users should be encouraged to
use upper and lower case letters, numbers, and symbols in their passwords. The
system should also ensure that no passwords are derived from dictionary words.

Examples
unsigned char *check_passwd(char *plaintext){
 ctext=simple_digest("sha1",plaintext,strlen(plaintext)...);
 if (ctext==secret_password())
 // Log me in
}

In Java:

String plainText = new String(plainTextIn)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
if (digest==secret_password())
//log me in

Related problems
• Using single-factor authentication

Version Date: 31 March 2006
173

CLASP Vulnerability View — Category 4: Protocol Errors

Using single-factor authentication

Overview
The use of single-factor authentication can lead to unnecessary risk of compromise
when compared with the benefits of a dual-factor authentication scheme.

Consequences
• Authentication: If the secret in a single-factor authentication scheme gets

compromised, full authentication is possible.

Exposure period
• Design: Authentication methods are determined at design time.

Platform
• Languages: All

• Operating platform: All

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Design: Use multiple independent authentication schemes, which ensures that —

if one of the methods is compromised — the system itself is still likely safe from
compromise.

Discussion
While the use of multiple authentication schemes is simply piling on more complexity on
top of authentication, it is inestimably valuable to have such measures of redundancy.

The use of weak, reused, and common passwords is rampant on the internet. Without
the added protection of multiple authentication schemes, a single mistake can result in

Version Date: 31 March 2006
174

CLASP Vulnerability View — Category 4: Protocol Errors

the compromise of an account. For this reason, if multiple schemes are possible and
also easy to use, they should be implemented and required.

Examples
In C:

unsigned char *check_passwd(char *plaintext){
 ctext=simple_digest("sha1",plaintext,strlen(plaintext)...);
 if (ctext==secret_password())
 // Log me in
}

In Java:

String plainText = new String(plainTextIn)
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
if (digest==secret_password())
 //log me in

Related problems
• Using password systems

Version Date: 31 March 2006
175

CLASP Vulnerability View — Category 4: Protocol Errors

Not allowing password aging

Overview
If no mechanism is in place for managing password aging, users will have no incentive
to update passwords in a timely manner.

Consequences
• Authentication: As passwords age, the probability that they are compromised

grows.

Exposure period
• Design: Support for password aging mechanisms must be added in the design

phase of development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Very Low

Avoidance and mitigation
• Design: Ensure that password aging functionality is added to the design of the

system, including an alert previous to the time the password is considered
obsolete, and useful information for the user concerning the importance of
password renewal, and the method.

Discussion
The recommendation that users change their passwords regularly and do not reuse
passwords is universal among security experts. In order to enforce this, it is useful to

Version Date: 31 March 2006
176

CLASP Vulnerability View — Category 4: Protocol Errors

have a mechanism that notifies users when passwords are considered old and that
requests that they replace them with new, strong passwords.

In order for this functionality to be useful, however, it must be accompanied with
documentation which stresses how important this practice is and which makes the
entire process as simple as possible for the user.

Examples
• A common example is not having a system to terminate old employee accounts.

• Not having a system for enforcing the changing of passwords every certain
period.

Related problems
• Using password systems

• Allowing password aging

• Using a key past its expiration date

Version Date: 31 March 2006
177

CLASP Vulnerability View — Category 4: Protocol Errors

Allowing password aging

Overview
Allowing password aging to occur unchecked can result in the possibility of diminished
password integrity.

Consequences
• Authentication: As passwords age, the probability that they are compromised

grows.

Exposure period
• Design: Support for password aging mechanisms must be added in the design

phase of development.

Platform
• Languages: All

• Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Very Low

Avoidance and mitigation
• Design: Ensure that password aging is limited so that there is a defined maximum

age for passwords and so that the user is notified several times leading up to the
password expiration.

Discussion
Just as neglecting to include functionality for the management of password aging is
dangerous, so is allowing password aging to continue unchecked. Passwords must be
given a maximum life span, after which a user is required to update with a new and
different password.

Version Date: 31 March 2006
178

CLASP Vulnerability View — Category 4: Protocol Errors

Examples

• A common example is not having a system to terminate old employee accounts.

• Not having a system for enforcing the changing of passwords every certain
period.

Related problems
• Not allowing for password aging

Version Date: 31 March 2006
179

CLASP Vulnerability View — Category 4: Protocol Errors

Reusing a nonce, key pair in encryption

Overview
Nonces should be used for the present occasion and only once.

Consequences
• Authentication: Potentially a replay attack, in which an attacker could send the

same data twice, could be crafted if nonces are allowed to be reused. This could
allow a user to send a message which masquerades as a valid message from a
valid user.

Exposure period
• Design: Mitigating technologies such as safe string libraries and container

abstractions could be introduced.

• Implementation: Many traditional techniques can be used to create a new nonce
from different sources.

• Implementation: Reusing nonces nullifies the use of nonces.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Refuse to reuse nonce values.

Version Date: 31 March 2006
180

CLASP Vulnerability View — Category 4: Protocol Errors

• Implementation: Use techniques such as requiring incrementing, time based
and/or challenge response to assure uniqueness of nonces.

Discussion
Nonces, are often bundled with a key in a communication exchange to produce a new
session key for each exchange.

Examples
In C/C++:

#include <openssl/sha.h>
#include <stdio.h>
#include <string.h>
#include <memory.h>

int main(){
 char *paragraph = NULL;
 char *data = NULL;
 char *nonce = “bad“;
 char *password = “secret”;

 parsize=strlen(nonce)+strlen(password);
 paragraph=(char*)malloc(para_size);
 strncpy(paragraph,nonce,strlen(nonce));
 strcpy(paragraph,password,strlen(password));

 data=(unsigned char*)malloc(20);
 SHA1((const unsigned char*)paragraph,parsize,(unsigned char*)data);

 free(paragraph);
 free(data);
//Do something with data//
 return 0;
}

In Java:

String command = new String(“some command to execute”)
MessageDigest nonce = MessageDigest.getInstance("SHA");
nonce.update(String.valueOf(“bad nonce”);
byte[] nonce = nonce.digest();

MessageDigest password = MessageDigest.getInstance("SHA");
password.update(nonce + “secretPassword”);
byte[] digest = password.digest();
//do somethign with digest//

Related problems
Not available.

Version Date: 31 March 2006
181

CLASP Vulnerability View — Category 4: Protocol Errors

Using a key past its expiration date

Overview
The use of a cryptographic key or password past its expiration date diminishes its
safety significantly.

Consequences
• Authentication: The cryptographic key in question may be compromised, providing

a malicious user with a method for authenticating as the victim.

Exposure period
• Design: The handling of key expiration should be considered during the design

phase — largely pertaining to user interface design.

• Run time: Users are largely responsible for the use of old keys.

Platform
• Languages: All

• Platforms: All

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Adequate consideration should be put in to the user interface in order to

notify users previous to the key’s expiration, to explain the importance of new key
generation and to walk users through the process as painlessly as possible.

• Run time: Users must heed warnings and generate new keys and passwords
when they expire.

Version Date: 31 March 2006
182

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
While the expiration of keys does not necessarily ensure that they are compromised, it
is a significant concern that keys which remain in use for prolonged periods of time
have a decreasing probability of integrity.

For this reason, it is important to replace keys within a period of time proportional to
their strength.

Examples
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
 foo=SSL_get_veryify_result(ssl);
 if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))
//do stuff

Related problems
• Failure to check for certificate expiration

Version Date: 31 March 2006
183

CLASP Vulnerability View — Category 4: Protocol Errors

Not using a random IV with CBC mode

Overview
Not using a random initialization vector with Cipher Block Chaining (CBC) Mode causes
algorithms to be susceptible to dictionary attacks.

Consequences
• Confidentiality: If the CBC is not properly initialized, data which is encrypted can

be compromised and therefore be read.

• Integrity: If the CBC is not properly initialized, encrypted data could be tampered
with in transfer or if it accessible.

• Accountability: Cryptographic based authentication systems could be defeated.

Exposure period
• Implementation: Many logic errors can lead to this condition if multiple data

streams have a common beginning sequences.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
.Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Integrity: It is important to properly initialize CBC operating block ciphers or there

use is lost.

Version Date: 31 March 2006
184

CLASP Vulnerability View — Category 4: Protocol Errors

Discussion
CBC is the most commonly used mode of operation for a block cipher. It solves
electronic code book’s dictionary problems by XORing the ciphertext with plaintext. If it
used to encrypt multiple data streams, dictionary attacks are possible, provided that the
streams have a common beginning sequence.

Examples
In C/C++:

#include <openssl/evp.h>

EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];

RAND_bytes(key, b);
memset(iv,0,EVP_MAX_IV_LENGTH);
EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv);

In Java:

public class SymmetricCipherTest {
 public static void main() {
 byte[] text =”Secret".getBytes();
 byte[] iv ={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

 KeyGenerator kg = KeyGenerator.getInstance("DES");
 kg.init(56);
 SecretKey key = kg.generateKey();

 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
 IvParameterSpec ips = new IvParameterSpec(iv);
 cipher.init(Cipher.ENCRYPT_MODE, key, ips);
 return cipher.doFinal(inpBytes);
 }
 }

Related problems
Not available.

Version Date: 31 March 2006
185

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to protect stored data from modification

Overview
Data should be protected from direct modification.

Consequences
• Integrity: The object could be tampered with.

Exposure period
• Design through Implementation: At design time it is important to reduce the total

amount of accessible data.

• Implementation: Most implementation level issues come from a lack of
understanding of the language modifiers.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Use private members, and class accessor

methods to their full benefit. This is the recommended mitigation. Make all public
members private, and — if external access is necessary — use accessor
functions to do input validation on all values.

• Implementation: Data should be private, static, and final whenever possible This
will assure that your code is protected by instantiating early, preventing access
and preventing tampering.

Version Date: 31 March 2006
186

CLASP Vulnerability View — Category 4: Protocol Errors

• Implementation: Use sealed classes. Using sealed classes protects object-
oriented encapsulation paradigms and therefore protects code from being
extended in unforeseen ways.

• Implementation: Use class accessor methods to their full benefit. Use the
accessor functions to do input validation on all values intended for private values.

Discussion
One of the main advantages of object-oriented code is the ability to limit access to fields
and other resources by way of accessor functions. Utilize accessor functions to make
sure your objects are well-formed.

Final provides security by only allowing non-mutable objects to be changed after being
set. However, only objects which are not extended can be made final.

Examples
In C++:

public:
 int someNumberPeopleShouldntMessWith;

In Java:

private class parserProg {
 public stringField;
}

Another set of Examples are:

In C/C++:

private:
 int someNumber;

public:
 void writeNum(int newNum) {
 someNumber = newNum;
 }

In Java:

public class eggCorns {
 private String acorns;
 public void misHear(String name){
 acorns=name;
 }
}

Related problems
Not available.

Version Date: 31 March 2006
187

CLASP Vulnerability View — Category 4: Protocol Errors

Failure to provide confidentiality for stored data

Overview
Non-final public fields should be avoided, if possible, as the code is easily tamperable.

Consequences
• Integrity: The object could potentially be tampered with.

• Confidentiality: The object could potentially allow the object to be read.

Exposure period
• Implementation: This flaw is a simple logic issue, introduced entirely at

implementation time.

Platform
• Languages: Java, C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Make any non-final field private.

Discussion
If a field is non-final and public, it can be changed once their value is set by any function
which has access to the class which contains the field.

Examples
In C++:

Version Date: 31 March 2006
188

CLASP Vulnerability View — Category 4: Protocol Errors

public int password r = 45;

In Java:

public String r = new String("My Password");

Now this field is readable from any function and can be changed by any function.

Related problems
Not available.

Version Date: 31 March 2006
189

CLASP Vulnerability View — Category 5: General Logic Errors

Category 5: General Logic Errors
This section introduces the vulnerability Problem Types organized under the problem
type “general logic errors.”

Ignored function return value

Overview
If a functions return value is not checked, it could have failed without any warning.

Consequences
• Integrity: The data which was produced as a result of a function could be in a bad

state.

Exposure period
Implementation: This flaw is a simple logic issue, introduced entirely at implementation
time.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Implementation: Check all functions which return a value

• Implementation: When designing any function make sure you return a value or
throw an exception in case of an error

• discussion

Version Date: 31 March 2006
190

CLASP Vulnerability View — Category 5: General Logic Errors

Important and common functions will return some value about the success of its
actions. This will alert the program whether or not to handle any errors caused by that
function

Example
In C/C++:

malloc(sizeof(int)*4);

In Java:

Although some Java members may use return values to state there status, it is
preferable to use exceptions.

Related problems
Not available.

Version Date: 31 March 2006
191

CLASP Vulnerability View — Category 5: General Logic Errors

Missing parameter

Overview
If too few arguments are sent to a function, the function will still pop the expected
number of arguments from the stack. Potentially, a variable number of arguments could
be exhausted in a function as well.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of

the vulnerable program if function parameter list is exhausted.

• Availability: Potentially a program could fail if it needs more arguments then are
available.

Exposure period
• Implementation: This is a simple logical flaw created at implementation time.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Forward declare all functions. This is the recommended solution.

Properly forward declaration of all used functions will result in a compiler error if
too few arguments are sent to a function.

Discussion
This issue can be simply combated with the use of proper build process.

Version Date: 31 March 2006
192

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C or C++:

foo_funct(one, two);
…
void foo_funct(int one, int two, int three) {
 printf(“1) %d\n2) %d\n3) %d\n”, one, two, three);
}

This can be exploited to disclose information with no work whatsoever. In fact, each
time this function is run, it will print out the next 4 bytes on the stack after the two
numbers sent to it.

Another example in C/C++ is:

void some_function(int foo, ...) {
 int a[3], i;
 va_list ap;

 va_start(ap, foo);
 for (i = 0; i < sizeof(a) / sizeof(int); i++)
 a[i] = va_arg(ap, int);
 va_end(ap);
}

int main(int argc, char *argv[]) {
 some_function(17, 42);
}

Related problems
Not available.

Version Date: 31 March 2006
193

CLASP Vulnerability View — Category 5: General Logic Errors

Misinterpreted function return value

Overview
If a function’s return value is not properly checked, the function could have failed
without proper acknowledgement.

Consequences
• Integrity: The data — which was produced as a result of an improperly checked

return value of a function — could be in a bad state.

Exposure period
• Requirements specification: The choice could be made to use a language that

uses exceptions rather than return values to handle status.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: Use a language or compiler that uses exceptions and

requires the catching of those exceptions.

• Implementation: Properly check all functions which return a value.

• Implementation: When designing any function make sure you return a value or
throw an exception in case of an error.

Version Date: 31 March 2006
194

CLASP Vulnerability View — Category 5: General Logic Errors

discussion
Important and common functions will return some value about the success of its
actions. This will alert the program whether or not to handle any errors caused by that
function.

Examples
In C/C++

if (malloc(sizeof(int*4) < 0)
 perror(“Failure”); //should have checked if the call returned 0

Related problems
Not available.

Version Date: 31 March 2006
195

CLASP Vulnerability View — Category 5: General Logic Errors

Uninitialized variable

Overview
Using the value of an unitialized variable is not safe.

Consequences
• Integrity: Initial variables usually contain junk, which can not be trusted for

consistency. This can cause a race condition if a lock variable check passes when
it should not.

• Authorization: Strings which do are not initialized are especially dangerous, since
many functions expect a null at the end — and only at the end — of a string.

Exposure period
• Implementation: Use of unitialized variables is a logical bug.

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced.

Platform
Languages: C/C++

Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Assign all variables to an initial variable.

• Pre-design through Build: Most compilers will complain about the use of
unitialized variables if warnings are turned on.

Version Date: 31 March 2006
196

CLASP Vulnerability View — Category 5: General Logic Errors

• Requirements specification: The choice could be made to use a language that is
not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced.

Discussion
Before variables are initialized, they generally contain junk data of what was left in the
memory that the variable takes up. This data is very rarely useful, and it is generally
advised to pre-initialize variables or set them to their first values early.

If one forget — in the C language — to initialize, for example a char *, many of the
simple string libraries may often return incorrect results as they expecting the null
termination to be at the end of a string.

Examples
In C\C++, or Java:

int foo;
void bar(){
 if (foo==0) /.../
 /../
 }

Related problems
Not available.

Version Date: 31 March 2006
197

CLASP Vulnerability View — Category 5: General Logic Errors

Duplicate key in associative list (alist)

Overview
Associative lists should always have unique keys, since having non-unique keys can
often be mistaken for an error.

Consequences
Unspecified.

Exposure period
• Design: The use of a safe data structure could be used.

Platform
• Languages: Although alists generally are used only in languages like Common

Lisp — due to the functionality overlap with hash tables — an alist could appear in
a language like C or C++.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Design: Use a hash table instead of an alist.

• Design: Use an alist which checks the uniqueness of hash keys with each entry
before inserting the entry.

Discussion
A duplicate key entry — if the alist is designed properly — could be used as a constant
time replace function. However, duplicate key entries could be inserted by mistake.
Because of this ambiguity, duplicate key entries in an association list are not
recommended and should not be allowed.

Version Date: 31 March 2006
198

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In Python:

alist = []
while (foo()):
 #now assume there is a string data with a key basename
 queue.append(basename,data)
queue.sort()

Since basename is not necessarily unique, this may not sort how one would like it to be.

Related problems
Not available.

Version Date: 31 March 2006
199

CLASP Vulnerability View — Category 5: General Logic Errors

Deletion of data-structure sentinel

Overview
The accidental deletion of a data structure sentinel can cause serious programing logic
problems.

Consequences
• Availability: Generally this error will cause the data structure to not work properly.

• Authorization: If a control character, such as NULL is removed, one may cause
resource access control problems.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe-string libraries and container
abstractions could be introduced.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High to Very High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

Version Date: 31 March 2006
200

CLASP Vulnerability View — Category 5: General Logic Errors

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

• Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio / GS flag. Unless this
provides automatic bounds checking, it is not a complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Often times data-structure sentinels are used to mark structure of the data structure. A
common example of this is the null character at the end of strings. Another common
example is linked lists which may contain a sentinel to mark the end of the list.

It is, of course, dangerous to allow this type of control data to be easily accessible.
Therefore, it is important to protect from the deletion or modification outside of some
wrapper interface which provides safety.

Examples
In C/C++:

char *foo;
int counter;
foo=malloc(sizeof(char)*10);
for (counter=0;counter!=14;counter++){
 foo[counter]='a';
 printf("%s\n",foo);
}

Related problems
Not available.

Version Date: 31 March 2006
201

CLASP Vulnerability View — Category 5: General Logic Errors

Addition of data-structure sentinel

Overview
The accidental addition of a data-structure sentinel can cause serious programing logic
problems.

Consequences
• Availability: Generally this error will cause the data structure to not work properly

by truncating the data.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Design: Mitigating technologies such as safe string libraries and container
abstractions could be introduced.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Very High

Likelihood of exploit
High to Very High

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

Version Date: 31 March 2006
202

CLASP Vulnerability View — Category 5: General Logic Errors

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

• Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice, and Microsoft Visual Studio / GS flag. Unless this
provides automatic bounds checking, it is not a complete solution.

• Operational: Use OS-level preventative functionality. Not a complete solution.

Discussion
Data-structure sentinels are often used to mark structure of the data structure. A
common example of this is the null character at the end of strings. Another common
example is linked lists which may contain a sentinel to mark the end of the list.

It is, of course dangerous, to allow this type of control data to be easily accessible.
Therefore, it is important to protect from the addition or modification outside of some
wrapper interface which provides safety.

By adding a sentinel, one potentially could cause data to be truncated early.

Examples
In C/C++:

char *foo;
foo=malloc(sizeof(char)*4);
foo[0]='a';
foo[1]='a';
foo[2]=0;
foo[3]='c';
printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3]);
printf("%s\n",foo);

Version Date: 31 March 2006
203

CLASP Vulnerability View — Category 5: General Logic Errors

Use of sizeof() on a pointer type

Overview
Running sizeof() on a malloced pointer type will always return the wordsize/8.

Consequences
Authorization: This error can often cause one to allocate a buffer much smaller than
what is needed and therefore other problems like a buffer overflow can be caused.

Exposure period
• Implementation: This is entirely an implementation flaw.

Platform
• Languages: C or C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
High

Avoidance and mitigation
• Implementation: Unless one is trying to leverage running sizeof() on a pointer type

to gain some platform independence or if one is mallocing a variable on the stack,
this should not be done.

Discussion
One can in fact use the sizeof() of a pointer as useful information. An obvious case is to
find out the wordsize on a platform. More often than not, the appearance of
sizeof(pointer)

Version Date: 31 March 2006
204

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C/C++:

#include <stdiob.h>

int main(){
 void *foo;
 printf("%d\n",sizeof(foo)); //this will return wordsize/4
 return 0;
}

Related problems
Not available.

Version Date: 31 March 2006
205

CLASP Vulnerability View — Category 5: General Logic Errors

Unintentional pointer scaling

Overview
In C and C++, one may often accidentally refer to the wrong memory due to the
semantics of when math operations are implicitly scaled.

Consequences
Often results in buffer overflow conditions.

Exposure period
• Design: Could choose a language with abstractions for memory access.

• Implementation: This problem generally is due to a programmer error.

Platform
C and C++.

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design: Use a platform with high-level memory abstractions.

• Implementation: Always use array indexing instead of direct pointer manipulation.

• Other: Use technologies for preventing buffer overflows.

Discussion
Programmers will often try to index from a pointer by adding a number of bytes, even
though this is wrong, since C and C++ implicitly scale the operand by the size of the
data type.

Version Date: 31 March 2006
206

CLASP Vulnerability View — Category 5: General Logic Errors

Examples

int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1
to p actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit
platforms).

If the resulting memory address is read, this could potentially be an information leak. If it
is a write, it could be a security-critical write to unauthorized memory — whether or not
it is a buffer overflow.

Note that the above code may also be wrong in other ways, particularly in a little endian
environment.

Related problems
Not available.

Version Date: 31 March 2006
207

CLASP Vulnerability View — Category 5: General Logic Errors

Improper pointer subtraction

Overview
The subtraction of one pointer from another in order to determine size is dependant on
the assumption that both pointers exist in the same memory chunk.

Consequences
• Authorization: There is the potential for arbitrary code execution with privileges of

the vulnerable program.

Exposure period
• Pre-design through Build: The use of tools to prevent these errors should be

used.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C/C++/C#

• Operating Platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch

these errors.

• Implementation: Save an index variable. This is the recommended solution.
Rather than subtract pointers from one another, use an index variable of the same
size as the pointers in question. Use this variable “walk” from one pointer to the
other and calculate the difference. Always sanity check this number.

Version Date: 31 March 2006
208

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Using the wrong operator

Overview
This is a common error given when an operator is used which does not make sense for
the context appears.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is

recommended.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, of or misuse, of mitigating technologies.

Platform
• Languages: Any

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch

these errors.

• Implementation: Save an index variable. This is the recommended solution.
Rather than subtract pointers from one another, use an index variable of the same
size as the pointers in question. Use this variable “walk” from one pointer to the
other and calculate the difference. Always sanity check this number.

Version Date: 31 March 2006
209

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
These types of bugs generally are the result of a typo. Although most of them can easily
be found when testing of the program, it is important that one correct these problems,
since they almost certainly will break the code.

Examples
In C:

char foo;
foo=a+c;

Related problems
Not available.

Version Date: 31 March 2006
210

CLASP Vulnerability View — Category 5: General Logic Errors

Assigning instead of comparing

Overview
In many languages the compare statement is very close in appearance to the
assignment statement and are often confused.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is

recommended.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

PlatforM
• Languages: C, C++

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design: Through Build: Many IDEs and static analysis products will detect this

problem.

• Implementation: Place constants on the left. If one attempts to assign a constant
with a variable, the compiler will of course produce an error.

Version Date: 31 March 2006
211

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
This bug is generally as a result of a typo and usually should cause obvious problems
with program execution. If the comparison is in an if statement, the if statement will
always return the value of the right-hand side variable.

Version Date: 31 March 2006
212

CLASP Vulnerability View — Category 5: General Logic Errors

Examples

void called(int foo){
 if (foo=1) printf("foo\n");
}
int main(){

 called(2);
 return 0;
}

Related problems
Not available.

Version Date: 31 March 2006
213

CLASP Vulnerability View — Category 5: General Logic Errors

Comparing instead of assigning

Overview
In many languages, the compare statement is very close in appearance to the
assignment statement; they are often confused.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is

recommended.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

Platform
• Languages: C, C++, Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Low

Avoidance and mitigation
• Pre-design: Through Build: Many IDEs and static analysis products will detect this

problem.

Discussion
This bug is mainly a typo and usually should cause obvious problems with program
execution. The assignment will not always take place.

Version Date: 31 March 2006
214

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C/C++/Java:

void called(int foo){
 foo==1;
 if (foo==1) printf("foo\n");
}
int main(){

 called(2);
 return 0;
}

Related problems
Not available.

Version Date: 31 March 2006
215

CLASP Vulnerability View — Category 5: General Logic Errors

Incorrect block delimitation

Overview
In some languages, forgetting to explicitly delimit a block can result in a logic error that
can, in turn, have security implications.

Consequences
This is a general logic error — with all the potential consequences that this entails.

Exposure period
• Implementation

Platform
C, C++, C#, Java

Required resources
Any

Severity
Varies

Likelihood of exploit
Low

Avoidance and mitigation
Implementation: Always use explicit block delimitation and use static-analysis
technologies to enforce this practice.

Discussion
In many languages, braces are optional for blocks, and — in a case where braces are
omitted — it is possible to insert a logic error where a statement is thought to be in a
block but is not. This is a common and well known reliability error.

Examples
In this example, when the condition is true, the intention may be that both x and y run.

if (condition==true) x;
 y;

Version Date: 31 March 2006
216

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Not available.

Version Date: 31 March 2006
217

CLASP Vulnerability View — Category 5: General Logic Errors

Omitted break statement

Overview
Omitting a break statement so that one may fall through is often indistinguishable from
an error, and therefore should not be used.

Consequences
Unspecified.

Exposure period
• Pre-design through Build: The use of tools to detect this problem is

recommended.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies

Platform
• Languages: C/C++/Java

• Operating platforms: Any

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design through Build: Most static analysis programs should be able to catch

these errors.

• Implementation: The functionality of omitting a break statement could be clarified
with an if statement. This method is much safer.

Version Date: 31 March 2006
218

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
While most languages with similar constructs automatically run only a single branch, C
and C++ are different. This has bitten many programmers, and can lead to critical code
executing in situations where it should not.

Examples
Java:

{
 int month = 8;
 switch (month) {
 case 1: print("January");
 case 2: print("February");
 case 3: print("March");
 case 4: print("April");
 case 5: println("May");
 case 6: print("June");
 case 7: print("July");
 case 8: print("August");
 case 9: print("September");
 case 10: print("October");
 case 11: print("November");
 case 12: print("December");
 }
 println(" is a great month");
 }

C/C++:

Is identical if one replaces print with printf or cout.

Now one might think that if they just tested case12, it will display that the respective
month “is a great month.” However, if one tested November, one notice that it would
display “November December is a great month.”

Related problems
Not available.

Version Date: 31 March 2006
219

CLASP Vulnerability View — Category 5: General Logic Errors

Improper cleanup on thrown exception

Overview
Causing a change in flow, due to an exception, can often leave the code in a bad state.

Consequences
• Implementation: The code could be left in a bad state.

Exposure period
• Implementation: Many logic errors can lead to this condition.

Platform
• Languages: Java, C, C# or any language which can throw an exception.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: If one breaks from a loop or function by throwing an exception,

make sure that cleanup happens or that you should exit the program. Use
throwing exceptions sparsely.

Discussion
Often, when functions or loops become complicated, some level of cleanup in the
beginning to the end is needed. Often, since exceptions can disturb the flow of the
code, one can leave a code block in a bad state.

Examples
In C++/Java:

Version Date: 31 March 2006
220

CLASP Vulnerability View — Category 5: General Logic Errors

public class foo {
 public static final void main(String args[]) {
 boolean returnValue;
 returnValue=doStuff();
 }
 public static final boolean doStuff() {
 boolean threadLock;
 boolean truthvalue=true;

 try {
 while(//check some condition){
 threadLock=true;
 //do some stuff to truthvalue
 threadLock=false;
 }
 } catch (Exception e){
 System.err.println("You did something bad");
 if (something) return truthvalue;
 }
 return truthvalue;
 }
}

In this case, you may leave a thread locked accidentally.

Related problems
Not available.

Version Date: 31 March 2006
221

CLASP Vulnerability View — Category 5: General Logic Errors

Uncaught exception

Overview
When an exception is thrown and not caught, the process has given up an opportunity
to decide if a given failure or event is worth a change in execution.

Consequences
Undefined.

Exposure period
• Requirements specification: The choice could be made to use a language that is

resistant to this issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies. Generally this problem
is either caused by using a foreign API or an API which the programmer is not
familiar with.

Platform
• Languages: Java, C++, C#, or any language which has exceptions.

• Operating platforms: Any

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Requirements Specification: The choice between a language which has named or

unnamed exceptions needs to be done. While unnamed exceptions exacerbate
the chance of not properly dealing with an exception, named exceptions suffer
from the up call version of the weak base class problem.

Version Date: 31 March 2006
222

CLASP Vulnerability View — Category 5: General Logic Errors

• Requirements Specification: A language can be used which requires, at compile
time, to catch all serious exceptions. However, one must make sure to use the
most current version of the API as new exceptions could be added.

• Implementation: Catch all relevant exceptions. This is the recommended solution.
Ensure that all exceptions are handled in such a way that you can be sure of the
state of your system at any given moment.

Examples
In C++:

#include <iostream.h>
#include <new>
#include <stdlib.h>

int
main(){
 char input[100];
 int i, n;
 long *l;

Required resources cout << many numbers do you want to type
in? ";
 cin.getline(input, 100);
 i = atoi(input);
 //here we are purposly not checking to see if this call to
 //new works
 //try {
 l = new long [i];
 //}

 //catch (bad_alloc & ba) {
 // cout << "Exception:" << endl;
 //}
 if (l == NULL)
 exit(1);
 for (n = 0; n < i; n++) {
 cout << "Enter number: ";
 cin.getline(input, 100);
 l[n] = atol(input);
 }
 cout << "You have entered: ";
 for (n = 0; n < i; n++)
 cout << l[n] << ", ";
 delete[] l;
 return 0;
}

In this example, since we do not check if new throws an exception, we can find strange
failures if large values are entered.

Version Date: 31 March 2006
223

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Not available.

Version Date: 31 March 2006
224

CLASP Vulnerability View — Category 5: General Logic Errors

Improper error handling

Overview
Sometimes an error is detected, and bad or no action is taken.

Consequences
Undefined.

Exposure period
Implementation: This is generally a logical flaw or a typo introduced completely at
implementation time.

Platform
Languages: All

Operating platforms: All

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
Implementation: Properly handle each exception. This is the recommended solution.
Ensure that all exceptions are handled in such a way that you can be sure of the state
of your system at any given moment.

Discussion
If a function returns an error, it is important to either fix the problem and try again, alert
the user that an error has happened and let the program continue, or alert the user and
close and cleanup the program.

Version Date: 31 March 2006
225

CLASP Vulnerability View — Category 5: General Logic Errors

Examples
In C:

foo=malloc(sizeof(char);
//the next line checks to see if malloc failed
if (foo==0) {
//We do nothing so we just ignore the error.
}

In C++ and Java:

while (DoSomething()) {
 try {
 /* perform main loop here */
 }
 catch (Exception &e){
 /* do nothing, but catch so it’ll compile... */
 }
}

Related problems
Not available.

Version Date: 31 March 2006
226

CLASP Vulnerability View — Category 5: General Logic Errors

Improper temp file opening

Overview
Tempfile creation should be done in a safe way. To be safe, the temp file function
should open up the temp file with appropriate access control. The temp file function
should also retain this quality, while being resistant to race conditions.

Consequences
• Confidentiality: If the temporary file can be read, by the attacker, sensitive

information may be in that file which could be revealed.

• Authorization: If that file can be written to by the attacker, the file might be moved
into a place to which the attacker does not have access. This will allow the
attacker to gain selective resource access-control privileges.

Exposure period
• Requirements specification: The choice could be made to use a language or

library that is not susceptible to these issues.

• Implementation: If one must use there own tempfile implementation than many
logic errors can lead to this condition.

Platform
• Languages: All

• Operating platforms: This problem exists mainly on older operating systems and
should be fixed in newer versions.

Required resources
Any

Severity
High

Likelihood of exploit
High

Version Date: 31 March 2006
227

CLASP Vulnerability View — Category 5: General Logic Errors

Avoidance and mitigation

• Requirements specification: Many contemporary languages have functions which
properly handle this condition. Older C temp file functions are especially
susceptible.

• Implementation: Ensure that you use proper file permissions. This can be
achieved by using a safe temp file function. Temporary files should be writable
and readable only by the process which own the file.

• Implementation: Randomize temporary file names. This can also be achieved by
using a safe temp-file function. This will ensure that temporary files will not be
created in predictable places.

Discussion
Depending on the data stored in the temporary file, there is the potential for an attacker
to gain an additional input vector which is trusted as non-malicious. It may be possible
to make arbitrary changes to data structures, user information, or even process
ownership.

Examples
In C\C++:

FILE *stream;
char tempstring[] = "String to be written";

if((stream = tmpfile()) == NULL) {
 perror("Could not open new temporary file\n");
 return (-1);
}
/* write data to tmp file */
/* ... */
_rmtmp();

The temp file created in the above code is always readable and writable by all users.

In Java:

try {
 File temp = File.createTempFile("pattern", ".suffix");
 temp.deleteOnExit();
 BufferedWriter out = new BufferedWriter(new FileWriter(temp));
 out.write("aString");
 out.close(); }
catch (IOException e) { }

This temp file is readable by all users.

Version Date: 31 March 2006
228

CLASP Vulnerability View — Category 5: General Logic Errors

Related problems
Not available.

Version Date: 31 March 2006
229

CLASP Vulnerability View — Category 5: General Logic Errors

Guessed or visible temporary file

Overview
On some operating systems, the fact that the temp file exists may be apparent to any
user.

Consequences
Confidentiality: Since the file is visible and the application which is using the temp file
could be known, the attacker has gained information about what the user is doing at
that time.

Exposure period
• Requirements specification: The choice could be made to use a language or

library that is not susceptible to these issues.

• Implementation: If one must use his own temp file implementation, many logic
errors can lead to this condition.

Platform
• Languages: All languages which support file input and output.

• Operating platforms: This problem exists mainly on older operating systems and
cygwin.

Required resources
Any

Severity
Low

Likelihood of exploit
Low

Avoidance and mitigation
• Requirements specification: Many contemporary languages have functions which

properly handle this condition. Older C temp file functions are especially
susceptible.

• Implementation: Try to store sensitive tempfiles in a directory which is not world
readable — i.e., per user temp files.

Version Date: 31 March 2006
230

CLASP Vulnerability View — Category 5: General Logic Errors

• Implementation: Avoid using vulnerable temp file functions.

Discussion
Since the file is visible, the application which is using the temp file could be known. If
one has access to list the processes on the system, the attacker has gained information
about what the user is doing at that time. By correlating this with the applications the
user is running, an attacker could potentially discover what a user’s actions are. From
this, higher levels of security could be breached.

Examples
In C\C++:

FILE *stream;
char tempstring[] = "String to be written";

if((stream = tmpfile()) == NULL) {
 perror("Could not open new temporary file\n");
 return (-1);
}
/* write data to tmp file */
/* ... */
_rmtmp();
In cygwin and some older unixes one can ls /tmp and see that this temp
file exists.

In Java:

try {
 File temp = File.createTempFile("pattern", ".suffix");
 temp.deleteOnExit();
 BufferedWriter out = new BufferedWriter(new FileWriter(temp));
 out.write("aString");
 out.close(); }
catch (IOException e) { }

This temp file is readable by all users.

Related problems
Not available.

Version Date: 31 March 2006
231

CLASP Vulnerability View — Category 5: General Logic Errors

Failure to deallocate data

Overview
If memory is allocated and not freed the process could continue to consume more and
more memory and eventually crash.

Consequences
• Availability: If an attacker can find the memory leak, an attacker may be able to

cause the application to leak quickly and therefore cause the application to crash.

Exposure period
• Requirements specification: The choice could be made to use a language that is

not susceptible to these issues.

• Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

Platform
• Languages: C, C++, Fortran, Assembly

• Operating platforms: All, although partial preventative measures may be deployed
depending on environment.

Required resources
Any

Severity
Medium

Likelihood of exploit
Medium

Avoidance and mitigation
• Pre-design: Use a language or compiler that performs automatic bounds

checking.

• Design: Use an abstraction library to abstract away risky APIs. Not a complete
solution.

Version Date: 31 March 2006
232

CLASP Vulnerability View — Category 5: General Logic Errors

• Pre-design through Build: The Boehm-Demers-Weiser Garbage Collector or
valgrind can be used to detect leaks in code. This is not a complete solution as it
is not 100% effective.

Discussion
If a memory leak exists within a program, the longer a program runs, the more it
encounters the leak scenario and the larger its memory footprint will become. An
attacker could potentially discover that the leak locally or remotely can cause the leak
condition rapidly so that the program crashes.

Examples
In C:

bar connection(){
 foo = malloc(1024);
 return foo;
}
endConnection(bar foo){
 free(foo);
}
int main() {
 while(1)
 //thread 1
 //On a connection
 foo=connection();

 //thread 2
 //When the connection ends
 endConnection(foo)
 }
}

Here the problem is that every time a connection is made, more memory is allocated.
So if one just opened up more and more connections, eventually the machine would run
out of memory.

Related problems
Not available.

Version Date: 31 March 2006
233

CLASP Vulnerability View — Category 5: General Logic Errors

Non-cryptographic PRNG

Overview
The use of Non-cryptographic Pseudo-Random Number Generators (PRNGs) as a
source for security can be very dangerous, since they are predictable.

Consequences
• Authentication: Potentially a weak source of random numbers could weaken the

encryption method used for authentication of users. In this case, a password
could potentially be discovered.

Exposure period
• Design through Implementation: It is important to realize that if one is utilizing

randomness for important security, one should use the best random numbers
available.

Platform
• Languages: All languages.

• Operating platforms: All platforms.

Required resources
Any

Severity
High

Likelihood of exploit
Medium

Avoidance and mitigation
• Design through Implementation: Use functions or hardware which use a

hardware-based random number generation for all crypto. This is the
recommended solution. Use CyptGenRandom on Windows, or hw_rand() on
Linux.

Version Date: 31 March 2006
234

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
Often a pseudo-random number generator (PRNG) is not designed for cryptography.
Sometimes a mediocre source of randomness is sufficient or preferable for algorithms
which use random numbers. Weak generators generally take less processing power
and/or do not use the precious, finite, entropy sources on a system.

Examples
In C\C++:

srand(time())
int randNum = rand();

In Java:

Random r = new Random()

For a given seed, these “random number” generators will produce a reliable stream of
numbers. Therefore, if an attacker knows the seed or can guess it easily, he will be able
to reliably guess your random numbers.

Related problems
Not available.

Version Date: 31 March 2006
235

CLASP Vulnerability View — Category 5: General Logic Errors

Failure to check whether privileges were dropped
successfully

Overview
If one changes security privileges, one should ensure that the change was successful.

Consequences
• Authorization: If privileges are not dropped, neither are access rights of the user.

Often these rights can be prevented from being dropped.

• Authentication: If privileges are not dropped, in some cases the system may
record actions as the user which is being impersonated rather than the
impersonator.

Exposure period
• Implementation: Properly check all return values.

Platform
• Language: C, C++, Java, or any language which can make system calls or has its

own privilege system.

• Operating platforms: UNIX, Windows NT, Windows 2000, Windows XP, or any
platform which has access control or authentication.

Required resources
A process with changed privileges.

Severity
Very High

Likelihood of exploit
Medium

Avoidance and mitigation
• Implementation: In Windows make sure that the process token has the

SeImpersonatePrivilege(Microsoft Server 2003).

• Implementation: Always check all of your return values.

Version Date: 31 March 2006
236

CLASP Vulnerability View — Category 5: General Logic Errors

Discussion
In Microsoft operating environments that have access control, impersonation is used so
that access checks can be performed on a client identity by a server with higher
privileges. By impersonating the client, the server is restricted to client-level security —
although in different threads it may have much higher privileges.

Code which relies on this for security must ensure that the impersonation succeeded —
i.e., that a proper privilege demotion happened.

Examples
In C/C++

bool DoSecureStuff(HANDLE hPipe){ {
 bool fDataWritten = false;
 ImpersonateNamedPipeClient(hPipe);
 HANDLE hFile = CreateFile(...);
 /../ RevertToSelf()/../
}

Since we did not check the return value of ImpersonateNamedPipeClient, we do not
know if the call succeeded.

Related problems
Not available.

Vulnerability Use Cases
The CLASP Vulnerability Use Cases depict conditions under which security services
are vulnerable to attack at the application layer. The Use Cases provide CLASP users
with easy-to-understand, specific examples of the relationship between security-
unaware design and source coding and possible resulting vulnerabilities in basic
security services.

CLASP defines a security vulnerability as a flaw in a software environment — especially
in an application — that allows an attacker to assume privileges within the user's
system, utilize and regulate its operation, compromise the data it contains, and/or
assume trust not granted to the attacker.

The CLASP Vulnerability Use Cases are based on the following common component
architectures:

• Monolithic UNIX

• Monolithic mainframe

• Distributed architecture (HTTP[S] & TCP/IP)

Version Date: 31 March 2006
2

CLASP Vulnerability Use Cases — Position of Use Cases within CLASP

Position of Use Cases within CLASP
This page describes a recommended sequence within which to apply the CLASP
Vulnerability Use Cases during a security-related software development project. It is
recommended to apply the CLASP Use Cases as a bridge from the Concepts View of
CLASP to the Vulnerability Lexicon (in the Vulnerability View), since the Use Cases:

• Exemplify CLASP concepts in security-related contexts;

• Provide an overview of the CLASP “Problem Types” within the Vulnerability
Lexicon;

• Specify the basic security services which vulnerabilities can cause to fail;

• Show the specific points within a security-related process-flow where
vulnerabilities can occur within an application.

The following diagram depicts a recommended position of the Use Cases within the
CLASP process:

Version Date: 31 March 2006
3

CLASP Vulnerability Use Cases — Position of Use Cases within CLASP

Version Date: 31 March 2006
4

CLASP Vulnerability Use Cases — CLASP Vulnerability Lexicon

CLASP Vulnerability Lexicon
A security vulnerability occurs in a software application when any part of the application
allows a breach of the security policy governing it.

CLASP identifies 104 underlying problem types — i.e., bases of security vulnerabilities
— that allow security vulnerabilities to occur in application source code. An individual
problem type in itself is often not a security vulnerability; frequently it is a combination of
problems that create a security condition leading to a vulnerability in the source code.

CLASP divides the 104 problem types into 5 high-level categories. Each problem type
may have more than one parent category. The CLASP categories are:

• Range and type errors

• Environmental problems

• Synchronization & timing errors

• Protocol errors

• General logic errors

The following diagram is a taxonomy of CLASP. The taxonomy is a high-level
classification of the CLASP process, divided into classes for better evaluation and
resolution of security vulnerabilities in source code. For the CLASP Use Cases, this
diagram depicts:

• The position of the 104 problem types within CLASP;

• The division of the problem types into five high-level categories;

• The consequences of exploitable security vulnerabilities for basic security
services.

Version Date: 31 March 2006
5

CLASP Vulnerability Use Cases — CLASP Vulnerability Lexicon

Version Date: 31 March 2006
6

CLASP Vulnerability Use Cases — Overview of Use Cases

Overview of Use Cases
The following CLASP Vulnerability Use Cases are described:

• Monolithic UNIX

• Monolithic mainframe

• Distributed architecture (HTTP[S] & TCP/IP)

Each CLASP Use Case is organized into the following sections:

Section Description

Business scenario Provides an overview of the business context of
the CLASP Use Case.

IT environment Describes the operating system(s) and
programming languages used in the IT
environment and other useful information.

Diagram of component architecture Provides an overview of the major components in
the architectural environment.

Table of component architecture This table describes the diagram of component
architecture.

Diagram of security-related process flow Provides an overview of the security-related
process flow of each Use Case.

Table of security-related process flow This table accompanies the diagram of security-
related process flow and provides a stepped
description of the process flow.

Diagram of vulnerabilities and security
services

The diagram of vulnerabilities depicts the points
in the security-related process flow where
vulnerabilities can occur.

Version Date: 31 March 2006
7

CLASP Vulnerability Use Cases — Overview of Use Cases

Section Description

Table of vulnerability-related information This table accompanies the diagram of
vulnerabilities and describes this related
information:

• Specific security services affected by the
vulnerabilities.

• The specific CLASP problem types which
can lead to vulnerabilities.

• The category of each of the problem types
— i.e.:

• Range and type errors;

• Environmental problems;

• Synchronization and timing errors;

• Protocol errors;

• General logic errors.

• The possible consequences of unresolved
security vulnerabilities.

Version Date: 31 March 2006
8

CLASP Vulnerability Use Cases — Notes on Operating Systems

Notes on Operating Systems
The CLASP process is application-centric, and the CLASP Use Cases clearly document
this orientation. In order to emphasize the central role of applications in the Use Cases,
the respective operating system is not described in detail in the diagrams and tables
describing the security-related process flows and component architecture. Neither the
UNIX, nor mainframe, nor distributed architecture Use Case indicates what the
application user is logged on to, other than the machine itself.

Vulnerability Types by Operating System
In general, UNIX and Windows applications are more prone than mainframe
applications to vulnerabilities based on security-unaware programming. Vulnerabilities
in mainframe applications are more likely to be the consequence of improper
administrative care and incorrect system configuration.

It is quite possible for a programmer to introduce vulnerabilities, for example, into CICS
— the application environment used in the monolithic mainframe CLASP Use Case —
that relate to failure to validate input. However, customers using modern-day CICS
have many safeguards (e.g., storage isolation) to prevent transactions from accessing
things in storage for which they have no authorization. In addition, COBOL does not
provide the programmer with such vulnerable devices as memory pointers, which are
available in C, Java, PL/1, and assembler languages.

Operating Systems & Security Services
UNIX and mainframe systems differ in how they perform key security services:
Examples:

• In the UNIX Use Case, the user logs onto an interactive session with the
operating system, and the security checks for authentication (user ID and
password) and authorization (application and data-related) are all performed
by the operating system. More correctly, a “shell” — i.e., user interface —
within the operating system performs the security checks.

• In the mainframe Use Case, the user logs on to CICS — which is the most
common application environment — and not the operating system. Therefore
CICS (or rather the proper configuration/administration of CICS) ensures that
the TP monitor performs the required authentication. Similarly, it is CICS (i.e.,
RACF in the form of a call-in) which performs the authorization check before
permitting the user to execute the transaction — again requiring proper
configuration/administration of the application environment. In contrast,
authorization checks for accessing the data (located in the VSAM file cluster)

Version Date: 31 March 2006
9

CLASP Vulnerability Use Cases — Notes on Operating Systems

are performed at the operating system-level before allowing any programs to
read or update the data.

Version Date: 31 March 2006
10

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Case 1: Monolithic UNIX

Business Scenario
A leading investment corporation has applications which process specialized orders for
select personal customers. Application users are customer service representatives who
either update or create custom account information. The incoming orders are in the
form of telephone communication. All incoming orders are processed by the
applications on a single UNIX machine.

IT Environment
The IT organization of the investment corporation develops its own applications in order
to gain an advantage in a highly competitive and quickly changing business
environment. The applications in question are developed in C/C++ on UNIX in order to
reduce time-to-market. The users utilize VT terminals in order to exclude the potential
security vulnerabilities in an IP-based network.

Diagram: Component Architecture

Version Date: 31 March 2006
11

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Version Date: 31 March 2006
12

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Table: Component Architecture

Component Description of Component

• User The application users are customer service representatives of the
investment corporation who log on to the single UNIX machine. The
users are located within a facility of the organization — i.e., no
remote access is required.

• Application This is a custom application developed within the organization —
i.e., it is not a package application.

• Data The application data in question is UNIX file-based.

• Security System The elements of the security system are:

• Local password file;

• UNIX file permissions.

Version Date: 31 March 2006
13

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Diagram: Security-Related Process Flow

Version Date: 31 March 2006
14

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Table: Security-Related Process Flow
The following table provides a stepped description of the security-related process flow
depicted in the figure above.

Step Description of Step in Security-Related Process Flow

1 The user performs an initial logon and is prompted for user ID and password.

2 If the user ID and password are successfully entered, a session with the UNIX
machine is initiated.

3 The application user invokes the desired application.

4 To obtain authorization to run the application, the UNIX operating system checks
file permissions for the invoking user.

5 The application user (i.e., customer service representative) requests account
information for an existing customer.

6 The application reads account record(s) for the specified customer. In the process
of reading the data, the operating system checks UNIX file permissions for reading
the data.

7 If the UNIX file permissions allow it, the record is returned to the application.

8 The customer data is returned to the application user and is displayed on the VT
terminal.

9 The application user enters required account updates (as instructed by the
customer, specifically buying or selling investments).

10 The application updates account record(s) for the specified customer. In the
process of updating the data, the operating system checks UNIX file permissions
for reading the data.

11 If the UNIX file permissions allow it, the record is returned to the application.

12 The application satisfies the request for updating the account data for the specified
customer and displays confirmation of the update on the VT terminal.

Version Date: 31 March 2006
15

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Diagram: Vulnerabilities & Security Services
The following security-related process flow shows a selection of CLASP vulnerabilities
that are possible for this process flow.

Version Date: 31 March 2006
16

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

Table: Vulnerability-Related Information
The following table provides a stepped description of the security-related process flow
depicted in the figure above:

 Tag Vulnerabilities & Security Services

V-1 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded password

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If hard-coded passwords are
used, it is almost certain that malicious users will gain access
through the account in question.

V-2 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using password systems

• Category of Vulnerability: Protocol errors

• Consequence(s) — Authentication: The failure of a password
authentication mechanism will almost always result in attackers
being authorized as valid users.

V-3 • Affected Security Service(s): Authentication

• CLASP Problem Type: Allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the
probability that they are compromised grows.

V-4 • Affected Security Service(s): Authentication

• CLASP Problem Type: Not allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the
probability that they are compromised grows.

Version Date: 31 March 2006
17

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

 Tag Vulnerabilities & Security Services

V-5 • Affected Security Service(s): Confidentiality; Authentication

• CLASP Problem Type: Storing passwords in a recoverable format

• Category of Problem Type: Protocol errors

• Consequence(s):

• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere
to impersonate the users in question.

V-6 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using single-factor authentication

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If the secret in a single-factor
authentication scheme gets compromised, full authentication is
possible.

V-7 • Affected Security Service(s): Integrity

• Vulnerability: Failure to protect stored data from modification

• Category of Problem Type: Protocol errors

• Consequence(s) — Integrity: The object could be tampered with.

Version Date: 31 March 2006
18

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

 Tag Vulnerabilities & Security Services

V-8 • Affected Security Service(s): Availability; Access control (instruction
processing); Other

• CLASP Problem Type: Buffer overflow

• Category of Problem Type: Range and type errors

• Consequence(s):

• Availability: Buffer overflows generally lead to crashes. Other
attacks leading to lack of availability are possible, including
putting the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often
can be used to execute arbitrary code, which is usually outside
the scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

V-9 • Affected Security Service(s): Authorization; Authentication

• CLASP Problem Type: Failure to check whether privileges were
dropped successfully

• Category of Problem Type: General logic errors

• Consequence(s):

• Authorization: If privileges are not dropped, neither are access
rights of the user. Often these rights can be prevented from
being dropped.

• Authentication: If privileges are not dropped, in some cases the
system may record actions as the user which is being
impersonated rather than the impersonator.

Version Date: 31 March 2006
19

CLASP Vulnerability Use Cases — Case 1: Monolithic UNIX

 Tag Vulnerabilities & Security Services

V-10 • Affected Security Service(s): Confidentiality; Integrity; Accountability

• CLASP Problem Type: Failure to encrypt data

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Confidentiality: Properly encrypted data channels ensure data
confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure
accountability.

Version Date: 31 March 2006
20

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Case 2: Monolithic Mainframe

Business Scenario
A leading insurance company has applications which process claims by its customers.
Application users are customer service representatives who either create or update
claims information based on telephone conversations with their customers. All incoming
claims are processed by the applications on a single IBM mainframe machine.

IT Environment
The IT organization of the insurance company develops its own applications in order to
gain an advantage in a highly competitive and quickly changing business environment.
The applications in question are developed in COBOL to run under CICS on a z/OS
IBM mainframe machine. These custom-written applications enable the insurance
company to respond rapidly to the time-critical needs of its client. The users utilize 3270
terminals from where they log on directly to CICS.

Diagram: Component Architecture

Version Date: 31 March 2006
21

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Version Date: 31 March 2006
22

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Table: Component Architecture

Component Description of Component

• User The application users are customer service representatives of the
insurance company who log on to CICS running under z/OS on a
single IBM mainframe. The users are located within a facility of
the organization — i.e., no remote access is required.

• Application This is a custom application developed within the organization —
i.e., it is not a package application.

• Data The application data in question is located in VSAM file cluster on
the single IBM mainframe machine.

• Security System The elements of the security system are:

• RACF sign-on security;

• RACF authorization to execute CICS transactions;

• RACF authorization to read/update VSAM file data.

Version Date: 31 March 2006
23

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Diagram: Security-Related Process Flow

Version Date: 31 March 2006
24

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Table: Security-Related Process Flow
The following table provides a stepped description of the security-related process flow
depicted in the figure above.

Step Description of Step in Security-Related Process Flow

1 The user performs an initial logon and is prompted for user ID and password.

2 If the user ID and password are successfully entered, a CICS session with the
IBM mainframe is initiated.

3 The application user invokes the desired CICS transaction.

4 To obtain authorization to run the transaction, the CICS determines permission
for the invoking user.

5 The application user (i.e., customer service representative) requests account
information for an existing customer.

6 The application reads account record(s) for the specified customer. In the
process of reading the data, the operating system determines whether the user is
permitted to read the relevant VSAM file.

7 If RACF authorizations allow it, the record is returned to the application from
VSAM.

8 The customer data is returned to the application user and is displayed on the
3270 terminal.

9 The application user enters required information – either creating a new claim or
adding further information (as instructed by the customer, specifically relating to
the insurance claim).

10 The application updates account record(s) for the specified customer. In the
process of updating the data, the operating system determines whether the user
is permitted to update the relevant VSAM file.

11 If RACF authorizations allow it, the record is updated in the VSAM file.

12 The application satisfies the request for updating the customer claim data and
displays confirmation of the update on the 3270 terminal.

Version Date: 31 March 2006
25

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Diagram: Vulnerabilities & Security Services
The following security-related process flow shows a selection of CLASP vulnerabilities
that are possible for this process flow.

Version Date: 31 March 2006
26

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

Table: Vulnerability-Related Information
The following table provides a stepped description of the security-related process flow
depicted in the figure above:

 Tag Vulnerabilities & Security Services

V-1 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using password systems

• Category of Vulnerability: Protocol errors

• Consequence(s) — Authentication: The failure of a password
authentication mechanism will almost always result in attackers being
authorized as valid users.

• Note: RACF always fails-safe, which does not allow anyone to log on.
However, failure to start CICS with SECURITY=YES would circumvent
the RACF authentication check. Therefore, it is necessary to protect
the CICS start-up JCL and its parameter files to avoid misuse. In
addition, it is also necessary to restrict access to the machine only to
CICS users in order to prevent malicious programs being typed-
in/compiled by staff. This means that CICS can be considered an
“execute” rather than “development” environment for the most part.

V-2 • Affected Security Service(s): Authentication

• CLASP Problem Type: Allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

• Note: RACF must be correctly configured to obtain correct password
aging.

Version Date: 31 March 2006
27

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

 Tag Vulnerabilities & Security Services

V-3 • Affected Security Service(s): Authentication

• CLASP Problem Type: Not allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

• Note: RACF must be correctly configured to obtain the correct
password aging.

V-4 • Affected Security Service(s): Confidentiality; Authentication

• CLASP Problem Type: Storing passwords in a recoverable format

• Category of Problem Type: Protocol errors

• Consequence(s):

• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere to
impersonate the users in question.

• Note: RACF will not reveal a user’s password. However, care must be
taken not to store user passwords in order to execute another
application component.

V-5 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using single-factor authentication

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If the secret in a single-factor
authentication scheme gets compromised, full authentication is
possible.

Version Date: 31 March 2006
28

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

 Tag Vulnerabilities & Security Services

V-6 • Affected Security Service(s): Integrity

• Vulnerability: Failure to protect stored data from modification

• Category of Problem Type: Protocol errors

• Consequence(s) — Integrity: The object could be tampered with.

• Note: Tampering could occur if the VSAM file cluster were not
protected by RACF, resulting in a failure in data administration.

V-7 • Affected Security Service(s): Availability; Access control (instruction
processing); Other

• CLASP Problem Type: Buffer overflow

• Category of Problem Type: Range and type errors

• Consequence(s):

• Availability: Buffer overflows generally lead to crashes. Other
attacks leading to lack of availability are possible, including putting
the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can
be used to execute arbitrary code, which is usually outside the
scope of a program’s implicit security policy. Other: When the
consequence is arbitrary code execution, this can often be used to
subvert any other security service.

• Note: Buffer overflows that maliciously execute code are difficult to
cause in CICS / COBOL programming. However, range and type
errors can still allow incorrect data validation, leading to incorrect
manipulation, display, and updating of data.

Version Date: 31 March 2006
29

CLASP Vulnerability Use Cases — Case 2: Monolithic Mainframe

 Tag Vulnerabilities & Security Services

V-8 • Affected Security Service(s): Authorization; Authentication

• CLASP Problem Type: Failure to check whether privileges were
dropped successfully

• Category of Problem Type: General logic errors

• Consequence(s):

• Authorization: If privileges are not dropped, neither are access
rights of the user. Often these rights can be prevented from being
dropped.

• Authentication: If privileges are not dropped, in some cases the
system may record actions as the user which is being
impersonated rather than the impersonator.

• Note: In this example, the application is not authorized to drop
permissions, etc. However, inadequate data/security administration
could leave outdated user IDs and permissions exposed to attack.
Refreshing the RACF information after making definition changes is
required, especially where the operating system caches such
information in protected memory.

V-9 • Affected Security Service(s): Authorization

• CLASP Problem Type: Trust of system event data

• Category of Problem Type: Environmental Problems

• Consequence(s) — Authorization: If one trusts the system-event
information and executes commands based on it, one could potentially
take actions based on a spoofed identity.

Version Date: 31 March 2006
30

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Case 3: Distributed Architecture

Business Scenario
The securities department of a major international investment corporation employs a
distributed computing system for performing automated operations — updated in real-
time — which support many types of stock market activity and securities, including:
shares; bonds; investment certificates; deposit certificates; stock options; state
securities; etc.

The main office of the securities department, which performs solely controlling and
management functions, has a central database server which collects data from branch
offices through TCP/IP in order to prepare consolidated reports. Each branch office has
a local database server containing data on its own group of customers and transmits
selected data to the central office. Customers communicate with branch offices through
HTTP[S] connections.

IT Environment (HTTP[S] & TCP/IP)
• Customers: Customers are able to browse their account information through

their browsers via HTTP[S].; this executes a sub-set of the available COM
objects located in the branch office, which services the customers’ accounts, in
order to access DBMS-stored data located in the branch offices.

• Main Office: The IT organization of the securities company develops its own
applications in order to gain competitive advantage in this quickly changing
business environment. The applications in the main office are Windows-based,
COM-written applications, accessing the DBMS server in order to obtain a
centralized view of the company’s transactions performed in branch offices.
The main office and branch offices communicate via TCP/IP connection.

• Branch Offices: The branch offices also have Windows-based, COM-written
applications, accessing the local DBMS servers for the purpose of executing
transactions which involve the retrieval and writing of data to the local DBMS
servers. The branch offices and main office communicate via TCP/IP
connection.

Version Date: 31 March 2006
31

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Component Architecture

Version Date: 31 March 2006
32

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Version Date: 31 March 2006
33

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Component Architecture

Component Description of Component

• User Three types of users are represented in this Use Case:

• Employee, located in the main office who logs onto the
Local Area Network in the office and executes applications
on the application server of the main office.

• Employee, located in the branch office who logs onto the
Local Area Network in the office and executes applications
on the application server of the branch office.

• Customer, who accesses his locally held account data by
web browser through HTTP[S].

• Application This is a custom application with the following components:

• Windows client application(s) within the main office and the
branch office. These invoke Windows COM objects in order
to perform business logic and read/update customer data.

• Windows COM objects located either in the main office or
the branch offices.

• ASP.NET server pages which execute secure HTTP
transactions via the browser of the customer and, in turn,
invoke a subset of COM objects located in the application
server of the branch office.

• Data The application data in question is located in:

• The main office DBMS server.

• The branch office DBMS server.

Note: The main office DBMS server represents a consolidated view
of all the branch offices.

Version Date: 31 March 2006
34

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Component Description of Component

• Security System The elements of the security system are:

• Windows Domain controller for the main office and each of
the branch offices;

• Various fire walls located in each office (main and branch);

• Digital external certificates which are distributed to each
customer in order to gain access to the web server in the
branch office and are validated locally through a private
signing key to sign the message digitally. The associated
public signing key in the certificate is then used to verify
this digital signature.

• Configuration of the respective DBMS servers in order to
comply with the locally held Domain server permission.

Version Date: 31 March 2006
35

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Customer’s Participation
This section describes the customer’s participation in the security-related process flow.
The customer’s participation consists of three high-level, security-related activities:
authentication; authorization to execute; and authorization to access data.

Diagram: Component Architecture

Version Date: 31 March 2006
36

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Version Date: 31 March 2006
37

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Security-Related Process Flow

Version Date: 31 March 2006
38

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Security-Related Process Flow

Step Description of Step in Security-Related Process Flow

1 The customer accessing the branch office requests authentication. He uses his user
name and password in conjunction with his personal digit certificate as part of the
sign-in process.

2 The customer accessing the branch office is granted authentication — provided the
user name password are correct and the digital certificate is valid and not expired.
This process is performed over HTTP[S] (SSL protocol) in accordance with a root
(CA certificate) residing in the branch office.

3 After sign-in, the customer requests a specific application through HTTP[S], using his
browser.

4 The customer is authorized to execute the application, which comprises the
ASP.NET web page in the web server — provided his authorization extends to the
selected web page which he has selected.

5 The ASP.NET web page requests execution of a COM object located in the local
application server.

6 Access to the COM objects is authorized — provided the request is valid for this
particular use (i.e., web access).

Note: The sub-set of COM objects accessible to the customer differs from that
accessible to the employees of the branch office. The customer will be allowed to
access the ASP.NET pages; the employees of the branch office do not have this
authorization.

7 The COM object must ensure it accesses/updates only the data relevant to the
signed-in customer. This is under the control of the application logic built into the
COM object.

8 The application correctly determines the data which is accessed and updated at the
customer’s request.

Note: Since the customer does not have a real (i.e., specific) Windows user ID,
application-level security is required to ensure that the customer reads only
authorized data. The DBMS of the branch office is not able to distinguish between
different customers if they all are granted access to the branch office LAN, using a
generic user ID.

9 The COM object then requests read/update access to data located in the local
DBMS in order to perform the selected business function.

10 Access to the data is authorized provided that the particular DBMS table(s) are
permitted for web access — i.e. accessible by the generic user ID.

Version Date: 31 March 2006
39

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Vulnerabilities & Security Services
The following security-related process flow shows a selection of CLASP vulnerabilities
that are possible for this process flow.

Version Date: 31 March 2006
40

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Vulnerability-Related Information
The following table provides a stepped description of the security-related process flow
depicted in the figure above:

 Tag Vulnerabilities & Security Services

V-1 • Affected Security Service(s): Confidentiality; Authentication; Access
Control; Integrity; Accountability

• CLASP Problem Type: Injection problem (‘”data” used as something else)

• Category of Problem Type: Range and Type Errors

• Consequence(s):

• Confidentiality: Many injection attacks involve the disclosure of
important information — in terms of both data sensitivity and
usefulness in further exploitation

• Authentication: In some cases injectable code controls
authentication; this may lead to remote vulnerability

• Access Control: Injection attacks are characterized by the ability to
significantly change the flow of a given process, and in some cases,
to the execution of arbitrary code.

• Integrity: Data injection attacks lead to loss of data integrity in nearly
all cases as the control-plane data injected is always incidental to
data recall or writing.

• Accountability: Often the actions performed by injected control code
are unlogged.

Version Date: 31 March 2006
41

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-2 • Affected Security Service(s): Confidentiality; Authentication;
Authorization; Integrity

• CLASP Problem Type: SQL injection

• Category of Problem Type: Range and Type Errors

• Consequence(s):

• Confidentiality: Since SQL databases generally hold sensitive data,
loss of confidentiality is a frequent problem with SQL injection
vulnerabilities.

• Authentication: If poor SQL commands are used to check user
names and passwords, it may be possible to connect to a system as
another user with no previous knowledge of the password.

• Authorization: If authorization information is held in an SQL database,
it may be possible to change this information through the successful
exploitation of an SQL injection vulnerability.

• Integrity: Just as it may be possible to read sensitive information, it is
also possible to make changes or even delete this information with
an SQL injection attack.

V-3 • Affected Security Service(s): Access control

• CLASP Problem Type: Command injection

• Category of Problem Type: Range and Type Errors

• Consequence(s) — Access control: Command injection allows for the
execution of arbitrary commands and code by the attacker.

Version Date: 31 March 2006
42

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-4 • Affected Security Service(s): Confidentiality; Access control

• CLASP Problem Type: Cross-site scripting

• Category of Problem Type: Range and Type Errors

• Consequence(s):

• Confidentiality: The most common attack performed with cross-site
scripting involves the disclosure of information stored in user cookies.

• Access control: In some circumstances it may be possible to run
arbitrary code on a victim’s computer when cross-site scripting is
combined with other flaws

V-5 • Affected Security Service(s): Authorization; Authentication

• CLASP Problem Type: Failure to check whether privileges were dropped
successfully

• Category of Problem Type: General Logic Errors

• Consequence(s):

• Authorization: If privileges are not dropped, neither are access rights
of the user. Often these rights can be prevented from being dropped.

• Authentication: If privileges are not dropped, in some cases the
system may record actions as the user which is being impersonated
rather than the impersonator.

V-6 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Accidental leaking of sensitive information
through sent data

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Confidentiality: Data leakage results in the
compromise of data confidentiality

Version Date: 31 March 2006
43

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-7 • Affected Security Service(s): Authorization

• CLASP Problem Type: Capture-replay

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Authorization: Messages sent with a capture-relay
attack allow access to resources which are not otherwise accessible
without proper authentication.

V-8 • Affected Security Service(s): Integrity; Authentication:

• CLASP Problem Type: Failure to validate host-specific certificate data

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Integrity: The data read from the system vouched for by the certificate
may not be from the expected system.

• Authentication: Trust afforded to the system in question — based on
the expired certificate — may allow for spoofing or redirection
attacks.

V-9 • Affected Security Service(s): Authentication; Integrity; Confidentiality:

• CLASP Problem Type: Failure to check for certificate revocation

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Authentication: Trust may be assigned to an entity who is not who it
claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may
be integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a
trusted entity, resulting in information disclosure.

Version Date: 31 March 2006
44

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-10 • Affected Security Service(s): Confidentiality; Integrity; Accountability

• CLASP Problem Type: Failure to encrypt data

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Confidentiality: Properly encrypted data channels ensure data
confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure
accountability.

V-11 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded cryptographic key

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: If hard-coded cryptographic keys are
used, it is almost certain that malicious users will gain access through the
account in question.

V-12 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported IP address

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information, impersonating any IP address.

V-13 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported DNS name

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information by providing false DNS information.

Version Date: 31 March 2006
45

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-14 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using a key past its expiration date

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: The cryptographic key in question
may be compromised, providing a malicious user with a method for
authenticating as the victim.

V-15 • Affected Security Service(s): Availability; Authentication:

• CLASP Problem Type: Insufficient entropy in PRNG

• Category of Problem Type: Environmental Problems

• Consequence(s):

• Availability: If a pseudo-random number generator is using a limited
entropy source which runs out (if the generator fails closed), the
program may pause or crash.

• Authentication: If a PRNG is using a limited entropy source which
runs out, and the generator fails open, the generator could produce
predictable random numbers. Potentially a weak source of random
numbers could weaken the encryption method used for
authentication of users. In this case, potentially a password could be
discovered.

Version Date: 31 March 2006
46

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-16 • Affected Security Service(s): Authentication; Integrity; Confidentiality

• CLASP Problem Type: Race condition in checking for certificate
revocation

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s)

• Authentication: Trust may be assigned to an entity who is not who it
claims to be.

• Integrity: Data from an untrusted (and possibly malicious) source may
be integrated.

• Confidentiality: Date may be disclosed to an entity impersonating a
trusted entity, resulting in information disclosure.

V-17 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Covert storage channel

• Category of Problem Type: Range and Type Errors

• Consequence(s) — Confidentiality: Covert storage channels may
provide attackers with important information about the system in
question.

V-18 • Affected Security Service(s): Authentication; Accountability

• CLASP Problem Type: Failure to follow chain of trust in certificate
validation

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s):

• Authentication: Exploitation of this flaw can lead to the trust of data
that may have originated with a spoofed source.

• Accountability: Data, requests, or actions taken by the attacking entity
can be carried out as a spoofed benign entity.

Version Date: 31 March 2006
47

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-19 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Accidental leaking of sensitive information
through data queries

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Confidentiality: Sensitive information may possibly
be through data queries accidentally.

V-20 • Affected Security Service(s): Integrity; Availability; Access Control

• CLASP Problem Type: Using freed memory

• Category of Problem Type: Range and Type Errors

• Consequence(s):

• Integrity: The use of previously freed memory may corrupt valid data,
if the memory area in question has been allocated and used properly
elsewhere.

• Availability: If chunk consolidation occur after the use of previously
freed data, the process may crash when invalid data is used as
chunk information.

• Access Control (instruction processing): If malicious data is entered
before chunk consolidation can take place, it may be possible to take
advantage of a write-what-where primitive to execute arbitrary code.

V-21 • Affected Security Service(s): Authentication; Confidentiality

• CLASP Problem Type: Key exchange without entity authentication

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Authentication: No authentication takes place in this process,
bypassing an assumed protection of encryption

• Confidentiality: The encrypted communication between a user and a
trusted host may be subject to a “man-in-the-middle” sniffing attack

Version Date: 31 March 2006
48

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-22 • Affected Security Service(s): Availability; Access control (instruction
processing); Other

• CLASP Problem Type: Buffer overflow

• Category of Problem Type: Range and type errors

• Consequence(s):

• Availability: Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting the
program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can be
used to execute arbitrary code, which is usually outside the scope of
a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can
often be used to subvert any other security service.

Version Date: 31 March 2006
49

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Branch Office’s Participation
This section describes the branch office’s participation in the security-related process
flow. The branch office’s participation consists of three high-level, security-related
activities: authentication; authorization to execute; and authorization to access data.

Diagram: Component Architecture

Version Date: 31 March 2006
50

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Version Date: 31 March 2006
51

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Security-Related Process Flow

Version Date: 31 March 2006
52

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Security-Related Process Flow

Step Description of Step in Security-Related Process Flow

1 The employee in a branch office requests authentication.

2 Result: The employee is logged on to the local Windows domain.

Note: Authentication is performed against the "local Windows domain controller" in
the branch office of the employee, which holds user ID's/password for each physical
site.

3 The branch office employee requests authorization to execute the application — i.e.,
actually the COM object residing in the application server of the branch office.

Note: Not all COM objects are accessible to all users, based on the logged on
Windows Domain user ID.

4 Result: The branch office employee is authorized to execute the application.

5 After execution authorization is performed, data authorization (read/update) for the
branch office employee is applied. The authorization is based on the specific user ID
in use — i.e., that of the main office user, branch office user, or customer. This
authorization check is performed by the security component of the DBMS working in
conjunction with the Windows user ID.

6 Result: The branch office employee is authorized to modify branch office data.

7 To access data located on main office’s DBMS via COM objects located within the
main office’s application server, the branch employee requests authentication,
performed against local “Windows domain controller” (containing a main office user
ID and password) in employee’s branch office.

8 Result: Employee of branch office is granted authentication and is logged on to local
Windows domain for the purpose of accessing data on the application server of main
office.

Version Date: 31 March 2006
53

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Vulnerabilities & Security Services
The following security-related process flow shows a selection of CLASP vulnerabilities
that are possible for this process flow.

Version Date: 31 March 2006
54

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Vulnerability-Related Information
The following table provides a stepped description of the security-related process flow
depicted in the figure above:

 Tag Vulnerabilities & Security Services

V-1 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded password

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If hard-coded passwords are used,
it is almost certain that malicious users will gain access through the
account in question.

V-2 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using password systems

• Category of Vulnerability: Protocol errors

• Consequence(s) — Authentication: The failure of a password
authentication mechanism will almost always result in attackers being
authorized as valid users.

V-3 • Affected Security Service(s): Authentication

• CLASP Problem Type: Allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

V-4 • Affected Security Service(s): Authentication

• CLASP Problem Type: Not allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

Version Date: 31 March 2006
55

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-5 • Affected Security Service(s): Confidentiality; Authentication

• CLASP Problem Type: Storing passwords in a recoverable format

• Category of Problem Type: Protocol errors

• Consequence(s):

• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere to
impersonate the users in question.

V-6 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using single-factor authentication

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If the secret in a single-factor
authentication scheme gets compromised, full authentication is
possible.

V-7 • Affected Security Service(s): Integrity

• Vulnerability: Failure to protect stored data from modification

• Category of Problem Type: Protocol errors

• Consequence(s) — Integrity: The object could be tampered with.

Version Date: 31 March 2006
56

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-8 • Affected Security Service(s): Authorization; Authentication

• CLASP Problem Type: Failure to check whether privileges were
dropped successfully

• Category of Problem Type: General logic errors

• Consequence(s):

• Authorization: If privileges are not dropped, neither are access
rights of the user. Often these rights can be prevented from being
dropped.

• Authentication: If privileges are not dropped, in some cases the
system may record actions as the user which is being impersonated
rather than the impersonator.

V-9 • Affected Security Service(s): Availability; Access control (instruction
processing); Other

• CLASP Problem Type: Buffer overflow

• Category of Problem Type: Range and type errors

• Consequence(s):

• Availability: Buffer overflows generally lead to crashes. Other
attacks leading to lack of availability are possible, including putting
the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can
be used to execute arbitrary code, which is usually outside the
scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can
often be used to subvert any other security service.

Version Date: 31 March 2006
57

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-10 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Accidental leaking of sensitive information
through sent data

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Confidentiality: Data leakage results in the
compromise of data confidentiality

V-11 • Affected Security Service(s): Confidentiality; Integrity; Accountability

• CLASP Problem Type: Failure to encrypt data

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Confidentiality: Properly encrypted data channels ensure data
confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure
accountability.

V-12 • Affected Security Service(s): Authorization

• CLASP Problem Type: Comparing classes by name

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Authorization: If a program trusts, based on the
name of the object, to assume that it is the correct object, it may
execute the wrong program.

V-13 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Covert storage channel

• Category of Problem Type: Range and Type Errors

• Consequence(s) — Confidentiality: Covert storage channels may
provide attackers with important information about the system in

Version Date: 31 March 2006
58

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services
question.

V-14 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded cryptographic key

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: If hard-coded cryptographic keys
are used, it is almost certain that malicious users will gain access
through the account in question.

V-15 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported IP address

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information, impersonating any IP address.

V-16 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported DNS name

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information by providing false DNS information.

Version Date: 31 March 2006
59

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-17 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using a key past its expiration date

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: The cryptographic key in question
may be compromised, providing a malicious user with a method for
authenticating as the victim.

Version Date: 31 March 2006
60

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Main Office’s Participation
This section describes the main office’s participation in the security-related process
flow. The main office’s participation consists of three high-level, security-related
activities: authentication; authorization to execute; and authorization to access data.

Version Date: 31 March 2006
61

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Component Architecture

Version Date: 31 March 2006
62

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Security-Related Process Flow

Version Date: 31 March 2006
63

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Security-Related Process Flow

Step Description of Step in Security-Related Process Flow

1 The employee in the main office requests authentication.

2 Result: The employee is logged on to the local Windows domain of the main office.

Note: Authentication is performed against the "local Windows domain controller" of
the main office, which holds user ID's/password for each physical site.

3 The main office employee requests authorization to execute the application — i.e.,
actually the COM object residing in the application server of the main office.

Note: Not all COM objects are accessible to all users, based on the logged on
Windows Domain user ID.

4 Result: The main office employee is authorized to execute the application.

5 After execution authorization is performed, data authorization (read/update) for the
main office employee is applied. The authorization is based on the specific user ID
in use — i.e., that of the main office user, branch office user, or customer. This
authorization check is performed by the security component of the DBMS working
in conjunction with the Windows user ID.

6 Result: The main office employee is authorized to modify data residing on the main
office’s application server.

7 To access data located on a local office’s DBMS via COM objects located within
their own application server, the main employee requests authentication, performed
against local “Windows domain controller” (containing a local office user ID and
password) in employee’s branch office.

Note: The branch office Domain Controller needs to hold a "main office" user ID.

8 Result: The Employee of the main office is granted authentication and is logged on
to local Windows domain for the purpose of accessing data on the application
server of a local office.

Version Date: 31 March 2006
64

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Diagram: Vulnerabilities & Security Services
The following security-related process flow shows a selection of CLASP vulnerabilities
that are possible for this process flow.

Version Date: 31 March 2006
65

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

Table: Vulnerability-Related Information
The following table provides a stepped description of the security-related process flow
depicted in the figure above:

 Tag Vulnerabilities & Security Services

V-1 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded password

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If hard-coded passwords are used,
it is almost certain that malicious users will gain access through the
account in question.

V-2 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using password systems

• Category of Vulnerability: Protocol errors

• Consequence(s) — Authentication: The failure of a password
authentication mechanism will almost always result in attackers being
authorized as valid users.

V-3 • Affected Security Service(s): Authentication

• CLASP Problem Type: Allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

V-4 • Affected Security Service(s): Authentication

• CLASP Problem Type: Not allowing password aging

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: As passwords age, the probability
that they are compromised grows.

Version Date: 31 March 2006
66

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-5 • Affected Security Service(s): Confidentiality; Authentication

• CLASP Problem Type: Storing passwords in a recoverable format

• Category of Problem Type: Protocol errors

• Consequence(s):

• Confidentiality: User’s passwords may be revealed.

• Authentication: Revealed passwords may be reused elsewhere to
impersonate the users in question.

V-6 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using single-factor authentication

• Category of Problem Type: Protocol errors

• Consequence(s) — Authentication: If the secret in a single-factor
authentication scheme gets compromised, full authentication is
possible.

V-7 • Affected Security Service(s): Integrity

• Vulnerability: Failure to protect stored data from modification

• Category of Problem Type: Protocol errors

• Consequence(s) — Integrity: The object could be tampered with.

Version Date: 31 March 2006
67

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-8 • Affected Security Service(s): Authorization; Authentication

• CLASP Problem Type: Failure to check whether privileges were
dropped successfully

• Category of Problem Type: General logic errors

• Consequence(s):

• Authorization: If privileges are not dropped, neither are access
rights of the user. Often these rights can be prevented from being
dropped.

• Authentication: If privileges are not dropped, in some cases the
system may record actions as the user which is being impersonated
rather than the impersonator.

V-9 • Affected Security Service(s): Availability; Access control (instruction
processing); Other

• CLASP Problem Type: Buffer overflow

• Category of Problem Type: Range and type errors

• Consequence(s):

• Availability: Buffer overflows generally lead to crashes. Other
attacks leading to lack of availability are possible, including putting
the program into an infinite loop.

• Access control (instruction processing): Buffer overflows often can
be used to execute arbitrary code, which is usually outside the
scope of a program’s implicit security policy.

• Other: When the consequence is arbitrary code execution, this can
often be used to subvert any other security service.

Version Date: 31 March 2006
68

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-10 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Accidental leaking of sensitive information
through sent data

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Confidentiality: Data leakage results in the
compromise of data confidentiality

V-11 • Affected Security Service(s): Confidentiality; Integrity; Accountability

• CLASP Problem Type: Failure to encrypt data

• Category of Problem Type: Protocol Errors

• Consequence(s):

• Confidentiality: Properly encrypted data channels ensure data
confidentiality.

• Integrity: Properly encrypted data channels ensure data integrity.

• Accountability: Properly encrypted data channels ensure
accountability.

V-12 • Affected Security Service(s): Authorization

• CLASP Problem Type: Comparing classes by name

• Category of Problem Type: Synchronization and Timing Errors

• Consequence(s) — Authorization: If a program trusts, based on the
name of the object, to assume that it is the correct object, it may
execute the wrong program.

V-13 • Affected Security Service(s): Confidentiality

• CLASP Problem Type: Covert storage channel

• Category of Problem Type: Range and Type Errors

• Consequence(s) — Confidentiality: Covert storage channels may
provide attackers with important information about the system in

Version Date: 31 March 2006
69

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services
question.

V-14 • Affected Security Service(s): Authentication

• CLASP Problem Type: Use of hard-coded cryptographic key

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: If hard-coded cryptographic keys
are used, it is almost certain that malicious users will gain access
through the account in question.

V-15 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported IP address

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information, impersonating any IP address.

V-16 • Affected Security Service(s): Authentication

• CLASP Problem Type: Trusting self-reported DNS name

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: Malicious users can fake
authentication information by providing false DNS information.

Version Date: 31 March 2006
70

CLASP Vulnerability Use Cases — Case 3: Distributed Architecture

 Tag Vulnerabilities & Security Services

V-17 • Affected Security Service(s): Authentication

• CLASP Problem Type: Using a key past its expiration date

• Category of Problem Type: Protocol Errors

• Consequence(s) — Authentication: The cryptographic key in question
may be compromised, providing a malicious user with a method for
authenticating as the victim.

CLASP Resources
The CLASP Resources provide introductions to the most important concepts that
underlie the CLASP process. These concepts are referenced from the role-based
overviews (see section Role-Based View) and are relied upon throughout the rest of the
process. For example, CLASP Resource D discusses the core security services:
authorization; authentication; confidentiality; integrity; availability, accountability; non-
repudiation.

Even if you have already had exposure to these services, it is recommended to
examine the CLASP discussion since these concepts are relied upon heavily,
particularly in requirements definition and analysis.

Version Date: 31 March 2006
2

CLASP Resources — A: Basic Principles in Application Security

A: Basic Principles in Application Security
This CLASP Resource is meant as a set of basic principles for all members of your
application-security project.

Ethics in Secure-Software Development
Software development organizations should behave ethically as a whole, but should not
expect that their individual components will.

In so far as security goes, it is ethical not to expose a user to security risks that are
known and will not be obvious to the user, without clearly informing the user of those
risks (and preferably, mitigation strategies).

It is also ethical to provide users with a specific privacy policy for use of their personal
information in a timely manner so that they can act to avoid undesired use of that
information, if they so desire. Additionally, if you change a privacy policy, the user
should be given the explicit choice either to accept the change or to have his personal
data expunged.

Additionally, if you have a system that is compromised on which user data resides, it is
ethical to inform users of the breach in privacy. If the data resides in the state of
California, this is required by law. Similar regulations may apply in other jurisdictions.

Do not expect that all other people on the development team will be ethical. Insiders
play a significant factor in over 50% of corporate security breaches. Particularly at risks
are those employees that are silently disgruntled or have recently left the company.

Version Date: 31 March 2006
3

CLASP Resources — A: Basic Principles in Application Security

Insider Threats as the Weak Link
Most development organizations overlook “insider” risks — i.e., those users with inside
access to the application, whether it be in deployment or development. For example,
when planning for deployments it is easy to assume “a firewall will be there,” although,
even when true, there are many techniques for circumventing a firewall.

Most development organizations completely ignore the risks from the guy in the next
cube or on the next floor, the risks from the secretaries and the janitors, the risks from
those who have recently quit or been fired. This, despite yearly numbers from the
Computer Crime and Security Survey performed by the Computer Security Institute and
the FBI, which shows that over half of all security incidents have an inside angle.

This suggests that trusting the people around you isn’t good enough. Not only might
people be disgruntled or susceptible to bribe that you may not expect, but people are
often susceptible to accidentally giving insider help by falling victim to social
engineering attacks.

Social engineering is when an attacker uses his social skills (generally involving
deception) to meet his security ends. For example, he may convince technical support
that he is a particular user who has forgotten his password, and get the password
changed over the phone. This is why many people have moved to systems where
passwords can be reset automatically only using a “secret question” — although secret
questions are a bit too repetitive. If someone is being targeted, it is often easy to figure
out the mother’s maiden name, the person’s favorite color, and the name of his or her
pets.

Version Date: 31 March 2006
4

CLASP Resources — A: Basic Principles in Application Security

Assume the Network is Compromised
There are many categories of attack that can be launched by attackers with access to
any network media that can see application traffic. Many people assume wrongly that
such attacks are not feasible, assuming that it is “difficult to get in the middle of network
communications,” especially when most communications are from ISP to ISP.

One misconception is that an attacker actually needs to “be in the middle” for a network
attack to be successful. Ethernet is a shared medium, and it turns out that attacks can
be launched if the bad guy is on one of the shared segments that will see the traffic.
Generally, the greatest risk lies in the local networks that the endpoints use.

Many people think that plugging into a network via a switch will prevent against the
threat on the local network. Unfortunately, that is not true, as switches can have their
traffic intercepted and monitored using a technique called ARP spoofing. And even if
this problem were easily addressed, there are always attacks on the physical media
that tend to be easy to perform.

As for router infrastructure, remember that most routers run software. For example,
Cisco’s routers run IOS, an operating system written in C that has had exploitable
conditions found in it in the past. It may occasionally be reasonable for an attacker to
truly be “in the middle.”

Another misconception is that network-level attacks are difficult to perform. There are
tools that easily automate them. For example, “dsniff” will automate many attacks,
including man-in-the-middle eavesdropping and ARP spoofing.

Well known network-level threats include the following:

• Eavesdropping — Even when using cryptography, eavesdropping may be
possible when not performing proper authentication, using a man-in-the-middle
attack.

• Tampering — An attacker can change data on the wire. Even if the data is
encrypted, it may be possible to make significant changes to the data without
being able to decrypt it. Tampering is best thwarted by performing ongoing
message authentication (MACing), provided by most high-level protocols, such
as SSL/TLS.

• Spoofing — Traffic can be forged so that it appears to come from a different
source address than the one from which it actually comes. This will thwart
authentication systems that rely exclusively on IP addresses and/or DNS
names for authentication.

• Hijacking — An extension of spoofing, established connections can be taken
over, allowing the attacker to enter an already established session without
having to authenticate. This can be thwarted with ongoing message

Version Date: 31 March 2006
5

CLASP Resources — A: Basic Principles in Application Security

authentication, which is provided by most high-level protocols, such as
SSL/TLS.

• Observing — It is possible to give away security-critical information even when
a network connection is confidentiality-protected through encryption. For
example, the mere fact that two particular hosts are talking may give away
significant information, as can the timing of traffic. These are generally
examples of covert channels (non-obvious communication paths), which tend
to be the most difficult problem in the security space.

Version Date: 31 March 2006
6

CLASP Resources — A: Basic Principles in Application Security

Minimize Attack Surface
For a large application, a rough yet reliable metric for determining overall risk is to
measure the number of input points that the application has — i.e., attack surface. The
notion is that more points of entry into the application provides more avenues for an
attacker to find a weakness.

Of course, any such metric must consider the accessibility of the input point. For
example, many applications are developed for a threat model where the local
environment is trusted. In this case, having a large number of local input points such as
configuration files, registry keys, user input, etc., should be considered far less
worrisome than making several external network connections.

Collapsing functionality that previously was spread across several ports onto a single
port does not always help reduce attack surface, particularly when the single port
exports all the same functionality, with an infrastructure that performs basic switching.
The effective attack surface is the same unless the actual functionality is somehow
simplified. Since underlying complexity clearly plays a role, metrics based on attack
surface should not be used as the only means access control should be mandatory
of analyzing risks in a piece of software.

Version Date: 31 March 2006
7

CLASP Resources — A: Basic Principles in Application Security

Secure-by-Default
A system’s default setting should not expose users to unnecessary risks and should be
as secure as possible. This means that all security functionality should be enabled by
default, and all optional features which entail any security risk should be disabled by
default.

It also means that — if there is some sort of failure in the system — the behavior should
not cause the system to behave in an insecure manner (the “fail-safe” principle). For
example, if a connection cannot be established over SSL, it is not a good idea to try to
establish a plaintext connection.

The “secure-by-default” philosophy does not interact well with usability since it is far
simpler for the user to make immediate use of a system if all functionality is enabled. He
can make use of functionality which is needed and ignore the functionality that is not.

However, attackers will not ignore this functionality. A system released with an insecure
default configuration ensures that the vast majority of systems-in-the-wild are
vulnerable. In many circumstances, it can even become difficult to patch a system
before it is compromised.

Therefore, if there are significant security risks that the user is not already accepting,
you should prefer a secure-by-default configuration. If not, at least alert the user to the
risks ahead of time and point him to documentation on mitigation strategies.

Note that, in a secure-by-default system, the user will have to explicitly enable any
functionality that increases his risk. Such operations should be relatively hidden (e.g., in
an “advanced” preference pane) and should make the risks in disabling the functionality
readily apparent.

Version Date: 31 March 2006
8

CLASP Resources — A: Basic Principles in Application Security

Defense-in-Depth
The principle of defense-in-depth is that redundant security mechanisms increase
security. If one mechanism fails, perhaps the other one will still provide the necessary
security. For example, it is not a good idea to rely on a firewall to provide security for an
internal-use-only application, as firewalls can usually be circumvented by a determined
attacker (even if it requires a physical attack or a social engineering attack of some
sort).

Implementing a defense-in-depth strategy can add to the complexity of an application,
which runs counter to the “simplicity” principle often practiced in security. That is, one
could argue that new protection functionality adds additional complexity that might bring
new risks with it.

The risks need to be weighed. For example, a second mechanism may make no sense
when the first mechanism is believed to be 100% effective; therefore, there is not much
reason for introducing the additional solution, which may pose new risks. But usually
the risks in additional complexity are minimal compared to the risk the protection
mechanism seeks to reduce.

Version Date: 31 March 2006
9

CLASP Resources — A: Basic Principles in Application Security

Principles for Reducing Exposure
Submarines employ a trick that makes them far less risky to inhabit. Assume that you
are underwater on a sub when the hull bursts right by you. You actually have a
reasonable chance of survival, because the ship is broken up into separate airtight
compartments. If one compartment takes on water, it can be sealed off from the rest of
the compartments.

Compartmentalization is a good principle to keep in mind when designing software
systems. The basic idea is to try to contain damage if something does goes wrong.
Another principle is that of least privilege, which states that privileges granted to a user
should be limited to only those privileges necessary to do what that user needs to do.
For example, least privilege argues that you should not run your program with
administrative privileges, if at all possible. Instead, you should run it as a lesser user
with just enough privileges to do the job, and no more.

Another relevant principle is to minimize windows of vulnerability. This means that —
when risks must be introduced — they should be introduced for as short a time as
possible (a corollary of this is “insecure bootstrapping”). In the context of privilege, it is
could to account for which privileges a user can obtain, but only grant them when the
situation absolutely merits. That supports the least privilege principle by granting the
user privileges only when necessary, and revoking them immediately after use.

When the resources you are mitigating access in order to live outside your application,
these principles are usually easier to apply with operational controls than with controls
you build into your own software. However, one highly effective technique for enforcing
these principles is the notion of privilege separation. The idea is that an application is
broken up into two portions, the privileged core and the main application. The privileged
core has as little functionality as absolutely possible so that it can be well audited. Its
only purposes are as follows:

• Authenticate new connections and spawn off unprivileged main processes to
handle those connections.

• Mediate access to those resources which the unprivileged process might
legitimately get to access. That is, the core listens to requests from the
children, determines whether they are valid, and then executes them on behalf
of the unprivileged process.

This technique compartmentalizes each user of the system into its own process and
completely removes all access to privileges, except for those privileges absolutely
necessary, and then grants those privileges indirectly, only at the point where it is
necessary.

Version Date: 31 March 2006
10

CLASP Resources — A: Basic Principles in Application Security

The Insecure-Bootstrapping Principle
Insecure bootstrapping is the principle that — if you need to use an insecure
communication channel for anything — you should use it to bootstrap a secure
communication channel so that you do not need to use an insecure channel again.

For example, SSH is a protocol that provides a secure channel after the client and
server have authenticated each other. Since it does not use a public key infrastructure
the first time the client connects, it generally will not have the server credentials. The
server sends its credentials, and the client just blindly accepts that they’re the right
ones. Clearly, if an attacker can send his own credentials, he can masquerade as the
server or launch a man-in-the-middle attack.

But, the SSH client remembers the credentials. If the credentials remain the same, and
the first connection was secure, then subsequent connections are secure. If the
credentials change, then something is wrong — i.e., either an attack is being waged, or
the server credentials have changed — and SSH clients will generally alert the user.

Of course, it is better not to use an insecure communication channel at all, if it can be
avoided.

Version Date: 31 March 2006
11

CLASP Resources — B: Example of Basic Principle: Input Validation

B: Example of Basic Principle: Input
Validation
If a program is liberal in what it accepts, it often risks an attacker finding an input that
has negative security implications. Several major categories of software security
problems are ultimately input validation problems — including buffer overflows, SQL
injection attacks, and command-injection attacks.

Data input to a program is either valid or invalid. What defines valid can be dependent
on the semantics of the program. Good security practice is to definitively identify all
invalid data before any action on the data is taken. And, if data is invalid, one should act
appropriately.

Where to perform input validation
There are many levels at which one can perform input validation. Common places
include:

• Use — all places in the code where data (particularly data of external origin)
gets used.

• Unit boundaries — i.e., individual components, modules, or functions;

• Trust boundaries — i.e., on a per-executable basis.

• Protocol parsing — When the network protocol gets interpreted.

• Application entry points — e.g., just before or just after passing data to an
application, such as a validation engine in a web server for a web service.

• Network — i.e., a traditional intrusion detection system (IDS).

Validating at use is generally quite error-prone because it is easy to forget to insert a
check. This is still true, but less so when validating at unit boundaries. Going up the
line, validation becomes less error prone. However, at higher levels, it gets harder and
harder to make accurate checks because there is less and less context readily available
to make a decision with.

At a bare minimum, input validation should be performed at unit boundaries, preferably
using a structured technique such as design-by-contract. Validating at other levels
provides defense-in-depth to help handle the case where a check is forgotten at a lower
level.

Version Date: 31 March 2006
12

CLASP Resources — B: Example of Basic Principle: Input Validation

Ways in which data can be invalid
At a high level, invalid data is anything that does not meet the strictest possible
definition of valid. It does not just encompass malformed data, it encompasses missing
data and out-of-order data (e.g., data used in a capture-replay attack).

There are four different contexts in which data can be invalid:

• Sender — Data is invalid if it did not originate from an authentic source.

• Tokens — Data in network protocols are generally broken up into atomic units
called tokens, which often map to concrete data types (e.g., numbers, zip
codes, and strings). An invalid token is one that is an invalid value for all token
types known to a system.

• Syntax — Protocols accept messages as valid based on a protocol syntax,
which is usually defined in terms of tokens. An invalid message is one that
should not be accepted as part of the protocol.

• Semantics — Even when a message satisfies syntax requirements, it may be
semantically invalid.

How to determine input validity
Data validity must be evaluated in each of the four contexts described above. For
example, a valid sender can send bad tokens. Good tokens can be combined in
syntactically invalid ways. And, otherwise valid messages can make no valid sense in
terms of the program’s semantics.

At a high-level, there are three approaches to providing data validity:

• Black-listing — Widely considered bad practice in all cases, one validates
based on a policy that explicitly defines bad values. All other data is assumed
to be valid, but in practice, it often is not (or should not be).

• White-listing — One validates based on a precise description of what valid
data entails (a policy). If the policy is correct, this prevents accidentally
allowing maliciously invalid data. The risks are that the policy will not be
correct, which may result not only in allowing bad data but also in disallowing
some valid data.

• Cryptographic validation — One uses cryptography to demonstrate validity of
the data.

Handling each input validation context involves a separate strategy:

• The sender can, in the general case, only be validated adequately using
cryptographic message authentication.

Version Date: 31 March 2006
13

CLASP Resources — B: Example of Basic Principle: Input Validation

• Tokens are generally validated using a simple state machine describing valid
tokens (often implemented with regular expressions).

• Syntax is generally validated using a standard language parser, such as a
recursive decent parser or a parser generated by a parser generator.

• Semantics are generally validated at the highest boundary at which all of the
semantic data needed to make a decision is available. Message-ordering
omission is best validated cryptographically along with sender authentication.

Protocol-specific semantics are often best validated in the context of a parser generated
from a specification. In this case, semantics should be validated in the production
associated with a single syntactic rule. When not enough semantic data is available at
this level, semantic validation is best performed using a design-by-contract approach.

Actions to perform when invalid data is found
There are three classes of action one can take when invalid data is identified:

• Error — This includes fatal errors and non-fatal errors.

• Record — This includes logging errors and sending notifications of errors to
interested parties.

• Modify — This includes filtering data or replacing data with default values.

These three classes are orthogonal, meaning that the decision to do any one is
independent from the others. One can easily perform all three classes of action.

Version Date: 31 March 2006
14

CLASP Resources — C: Example of Basic-Principle Violation: Penetrate-and-Patch Model

C: Example of Basic-Principle Violation:
Penetrate-and-Patch Model
Addressing the application-security problem effectively is difficult because traditional
software development lifecycles do not deal with these concerns well. This is largely
due to a lack of structured guidance, since the few books on the topic are relatively new
and document only collections of best practices.

In addition, security is not a feature that demonstrates well. Development organizations
generally prefer to focus on core functionality features and then address security in an
ad-hoc manner during development — focusing on providing a minimal set of services
and driven by the limited security expertise of developers. This usually results in over-
reliance on poorly understood security technologies.

Example: SSL Deployments
SSL is the most popular means of providing data confidentiality and integrity services
for data traversing a network. Yet most SSL deployments are susceptible to network-
based attacks because the technology is widely misunderstood by those who apply it.
Particularly, people tend to treat it as a drop-in for traditional sockets, but when used in
this way necessary server authentication steps are skipped. Performing proper
authentication is usually a highly complex process.

Organizations that deploy technologies such as SSL and Java are often susceptible to
a false sense of security. For example, an informal study of Java programs was
conducted, which showed that a significant security risk appeared, on average, once
per thousand lines of code — an extremely high number.

Cost of Deferring Security Issues
The result of the traditional shoestring approach to software security is that
organizations will cross their fingers, hoping that security problems do not manifest and
deferring most security issues to the time when they do — which is often well after the
software is deployed. This is the so-called “penetrate-and-patch” model.

Bolting on a security solution after a problem is found is, of course, just as nonsensical
as adding on a reliability module to fix robustness problems after software is developed.
In fact, an IBM study on the cost of addressing security issues at various points during
the SDLC argues that the cost of deferring security issues from design into deployment
is greater than the cost associated with traditional reliability bugs. This is largely due to
the tremendous overhead associated with vulnerability disclosure and actual security
breaches.

Version Date: 31 March 2006
15

CLASP Resources — D: Core Security Services

D: Core Security Services
There are several fundamental security goals that may be required for the resources in
your system. For each resource in your system, you should be aware of whether and
how you are addressing each concern throughout the lifetime of the resource. That is,
each resource may have different protection requirements as it interacts with different
resources. For example, user data may not need to be protected on the user’s machine
but may need long-term secure storage in your database to prevent against possible
insider attacks.

The fundamental security goals are: access control, authentication, confidentiality, data
integrity, availability, accountability, and non-repudiation. In this section, we give an
overview of each of the goals, explaining important nuances and discussing the levels
within a system at which the concern can be addressed effectively.

Be aware that mechanisms put in place to achieve each of these services may be
thwarted by unintentional logic errors in code.

Version Date: 31 March 2006
16

CLASP Resources — D: Core Security Services

Authorization (access control)
Authorization — also known as access control — is mediating access to resources on
the basis of identity and is generally policy-driven (although the policy may be implicit).
It is the primary security service that concerns most software, with most of the other
security services supporting it. For example, access control decisions are generally
enforced on the basis of a user-specific policy, and authentication is the way to
establish the user in question. Similarly, confidentiality is really a manifestation of
access control, specifically the ability to read data. Since, in computer security,
confidentiality is often synonymous with encryption, it becomes a technique for
enforcing an access-control policy.

Policies that are to be enforced by an access-control mechanism generally operate on
sets of resources; the policy may differ for individual actions that may be performed on
those resources (capabilities). For example, common capabilities for a file on a file
system are: read, write, execute, create, and delete. However, there are other
operations that could be considered “meta-operations” that are often overlooked —
particularly reading and writing file attributes, setting file ownership, and establishing
access control policy to any of these operations.

Often, resources are overlooked when implementing access control systems. For
example, buffer overflows are a failure in enforcing write-access on specific areas of
memory. Often, a buffer overflow exploit also accesses the CPU in a manner that is
implicitly unauthorized as well.

Advantage of Mandatory Access Control
From the perspective of end-users of a system, access control should be mandatory
whenever possible, as opposed to discretionary. Mandatory access control means that
the system establishes and enforces a policy for user data, and the user does not get to
make his own decisions of who else in the system can access data. In discretionary
access control, the user can make such decisions. Enforcing a conservative mandatory
access control policy can help prevent operational security errors, where the end user
does not understand the implications of granting particular privileges. It usually keeps
the system simpler as well.

Mandatory access control is also worth considering at the OS level, where the OS
labels data going into an application and enforces an externally defined access control
policy whenever the application attempts to access system resources. While such
technologies are only applicable in a few environments, they are particularly useful as a
compartmentalization mechanism, since — if a particular application gets compromised
— a good MAC system will prevent it from doing much damage to other applications
running on the same machine.

Version Date: 31 March 2006
17

CLASP Resources — D: Core Security Services

Authentication
In most cases, one wants to establish the identity of either a communications partner or
the owner, creator, etc. of data. For network connections, it is important to perform
authentication at login time, but it is also important to perform ongoing authentication
over the lifetime of the connection; this can easily be done on a per-message basis
without inconveniencing the user. This is often thought of as message integrity, but in
most contexts integrity is a side-effect of necessary re-authentication.

Authentication is a prerequisite for making policy-based access control decisions, since
most systems have policies that differ, based on identity.

In reality, authentication rarely establishes identity with absolute certainty. In most
cases, one is authenticating credentials that one expects to be unique to the entity,
such as a password or a hardware token. But those credentials can be compromised.
And in some cases (particularly in biometrics), the decision may be based on a metric
that has a significant error rate.

Additionally, for data communications, an initial authentication provides assurance at
the time the authentication completes, but when the initial authentication is used to
establish authenticity of data through the life of the connection, the assurance level
generally goes down as time goes on. That is, authentication data may not be “fresh,”
such as when the valid user wanders off to eat lunch, and some other user sits down at
the terminal.

In data communication, authentication is often combined with key exchange. This
combination is advantageous since there should be no unauthenticated messages
(including key exchange messages) and since general-purpose data communication
often requires a key to be exchanged. Even when using public key cryptography where
no key needs to be exchanged, it is generally wise to exchange them because general-
purpose encryption using public keys has many pitfalls, efficiency being only one of
them.

Authentication factors
There are many different techniques (or factors) for performing authentication.
Authentication factors are usually termed strong or weak. The term strong
authentication factor usually implies reasonable cryptographic security levels, although
the terms are often used imprecisely.

Authentication factors fall into these categories:

• Things you know — such as passwords or pass-phrases. These are usually
considered weak authentication factors, but that is not always the case (such
as when using a strong password protocol such as SRP and a large, randomly
generated secret). The big problem with this kind of mechanism is the limited

Version Date: 31 March 2006
18

CLASP Resources — D: Core Security Services

memory of users. Strong secrets are difficult to remember, so people tend to
share authentication credentials across systems, reducing the overall security.
Sometimes people will take a strong secret and convert it into a “thing you have”
by writing it down. This can lead to more secure systems by ameliorating the
typical problems with weak passwords; but it introduces new attack vectors.

• Things you have — such as a credit card or an RSA SecurID (often referred to
as authentication tokens). One risk common to all such authentication
mechanisms is token theft. In most cases, the token may be cloneable. In
some cases, the token may be used in a way that the actual physical presence
is not required (e.g., online use of credit card doesn’t require the physical
card).

• Things you are — referring particularly to biometrics, such as fingerprint,
voiceprint, and retinal scans. In many cases, readers can be fooled or
circumvented, which provides captured data without actually capturing the data
from a living being.

A system can support multiple authentication mechanisms. If only one of a set of
authentication mechanisms is required, the security of the system will generally be
diminished, as the attacker can go after the weakest of all supported methods.

However, if multiple authentication mechanisms must be satisfied to authenticate, the
security increases (the defense-in-depth principle). This is a best practice for
authentication and is commonly called multi-factor authentication. Most commonly, this
combines multiple kinds of authentication mechanism — such as using both SecurID
cards and a short PIN or password.

Who is authenticated?
In a two-party authentication (by far, the most common case), one may perform one-
way authentication or mutual authentication. In one-way authentication, the result is that
one party has confidence in the identity of the other — but not the other way around.
There may still be a secure channel created as a result (i.e., there may still be a key
exchange).

Mutual authentication cannot be achieved simply with two parallel one-way
authentications, or even two one-way authentications over an insecure medium.
Instead, one must cryptographically tie the two authentications together to prove there
is no attacker involved.

A common case of this is using SSL/TLS certificates to validate a server without doing a
client-side authentication. During the server validation, the protocol performs a key
exchange, leaving a secure channel, where the client knows the identity of the server —
if everything was done properly. Then the server can use the secure channel to
establish the identity of the client, perhaps using a simple password protocol. This is a

Version Date: 31 March 2006
19

CLASP Resources — D: Core Security Services

sufficient proof to the server as long as the server does not believe that the client would
intentionally introduce a proxy, in which case it may not be sufficient.

Authentication channels
Authentication decisions may not be made at the point where authentication data is
collected. Instead it may be proxied to some other device where a decision may be
made. In some cases, the proxying of data will be non-obvious. For example, in a
standard client-server application, it is clear that the client will need to send some sort
of authentication information to the server. However, the server may proxy the decision
to a third party, allowing for centralized management of accounts over a large number
of resources.

It is important to recognize that the channel over which authentication occurs provides
necessary security services. For example, it is common to perform password
authentication over the Internet in the clear. If the password authentication is not strong
(i.e., a zero-knowledge password protocol), it will leak information, generally making it
easy for the attacker to recover the password. If there is data that could possibly be
leaked over the channel, it could be compromised.

Version Date: 31 March 2006
20

CLASP Resources — D: Core Security Services

Confidentiality
It is often a requirement that data should be secret to all unauthorized parties, both
when in transit on a network and when being stored, long-term or short-term.

Confidentiality is often synonymous with encryption, but there is more to confidentiality
than merely encrypting data in transit or in storage. For example, users may have
privacy requirements relative to other users, where systems that use encryption alone
will often behave improperly. In particular, in a system with multiple users — where
each user will want to allow some subset of other users to see the data, but not others
— good mediation is mandatory. Otherwise, a server that mistakenly ships off data
against the wishes of a customer is likely to encrypt the data but to the wrong entity.

Additionally, confidentiality can be compromised even when properly mediating access
between resources and performing encryption. Potential attackers may be able to learn
important information simply by observing the data you send. As a simple example,
consider a system where Bob asks Alice questions so that everyone knows in advance,
and Alice simply responds “yes” or “no” to each of them.

If Alice’s responses each go out in a single packet, and each answer is encoded in text
(particularly, “yes” and “no”) instead of a single bit, then an attacker can determine the
original plaintext without breaking the encryption algorithm simply by monitoring the size
of each packet. Even if all of the responses are sent in a single packet, clumped
together, the attacker can at least determine how many responses are “yes” and how
many are “no” by measuring the length of the string.

Example: Assume that there are twenty questions, and the ciphertext is 55 characters.
If every answer were “no”, then the ciphertext would be 40 characters long. Since there
are 15 extra characters, and “yes” is one character longer than “no,” there must have
been 15 “yes” answers.

Lapses in confidentiality such as this one that are neither obvious nor protected by
standard encryption mechanisms are called “covert channels.” Another case of a covert
channel occurs when the attacker can gain information simply by knowing which parties
are talking to each other. There, he can often tell by monitoring the encrypted packets
on the wire which have destination addresses. Even when the destination addresses
are encrypted, the attacker may be able to observe the two endpoints and correlate a
particular amount of traffic leaving one location with the same amount of traffic arriving
at another location at the same time.

Covert channels are generally classified as either covert-storage channels or covert-
timing channels. The previous example is a classic covert-timing channel. In covert-
storage channels, artifacts of the way data is represented can communicate
information, much like in our “yes” and “no” example. Also, when there are multiple
ways of encoding the same information that are valid, it may be possible for two users
to communicate additional unauthorized data by choosing a particular encoding
scheme. This may be a concern, depending on the application. For example, in an on-

Version Date: 31 March 2006
21

CLASP Resources — D: Core Security Services

line game, it may give two parties a way to communicate detailed data that would
constitute cheating and would not be easy to communicate via other mechanisms;
particularly, if the data is complex data such as game coordinates and is inserted and
removed automatically; reading such things over the phone in a timely manner may be
impossible.

Version Date: 31 March 2006
22

CLASP Resources — D: Core Security Services

Data Integrity
In communications and data storage, it is almost always desirable to know that data is
in the form it was intended to be. Data integrity checking allows one to make that
determination. This generally implies authentication because the mechanism for
determining that data has not been modified requires a secret possessed by the person
who created the data. Proving the data has not changed in such a case is all done in
the same operation as proving that the data originated with a particular sender.

For this reason, CLASP treats data integrity as a subset of data authentication. There
are cases where integrity may be a separate service as authentication — such as at the
physical link layer on trusted media, where errors may happen naturally but will not be
security errors. These situations are extremely rare in software development.

Version Date: 31 March 2006
23

CLASP Resources — D: Core Security Services

Availability
Most systems that export resources, either directly or otherwise, come with some
implicit understanding that those resources will generally be accessible (available). If an
availability problem is caused maliciously, it is known as a denial of service attack.

Note that data delays can be considered an availability problem. For example, imagine
sending a message that says, “sell 10 shares of MSFT” that an attacker delays until the
price has plummeted to the point where the user would no longer want to sell those
shares.

Version Date: 31 March 2006
24

CLASP Resources — D: Core Security Services

Accountability
Users of a system should generally be accountable for the actions they perform. In
practice, this means that systems should log information on operations that could
potentially require review. For example, financial transactions must always be tracked in
order to abide by Sarbanes-Oxley regulations. For logs to be used in cases of
accountability, they should generally be difficult to forge, using a message
authentication scheme that protects the integrity of logs by authenticating the entity that
performed the logging.

Version Date: 31 March 2006
25

CLASP Resources — D: Core Security Services

Non-Repudiation
 In most two-party data communication, the two parties can prove to themselves
whether data comes from an authentic source. But one generally does not have proof
that a third party would find plausible. A message for which the original sender or some
endorser can be established to third parties is said to be non-repudiatable. This security
service is generally associated with digital signature schemes.

Note that legal systems do not have an absolute notion of non-repudiation. Particularly,
in a court of law, “duress” is a valid way to repudiate a message. For example, Alice
could sign a message to Bob that Bob uses against Alice in court, but Alice may have a
legitimate duress defense if she was forced to send the message by someone holding a
gun to her head.

Version Date: 31 March 2006
26

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E: Sample Coding Guidelines (Worksheets)
This resource contains sample coding guidelines in the form of templates and
worksheets to support the CLASP process. These templates are meant to be tailored to
the individual needs of your organization.

Note: For convenience, each worksheet can be pasted into a MS Word document.

Instructions to Manager
This worksheet is an example set of coding standards for a company performing
software development. The guidelines are presented in table format, with a column left
blank. The blank column is meant either for the implementor to take notes related to the
guideline or for an auditor to determine whether the developer’s work conforms to the
coding guidelines.

Many of the guidelines in this worksheet are items that should be addressed at design
time. We leave them in this guidelines document, both for those organizations that have
not used CLASP during the design phase and for those cases where the implementor
finds himself making design decisions.

We encourage you to remove those guidelines that do not apply to your organization
since developers will be more prone to use the document if the number of irrelevant
pieces are minimal.

Instructions to Developer
This worksheet enumerates standards for security that you are expected to follow in the
course of implementation work. For each guideline, you should keep notes detailing
where in the system the issue is relevant, along with the status of the guideline — e.g.,
steps that have been taken in the spirit of the guideline. Keeping track of this data can
help independent security reviewers understand the security posture of the system
much more quickly than they would be able to do otherwise.

If you believe that there are circumstances that would keep you from following one of
these guidelines, seek approval of your manager.

Version Date: 31 March 2006
27

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E1: General Guidelines

• Do not use functionality that might call a command processor — e.g., system(), popen(),
execp(), Perl's open()). Instead, use functionality that invokes programs without using a
command shell — e.g., execv().

• Notes:

• Specify preconditions and post-conditions for each parameter and any fields or global
variables used.

• Notes:

• Initialize all variables on allocation.

• Notes:

Version Date: 31 March 2006
28

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not place sensitive data in containers that are difficult or impossible to erase securely
(e.g., Strings in Java).

• Notes:

• Erase all sensitive data immediately upon use — including moving from one memory
location to another. Do not rely on a garbage collector to do this for you.

• Notes:

• Do not open files as a privileged user. Instead, use other identities to compartmentalize.

• Notes:

Version Date: 31 March 2006
29

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• For any function that can potentially return an error code (even if through a reference
parameter), check the return value and handle it appropriately.

• Notes:

• Log logins, file access, privilege elevation, and any financial transactions.

• Notes:

• Do not use elevated privilege unless absolutely necessary — e.g., privileged blocks in
Java or setuid in C/C++.

• Notes:

Version Date: 31 March 2006
30

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• When writing privileged code, drop privileges as quickly as possible.

• Notes:

• Keep privileged code blocks as short and simple as possible.

• Notes:

• If random numbers are necessary, use system-level high-quality randomness.

• Notes:

Version Date: 31 March 2006
31

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Minimize calls to other languages, and ensure that calls to other languages do not subvert
security checks in the system.

• Notes:

• Do not store security-critical data in client-side code.

• Notes:

• Perform code signing on all external software releases, public or private.

• Notes:

Version Date: 31 March 2006
32

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not use functionality that might call a command processor — e.g., system(), popen(),
execp(), Perl's open()). Instead, use functionality that invokes programs without using a
command shell — e.g., execv().

• Notes:

Version Date: 31 March 2006
33

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E2: Build and Test

• Always compile with all reasonable warnings enabled and fix any warnings — whether or
not they indicate a significant problem.

• Notes:

• Run audit tools on a daily basis and follow any recommendations identified.

• Notes:

• Use a generic lint tool on a daily basis to supplement compiler warnings.

• Notes:

Version Date: 31 March 2006
34

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E3: Network Usage

• Do not use TCP/IP sockets over loopback.

• Notes:

• Use thread pools for handling network connections instead of generating one thread
per connection.

• Notes:

• Ensure all network connections are protected with confidentiality, integrity, and
authentication mechanisms (including database connections).

• Notes:

Version Date: 31 March 2006
35

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• For database connections, implement user-based access control via a “WHERE”
clause.

• Notes:

Version Date: 31 March 2006
36

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E4: Authentication

• When using SSL, ensure that the server identity is established by following a trust
chain to a known root certificate.

• Notes:

• When using SSL, validate the host information of the server certificate.

• Notes:

• If weak client authentication is unavoidable, perform it only over a secure channel.

• Notes:

Version Date: 31 March 2006
37

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not rely upon IP numbers or DNS names in establishing identity.

• Notes:

• Use strong password-based algorithms when possible — such as SRP.

• Notes:

• Provide a mechanism for self-reset and do not allow for third-party reset.

• Notes:

Version Date: 31 March 2006
38

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not store passwords under any circumstances. Instead, use a cryptographically
strong algorithm such as MD5-MCF to protect passwords.

• Notes:

• Rate limit bad password guesses to 10 in a 5-minute period.

• Notes:

• Provide a mechanism for users to check the quality of passwords when they set or
change it.

• Notes:

Version Date: 31 March 2006
39

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Provide a mechanism for enforced password expiration that is configurable by the
customer.

• Notes:

• Avoid sending authentication information through E-mail, particularly for existing users.

• Notes:

Version Date: 31 March 2006
40

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E5: Input Validation

• Perform input validation at all input entry points.

• Notes:

• Perform input validation on any environment variables that are used.

• Notes:

• Perform input validation at all entry points to modules.

• Notes:

Version Date: 31 March 2006
41

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Use prepared statements for database access.

• Notes:

• Build accessor APIs to validate requests and to help enforce access control properties
for any sensitive variables.

• Notes:

• When converting data into a data structure (deserializing), perform explicit validation
for all fields, ensuring that the entire object is semantically valid.

• Notes:

Version Date: 31 March 2006
42

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not allow spaces or special characters in user names.

• Notes:

• Evaluate any URL encodings before trying to use the URL.

• Notes:

• Validate all E-mail addresses, allowing only basic values.

• Notes:

• Do not allow arbitrary HTML in items that may possibly be displayed on a web page.

• Notes:

Version Date: 31 March 2006
43

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Detect illegal UTF8 sequences.

• Notes:

Version Date: 31 March 2006
44

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E6: File System

• Validate all filenames and directories before use, ensuring that there are no special
characters that might lead to accessing an unintended file.

• Notes:

• Use “safe directories” for all file access except those initiated by the end user — e.g.,
document saving and restoring to a user-chosen location.

• Notes:

• Validate the safety of file system accesses atomically whenever used.

• Notes:

Version Date: 31 March 2006
45

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Have at least 64 bits of randomness in all temporary file names.

• Notes:

Version Date: 31 March 2006
46

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E7: Documentation

• For all of the input validation points in the program, specify valid input space in
documentation and comments.

• Notes:

• Document any operational assumptions made by the software.

• Notes:

Version Date: 31 March 2006
47

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E8: Object-Oriented Programming

• Specify class invariants for each field. If no support for run-time invariant checking is
available, include invariant specifications in the class comments.

• Notes:

• Do not use public variables — use accessors instead (particularly in mobile
code/untrusted environments).

• Notes:

Version Date: 31 March 2006
48

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E9: Cryptography

• All protocols and algorithms for authentication and secure communication should be
well vetted by the cryptographic community.

• Notes:

• Do not use stream ciphers for encryption.

• Notes:

• Perform Message integrity checking by using a “combined mode of operation,” or a
MAC based on a block cipher.

• Notes:

Version Date: 31 March 2006
49

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not use key sizes less than 128 bits or cryptographic hash functions with output
sizes less than 160 bits.

• Notes:

Version Date: 31 March 2006
50

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E10: UNIX-Specific

• Do not use the same signal handler to handle multiple signals.

• Notes:

• Do not do I/O or call complex functionality from a signal handler.

• Notes:

Version Date: 31 March 2006
51

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E11: Windows-Specific

• Do not use Windows user-interface APIs for windows (even invisible ones) and
message loops from services running with elevated privileges.

• Notes:

Version Date: 31 March 2006
52

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E12: C, C++, Perl, Python, PHP

• Avoid use of any functions that are in the RATS database.

• Notes:

Version Date: 31 March 2006
53

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E13: C and C++

• Do not omit types or explicitly circumvent the type system with liberal use of void * —
use the type checker to the utmost advantage.

• Notes:

• Use a reasonable abstraction for string handling — such as the standard string class
in C++ or SafeStr in C.

• Notes:

• For formatted I/O functions, use static format strings defined at the call site.

• Notes:

Version Date: 31 March 2006
54

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• When deciding how much memory to allocate, check for wrap-around conditions and
error if they occur.

• Notes:

• Check to see if memory allocation or reallocation fails; abort if it does.

• Notes:

• Do not stack-allocate arrays or other large objects.

• Notes:

Version Date: 31 March 2006
55

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not create your own variable argument functions.

• Notes:

• Be wary of multi-byte character functionality — such strings are twice as large as the
number of characters, and sometimes larger.

• Notes:

Version Date: 31 March 2006
56

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E14: Java Mobile Code

• Keep privileged code blocks private.

• Notes:

• Do not use public static variables, unless also declared final.

• Notes:

• Protect packages against class insertion attacks.

• Notes:

Version Date: 31 March 2006
57

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Use the transient keyword when serializing files, sockets, and other data that cannot
survive a serialize.

• Notes:

• Have classes define their own deserialization routines and have them validate under
the assumption that an attacker has modified the input bytes.

• Notes:

Version Date: 31 March 2006
58

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E15: Web Applications

• Do not pass secret data in forms or URLs.

• Notes:

• Do not pass secret data in cookies without having the server encrypt and integrity-
protect the cookie first.

• Notes:

• Ensure that session IDs are randomly chosen and contain an adequate security level
(64 bits).

• Notes:

Version Date: 31 March 2006
59

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

• Do not trust the validity of the “Referrer” header or any other HTTP header.

• Notes:

• Provide reasonable time-outs on sessions.

• Notes:

• Ensure SSL protection for account creation and any financial transactions, with a
publicly verifiable SSL certificate.

• Notes:

Version Date: 31 March 2006
60

CLASP Resources — E: Sample Coding Guidelines (Worksheets)

E16: Generic Mobile / Untrusted Code Environments

• Do not pass around object references beyond class boundaries. Instead, do a deep
copy of data structures when they are requested.

• Notes:

• Only make methods public or protected when absolutely necessary.

• Notes:

Version Date: 31 March 2006
61

CLASP Resources — F: System Assessment (Worksheets)

F: System Assessment (Worksheets)
This document is inspired in part by NIST Special Publication 800-26: Security Self-
Assessment Guide for Information Technology Systems. This publication provides a
more granular look at some of the management issues in development. While good for
a self-assessment, it is a bit too detailed for many situations when dealing with a third-
party vendor. In addition, it does not capture some information vital to CLASP.

Note: For convenience, each worksheet can be pasted into a MS Word document.

Version Date: 31 March 2006
62

CLASP Resources — F: System Assessment (Worksheets)

F1: Application Assessment Overview

A: Application Assessment Overview Worksheet
 INITIATION DATE

COMPLETION DATE

APPLICATION NAME

APPLICATION VERSION

UNIQUE IDENTIFIER

PURPOSE OF ASSESSMENT

TRUST BOUNDARIES

DESCRIPTION OF
FUNCTIONALITY

Version Date: 31 March 2006
63

CLASP Resources — F: System Assessment (Worksheets)

LIST OF COMPONENT
SYSTEMS

LIST OF CONNECTED
SYSTEMS

PRIMARY SYSTEM POC

E-MAIL

PHONE

CITY, STATE, ZIP

WWW

OTHER SYSTEM POC

E-MAIL

PHONE

Version Date: 31 March 2006
64

CLASP Resources — F: System Assessment (Worksheets)

CITY, STATE, ZIP

WWW

Version Date: 31 March 2006
65

CLASP Resources — F: System Assessment (Worksheets)

B: Assessment Results Overview
TO DO: FILL THIS IN.

Please attach the following documentation to the system assessment, when possible:

• Architecture diagrams.

• Most recent complete assessment reports for design and implementation.

• Relevant secure coding guidelines.

• Operational security guide for the system.

• Any security documentation, such as architectural security document.

Version Date: 31 March 2006
66

CLASP Resources — F: System Assessment (Worksheets)

F2: System Assessment Cover Page

INITIATION DATE

COMPLETION DATE

SYSTEM NAME

SYSTEM VERSION

UNIQUE IDENTIFIER

SYSTEM VENDOR

TARGET SYSTEM OS(ES)

TARGET SYSTEM PLATFORM(S)

SYSTEM DESCRIPTION

Version Date: 31 March 2006
67

CLASP Resources — F: System Assessment (Worksheets)

THIRD-PARTY DEPENDENCIES

ROLES WITHIN SYSTEM

BOUNDARY CONTROLS FOR
CONNECTED COMPONENTS

NOTES:

Version Date: 31 March 2006
68

CLASP Resources — F: System Assessment (Worksheets)

F3: Development Process and Organization

 Issue Guidance Solution

ARE THERE PERIODIC RISK
ASSESSMENTS OF THE
SYSTEM?

ARE RISK ASSESSMENTS
PERFORMED ON THE
DESIGN?

IF SO, WHO PERFORMS
THEM?

Indicate team member,
contractor, independent
audit group.

Version Date: 31 March 2006
69

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

IF SO, WHAT METHOD IS
USED?

Version Date: 31 March 2006
70

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

MOST RECENT
ARCHITECTURAL
ASSESSMENT (VERSION AND
DATE)?

Please attach the most
recent architectural
assessment, and/or
endorsement from third
party, if applicable.

ARE RISK ASSESSMENTS
PERFORMED ON THE
IMPLEMENTATION?

IF SO, WHO PERFORMS
THEM?

Indicate team member,
contractor, independent
audit group. If contractor,
specify firm.

Version Date: 31 March 2006
71

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

IF SO, WHAT METHOD IS
USED?

MOST RECENT
IMPLEMENTATION
ASSESSMENT (VERSION AND
DATE)?

Please attach the most
recent architectural
assessment, and/or
endorsement from third
party, if applicable.

ARE AUTOMATED TOOLS
USED IN IMPLEMENTATION
ASSESSMENT?

Please specify yes or no,
and the tool name(s), if
yes.

Version Date: 31 March 2006
72

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

WHAT VERSION CONTROL
AND BUG TRACKING SYSTEMS
DOES THE TEAM USE FOR
TRACKING SECURITY
DEFECTS?

DO YOU USE A STANDARD
SECURITY AWARENESS
PROGRAM FOR YOUR
DEVELOPMENT TEAM?

If so, please attach
curriculum, or provide an
overview of topic areas
covered.

Version Date: 31 March 2006
73

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

IF SO, THE DURATION OF THE
PROGRAM.

HOW OFTEN DO TEAM
MEMBERS RECEIVE
REFRESHERS?

WHICH TEAMS HAVE
RECEIVED TRAINING?

One or more of: Archi-
tect/designers,
developers, testers,
managers.

WHAT PERCENT OF THE
PRODUCT TEAM HAS BEEN
THROUGH A SECURITY
AWARENESS PROGRAM?

Version Date: 31 March 2006
74

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

WHAT ACCOUNTABILITY
MEASURES ARE IN PLACE
FOR SECURITY FLAWS?

DO YOU ENFORCE SECURE
CODING STANDARDS?

If so, please attach stan-
dards, and detail how they
are enforced within your
organization.

WHAT DISTRIBUTION
MECHANISM(S) DO YOU USE
FOR MAJOR SOFTWARE
UPDATES?

WHAT DISTRIBUTION
MECHANISM(S) DO YOU USE
FOR INCREMENTAL
UPDATES?

Version Date: 31 March 2006
75

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

WHAT SECURITY RISKS
DEEMED ACCEPTABLE ARE
PRESENT IN THE ASSESSED
VERSION OF THE SYSTEM?

DO YOU HAVE INTERNAL
PROCESS FOR RESPONDING
TO SECURITY INCIDENTS?

Version Date: 31 March 2006
76

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

WHAT IS THE MAXIMUM
EXPECTED TIME FROM
PRIVATE DISCLOSURE TO
AVAILABLE FIX?

WHAT IS THE MAXIMUM
EXPECTED TIME FROM
PUBLIC DISCLOSURE TO
AVAILABLE FIX?

HOW DO YOU NOTIFY
CUSTOMERS OF SECURITY
INCIDENTS?

WHAT SECURITY RISKS HAVE
BEEN FOUND IN YOUR
SYSTEM PREVIOUSLY?

Version Date: 31 March 2006
77

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

ARE THERE ANY
OUTSTANDING SECURITY
RISKS KNOWN TO BE IN THE
SYSTEM?

This should not include
those risks that were
explicitly deemed accept-
able above.

WHAT IS YOUR CORPORATE
POLICY FOR PRODUCT
MAINTENANCE?

Particularly, specify the
point where you will no
longer support the product
with security updates.

WHAT PROCESS DO YOU USE
FOR SECURITY TESTING?

Please list relevant tech-
niques used, including red
teaming, fuzing, fault
injection and dynamic web
app testing.

DOES THE SYSTEM HAVE
AVAILABLE GUIDANCE FOR
OPERATIONAL SECURITY?

If yes, please attach to
this document.

Version Date: 31 March 2006
78

CLASP Resources — F: System Assessment (Worksheets)

 Issue Guidance Solution

 DOES YOUR SYSTEM
PROVIDE MECHANISMS FOR
DATA RECOVERY OR
REDUNDANCY?

WHAT ARE THE
CONFIGURABLE SECURITY
OPTIONS IN THE SYSTEM;
WHAT ARE THEIR DEFAULT
SETTINGS?

WHAT USER ACCOUNTS ARE
INSTALLED IN THE SYSTEM BY
DEFAULT, WHAT IS THE
DEFAULT AUTHENTICATION
PROCESS; HOW IS THIS
UPDATED?

Version Date: 31 March 2006
79

CLASP Resources — F: System Assessment (Worksheets)

F4: System Resources
In this section, list all of the distinct resources that this system uses internally or exports
and denote measures taken to promote security goals, where appropriate.

 Resource Security Measures

 • Authentication:

• Confidentiality:

• Data integrity:

• Access control:

• Non-repudiation:

• Accountability:

 • Authentication:

• Confidentiality:

• Data integrity:

• Access control:

• Non-repudiation:

• Accountability:

Version Date: 31 March 2006
80

CLASP Resources — F: System Assessment (Worksheets)

F5: Network Resource Detail
On this page, specify the ports and protocols that are used by the system, denoting the
individual resources that may be accessed or sent through that channel. Additionally,
specify operational security assumptions — such as whether the port is expected to be
behind a firewall, expected to communicate with only a particular piece of software, etc.

 Port Protocols Resources Notes:

Version Date: 31 March 2006
81

CLASP Resources — F: System Assessment (Worksheets)

F6: File System Usage Detail
In this section, detail which resources on the file system can be used by the program.
For each file or directory, indicate the privileges needed (e.g., owner, administrator), the
type of access required (read, write, execute, etc.), and an indication of whether the
resource has special security measures taken for confidentiality, integrity, and other
security services.

The data in this table can be used to establish a sandboxing or monitoring environment.

File or Directory Privileges Needed Type of Access Security Measures

Version Date: 31 March 2006
82

CLASP Resources — F: System Assessment (Worksheets)

F7: Registry Usage (Microsoft Windows Environment)
For programs running in a Microsoft Windows environment, indicate registry resources
that are used by the system, along with the owner, actions that may be taken on the key
(read, write, delete, etc.), and notes on the security relevance of the key.

Registry Key Owner Type of Access Notes: Registry Usage

Version Date: 31 March 2006
83

CLASP Resources — G: Sample Roadmaps

G: Sample Roadmaps
To help you navigate the CLASP activities more efficiently, we provide sample
roadmaps which focus on common organizational requirements. There are two
roadmaps:

• A Legacy application roadmap aimed at organizations looking for a minimal
impact on their ongoing development projects, which introduces only those
activities with the highest relative impact on security.

• A Green-Field roadmap that has been developed for organizations that are
looking for a more holistic approach to application-security development
practices. This roadmap is recommended for new software development, using
a spiral or iterative methodology.

Version Date: 31 March 2006
84

CLASP Resources — G: Sample Roadmaps

G1: Green-Field Roadmap
This green-field roadmap is for use by organizations that are looking for a more holistic
approach to application-security development practices. This roadmap is recommended
for new software development, using a spiral or iterative methodology.

Activity Comments

• Institute security awareness pro-
gram

• Monitor security metrics

• Specify operational environment This step is important as a foundation for security
analysis.

• Identify global security policy

• Identify resources and trust bound-
aries

This step is also important as a foundation for
security analysis.

• Identify user roles and resource
capabilities

• Document security-relevant
requirements

Some attempt should be made to address resource-
driven requirements from the system — both implicit
and explicit — even if not to the level of depth as
would be performed for Green Field development.

• Identify attack surface This step is also important as a foundation for
security analysis.

• Apply security principles to design

• Research and assess security pos-
ture of technology solutions

• Specify database security configu-
ration

• Perform security analysis of
system requirements and design
(threat modeling)

• Integrate security analysis into
source management process

Version Date: 31 March 2006
85

CLASP Resources — G: Sample Roadmaps

Activity Comments

• Implement and elaborate resource
policies and security technologies

• Address reported security issues

• Perform source-level security
review

• Identify, implement and perform
security tests

• Verify security attributes of
resources

• Build operational security guide

• Manage security issue disclosure
process

Version Date: 31 March 2006
86

CLASP Resources — G: Sample Roadmaps

G2: Legacy Roadmap
This legacy application roadmap aims at organizations looking for a minimal impact on
their ongoing development projects, which introduces only those activities with the
highest relative impact on security.

Activity Comments

• Institute security awareness pro-
gram

• Specify operational environment This step is important as a foundation for security
analysis.

• Identify resources and trust bound-
aries

This step is also important as a foundation for
security analysis.

• Document security-relevant
requirements

Some attempt should be made to address resource-
driven requirements from the system — both implicit
and explicit — even if not to the level of depth as
would be performed for Green Field development.

• Identify attack surface This step is also important as a foundation for
security analysis.

• Perform security analysis of
system requirements and design
(threat modeling)

• Address reported security issues

• Perform source-level security
review

• Identify, implement and perform
security tests

• Verify security attributes of
resources

• Build operational security guide

• Manage security issue disclosure
process

Version Date: 31 March 2006
87

CLASP Resources — H: Creating the Process Engineering Plan

H: Creating the Process Engineering Plan
To ensure an efficient ongoing process, it is important to carefully plan the process
engineering effort. A good process engineering plan should include — at a minimum —
the following elements:

• Business objectives that the process is being developed to meet.

• Project milestones and checkpoints.

• Pass/fail criteria for each milestone and checkpoint — e.g., necessary
approvals, evaluation criteria, and stakeholder involvement.

Business objectives
While your team is documenting business objectives for an impending process
engineering effort, bring into consideration any global application software development
security policies that may already exist for the project or the organization. This should
include any existing certification requirements.

Another objective at this point should be to agree on the set of security metrics that will
be collected and monitored externally to the project throughout the process deployment
phases in order to measure overall security posture. For example, security posture can
be determined based on:

• Internal security metrics collected;

• Independent assessment (which can be performed using CLASP activities as
well);

• Or — less desirably — through externally reported incidents involving the
effort.

Process milestones
Your team should construct a draft process engineering plan, which identifies the key
project milestones to be met for the project. The focus should be on when activities
should be introduced, who should perform them, and how long they should take to
perform.

Process evaluation criteria
As a final step in your planning efforts for process engineering, you should decide upon
the criteria for measuring the success of your team, as well as the process engineering
and deployment effort.

Version Date: 31 March 2006
88

CLASP Resources — H: Creating the Process Engineering Plan

Success might be measured in one or more of many different methods, such as:

• Comparing the rate of deployment across projects;

• Comparing the percentage of security faults identified in development versus
those found in production; or

• Monitoring the timeliness, accuracy, and thoroughness of key development
artifacts.

Be specific, but be realistic in identifying success metrics. Remember that this process
will evolve to meet your ever-changing and demanding business needs. Small
successes early on will be more rewarding for the team than big failures, so consider a
slow roll-out of new processes, with an accompanying incremental rollout of metrics.

Version Date: 31 March 2006
89

CLASP Resources — I: Forming the Process Engineering Team

I: Forming the Process Engineering Team
Development organizations should be bought into the process which they use for
development. The most effective way to do that is to build a process engineering team
from members of the development team so that they can have ownership in creating
the process.

Steps to form Team
We recommend taking the following steps to form the process engineering team:

• Build a process engineering mission statement.
Document the objectives of the process team. It is reasonable to have the entire
development team sign off on the mission, so that those people who are not on
the team still experience buy-in and inclusion.

• Identify a process owner.
The process team should have a clearly identified process “champion,” whose
foremost job is to set a direction and then evangelize that direction. Make it clear
that this team will be held accountable for all aspects of the engineering and
deployment activities associated with early adoption of this new security process
framework.

• Identify additional contributors.
As with the process owner, people who make good evangelists should be valued
as well as people who will be the most worthy contributors.

• Document roles and responsibilities.
Clearly document the roles and responsibilities of each member of this team.

• Document the CLASP process roadmap.
It is time to make the classic “build-versus-buy” decision for a process framework.
Can one of the process roadmaps packaged as part of CLASP be used as-is?
Can the team simply extend one of the packaged roadmaps to meet either
organizations software development needs? Does the team really need to step
back and opportunistically chose discrete activities — thereby building a unique
process framework that provides a “best fit” for their organization? This decision
and the resulting process roadmap must be documented and approved before
moving into the deployment phase. See the following section for sample
roadmaps.

• Review and approve pre-deployment.
Institute a checkpoint before deployment, in which a formal walk-through of the
process is conducted. The objective at this point is to solicit early feedback on

Version Date: 31 March 2006
90

CLASP Resources — I: Forming the Process Engineering Team

whether or not the documented framework will indeed meet the process
objectives set forth at the beginning of this effort. The team should not proceed to
the deployment phase of this project until organizational approval is formally
issued.

• Document any issues.
Issues that come up during the formation of the process engineering team should
be carefully documented. These issues will need to be added to the process
engineering or process deployment plans — as appropriate to managing risk
accordingly.

Version Date: 31 March 2006
91

CLASP Resources — J: Glossary of Security Terms

J: Glossary of Security Terms
This glossary contains a list of terms relevant to application security. The terms in this
glossary are not specific to material found in the CLASP process.

Term Description

3DES See: Triple DES

Access Control List A list of credentials attached to a resource indicating whether or not the
credentials have access to the resource.

ACL Access Control List

Active attack Any network-based attack other than simple eavesdropping — i.e., a
passive attack).

Advanced Encryption
Standard

A fast general-purpose block cipher standardized by NIST (the National
Institute of Standards and Technology). The AES selection process was
a multi-year competition, where Rijndael was the winning cipher.

AES See: Advanced Encryption Standard

Anti-debugger Referring to technology that detects or thwarts the use of a debugger on
a piece of software.

Anti-tampering Referring to technology that attempts to thwart the reverse engineering
and patching of a piece of software in binary format.

Architectural security
assessment

See: Threat Model.

ASN.1 Abstract Syntax Notation is a language for representing data objects. It is
popular to use this in specifying cryptographic protocols, usually using
DER (Distinguished Encoding Rules), which allows the data layout to be
unambiguously specified.

See also: Distinguished Encoding Rules.

Asymmetric
cryptography

Cryptography involving public keys, as opposed to cryptography making
use of shared secrets.

See also: Symmetric cryptography.

Version Date: 31 March 2006
92

CLASP Resources — J: Glossary of Security Terms

Audit In the context of security, a review of a system in order to validate the
security of the system. Generally, this either refers to code auditing or
reviewing audit logs.

See also: Audit log; code auditing.

Audit log Records that are kept for the purpose of later verifying that the security
properties of a system have remained intact.

Authenticate- and-
encrypt

When using a cipher to encrypt and a MAC to provide message integrity,
this paradigm specifies that one authenticates the plaintext and encrypts
the plaintext, possibly in parallel. This is not secure in the general case.

See also: Authenticate-then-encrypt; encrypt-then-authenticate.

Authenticate-then-
encrypt

When using a cipher to encrypt and a MAC to provide message integrity,
this paradigm specifies that one authenticates the plaintext and then
encrypts the plaintext concatenated with the MAC tag. This is not secure
in the general case, but usually works well in practice.

See also: Authenticate-and-encrypt, Encrypt-then-authenticate.

Authentication The process of verifying identity, ownership, and/or authorization.

Backdoor Malicious code inserted into a program for the purposes of providing the
author covert access to machines running the program.

Base 64 encoding A method for encoding binary data into printable ASCII strings. Every
byte of output maps to six bits of input (minus possible padding bytes).

Big endian Refers to machines representing words most significant byte first. While
x86 machines do not use big endian byte ordering (instead using little
endian), the PowerPC and SPARC architectures do. This is also network
byte order.

See also: Little endian.

Birthday attack Take a function f() that seems to map an input to a random output of
some fixed size (a pseudo-random function or PRF). A birthday attack is
simply selecting random inputs for f() and checking to see if any previous
values gave the same output. Statistically, if the output size is S bits, then
one can find a collision in 2S/2 operations, on average.

Version Date: 31 March 2006
93

CLASP Resources — J: Glossary of Security Terms

Bit-flipping attack In a stream cipher, flipping a bit in the ciphertext flips the corresponding
bit in the plaintext. If using a message authentication code (MAC), such
attacks are not practical.

Blacklist When performing input validation, the set of items that — if matched —
result in the input being considered invalid. If no invalid items are found,
the result is valid.

See also: Whitelist.

Blinding A technique used to thwart timing attacks.

Block cipher An encryption algorithm that maps inputs of size n to outputs of size n (n
is called the block size). Data that is not a valid block size must somehow
be padded (generally by using an encryption mode). The same input
always produces the same output.

See also: Stream cipher.

Blowfish A block cipher with 64-bit blocks and variable length keys, created by
Bruce Schneier. This cipher is infamous for having slow key-setup times.

Brute-force attack An attack on an encryption algorithm where the encryption key for a
ciphertext is determined by trying to decrypt with every key until valid
plaintext is obtained.

Buffer overflow A buffer overflow is when you can put more data into a memory location
than is allocated to hold that data. Languages like C and C++ that do no
built-in bounds checking are susceptible to such problems. These
problems are often security-critical.

CA See Certification Authority.

Canary A piece of data, the absence of which indicates a violation of a security
policy. Several tools use a canary for preventing certain stack-smashing
buffer overflow attacks.

See also: Buffer overflow; Stack smashing.

Capture-replay attacks When an attacker can capture data off the wire and replay it later without
the bogus data being detected as bogus.

Carter Wegmen +
Counter mode

A parallelizable and patent-free high-level encryption mode that provides
both encryption and built-in message integrity.

Version Date: 31 March 2006
94

CLASP Resources — J: Glossary of Security Terms

CAST5 A block cipher with 64-bit blocks and key sizes up to 128 bits. It is patent-
free, and generally considered sound, but modern algorithms with larger
block sizes are generally preferred (e.g., AES).

See also: AES.

CBC Mode See: Cipher Block Chaining mode.

CBC-MAC A simple construction for turning a block cipher into a message
authentication code. It only is secure when all messages MAC’d with a
single key are the same size. However, there are several variants that
thwart this problem, the most important being OMAC.

See also: OMAC.

CCM mode See: Counter mode + CBC-MAC.

Certificate A data object that binds information about a person or some other entity
to a public key. The binding is generally done using a digital signature
from a trusted third party (a certification authority).

Certificate Revocation
List

A list published by a certification authority indicating which issued certifi-
cates should be considered invalid.

Certificate Signing
Request

Data about an entity given to a certification authority. The authority will
package the data into a certificate and sign the certificate if the data in
the signing request is validated.

Certification Authority An entity that manages digital certificates — i.e., issues and revokes.
Verisign and InstantSSL are two well known CAs.

CFB mode See: Cipher Feedback mode.

Chain responder An OCSP responder that relays the results of querying another OCSP
responder.

See also: OCSP.

Choke point In computer security, a place in a system where input is routed for the
purposes of performing data validation. The implication is that there are
few such places in a system and that all data must pass through one or
more of the choke points. The idea is that funneling input through a small
number of choke points makes it easier to ensure that input is properly
validated. One potential concern is that poorly chosen choke points may
not have enough information to perform input validation that is as

Version Date: 31 March 2006
95

CLASP Resources — J: Glossary of Security Terms

accurate as possible.

chroot A UNIX system call that sets the root directory for a process to any
arbitrary directory. The idea is compartmentalization: Even if a process is
compromised, it should not be able to see interesting parts of the file
system beyond its own little world. There are some instances where
chroot "jails" can be circumvented; it can be difficult to build
proper operating environments to make chroot work well.

Cipher-Block Chaining
mode

A block cipher mode that provides secrecy but not message integrity.
Messages encrypted with this mode should have random initialization
vectors.

Cipher Feedback
mode

A mode that turns a block cipher into a stream cipher. This mode is safe
only when used in particular configurations. Generally, CTR mode and
OFB mode are used instead since both have better security bounds.

Ciphertext The result of encrypting a message.

See: Plaintext.

Ciphertext stealing
mode

A block cipher mode of operation that is similar to CBC mode except that
the final block is processed in such a way that the output is always the
same length as the input. That is, this mode is similar to CBC mode but
does not require padding.

See also: Cipher Block Chaining mode; Padding.

Code auditing Reviewing computer software for security problems.

See also: Audit.

Code signing Signing executable code to establish that it comes from a trustworthy
vendor. The signature must be validated using a trusted third party in
order to establish identity.

Version Date: 31 March 2006
96

CLASP Resources — J: Glossary of Security Terms

Compartmentalization Separating a system into parts with distinct boundaries, using simple,
well- defined interfaces. The basic idea is that of containment — i.e., if
one part is compromised, perhaps the extent of the damage can be
limited.

See also: Jail; Chroot.

Context object In a cryptographic library, a data object that holds the intermediate state
associated with the cryptographic processing of a piece of data. For
example, if incrementally hashing a string, a context object stores the
internal state of the hash function necessary to process further data.

Counter mode A parallelizable encryption mode that effectively turns a block cipher into
a stream cipher. It is a popular component in authenticated encryption
schemes due to its optimal security bounds and good performance
characteristics.

Counter mode + CBC-
MAC

An encryption mode that provides both message secrecy and integrity. It
was the first such mode that was not covered by patent.

CRAM A password-based authentication mechanism using a cryptographic hash
function (usually MD5). It does not provide adequate protection against
several common threats to password-based authentication systems.
HTTP Digest Authentication is a somewhat better alternative; it is
replacing CRAM in most places.

CRC Cyclic Redundancy Check. A means of determining whether accidental
transmission errors have occurred. Such algorithms are not
cryptographically secure because attackers can often forge CRC values
or even modify data maliciously in such a way that the CRC value does
not change. Instead, one should use a strong, keyed message
authentication code such as HMAC or OMAC.

See also: HMAC, Message Authentication Code; OMAC.

Critical extensions In an X.509 certificate, those extensions that must be recognized by any
software processing the certificate. If a piece of software does not
recognize an extension marked as critical, the software must regard the
certificate as invalid.

CRL See: Certificate Revocation List.

Version Date: 31 March 2006
97

CLASP Resources — J: Glossary of Security Terms

Cross-site scripting A class of problems resulting from insufficient input validation where one
user can add content to a web site that can be malicious when viewed by
other users to the web site. For example, one might post to a message
board that accepts arbitrary HTML and include a malicious code item.

Cryptanalysis The science of breaking cryptographic algorithms.

Cryptographic hash
function

A function that takes an input string of arbitrary length and produces a
fixed- size output — where it is unfeasible to find two inputs that map to
the same output, and it is unfeasible to learn anything about the input
from the output.

Cryptographic
randomness

Data produced by a cryptographic pseudo-random number generator.
The probability of figuring out the internal state of the generator is related
to the strength of the underlying cryptography — i.e., assuming the
generator is seeded with enough entropy.

Cryptography The science of providing secrecy, integrity, and non-repudiation for data.

CSR See: Certificate Signing Request.

CSS Cross-site scripting. Generally, however, this is abbreviated to XSS in
order to avoid confusion with cascading style sheets.

See: Cross-site scripting.

CTR mode See: Counter mode.

CWC mode See: Carter Wegmen + Counter mode.

DACL Discretionary Access Control List. In a Windows ACL, a list that
determines access rights to an object.

See also: Access Control List.

Davies-Meyer An algorithm for turning a block cipher into a cryptographic one-way hash
function.

Default deny A paradigm for access control and input validation where an action must
explicitly be allowed. The idea behind this paradigm is that one should
limit the possibilities for unexpected behavior by being strict, instead of
lenient, with rules.

Version Date: 31 March 2006
98

CLASP Resources — J: Glossary of Security Terms

Defense-in-depth A principle for building systems stating that multiple defensive
mechanisms at different layers of a system are usually more secure than
a single layer of defense. For example, when performing input validation,
one might validate user data as it comes in and then also validate it
before each use — just in case something was not caught, or the
underlying components are linked against a different front end, etc.

DEK Data encrypting key.

Delta CRLs A variation of Certificate Revocation Lists that allows for incremental
updating, as an effort to avoid frequently re-downloading a large amount
of unchanged data.

See also: Certificate Revocation List.

Denial of service
attack

Any attack that affects the availability of a service. Reliability bugs that
cause a service to crash or go into some sort of vegetative state are
usually potential denial-of-service problems.

DES The Data Encryption Standard. An encryption algorithm standardized by
the US Government. The key length is too short, so this algorithm should
be considered insecure. The effective key strength is 56 bits; the actual
key size is 64 bits — 8 bits are wasted. However, there are variations
such as Triple DES and DESX that increase security while also
increasing the key size.

See also: Advanced Encryption Standard; Triple DES.

DESX An extended version of DES that increases the resistance to brute-force
attack in a highly efficient way by increasing the key length. The extra key
material is mixed into the encryption process, using XORs. This
technique does not improve resistance to differential attacks, but such
attacks are still generally considered unfeasible against DES.

See also: DES.

Version Date: 31 March 2006
99

CLASP Resources — J: Glossary of Security Terms

Dictionary attack An attack against a cryptographic system, using precomputating values
to build a dictionary. For example, in a password system, one might keep
a dictionary mapping ciphertext pairs in plaintext form to keys for a single
plaintext that frequently occurs. A large enough key space can render
this attack useless. In a password system, there are similar dictionary
attacks, which are somewhat alleviated by salt. The end result is that the
attacker — once he knows the salt — can do a “Crack”-style dictionary
attack. Crack-style attacks can be avoided to some degree by making the
password verifier computationally expensive to compute. Or select strong
random passwords, or do not use a password-based system.

Differential
cryptanalysis

A type of cryptographic attack where an attacker who can select related
inputs learns information about the key from comparing the outputs.
Modern ciphers of merit are designed in such a way as to thwart such
attacks. Also note that such attacks generally require enough chosen
plaintexts as to be considered unfeasible, even when there is a cipher
that theoretically falls prey to such a problem.

Diffie-Hellman key
exchange

A method for exchanging a secret key over an untrusted medium in such
a way as to preserve the secrecy of the key. The two parties both
contribute random data that factors into the final shared secret. The
fundamental problem with this method is authenticating the party with
whom you exchanged keys. The simple Diffie-Hellman protocol does not
do that. One must also use some public-key authentication system such
as DSA.

See also: DSA; Station-to-station protocol.

Digest size The output size for a hash function.

Digital signature Data that proves that a document (or other piece of data) was not
modified since being processed by a particular entity. Generally, what
this really means is that — if someone ‘signs’ a piece of data — anyone
who has the right public key can demonstrated which private key was
used to sign the data.

Digital Signature
Algorithm

See: DSA.

Version Date: 31 March 2006
100

CLASP Resources — J: Glossary of Security Terms

Distinguished
Encoding Rules

A set of rules used that describes how to encode ASN.1 data objects
unambiguously.

See also: ASN.1.

Distinguished Name In an X.509 certificate, a field that uniquely specifies the user or group to
which the certificate is bound. Usually, the Distinguished Name will
contain a user’s name or User ID, an organizational name, and a country
designation. For a server certificate, it will often contain the DNS name of
the machine.

DN See: Distinguished Name.

DoS Denial of Service.

See also: Denial of service attack.

DSA The Digital Signature Algorithm, a public key algorithm dedicated to
digital signatures which was standardized by NIST. It is based on the
same mathematical principles as Diffie-Hellman.

Eavesdropping attack Any attack on a data connection where one simply records or views data
instead of tampering with the connection.

ECB Mode See: Electronic Code Book mode.

ECC See: Eliptic Curve Cryptography.

EGD See: Entropy Gathering Daemon.

Electronic Code Book
mode

An encryption mode for block ciphers that is more or less a direct use of
the underlying block cipher. The only difference is that a message is
padded out to a multiple of the block length. This mode should not be
used under any circumstances.

Eliptic Curve
Cryptography

A type of public key cryptography that — due to smaller key sizes —
tends to be more efficient that standard cryptography. The basic
algorithms are essentially the same, except that the operations are
performed over different mathematical groups (called eliptic curves).

EME-OAEP padding A padding scheme for public key cryptography that uses a “random”
value generated, using a cryptographic hash function in order to prevent
particular types of attacks against RSA.

See also: PKCS #1 padding.

Version Date: 31 March 2006
101

CLASP Resources — J: Glossary of Security Terms

Encrypt-then-
authenticate

When using a cipher to encrypt and a MAC to provide message integrity,
this paradigm specifies that one encrypts the plaintext, then MACs the
ciphertext. This paradigm has theoretically appealing properties and is
recommended to use in practice.

See also: Authenticate-and-encrypt; Authenticate-then-encrypt.

Endianess The byte ordering scheme that a machine uses (usually either little
endian or big endian).

See also: Big endian; Little endian.

Entropy Refers to the inherent unknowability of data to external observers. If a bit
is just as likely to be a 1 as a 0 and a user does not know which it is, then
the bit contains one bit of entropy.

Entropy Gathering
Daemon

A substitute for /dev/random; a tool used for entropy harvesting.

Entropy harvester A piece of software responsible for gathering entropy from a machine and
distilling it into small pieces of high entropy data. Often an entropy
harvester will produce a seed for a cryptographic pseudo-random number
generator.

See also: Entropy; Pseudo-random number generator.

Ephemeral keying Using one-time public key pairs for session key exchange in order to
prevent recovering previous session keys if a private key is
compromised. Long-term public key pairs are still used to establish
identity.

Euclidian algorithm An algorithm that computes the greatest common divisor of any two num-
bers.

Extended Euclidian
algorithm

An algorithm used to compute the inverse of a number modulo “some
other number.”

Fingerprint The output of a cryptographic hash function.

See also: Message digest.

FIPS Federal Information Processing Standard; a set of standards from NIST.

Version Date: 31 March 2006
102

CLASP Resources — J: Glossary of Security Terms

FIPS-140 A standard authored by the U.S. National Institute of Standards and
Technology, that details general security requirements for cryptographic
software deployed in a government systems (primarily cryptographic
providers).

See also: NIST; FIPS.

Format string attack The C standard library uses specifiers to format output. If an attacker can
control the input to such a format string, he can often write to arbitrary
memory locations.

Forward secrecy Ensuring that the compromise of a secret does not divulge information
that could lead to data protected prior to the compromise. In many
systems with forward secrecy, it is only provided on a per-session basis,
meaning that a key compromise will not affect previous sessions, but
would allow an attacker to decrypt previous messages sent as a part of
the current session.

See also: Perfect forward secrecy.

Hash function A function that maps a string of arbitrary length to a fixed size value in a
deterministic manner. Such a function may or may not have
cryptographic applications.

See also: Cryptographic hash function; Universal hash function; One-way
hash function.

Hash function
(cryptographic)

See: Cryptographic hash function.

Hash function (one-
way)

See: One-way hash function.

Hash function
(universal)

See: Universal hash function.

Hash output See: Hash value.

Hash value The output of a hash function.

See also: Fingerprint; Message digest.

hash127 A fast universal hash function from Dan Bernstein.

Version Date: 31 March 2006
103

CLASP Resources — J: Glossary of Security Terms

HMAC A well-known algorithm for converting a cryptographic one-way hash
function into a message authentication code.

IDEA A block cipher with 128-bit keys and 64-bit blocks popularly used with
PGP. It is currently protected by patents.

Identity establishment Authentication.

IEEE P1363 An IEEE standard for eliptic curve cryptography. Implementing the
standard requires licensing patents from Certicom.

Indirect CRLs A CRL issued by a third party, that can contain certificates from multiple
CA’s.

See also: Certificate, Certificate Revocation List; Certification Authority.

Initialization vector A value used to initialize a cryptographic algorithm. Often, the implication
is that the value must be random.

See also: Nonce; Salt.

Input validation The act of determining that data input to a program is sound.

Integer overflow When an integer value is too big to be held by its associated data type,
the results can often be disastrous. This is often a problem when
converting unsigned numbers to signed values.

Integrity checking The act of checking whether a message has been modified either
maliciously or by accident. Cryptographically strong message integrity
algorithms should always be used when integrity is important.

Interleaved encryption Processing the encryption of a message as multiple messages, generally
treating every nth block as part of a single message.

IV See: Initialization vector.

Jail A restricted execution environment meant to compartmentalize a
process, so that — even if it has security problems — it cannot hurt
resources which it would not normally have access to use. On FreeBSD,
a system call similar to chroot that provides compartmentalization. Unlike
chroot, it can also restrict network resources in addition to file system
resources.

See also: Chroot.

Version Date: 31 March 2006
104

CLASP Resources — J: Glossary of Security Terms

Kerberos “An authentication protocol that relies solely on symmetric cryptography,
as opposed to public key cryptography. It still relies on a trusted third
party (an authentication server). While Kerberos is often looked upon as
a way to avoid problems with Public Key Infrastructure, it can be difficult
to scale Kerberos beyond medium-sized organizations.

See also: Public Key Infrastructure; Trusted third party.

Key agreement The process of two parties agreeing on a shared secret, where both
parties contribute material to the key.

Key establishment The process of agreeing on a shared secret, where both parties
contribute material to the key.

Key exchange The process of two parties agreeing on a shared secret, usually implying
that both parties contribute to the key.

Key management Mechanisms and process for secure creation, storage, and handling of
key material.

Key schedule In a block cipher, keys used for individual “rounds” of encryption, derived
from the base key in a cipher-dependent manner.

Key transport When one party picks a session key and communicates it to a second
party.

Keystream Output from a stream cipher.

See also: Pseudo-random number generator; Stream cipher.

LDAP Lightweight Directory Access Protocol. A directory protocol commonly
used for storing and distributing CRLs.

Length extension
attack

A class of attack on message authentication codes, where a tag can be
forged without the key by extending a pre-existing message in a
particular way. CBC-MAC in its simplest form has this problem, but
variants protect against it (particularly OMAC).

See also: Message Authentication Code; OMAC.

LFSR See: Linear feedback shift register.

Version Date: 31 March 2006
105

CLASP Resources — J: Glossary of Security Terms

Linear cryptanalysis A type of cryptanalytic attack where linear approximations of behavior are
used. Modern ciphers of merit are designed in such a way as to thwart
such attacks. Also note that such attacks generally require enough
chosen plaintexts as to be considered unfeasible — even when there is a
cipher that theoretically falls prey to such a problem (such as DES).

Linear Feedback Shift
Register

A non-cryptographic class of pseudo-random number generators, where
output is determined by shifting out "output" bits and shifting
in "input" bits, where the input bits are a function of the
internal state of the register, perhaps combined with new entropy. LFSRs
are based on polynomial math, and are not secure in and of themselves;
however, they can be put to good use as a component in more secure
cryptosystems.

Little endian Refers to machines representing words of data least significant byte first,
such as the Intel x86.

See also: Big endian.

MAC See: Message authentication code.

Man-in-the- middle
attack

An eavesdropping attack where a client’s communication with a server is
proxied by an attacker. Generally, the implication is that the client
performs a cryptographic key exchange with an entity and fails to
authenticate that entity, thus allowing an attacker to look like a valid
server.

Matyas-Meyer- Oseas A construction for turning a block cipher into a cryptographic one-way
hash function.

MCF The Modular Crypt Format, a de-facto data format standard for storing
password hashes commonly used on UNIX boxes as a replacement for
the traditional UNIX crypt() format.

MD-strengthening Merkel-Damgard strengthening, a general method for turning a collision-
resistant compression function into a collision-resistant hash function by
adding padding and an encoded length to the end of the input message.
The key point behind MD-strengthening is that no possible input to the
underlying hash function can be the tail end of a different input.

MD2 A cryptographic hash function optimized for 16-bit platforms. It has poor
performance characteristics on other platforms and has a weak internal

Version Date: 31 March 2006
106

CLASP Resources — J: Glossary of Security Terms

structure.

MD4 A cryptographic hash function that is known to be broken and should not
be used under any circumstances.

MD5 A popular and fast cryptographic hash function that outputs 128-bit
message digests. Its internal structure is known to be weak and should
be avoided if at all possible.

MD5-MCF A way of using MD5 to store password authentication information, using
the modular crypt format.

See also: MCF, MD5.

MDC2 A construction for turning a block cipher into a cryptographic hash
function, where the output length is twice the block size of the cipher.

Meet-in-the- middle
attack

A theoretical attack against encrypting a message twice using a single
block cipher and two different keys. For example, double encryption with
DES theoretically is no more secure than DES, which is why Triple DES
became popular (it gives twice the effective key strength).

Message
Authentication Code

A function that takes a message and a secret key (and possibly a nonce)
and produces an output that cannot, in practice, be forged without
possessing the secret key.

Message digest The output of a hash function.

Message integrity A message has integrity if it maintains the value it is supposed to
maintain, as opposed to being modified on accident or as part of an
attack.

Miller-Rabin A primality test that is efficient because it is probabilistic, meaning that
there is some chance it reports a composite (non-prime) number as a
prime. There is a trade-off between efficiency and probability, but one
can gain extremely high assurance without making unreasonable
sacrifices in efficiency.

Modulus In the context of public key cryptography, a value by which all other
values are reduced. That is, if a number is bigger than the modulus, the
value of the number is considered to be the same as if the number were
the remainder after dividing the number by the modulus.

Version Date: 31 March 2006
107

CLASP Resources — J: Glossary of Security Terms

Near-collision
resistance

Given a plaintext value and the corresponding hash value, it should be
computationally unfeasible to find a second plaintext value that gives the
same hash value.

NIST The National Institute of Standards and Technology is a division of the
U.S. Department of Commerce. NIST issues standards and guidelines,
with the hope that they will be adopted by the computing community.

Non-repudiation The capability of establishing that a message was signed by a particular
entity. That is, a message is said to be non-repudiatable when a user
sends it, and one can prove that the user sent it. In practice,
cryptography can demonstrate that only particular key material was used
to produce a message. There are always legal defenses such as stolen
credentials or duress.

Nonce A value used with a cryptographic algorithm that must be unique in order
to maintain the security of the system. Generally, the uniqueness
requirement holds only for a single key — meaning that a {key, nonce}
pair should never be reused.

See also: Initialization vector, salt.

OCB mode See: Offset Code Book mode.

OCSP See: Online Certificate Status Protocol.

OCSP responder The server side software that answers OCSP requests.

See also: Online Certificate Status Protocol.

OFB mode See: Output Feedback mode.

Offset Code Book
mode

A patented encryption mode for block ciphers that provides both secrecy
and message integrity and is capable of doing so at high speeds.

OMAC One-key CBC-MAC. A secure, efficient way for turning a block cipher into
a message authentication code. It is an improvement of the CBC-MAC,
which is not secure in the arbitrary case. Other CBC-MAC variants use
multiple keys in order to fix the problem with CBC-MAC. OMAC uses a
single key and still has appealing provable security properties.

One-time pad A particular cryptographic system that is provably secure in some sense,
but highly impractical, because it requires a bit of entropy for every bit of
message.

Version Date: 31 March 2006
108

CLASP Resources — J: Glossary of Security Terms

One-time password A password that is only valid once. Generally, such passwords are
derived from some master secret — which is shared by an entity and an
authentication server — and are calculated via a challenge-response
protocol.

One-way hash function A hash function, where it is computationally unfeasible to determine any-
thing about the input from the output.

Online Certificate
Status Protocol

A protocol for determining whether a digital certificate is valid in real time
without using CRLs. This protocol (usually abbreviated OCSP) is
specified in RFC 2560.

Output Feedback
mode

A block cipher mode that turns a block cipher into a stream cipher. The
mode works by continually encrypting the previous block of keystream.
The first block of keystream is generated by encrypting an initialization
vector.

Padding Data added to a message that is not part of the message. For example,
some block cipher modes require messages to be padded to a length
that is evenly divisible by the block length of the cipher — i.e., the
number of bytes that the cipher processes at once.

PAM Pluggable Authentication Modules is a technology for abstracting out
authentication at the host level. It is similar to SASL, but is a bit higher up
in the network stack and tends to be a much easier technology to use,
particularly for system administrators, who can configure authentication
policies quite easily using PAM.

See also: SASL.

Partial collision
resistance

When it is unfeasible to find two arbitrary inputs to a hash function that
produce similar outputs — i.e., outputs that differ in only a few bits.

Passive attack See: eavesdropping attack.

Passphrase A synonym for “password,” meant to encourage people to use longer (it is
hoped, more secure) values.

Password A value that is used for authentication.

PBKDF2 Password-Based Key Derivation Function #2. An algorithm defined in
PKCS #5 for deriving a random value from a password.

Version Date: 31 March 2006
109

CLASP Resources — J: Glossary of Security Terms

PEM encoding A simple encoding scheme for cryptographic objects that outputs
printable values (by Base 64 encoding a DER-encoded representation of
the cryptographic object). The scheme was first introduced in Privacy
Enhanced Mail, a defunct way of providing E-mail security.

Perfect forward
secrecy

Ensuring that the compromise of a secret does not divulge information
that could lead to the recovery of data protected prior to the compromise.

See also: Forward secrecy.

PKCS #1 Public Key Cryptography Standard #1. A standard from RSA Labs
specifying how to use the RSA algorithm for encrypting and signing data.

PKCS #1 padding This form of padding can encrypt messages up to 11 bytes smaller than
the modulus size in bytes. You should not use this method for any
purpose other than encrypting session keys or hash values.

PKCS #10 Describes a standard syntax for certification requests.

PKCS #11 Specifies a programming interface called Cryptoki for portable crypto-
graphic devices of all kinds.

PKCS #3 Public Key Cryptography Standard #3. A standard from RSA Labs
specifying how to implement the Diffie-Hellman key exchange protocol.

PKCS #5 Public Key Cryptography Standard #5. A standard from RSA Labs
specifying how to derive cryptographic keys from a password.

PKCS #7 Public Key Cryptography Standard #7. A standard from RSA Labs
specifying a generic syntax for data that may be encrypted or signed.

PKI See: Public Key Infrastructure.

Plaintext An unencrypted message.

See also: Ciphertext.

PMAC The MAC portion of the OCB block cipher mode. It is a patented way of
turning a block cipher into a secure, parallelizable MAC.

Precomputation attack Any attack that involves precomputing significant amounts of data in
advance of opportunities to launch an attack. A dictionary attack is a
common precomputation attack.

Private key In a public key cryptosystem, key material that is bound tightly to an
individual entity that must remain secret in order for there to be secure

Version Date: 31 March 2006
110

CLASP Resources — J: Glossary of Security Terms

communication.

Privilege separation A technique for trying to minimize the impact that a programming flaw
can have, where operations requiring privilege are separated out into a
small, independent component (hopefully audited with care). Generally,
the component is implemented as an independent process, and it
spawns off a non-privileged process to do most of the real work. The two
processes keep open a communication link, speaking a simple protocol.

PRNG See: Pseudo-random number generator.

Pseudo-random
number generator

An algorithm that takes data and stretches it into a series of random-
looking outputs. Cryptographic pseudo-random number generators may
be secure if the initial data contains enough entropy. Many popular
pseudo-random number generators are not secure.

See also: Stream cipher.

Public key In a public key cryptosystem, the key material that can be published
publicly without compromising the security of the system. Generally, this
material must be published; its authenticity must be determined
definitively.

Public Key
Infrastructure

A system that provides a means for establishing trust as to what identity
is associated with a public key. Some sort of Public Key Infrastructure
(PKI) is necessary to give reasonable assurance that one is
communicating securely with the proper party, even if that infrastructure
is ad hoc.”

RA See: Registration Authority.

Race condition A class of error in environments that are multi-threaded or otherwise
multi- tasking, where an operation is falsely assumed to be atomic. That
is, if two operations overlap instead of being done sequentially, there is
some risk of the resulting computation not being correct. There are many
cases where such a condition can be security critical.

See also: TOCTOU problem.

Randomness A measure of how unguessable data is.

See also: Entropy.

Version Date: 31 March 2006
111

CLASP Resources — J: Glossary of Security Terms

RC2 A block cipher with variable key sizes and 64-bit blocks.

RC4 A widely used stream cipher that is relatively fast but with some
significant problems. One practical problem is that it has a weak key
setup algorithm, though this problem can be mitigated with care. Another
more theoretical problem is that RC4’s output is easy to distinguish from
a truly random stream of numbers. This problem indicates that RC4 is
probably not a good long-term choice for data security.

RC5 A block cipher that has several tunable parameters.

Registration Authority An organization that is responsible for validating the identity of entities
trying to obtain credentials in a Public Key Infrastructure.

See also: Certification Authority; Public Key Infrastructure.

Rekeying Changing a key in a cryptographic system.

Related key attack A class of cryptographic attack where one takes advantage of known
relationships between keys to expose information about the keys or the
messages those keys are protecting.

Revocation In the context of Public Key Infrastructure, the act of voiding a digital
certificate.

See also: Public Key Infrastructure; X.509 certificate.

RIPEMD-160 A cryptographic hash function that is well regarded. It has a 160-bit
output, and is a bit slower than SHA1.

RMAC A construction for making a Message Authentication Code out of a block
cipher. It is not generally secure in the way that OMAC is, and is
generally considered not worth using due to the existence of better
alternatives.

See also: OMAC.

Rollback attack An attack where one forces communicating parties to agree on an
insecure protocol version.

Version Date: 31 March 2006
112

CLASP Resources — J: Glossary of Security Terms

Root certificate A certificate that is intrinsically trusted by entities in a Public Key
Infrastructure — generally should be transported over a secure medium.
Root certificates belong to a Certification Authority and are used to sign
other certificates that are deemed to be valid. When a system tries to
establish the validity of a certificate, one of the first things that should
happen is that it should look for a chain of trust to a known, trusted root
certificate. That is, if the certificate to be validated is not signed by a root,
one checks the certificate(s) used to sign it to determine if those were
signed by a root cert. Lather, rinse, repeat.

See also: Public Key Infrastructure.

Round In a block cipher, a group of operations applied as a unit that has an
inverse that undoes the operation. Most block ciphers define a round
operation and then apply that round operation numerous times — though
often applying a different key for each round, where the round key is
somehow derived from the base key.

RSA A popular public key algorithm for encryption and digital signatures
invented by Ron Rivest, Adi Shamir and Leonard Adleman. It is believed
that, if factoring large numbers is computationally unfeasible, then RSA
can be used securely in practice.

RSASSA-PSS A padding standard defined in PKCS #1, used for padding data prior to
RSA signing operations.

S/Key A popular one-time password system.

See also: One-time password.

S/MIME A protocol for secure electronic mail standardized by the IETF. It relies on
standard X.509-based Public Key Infrastructure.

SACL System Access Control List. In Windows, the part of an ACL that
determines audit logging policy.

See also: Access Control List; DACL.

Salt Data that can be public but is used to prevent against precomputation
attacks.

See also: Initialization vector; Nonce.

Version Date: 31 March 2006
113

CLASP Resources — J: Glossary of Security Terms

SASL The Simple Authentication and Security Layer, which is a method for
adding authentication services to network protocols somewhat
generically. It is also capable of providing key exchange in many
circumstances.

Secret key See: Symmetric key.

Secure Socket Layer A popular protocol for establishing secure channels over a reliable
transport, utilizing a standard X.509 Public Key Infrastructure for
authenticating machines. This protocol has evolved into the TLS protocol,
but the term SSL is often used to generically refer to both.

See also: Transport Layer Security.

Seed A value used to initialize a pseudo-random number generator.

See also: Entropy, initialization vector, Pseudo-random number
generator.

Self-signed certificate A certificate signed by the private key associated with that certificate. In
an X.509 Public Key Infrastructure, all certificates need to be signed.
Since root certificates have no third-party signature to establish their
authenticity, they are used to sign themselves. In such a case, trust in the
certificate must be established by some other means.

Serpent A modern block cipher with 128-bit blocks and variable-sized keys. A
finalist in the AES competition, Serpent has a higher security margin by
design than other candidates, and is a bit slower on typical 32-bit
hardware as a result.

See also: AES.

Session key A randomly generated key used to secure a single connection and then
discarded.

SHA-256 A cryptographic hash function from NIST with 256-bit message digests.

SHA-384 SHA-512 with a truncated digest (as specified by NIST).

SHA-512 A cryptographic hash function from NIST with 512-bit message digests.

SHA1 A fairly fast, well regarded hash function with 160-bit digests that has
been standardized by the National Institute of Standards and Technology
(NIST).

Version Date: 31 March 2006
114

CLASP Resources — J: Glossary of Security Terms

Shared secret A value shared by parties that may wish to communicate, where the
secrecy of that value is an important component of secure
communications. Typically, a shared secret is either an encryption key, a
MAC key, or some value used to derive such keys.

Shatter attack A class of attack on the Windows event system. The Windows
messaging system is fundamentally fragile from a security perspective
because it allows for arbitrary processes to insert control events into the
message queue without sufficient mechanisms for authentication.
Sometimes messages can be used to trick other applications to execute
malicious code.

Single sign-on Single sign-on allows you to access all computing resources that you
should be able to reach by using a single set of authentication credentials
that are presented a single time per login session. Single sign-on is a
notion for improved usability of security systems that can often increase
the security exposure of a system significantly.

Snooping attacks Attacks where data is read off a network while in transit without modifying
or destroying the data.

SNOW A very fast stream cipher that is patent-free and seems to have a very
high security margin.

SQL Injection When an attacker can cause malicious SQL code to run by maliciously
modifying data used to compose an SQL command.

SSL See: Secure Socket Layer.

Stack smashing Overwriting a return address on the program execution stack by
exploiting a buffer overflow. Generally, the implication is that the return
address gets replaced with a pointer to malicious code.

See also: Buffer overflow.

Station-to-station
protocol

A simple variant of the Diffie-Hellman key exchange protocol that
provides key agreement and authenticates each party to the other. This
is done by adding digital signatures (which must be done carefully).

See also: Diffie-Hellman key exchange.

Version Date: 31 March 2006
115

CLASP Resources — J: Glossary of Security Terms

Stream cipher A pseudo-random number generator that is believed to be
cryptographically strong and always produces the same stream of output
given the same initial seed (i.e., key). Encrypting with a stream cipher
consists of combining the plaintext with the keystream, usually via XOR.

See also: Pseudo-random number generator.

Strong collision
resistance

Strong collision resistanceis a property that a hash function may have
(and a good cryptographic hash function will have), characterized by it
being computationally unfeasible to find two arbitrary inputs that yield the
same output.

See also: Hash function; Weak collision resistance.

Surreptitious
forwarding

An attack on some public key cryptosystems where a malicious user
decrypts a digitally signed message and then encrypts the message
using someone else’s public key: giving the end receiver the impression
that the message was originally destined for them.

Symmetric
cryptography

Cryptography that makes use of shared secrets as opposed to public
keys.

Symmetric key See: Shared secret.

Tag The result of applying a keyed message authentication code to a
message.

See also: Message Authentication Code.

Tamper-proofing See: Anti-tampering.

Threat model A representation of the system threats that are expected to be
reasonable. This includes denoting what kind of resources an attacker is
expected to have, in addition to what kinds of things the attacker may be
willing to try to do. Sometimes called an architectural security
assessment.

Time of check, time of
use problem

 See: TOCTOU problem.

TLS See: Transport Layer Security.

Version Date: 31 March 2006
116

CLASP Resources — J: Glossary of Security Terms

TMAC A two-keyed variant of the CBC-MAC that overcomes the fundamental
limitation of that MAC.

See also: Message Authentication Code; CBC-MAC; OMAC.

TOCTOU problem Time-of-check, time-of-use race condition. A type of race condition
between multiple processes on a file system. Generally what happens is
that a single program checks some sort of property on a file, and then in
subsequent instructions tries to use the resource if the check succeeded.
The problem is that — even if the use comes immediately after the check
— there is often some significant chance that a second process can
invalidate the check in a malicious way. For example, a privileged
program might check write privileges on a valid file, and the attacker can
then replace that file with a symbolic link to the system password file.

See also: Race condition.

Transport Layer
Security

The successor to SSL, a protocol for establishing secure channels over a
reliable transport, using a standard X.509 Public Key Infrastructure for
authenticating machines. The protocol is standardized by the IETF.

See also: Secure Socket Layer.

Triple DES A variant of the original Data Encryption Standard that doubles the
effective security. Often abbreviated to 3DES. The security level of 3DES
is still considered to be very high, but there are faster block ciphers that
provide comparable levels of security — such as AES.

Trojan See: Backdoor.

Trojan Horse See: Backdoor.

Trusted third party An entity in a system to whom entities must extend some implicit trust.
For example, in a typical Public Key Infrastructure, the Certification
Authority constitutes a trusted third party.

Twofish A modern block cipher with 128-bit blocks and variable-sized keys. A
finalist in the AES competition; it is an evolution of the Blowfish cipher.

See also: AES; Blowfish.

Version Date: 31 March 2006
117

CLASP Resources — J: Glossary of Security Terms

UMAC A secure MAC based on a set of universal hash functions that is
extremely fast in software but so complex that there has never been a
validated implementation.

See also: Universal hash function.

Universal hash
function

A keyed hash function that has ideal hash properties. In practice, the only
practical functions of this nature are really "almost universal"
hash functions, meaning they come very close to being ideal. Universal
and near-universal hash functions are not cryptographically secure when
used naively for message authentication but can be adapted to be secure
for this purpose easily.

See also: Cryptographic hash function; Hash function; one-way hash
function.

Validation The act of determining that data is sound. In security, generally used in
the context of validating input.

Weak collision
resistance

A property that a hash function may have (and a good cryptographic
hash function will have), characterized by it being unfeasible to find a
second input that produces the same output as a known input.

See also: Hash function; Strong collision resistance.

Whitelist When performing input validation, the set of items that, if matched,
results in the input being accepted as valid. If there is no match to the
whitelist, then the input is considered invalid. That is, a whitelist uses a
"default deny" policy.

See also: Blacklist; Default deny.

Window of vulnerability The period of time in which a vulnerability can possibly be exploited.

X.509 certificate A digital certificate that complies with the X.509 standard (produced by
ANSI).

XCBC-MAC A three-key variant of the CBC-MAC that overcomes the fundamental
limitation of that MAC.

See also: Message Authentication Code; CBC-MAC, OMAC.

XMACC A patented parallelizable Message Authentication Code.

XSS See: Cross-site scripting.

Version Date: 31 March 2006
118

CLASP Resources — J: Glossary of Security Terms

