IPCC list of greenhouse gases

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
The radiative forcing (warming influence) of long-lived atmospheric greenhouse gases has accelerated, almost doubling in 40 years.[1][2]

This is a list of the most influential long-lived, well-mixed greenhouse gases, along with their tropospheric concentrations and direct radiative forcings, as identified by the Intergovernmental Panel on Climate Change (IPCC).[3] Abundances of these long-lived gases are regularly measured by atmospheric scientists from samples that are collected throughout the world.[4][5][6] Since the 1980s, the annual forcing contributions of these gases are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models.[2]

This list excludes:


Combined Summary from IPCC Assessment Reports (TAR, AR4, AR5, AR6)[edit]

Mole fractions: μmol/mol = ppm = parts per million (106); nmol/mol = ppb = parts per billion (109); pmol/mol = ppt = parts per trillion (1012).

Species Lifetime
(years)

[3]: 731 
100-yr
GWP

[3]: 731 
Mole Fraction [ppt - except as noted] Radiative forcing [W m−2] [B]
Base
1750
TAR[11]
1998
AR4[12]
2005
AR5[3]: 678 
2011
Data[13][14]
2020
TAR[11]
1998
AR4[12]
2005
AR5[3]: 678 
2011
AR6[9]: 4–9 
2019
CO2 [ppm] [A] 1 278 365 379 391 Mauna Loa CO2 monthly mean concentration.svg 1.46 1.66 1.82 2.16
CH4 [ppb] 12.4 28 700 1,745 1,774 1,801 Mlo ch4 ts obs 03437.png 0.48 0.48 0.48 0.54
N2O [ppb] 121 265 270 314 319 324 HATS Nitrous Oxide concentration.png 0.15 0.16 0.17 0.21
CFC-11 45 4,660 0 268 251 238 Hats f11 global.png 0.07 0.063 0.062 0.066
CFC-12 100 10,200 0 533 538 528 Hats f12 global.png 0.17 0.17 0.17 0.18
CFC-13 640 13,900 0 4 - 2.7 cfc13 0.001 - 0.0007 0.0009
CFC-113 85 6,490 0 84 79 74 Hats f113 global.png 0.03 0.024 0.022 0.021
CFC-114 190 7,710 0 15 - - cfc114 0.005 - - 0.005
CFC-115 1,020 5,860 0 7 - 8.37 cfc115 0.001 - 0.0017 0.0021
HCFC-22 11.9 5,280 0 132 169 213 HCFC22 concentration.jpg 0.03 0.033 0.0447 0.0528
HCFC-141b 9.2 2,550 0 10 18 21.4 HCFC141b concentration.jpg 0.001 0.0025 0.0034 0.0039
HCFC-142b 17.2 5,020 0 11 15 21.2 HCFC142b concentration.jpg 0.002 0.0031 0.0040 0.0043
CH3CCl3 5 160 0 69 19 6.32 BK MC.jpg 0.004 0.0011 0.0004 0.0001
CCl4 26 1,730 0 102 93 85.8 Hats ccl4 global.png 0.01 0.012 0.0146 0.0129
HFC-23 222 12,400 0 14 18 24 hfc23 0.002 0.0033 0.0043 0.0062
HFC-32 5.2 677 0 - - 4.92 BK HFC32.jpg - - 0.0005 0.0022
HFC-125 28.2 3,170 0 - 3.7 9.58 HFC125 concentration.jpg - 0.0009 0.0022 0.0069
HFC-134a 13.4 1,300 0 7.5 35 62.7 Mauna Loa HFC-134a (CH2FCF3) concentration.png 0.001 0.0055 0.0100 0.018
HFC-143a 47.1 4,800 0 - - 12.0 HFC143a concentration.jpg - - 0.0019 0.0040
HFC-152a 1.5 138 0 0.5 3.9 6.4 HFC152a concentration.jpg 0.000 0.0004 0.0006 0.0007
CF4 (PFC-14) 50,000 6,630 40 80 74 79 Mauna Loa Tetrafluoromethane.jpg 0.003 0.0034 0.0040 0.0051
C2F6 (PFC-116) 10,000 11,100 0 3 2.9 4.16 Hexafluoroethane concentration.jpg 0.001 0.0008 0.0010 0.0013
SF6 3,200 23,500 0 4.2 5.6 7.28 Mauna Loa Sulfur Hexafluoride concentration.jpg 0.002 0.0029 0.0041 0.0056
SO2F2 36 4,090 0 - - 1.71 SO2F2 mm.png - - 0.0003 0.0005
NF3 500 16,100 0 - - 0.9 Nitrogen Trifluoride concentration.jpg - - 0.0002 0.0004

A The IPCC states that "no single atmospheric lifetime can be given" for CO2.[3]: 731  This is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon.[15] As of year 2014, fossil CO2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on the projections of coupled models referenced in the AR5 assessment.[16] A substantial fraction (20-35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size.[17][18]
B AR6 reports the effective radiative forcing which includes effects of rapid adjustments in the atmosphere and at the surface.[19]

Gases from IPCC Fourth Assessment Report[edit]

The following table has its sources in Chapter 2, p. 141, Table 2.1. of the IPCC Fourth Assessment Report, Climate Change 2007 (AR4), Working Group 1 Report, The Physical Science Basis.[12]

Mole fractions and their changes Radiative forcing
Species 2005 Change since 1998 2005 (W m−2) 1998 (%)
CO2 379 ± 0.65 μmol/mol +13 μmol/mol 1.66 +13
CH4 1,774 ± 1.8 nmol/mol +11 nmol/mol 0.48
N2O 319 ± 0.12 nmol/mol +5 nmol/mol 0.16 +11
CFC-11 251 ± 0.36 pmol/mol −13 0.063 −5
CFC-12 538 ± 0.18 pmol/mol +4 0.17 +1
CFC-113 79 ± 0.064 pmol/mol −4 0.024 −5
HCFC-22 169 ± 1.0 pmol/mol +38 0.033 +29
HCFC-141b 18 ± 0.068 pmol/mol +9 0.0025 +93
HCFC-142b 15 ± 0.13 pmol/mol +6 0.0031 +57
CH3CCl3 19 ± 0.47 pmol/mol −47 0.0011 −72
CCl4 93 ± 0.17 pmol/mol −7 0.012 −7
HFC-125 3.7 ± 0.10 pmol/mol +2.6 0.0009 +234
HFC-134a 35 ± 0.73 pmol/mol +27 0.0055 +349
HFC-152a 3.9 ± 0.11 pmol/mol +2.4 0.0004 +151
HFC-23 18 ± 0.12 pmol/mol +4 0.0033 +29
SF6 5.6 ± 0.038 pmol/mol +1.5 0.0029 +36
CF4 (PFC-14) 74 ± 1.6 pmol/mol 0.0034
C2F6 (PFC-116) 2.9 ± 0.025 pmol/mol +0.5 0.0008 +22

Gases from IPCC Third Assessment Report[edit]

The following table has its sources in Chapter 6, p. 358, Table 6.1. of the IPCC Third Assessment Report, Climate Change 2001 (TAR), Working Group 1, The Scientific Basis.[11]

Gases relevant to radiative forcing only[edit]

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing (Wm−2) Specific heat at STP
(J kg−1)
Carbon dioxide Carbonic anhydride (CO2) 365 μmol/mol 87 μmol/mol 1.46 0.819
Methane Marsh gas (CH4) 1,745 nmol/mol 1,045 nmol/mol 0.48 2.191
Nitrous oxide Laughing gas (N2O) 314 nmol/mol 44 nmol/mol 0.15 0.88
Tetrafluoromethane Carbon tetrafluoride (CF4) 80 pmol/mol 40 pmol/mol 0.003 1.33
Hexafluoroethane Perfluoroethane (C2F6) 3 pmol/mol 3 pmol/mol 0.001 0.067
Sulfur hexafluoride Sulfur fluoride (SF6) 4.2 pmol/mol 4.2 pmol/mol 0.002 0.074
HFC-23 Trifluoromethane (CHF3) 14 pmol/mol 14 pmol/mol 0.002 0.064
HFC-134a 1,1,1,2-Tetrafluoroethane C2H2F4 7.5 pmol/mol 7.5 pmol/mol 0.001 0.007
HFC-152a 1,1-Difluoroethane (C2H4F2) 0.5 pmol/mol 0.5 pmol/mol 0.000 0.04

Gases relevant to radiative forcing and ozone depletion[edit]

Gas Alternate name Formula 1998 level Increase since 1750 Radiative forcing
(Wm−2)
CFC-11§ Trichlorofluoromethane (CFCl3) 268 pmol/mol 268 pmol/mol 0.07
CFC-12§ Dichlorodifluoromethane (CF2Cl2) 533 pmol/mol 533 pmol/mol 0.17
CFC-13§ Chlorotrifluoromethane (CClF3) 4 pmol/mol 4 pmol/mol 0.001
CFC-113 1,1,1-Trichlorotrifluoroethane (C2F3Cl3) 84 pmol/mol 84 pmol/mol 0.03
CFC-114 1,2-Dichlorotetrafluoroethane (C2F4Cl2) 15 pmol/mol 15 pmol/mol 0.005
CFC-115 Chloropentafluoroethane (C2F5Cl) 7 pmol/mol 7 pmol/mol 0.001
Carbon tetrachloride Tetrachloromethane (CCl4) 102 pmol/mol 102 pmol/mol 0.01
1,1,1-Trichloroethane Methyl chloroform (CH3CCl3) 69 pmol/mol 69 pmol/mol 0.004
HCFC-141b 1,1-Dichloro-1-fluoroethane (C2H3FCl2) 10 pmol/mol 10 pmol/mol 0.001
HCFC-142b 1-Chloro-1,1-difluoroethane (C2H3F2Cl) 11 pmol/mol 11 pmol/mol 0.002
Halon-1211 Bromochlorodifluoromethane (CClF2Br) 3.8 pmol/mol 3.8 pmol/mol 0.001
Halon-1301 Bromotrifluoromethane (CF3Br) 2.5 pmol/mol 2.5 pmol/mol 0.001

See also[edit]

References[edit]

  1. ^ "Annual Greenhouse Gas Index". U.S. Global Change Research Program. Retrieved 5 September 2020.
  2. ^ a b Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  3. ^ a b c d e f g "Chapter 8". AR5 Climate Change 2013: The Physical Science Basis.
  4. ^ "Global Monitoring Laboratory". NOAA Earth System Research Laboratories. Retrieved 2020-12-11.
  5. ^ "World Data Centre for Greenhouse Gases". World Meteorological Organization Global Atmosphere Watch Programme and Japan Meteorological Agency. Retrieved 2020-12-11.
  6. ^ "Advanced Global Atmospheric Gas Experiment". Massachusettes Institute of Technology. Retrieved 2020-12-11.
  7. ^ Gavin Schmidt (2010-10-01). "Taking the Measure of the Greenhouse Effect". NASA Goddard Institute for Space Studies - Science Briefs.
  8. ^ "Atmospheric Concentration of Greenhouse Gases" (PDF). U.S. Environmental Protection Agency. 2016-08-01.
  9. ^ a b Dentener F. J.; B. Hall; C. Smith, eds. (2021-08-09), "Annex III: Tables of historical and projected well-mixed greenhouse gas mixing ratios and effective radiative forcing of all climate forcers", Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press
  10. ^ "Which Gases Are Greenhouse Gases?". American Chemical Society. Retrieved 2021-05-31.
  11. ^ a b c "Chapter 6". TAR Climate Change 2001: The Scientific Basis. p. 358.
  12. ^ a b c "Chapter 2". AR4 Climate Change 2007: The Physical Science Basis. p. 141.
  13. ^ "Long-term global trends of atmospheric trace gases". NOAA Earth System Research Laboratories. Retrieved 2021-02-11.
  14. ^ "AGAGE Data and Figures". Massachusettes Institute of Technology. Retrieved 2021-02-11.
  15. ^ Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019
  16. ^ "Figure 8.SM.4" (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report - Supplemental Material. p. 8SM-16.
  17. ^ Archer, David (2009). "Atmospheric lifetime of fossil fuel carbon dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933.
  18. ^ Joos, F.; Roth, R.; Fuglestvedt, J.D.; et al. (2013). "Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis". Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012.
  19. ^ Hansen, J.; Sato, M.; Ruedy, R.; et al. (2005). "Efficacy of Climate Forcings". Journal of Geophysical Research: Atmospheres. 119 (D18104). doi:10.1029/2005JD005776.