HeatWave User Guide



Abstract

This is the HeatWave User Guide. This document provides information and procedures about loading data into
HeatWave and running queries. For information about creating and managing a HeatWave cluster, refer to the
MySQL Database Service User Guide.

For information about the latest HeatWave features and updates, refer to the HeatWave Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2021-10-18 (revision: 71116)



https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/relnotes/heatwave/en/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICES ......ccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
N [ a1 fe o [N ox 1 o] o PP PR 1
O Y (o] 011 (=Tt (U = ST PP PP SPPPPTRUPPPN 2

1.2 MYSQL AULOPIIOT ...ttt ettt e et e e e e e e e e 3

A T (o] (I o TN I =T=To ] o E PP PPPT R UPPPPIN 5
3 PreParing DAA ... ... oieiiiieii et e e et e et e e it e e et e e aean s 7
3.1 Identifying Tables t0 LOAA ......ccuniiieiee et e e 7

3.2 Excluding Table COIUMNS .......uuiiiii et e et e e e et e e e e eees 7

3.3 ENcoding StriNG COIUMNS .....uiiiiii ittt ettt e et e e e s 8

3.4 Defining Data Placement KEYS ........uuiiiiiiiieiiiiie ettt 9

3.5 Defining the Secondary ENGINE .........ooooiiiiiiiii e 10

4 LOAAING DA .. ceeeiieeieit e ettt e e 13
4.1 AULO PArallel LOGM ......coouuiiiiiiiiee ittt 14

4.2 Change ProPagation ............ceeuuueiiitie ittt e ettt e et e et e et e e e s 20
5UNICAAING TADIES ...t 23
6 RUNNING QUETIES ...ttt ettt e ettt e et et e e et et e e et et e e e e et e e e enba s 25
7 Table Load and QUEIY EXAMPIE .......uuiiiiiiiiiiiii ettt e e et e e e e e eat e eees 33
8 Workload Optimization USING AQVISOI ........uuiiiiiiiee ettt e e e e e e e eena e eees 35
8.1 AULO ENCOAING ....ciiiieiiiii ettt e ettt e e e e e e s 35

8.2 AULO Data PIACEMENT ......iiiiit ittt et e e e en e eees 39

8.3 QUETY INSIGNLS ..ottt ettt e e et e e et e e e eeta e eenes 43

8.4 AQVISOI EXAMPIES .....oiiiiii et 46

8.5 AdVISOr REPOIT TaADIE ...ttt a7

O BESE PIACHICES ...cittiiiiiiii ettt ettt ettt e ettt e eaaas 49
10 TroUBIESNOOTING ..... ittt ettt 59
11 REFEIBNCE ...t ettt e e e e et 63
11.1 SUPPOITET DALA TYPES ...ueeiiiiieeieiie ettt ettt e et et e et e e et eeena s 63

11.2 Supported FUNCLONS and OPEIALOIS ........cciiutiiiiiii et e e e e e 64
11.2.1 Aggregate FUNCHONS ........ccoeuiiieiiii ettt e e 64

11.2.2 AritNMELIC OPEIAIOIS .....eiiiiiieeeiii ettt e e e e 65

11.2.3 Cast FuNnctions and OPEratOrsS ..........c.uuiieiiiiiiieiiiiiee et 65

11.2.4 Comparison Functions and OPEratorsS ...........c.ceeuuuieririinieiiiiinee e e 65

11.2.5 Control Flow Functions and OPErators .............coeuuuieieriiieieiiiee et eenies 66

11.2.6 Date and Time FUNCHONS ........iiiiiiiiiiiii et 66

11.2.7 LOGICAI OPEIALOIS ....uueieiiti ettt ettt ettt ettt e e et e e e et e e e e et e e eentnaeeeens 68

11.2.8 Mathematical FUNCHONS .........iiiiiiiiiii e 68

11.2.9 String FUNCtioNs and OPEIALOIS .......uuiiieiiiiiiiiii ettt eeaans 69

11.2.10 WINAOW FUNCHONS ...eittiiiiiii ettt ettt ettt ettt et et e e e e eenens 70

11.3 Supported SQL MOUES ...ttt ettt e e e 71

11.4 String Column Encoding REfErenCe ..........ooouuiiiiiiiii e 71
11.4.1 Variable-length ENCOING ......uiiiiiiiii e 71

11.4.2 Dictionary ENCOAING ... .ccuuiiiiiiiiiai e e 73

11.5 Metadata QUETIES ... .uuiie ettt e et e et et e et e e et e e et e e et e e en e e eaeaeanns 73

116 LIMIEATIONS «.eetneeiiiti ettt ettt et et e et e e ettt e e et e e et et e e e et e e et e e e e e s 77

11.7 SyStemM VariablEs .......coouniiiiiiiiie e 82

11.8 Secondary Engine Variables ...........coooiiiiiiiiii e 84

11.9 Status VariabIles ..... ..o 86
11.10 Performance Schema TabIES ..........iiiiiiiii e 87
11.10.1 The rpd_exec_stats Table ... 87

11.10.2 The rpd_Nodes TabIe ..........iiiii e 87

11.10.3 The rpd_table_id Table ... e 88

11.10.4 The rpd_tables Table ........ ..o e 89

11.10.5 The rpd_column_id Table ... 90

11.10.6 The rpd_columns Table ... e 20

11.10.7 The rpd_query_stats Table ..........cooeiiiiiii e 91




HeatWave User Guide

11.11 Generating tpch Sample Data




Preface and Legal Notices

This is the HeatWave User Guide. This document provides information and procedures about loading
data into HeatWave and running queries. For information about creating and managing a HeatWave
cluster, refer to the MySQL Database Service User Guide.

For information about the latest HeatWave features and updates, refer to the HeatWave Release
Notes.

Legal Notices

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation™ pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to



https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/relnotes/heatwave/en/
https://dev.mysql.com/doc/relnotes/heatwave/en/

Documentation Accessibility

your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Vi


https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 Introduction

Table of Contents

Y o] 11 (=1 (< 2
1.2 MYSQL AULOPIIOL ...ttt e et e et e e et e e et a s 3

HeatWave is a distributed, scalable, shared-nothing, in-memory, hybrid columnar, query processing
engine designed for extreme performance. It is enabled when you add a HeatWave cluster to a MySQL
DB System.

A HeatWave cluster includes a MySQL DB System node and two or more HeatWave nodes. The
MySQL DB System node has a HeatWave plugin that is responsible for cluster management, loading
data into the HeatWave cluster, query scheduling, and returning query results to the MySQL DB
System. HeatWave nodes store data in memory and process analytics queries. Each HeatWave node
contains an instance of the HeatWave query processing engine (RAPI D).

The number of HeatWave nodes required depends on data size and the amount of compression that is
achieved when loading data into the HeatWave cluster. A HeatWave cluster supports up to 64 nodes.

Figure 1.1 HeatWave Architecture

SQL HeatWave

" i :
Client/Application Cluster | I
| ’ |
! l l
1

Data S0L  Query : :
Load Query Resuit HeatWave | I
I Node 1 ! !

] —
| | HeatWave |
I I I <—t++> Storage +«— I
I soL ! : Layer |
L ' HeatWave | ocl |
. 2L Sl"?tem | Node 2 | Object Storage |
: | : : l
& ol | |
HeatWave | | . l
Plugin I I I
-+ HeatWave : :
| |

InnoDB | Node N

Queries are issued from a MySQL client or application that is connected to the MySQL DB System
node. Clients and applications do not connect to HeatWave directly. Supported queries are
automatically offloaded from the MySQL DB System to HeatWave for accelerated processing. Results
are returned to the MySQL DB System node and to the MySQL client or application that issued the
qguery. For more information, see Chapter 6, Running Queries.

Loading data into HeatWave involves preparing tables on the MySQL DB System and executing

load commands. Preparing tables includes tasks such as excluding columns, defining string column
encodings, adding data placement keys, and marking the tables as secondary engine candidates.

(I nnoDB is the primary engine.) For more information, see Chapter 3, Preparing Data, and Chapter 4,
Loading Data.

The Auto Parallel Load utility facilitates the process of preparing and loading tables by automating
required steps and optimizing the number of parallel load threads. See Section 4.1, “Auto Parallel
Load".




Architecture

When HeatWave loads a table, the data is shareded and distributed among HeatWave nodes. Once a
table is loaded, DML operations on the tables are automatically propagated to the HeatWave nodes.
No user action is required to synchronize data. For more information, see Section 4.2, “Change
Propagation”.

Data loaded into HeatWave, including propagated changes, are automatically persisted by the
HeatWave Storage Layer to OCI Object Storage for a fast recovery in case of a HeatWave node or
cluster failure.

After running queries on the data, you can use the HeatWave Advisor to optimize your workload.
Advisor analyzes your data and query history to provide string column encoding and data placement
recommendations. See Chapter 8, Workload Optimization using Advisor.

1.1 Architecture

This section provides an overview of HeatWave architectural features.
* In-Memory Hybrid-Columnar Format

» Massively Parallel Architecture

» Push-Based Vectorized Query Processing

e Scale-Out Data Management

Native MySQL Integration

In-Memory Hybrid-Columnar Format

HeatWave stores data in main memory in a hybrid columnar format. HeatWave's hybrid approach
achieves the benefits of columnar format for query processing, while avoiding the materialization and
update costs associated with pure columnar format. Hybrid columnar format enables the use of efficient
guery processing algorithms designed to operate on fixed-width data, and permits vectorized query
processing.

Massively Parallel Architecture

HeatWave's massively parallel architecture is enabled by internode and intranode partitioning of data.
Each node within a HeatWave cluster, and each CPU core within a node, processes the partitioned
data in parallel. HeatWave is capable of scaling to thousands of cores. This massively parallel
architecture, combined with high-fanout, workload-aware partitioning, accelerates query processing.

Figure 1.2 HeatWave Massively Parallel Architecture

(e e e CPU ———1—
e o e

=== — T W ===
——— || cpy | |memmm—— 7 m———

E e s i Core e & e [

e

Sl
[ 1 1 | | i c°re

Push-Based Vectorized Query Processing

HeatWave processes queries by pushing vector blocks (slices of columnar data) through the query
execution plan from one operator to another. A push-based execution model avoids deep call stacks
and saves valuable resources compared to tuple-based processing models.




Scale-Out Data Management

Scale-Out Data Management

When data is loaded into HeatWave, the HeatWave Storage Layer automatically persists the data
to OCI Object Storage for fast recovery in case of a HeatWave node or cluster failure. Data is
automatically restored by the HeatWave Storage Layer when HeatWave recovers a failed node or
cluster. This automated, self-managing storage layer scales to the size required for your HeatWave
cluster and operates independently in the background. The time required to reload data is constant
regardless of data size or HeatWave cluster size.

Native MySQL Integration

Native integration with MySQL Database Service provides a single data management platform for
OLTP and analytics. HeatWave is designed as a pluggable MySQL storage engine, which enables
management of both the MySQL Database Service and HeatWave using the same interfaces, including
the OCI console, REST API, and the command line.

Changes to the data on the MySQL DB System are automatically propagated to HeatWave nodes
in real time, which means that queries always have access to the latest data. Change propagation is
performed automatically by a light-weight algorithm.

Users and applications interact with HeatWave through the MySQL DB System node that is part

of the HeatWave cluster. Users connect through standard tools and standard-based ODBC/JDBC
connectors. HeatWave supports the same ANSI SQL standard and ACID properties as MySQL and the
most commonly used data types. This support enables existing applications to use HeatWave without
modification, allowing for quick and easy integration.

Once a query is submitted to the MySQL database, the MySQL query optimizer transparently decides if
the query should be offloaded to HeatWave for accelerated execution, based on whether query offload
prerequisites are met. Offloaded queries are pushed to HeatWave nodes for processing. Query results
are sent back to the MySQL database node and to the issuing client or application.

1.2 MySQL Autopilot

MySQL Autopilot automates many of the most important and often challenging aspects of achieving
high query performance at scale, including provisioning, loading data, query execution, and failure
handling. It uses advanced techniques to sample data, collect statistics on data and queries, and build
machine learning models to model memory usage, network load, and execution time. These machine
learning models are then used by MySQL Autopilot to execute its core capabilities. MySQL Autopilot
makes the HeatWave query optimizer increasingly intelligent as more queries are executed, resulting in
continually improving system performance.

Autopilot focuses on four aspects of the HeatWave service life cycle:
» System Setup

Data Load

* Query Execution

Failure Handling

System Setup
» Auto Provisioning
Estimates the number of HeatWave nodes required for a workload by sampling the data, which

means that manual cluster size estimations are not necessary. See HeatWave Cluster Size
Estimates.



https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#MYAAS-GUID-4AAF7153-799C-42A0-B07E-2473361D1A8A
https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#MYAAS-GUID-4AAF7153-799C-42A0-B07E-2473361D1A8A

Data Load

Data Load

» Auto Parallel Load

Optimizes load time and memory usage by predicting the optimal degree of parallelism for each table
loaded into HeatWave. See Section 4.1, “Auto Parallel Load”.

Auto Encoding

Determines the optimal representation of columns loaded into HeatWave by analyzing HeatWave
query history, which improves query performance and minimizes the required cluster size. See
Section 8.1, “Auto Encoding”.

Auto Data Placement

Recommends how tables should be partitioned in memory to achieve the best query performance,
and estimates the expected performance improvement. See Section 8.2, “Auto Data Placement”.

Query Execution

Auto Query Plan Improvement

Uses statistics from previously executed queries to improve future query execution plans. See Auto
Query Plan Improvement.

Auto Query Time Estimation

Estimates query execution time, allowing you to determine how a query might perform without
having to run the query. Runtime estimates are provided by the Advisor Query Insights feature. See
Section 8.3, “Query Insights”.

Auto Change Propagation

Intelligently determines the optimal time when changes in MySQL DB System should be propagated
to the HeatWave Storage Layer.

Auto Scheduling

Identifies short running queries and prioritizes them over long running queries in an intelligent way to
reduce overall query execution wait times. See Auto Scheduling.

Failure Handling

Auto Error Recovery

Provisions new HeatWave nodes and reloads data from the HeatWave storage layer if one or more
HeatWave nodes becomes unresponsive due to a software or hardware failure. See HeatWave
Cluster Failure and Recovery.



https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-B32493BF-311D-4CF2-BDED-70A08948D820
https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-B32493BF-311D-4CF2-BDED-70A08948D820

Chapter 2 Before You Begin

Before you begin using HeatWave, the following is assumed:

* You have an operational MySQL Database Service and you are able to connect to it using a MySQL
client. If not, complete the steps described in Getting Started with MySQL Database Service, in the
MySQL Database Service User Guide.

e The data you want to query using HeatWave is available on the MySQL DB System. Data must
be available on the MySQL DB System before it can be loaded into the HeatWave cluster. For
information about importing data into a MySQL DB System, see Importing and Exporting Databases,
in the MySQL Database Service User Guide.

» You, or your group, have been granted the nysql - heat wave policies described in Policy Details for
MySQL Database Service, in the MySQL Database Service User Guide.

* You have added a HeatWave cluster to your MySQL DB System. For instructions, see Adding a
HeatWave Cluster, in the MySQL Database Service User Guide.



https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/getting-started.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/policy-details-mysql-database-service.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/policy-details-mysql-database-service.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#MYAAS-GUID-F689A3A7-FA40-4A0F-9BDC-BDA0ADB41891
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#MYAAS-GUID-F689A3A7-FA40-4A0F-9BDC-BDA0ADB41891
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html




Chapter 3 Preparing Data

Table of Contents

3.1 Identifying Tables t0 LOBM .......cieiiiiiiiii e et e e e e eaaas 7
3.2 EXcluding Table COIUMNS ......uuiiii e et e et e et e et e eeees 7
3.3 ENCOdiNg StrNG COIUMNS ....uiiiiiiieieiei ettt ettt e et e et e e e et e e e eba s 8
3.4 Defining Data PlaCemMENT KEYS .......uuiiiiiiiiii et e et e et een 9
3.5 Defining the Secondary ENQINE ........oooiiiiiiiiiie et 10

This section describes how to prepare data for loading into HeatWave. Data is prepared on the MySQL
DB System before it is loaded into HeatWave. For information about importing data into a MySQL DB
System, refer to the MySQL Database Service User Guide.

Preparing data involves:
1. Identifying the tables you want to load. See Section 3.1, “Identifying Tables to Load”.

2. Excluding table columns that are not required or have unsupported data types. See Section 3.2,
“Excluding Table Columns”.

3. Encoding string columns. See Section 3.3, “Encoding String Columns”.
4. Defining Data Placement Keys. See Section 3.4, “Defining Data Placement Keys”.

5. Defining the secondary engine for tables you want to load. See Section 3.5, “Defining the
Secondary Engine”.

For related best practices, see Chapter 9, Best Practices.
Tip

Instead of preparing and loading tables into HeatWave manually, consider using
the Auto Parallel Load utility, which prepares and loads tables for you using

an optimized number of parallel load threads. See Section 4.1, “Auto Parallel
Load".

3.1 Identifying Tables to Load

The tables you intend to query must be loaded in HeatWave. If a query accesses a table that is not
loaded, the query is not offloaded to HeatWave for processing.

Before loading data, take time to identify the tables that your queries access. For example, if your
gueries access data in a particular schema exclusively, load the tables belonging to that schema, or, if
your queries access a few particular tables, load those tables into HeatWave.

If using the Auto Parallel Load utility, you can specify the particular schemas and tables you want to
load. See Section 4.1, “Auto Parallel Load".

3.2 Excluding Table Columns

Before loading a table into HeatWave, identify table columns to exclude. Columns to exclude are:

» Columns with unsupported data types. It is required that these columns are excluded; otherwise,
the table cannot be loaded. For a list of data types that HeatWave supports, see Section 11.1,
“Supported Data Types”.

» Columns that are not relevant to the queries you intend to run. Excluding irrelevant columns is not
required but doing so reduces load time and the amount of memory required to store table data.



https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html

Encoding String Columns

To exclude a column, specify the NOT SECONDARY column attribute in a CREATE TABLE or ALTER
TABLE statement, as shown below. The NOT SECONDARY column attribute prevents a column from
being loaded into HeatWave when executing a table load operation.

nysql > CREATE TABLE orders (id |INT, description BLOB NOT SECONDARY);

nysql > ALTER TABLE orders MODI FY descripti on BLOB NOT SECONDARY;

The Auto Parallel Load utility excludes columns with unsupported data types automatically and permits
excluding irrelevant columns explicitly. For more information, see Section 4.1, “Auto Parallel Load”.

Note

If a query accesses a column defined with the NOT SECONDARY attribute, the
query is executed on the MySQL DB system by default.

3.3 Encoding String Columns

Encoding string columns helps accelerate the processing of queries that access those columns.
HeatWave supports two string column encoding types:

 Variable-length encoding (VARLEN)
* Dictionary encoding (SORTED)

When tables are loaded into HeatWave, variable-length encoding is applied to CHAR,

VARCHAR, and TEXT-type columns by default. To use dictionary encoding, you must define the

RAPI D_COLUVN=ENCODI NG=SORTED keyword string in a column comment before loading the table.
The keyword string must be uppercase; otherwise, it is ignored.

You can define the keyword string in a CREATE TABLE or ALTER TABLE statement, as shown:
CREATE TABLE orders (name VARCHAR(100) COMVENT ' RAPI D_COLUMN=ENCODI NG=SORTED ) ;

ALTER TABLE orders MODI FY name VARCHAR(100) COMMVENT ' RAPI D_COLUMN=ENCODI NG=SORTED ;

If necessary, you can specify variable-length encoding explicitly using the
RAPI D_COLUVN=ENCODI NG=VARLEN keyword string.

Note

Other information is permitted in column comments. For example, it is permitted
for a column description to be specified alongside a column encoding keyword
string:

COMMENT ' col umm_descri ption RAPI D_COLUMN=ENCODI NG=SORTED
Tip

For string column encoding recommendations, use the Advisor utility after
loading tables into HeatWave and running queries. For more information, see
Chapter 8, Workload Optimization using Advisor.

Encoding Type Selection

If you intend to run JO N operations involving string columns or use string functions and operators,
variable-length encoding is recommended. Variable-length encoding provides more expression, filter,
function, and operator support than dictionary encoding. Otherwise, select the encoding type based on
the number of distinct values in the string column relative to the cardinality of the table.

 Variable-length encoding (VARLEN) is best suited to columns with a high number of distinct values,
such as “comment” columns.



https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Defining Data Placement Keys

« Dictionary encoding (SORTED) is best suited to columns with a low number of distinct values, such as
“country” columns.

Variable-length encoding requires space for column values on the HeatWave nodes. Dictionary
encoding requires space on the MySQL DB System node for dictionaries.

The following table provides an overview of encoding type characteristics:

Table 3.1 Column Encoding Type Characteristics

Encoding Type Expression, Filter, Best Suited To Space Required On
Function, and
Operator Support

Vari abl e- Supports JO N Columns with a high HeatWave nodes
| ength operations, string number of distinct
( VARLEN) functions and operators, |values

and LI KE predicates.
See Section 11.4.1,
“Variable-length

Encoding”.
Di ctionary Does not support JO N |Columns with a low MySQL DB System node
( SORTED) operations, string number of distinct

functions and operators, |values
or LI KE predicates.

For additional information about string column encoding, see Section 11.4, “String Column Encoding
Reference”.

3.4 Defining Data Placement Keys

When data is loaded into HeatWave, it is partitioned by the table's primary key and sliced horizontally
for distribution among HeatWave nodes by default. The data placement key feature permits partitioning
data by JO Nor GROUP BY key columns instead, which can improve JO Nor GROUP BY query
performance by avoiding costs associated with redistributing data among HeatWave nodes at query
execution time.

Generally, use data placement keys only if partitioning by the primary key does not provide adequate
performance. Also, reserve data placement keys for the most time-consuming queries. In such cases,
define data placement keys on the most frequently used JO N keys and the keys of the longest running
gueries.

Tip

For data placement key recommendations, use the Advisor utility after
loading tables into HeatWave and running queries. For more information, see
Chapter 8, Workload Optimization using Advisor.

Defining a data placement key requires adding a column comment with the data placement keyword
string:

RAPI D_COLUMN=DATA_PLACEMENT_KEY=N

where Nis an index value that defines the priority order of data placement keys.
* The index must start with 1.

» Permitted index values range from 1 to 16, inclusive.

» An index value cannot be repeated in the same table. For example, you cannot assign an index
value of 2 to more than one column in the same table.




Usage notes:

e Gaps in index values are not permitted. For example, if you define a data placement key column with
an index value of 3, there must also be two other data placement key columns with index values of 1
and 2, respectively.

You can define the data placement keyword string in a CREATE TABLE or ALTER TABLE statement:
CREATE TABLE orders (date DATE COVMENT ' RAPI D_COLUMN=DATA PLACEMENT_KEY=1');

ALTER TABLE orders MODI FY date DATE COMVENT ' RAPI D_COLUMN=DATA PLACEMENT_KEY=1';

The following example shows multiple columns defined as data placement keys. Although a primary
key is defined, data is partitioned by the data placement keys, which are prioritized over the primary
key.

CREATE TABLE orders (
id | NT PRI MARY KEY,
dat e DATE COMMVENT ' RAPI D_COLUMN=DATA PLACEMENT_KEY=1',
pri ce FLOAT COVMENT ' RAPI D_COLUMN=DATA PLACEMENT KEY=2'

)i

When defining multiple columns as data placement keys, prioritize the keys according to query
cost. For example, assign DATA PLACEMENT _KEY=1 to the key of the costliest query, and
DATA PLACENMENT KEY=2 to the key of the next costliest query, and so on.

Note

Other information is permitted in column comments. For example, it is permitted
to specify a column description alongside a data placement keyword string:

COWMENT * col urm_descri ption RAPI D_COLUMN=DATA PLACEMENT KEY=1'

Usage notes:

« JO Nand GROUP BY query optimizations are only applied if at least one of the JO Nor GROUP BY
relations has a key that matches the defined data placement key.

« If a JO Noperation can be executed with or without the JO Nand GROUP BY query optimization, a
compilation-time cost model determines how the query is executed. The cost model uses estimated
statistics.

» A data placement key cannot be defined on a dictionary-encoded string column but are permitted on
variable-length encoded columns. HeatWave applies variable-length encoding to string columns by
default. See Section 3.3, “Encoding String Columns”.

» A data placement key can only be defined on a column with a supported data type. See
Section 11.1, “Supported Data Types”.

» A data placement key column cannot be defined as a NOT SECONDARY column. See Section 3.2,
“Excluding Table Columns”.

For related metadata queries, see Section 11.5, “Metadata Queries”.

3.5 Defining the Secondary Engine

Tables on a MySQL DB System are defined with | nnoDB as the primary storage engine. For each
table that you want to load into HeatWave, you must define the HeatWave query processing engine
(RAPI D) as the secondary engine.

To define RAPI D as the secondary engine for a table, specify the SECONDARY_ENG NE table option in
a CREATE TABLE or ALTER TABLE statement:

nysql > CREATE TABLE orders (id | NT) SECONDARY_ENG NE = RAPI D;

10


https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Defining the Secondary Engine

mysql > ALTER TABLE orders SECONDARY_ENG NE = RAPI D
Tip

Instead of defining the secondary storage engine for each table manually,
consider using the Auto Parallel Load utility to prepare and load tables. For
more information, see Section 4.1, “Auto Parallel Load”.

11



12



Chapter 4 Loading Data

Table of Contents

4.1 AULO PArallel LOA .....cceeeeiieieiii ettt e et e e et 14
4.2 Change PrOPAJALION ..........iiiiitieeiiii ettt ettt et e et et r e e et e e e e ab e e et eeera s 20

This section describes how to load data into HeatWave. Before attempting to load data, ensure that
you have:

e Loaded the data into the MySQL DB System. Data is loaded into HeatWave from the MySQL
DB System. For information about importing data into a MySQL DB System, refer to the MySQL
Database Service User Guide.

» Defined a primary key on each table you intend to load.
» Excluded columns with unsupported data types. See Section 3.2, “Excluding Table Columns”.
» Defined RAPI D as the secondary engine. See Section 3.5, “Defining the Secondary Engine”.
Otherwise, the table load operation is not permitted.
For related best practices, see Chapter 9, Best Practices.

Tip

Instead of preparing and loading tables into HeatWave manually, consider using
the Auto Parallel Load utility. See Section 4.1, “Auto Parallel Load”.

To load a table into HeatWave, specify the SECONDARY_LOAD option in an ALTER TABLE statement.

nmysqgl > ALTER TABLE orders SECONDARY_LOAD,

The time required to load a table depends on data size. You can monitor load progress by issuing the
following query, which returns a percentage value indicating load progress.

nysql > SELECT VARI ABLE_VALUE
FROM per f or mance_schema. gl obal _st at us
WHERE VARI ABLE_NAME = 'rapi d_| oad_progress';

foococooooooooooooo +
| VAR ABLE_VALUE |
foococooooooooooooo +
| 100. 000000 |
foococooooooooooooo +

Note
If necessary, you can halt a load operation using Ct r | - C.

You can verify that tables are loaded by querying the LOAD STATUS data from HeatWave Performance
Schema tables. For example:

mysql > USE perfornmance_schems;
mysql > SELECT NAME, LOAD _STATUS FROM rpd_t abl es,rpd_table_id
WHERE rpd_tables.ID = rpd_table_id.ID;

o oo e e e e me o maoooa-ooo oo m e mmeemo oo +
| NAMVE | LOAD_STATUS |
o oo e e e e me o maoooa-ooo oo m e mmeemo oo +
| tpch.supplier | AVAI L_RPDGSTABSTATE |
| tpch. partsupp | AVAI L_RPDGSTABSTATE |
| tpch.orders | AVAI L_RPDGSTABSTATE |
| tpch.lineitem | AVAI L_RPDGSTABSTATE |
| tpch. custoner | AVAI L_RPDGSTABSTATE |

13


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Auto Parallel Load

| tpch.nation | AVAI L_RPDGSTABSTATE |
| tpch.region | AVAI L_RPDGSTABSTATE |
| tpch. part | AVAI L_RPDGSTABSTATE |
P P P S +

The AVAI L_RPDGSTABSTATE status indicates that the table is loaded. For information about load
statuses, see Section 11.10.4, “The rpd_tables Table”.

When loading a table into HeatWave, data is read from | nnoDB using batched, multi-threaded reads.
Data is then converted into columnar format and sent over the network and distributed among the
HeatWave nodes in horizontal slices. Data is partitioned by the table's primary key unless data
placement keys are defined. See Section 3.4, “Defining Data Placement Keys”.

Concurrent DML operations and queries on the MySQL node are supported while a data load operation
is in progress; however, concurrent operations on the MySQL node can affect load performance and
vice versa.

After tables are loaded, changes to table data on the MySQL DB System node are automatically
propagated to HeatWave. For more information, see Section 4.2, “Change Propagation”.

The SECONDARY _LOAD clause has these properties:

* Itis considered a local operation and is therefore omitted from the binary log.
» Data is read using the READ COVM TTED isolation level.

The following limitations apply when loading tables:

» Loading a table is not permitted if the primary key is absent. Primary key columns defined with
column prefixes are not supported.

» HeatWave supports a maximum of 470 columns per table.

* Load time is affected if the primary key contains more than one column, or if the primary key column
is not an | NTEGER column. The impact on MySQL performance during load, change propagation,
and query processing depends on factors such as data properties, available resources (compute,
memory, and network), and the rate of transaction processing on the MySQL DB System.

» DDL operations are not permitted on tables that are loaded in HeatWave. To alter the definition of a
table, you must unload the table and remove the SECONDARY_ENG NE attribute before performing
the DDL operation. See Chapter 10, Troubleshooting.

4.1 Auto Parallel Load

Loading data into HeatWave involves several manual steps. The time required to perform these steps
typically depends on the number of schemas, tables, and columns. Auto Parallel Load facilitates the
process by automating many of the steps involved, including:

» Excluding schemas, tables, and columns that cannot be loaded.

» Generating a load script with DDL statements for preparing and loading each table.
« Verifying that there is sufficient memory available for the data.

» Applying options and settings affecting the data load process.

» Optimizing load parallelism based on machine-learning models.

» Loading data into HeatWave by executing the generated load script.

Auto Parallel Load is implemented as a stored procedure named heat wave_| oad, which resides in
the MySQL sys schema. Running Auto Parallel Load involves issuing a CALL statement for the stored
procedure, which takes a list of schemas and options as arguments.

14


https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

Auto Parallel Load Syntax

CALL sys. heatwave_| oad (db_|ist,[options])

You can write an Auto Parallel Load CALL statement manually using the syntax described below, or
use the Auto Parallel Load load command that is generated when performing a node count estimate in
the OCI console. See Generating a Node Count Estimate in the MySQL DB System User Guide.

Auto Parallel Load can be run from any MySQL client or connector.
Auto Parallel Load is described under the following topics in this section:
» Auto Parallel Load Syntax

» Auto Parallel Load Requirements

* Running Auto Parallel Load

 Dictionary Size Estimation

» The Auto Parallel Load Report Table

» Auto Parallel Load Command-Line Help

» Auto Parallel Load Examples

Auto Parallel Load Syntax

CALL sys. heatwave_ | oad (db_|ist,[options]);

db_list: {

JSON_ARRAY({""| "schema_nane"[, "schema_nane"] ...)
}
options: {

JSON_OBJECT( " key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
"mode", {"normal "|"dryrun"}]
"output",{"normal "|"conmpact"|"silent"|"hel p"}]
"sql _node", "sql _node"]
"policy",{"disabl e_unsupported_col ums"| "not_di sabl e_unsupported_col ums"}]
"exclude_list", JSON_ARRAY("db_object"[,"db_object"] ...)]
"set_| oad_parallelisni, { TRUE| FALSE} ]
"aut o_enc", JSON_OBJECT( " node", {"of f"| "check"}]

———————

}

db_li st specifies the schemas to load. The list is specified as a JSON_ARRAY. Specifying an empty
array is permitted for viewing the Auto Parallel Load command-line help (see Auto Parallel Load
Command-Line Help). Otherwise, one or more valid schema names are required.

opt i ons are specified as key-value pairs in JSON object format. If an option is not specified, the
default setting is used. If no options are specified, NULL can be specified in place of the option's
argument.

For syntax examples, see Auto Parallel Load Examples.

Auto Parallel Load options include:

» node: Defines the Auto Parallel Load operational mode. Permitted values are:
¢ nor mal : The default. Generates and executes the load script.

e dryrun: Generates a load script only. Auto Parallel Load executes in dr yr un mode automatically
if the HeatWave cluster is not active.

» out put : Defines how Auto Parallel Load produces output. Permitted values are:

15


https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-0F9C7157-AC89-4BDE-A663-CF15D2922001

Auto Parallel Load Syntax

e nor mal : The default. Produces summarized output that is sent to st dout and to the
heat wave | oad report table. (See The Auto Parallel Load Report Table.)

e si | ent: Sends output to the heat wave | oad_report table only. (See The Auto Parallel Load
Report Table.) The "si | ent " output type is useful if human-readable output is not required; when
the output is consumed by a script, for example. For an example of a stored procedure with an
Auto Parallel Load call that uses the "si | ent " output type, see Auto Parallel Load Examples .

» conpact : Produces compact output.

* hel p: Displays Auto Parallel Load command-line help. See Auto Parallel Load Command-Line
Help.

sql _node: Defines the SQL mode used while loading tables. Auto Parallel Load does not support
the MySQL global or session sql _npde variable. To run Auto Parallel Load with a non-oci-default
SQL mode configuration, specify the configuration using the Auto Parallel Load sql _node option as
a string value. If no SQL modes are specified, the default OCI SQL mode configuration is used.

For information about SQL modes, see Server SQL Modes.

pol i cy: Defines the policy for handling of tables containing columns with unsupported data types.
Permitted values are:

e di sabl e_unsupported_col unmms: The default. Disable columns with unsupported data
types and include the table in the load script. Columns that are explicitly pre-defined as NOT
SECONDARY are ignored (they are neither disabled or enabled).

Auto Parallel Load does not generate statements to disable columns that are explicitly defined as
NOT SECONDARY.

e not _di sabl e_unsupported_col ums: Exclude the table from the load script if the table
contains a column with an unsupported data type.

A column with an unsupported data type that is explicitly defined as a NOT SECONDARY column
does not cause the table to be excluded. For information about defining columns as NOT
SECONDARY, see Section 3.2, “Excluding Table Columns”.

excl ude_|i st : Defines a list of database objects (schemas, tables, and columns) to exclude from
the load script. Names must be fully qualified without backticks, as in the following example:

CALL sys. heatwave_| oad( JSON_ARRAY( " db0", "db1", "db2", " db3"),
JSON_OBJECT("excl ude_|ist", JSON ARRAY("db0.t1","db0.t2", "db0.t3.cl1")));

Auto Parallel Load automatically excludes database objects that cannot be offloaded (according to
the default pol i cy setting). These objects need not be specified explicitly in the exclude list. System
schemas, non-l1 nnoDB tables, tables that are already loaded in HeatWave, and columns explicitly
defined as NOT SECONDARY are excluded automatically.

set | oad_paral | el i sm Enabled by default. Optimizes load parallelism based on machine-
learning models by optimizing the i nnodb_par al | el _read_t hr eads variable setting before
loading each table.

aut o_enc: Checks if there is enough memory on the MySQL node for dictionary-encoded columns.
Settings include:

» node: Defines the aut o_enc operational mode. Permitted values are:
» of f : Disables the aut o_enc option.

« check: The default. Checks if there is enough memory on the MySQL node for dictionary-
encoded columns. Dictionary-encoded columns require memory on the MySQL node for



https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_parallel_read_threads

Auto Parallel Load Requirements

dictionaries. If there is not enough memory, Auto Parallel Load executes in " dr yr un" mode
and prints a warning about insufficient memory. The aut o_enc option runs check mode if it is
not specified explicitly and set to of f . For more information, see Dictionary Size Estimation.

Auto Parallel Load Requirements
» The user must have the following MySQL privileges:
e The PROCESS privilege.
e The EXECUTE privilege on the sys schema.
e The SELECT privilege on the Performance Schema.

e To run Auto Parallel Load in " nor mal " mode, the HeatWave cluster must be active.

Running Auto Parallel Load

Run Auto Parallel Load in " dr yr un" mode first to check for errors and warnings and to inspect the
generated load script. A simple Auto Parallel Load call in " dr yr un" mode that specifies a list of
schemas (" db0", "dbl", "db2", " db3") is written as follows:

CALL sys. heatwave_| oad(JSON_ARRAY("db0", "db1", "db2", "db3"),
JSON_OBJECT( " node", "dryrun"));

An Auto Parallel Load call in " dr yr un" mode with additional options specified appears as follows:
CALL sys. heat wave_| oad( JSON_ARRAY("db0", "dbl", "db2", " db3"),
JSON_OBJECT( " node", "dryrun”, "exclude_list", JSON ARRAY("dbO.t1","db0.t2", "db0.t3"),

"policy", "disabl e_unsupported_col ums",
"aut o_enc", JSON_OBJECT( " node", "check")));

For information about Auto Parallel Load options, see Auto Parallel Load Syntax.

In"dryrun" mode, Auto Parallel Load sends the load script to the heat wave_| oad_r eport table
only. It does not load data into HeatWave.

If Auto Parallel Load fails with an error, inspect the errors by querying the heat wave_| oad_r eport
table:

SELECT | og FROM sys. heat wave_| oad_report WHERE type="error";

When Auto Parallel Load finishes running, use the following query to check for warnings:

SELECT | og FROM sys. heat wave_| oad_r eport WHERE t ype="warn";

Issue the following query to inspect the load script that was generated:

SELECT | 0g->>"$.sqgl" AS "Load Script" FROM sys. heatwave_| oad_report
WHERE type = "sql" ORDER BY id;

Once you are satisfied with the Auto Parallel Load CALL statement and the generated load script,
reissue the CALL statement in " nor mal " mode to load the data into HeatWave. For example:

CALL sys. heatwave_| oad(JSON_ARRAY("db0", "db1", "db2", "db3"),

JSON_OBJECT( " node", "nornal ", "excl ude_Il i st", JSON_ARRAY("db0. t1", "db0.t2", "db0.t3"),
"policy", "di sabl e_unsupported_col ums",

"aut o_enc", JSON_OBJECT( " node", "check")));

Note

You can retrieve DDL statements in a table or use the following statements to
produce a list of DDL statements that you can easily copy and paste:

17


https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

Dictionary Size Estimation

SELECT GROUP_CONCAT(| og->>"$.sqgl " SEPARATOR ' ') FROM sys. heatwave_| oad_r eport

SET SESSI ON group_concat _max_| en = 1000000;
WHERE type = "sql" ORDER BY id;

The time required to load data depends on the data size. Auto Parallel Load provides an estimate of
the time required to complete the load operation.

Tables are loaded in sequence, ordered by schema and table name. Load-time errors are reported as
they are encountered. If an error is encountered while loading a table, the operation is not terminated.
Auto Parallel Load continues running, moving on to the next table.

When Auto Parallel Load finishes running, it checks if tables are loaded and shows a summary with the
number of tables that were loaded and the number of tables that failed to load.

Dictionary Size Estimation

The aut o_enc option is run in check mode by default to ensure that there is enough memory on the
MySQL node for dictionary-encoded string columns.

The following example uses the aut o_enc option in check mode, which is useful if you have
dictionary-encoded columns and want to ensure that there is enough memory on the MySQL node for
the associated dictionaries before attempting a load operation. Insufficient memory on the MySQL node
can cause a load failure.

CALL sys. heatwave_| oad( JSON_ARRAY("t pch"),
JSON_OBJECT( " node", "dryrun", "aut o_enc", JSON_OBJECT( " node", "check")));

Note

The aut o_enc option runs in check mode regardless of whether it is specified
explicitly in the Auto Parallel Load call statement.

Look for capacity estimation data in the Auto Parallel Load output. The results indicate whether there is
sufficient memory to load all tables.

The Auto Parallel Load Report Table

When Auto Parallel Load is run, output including Auto Parallel Load execution logs and the generated
load script is sent to the heat wave | oad_report table in the sys schema.

The heat wave_| oad_r eport table is a temporary table. It contains data from the last execution
of Auto Parallel Load. Data is only available for the current session and is lost when the session
terminates or when the server is shut down.

Auto Parallel Load Report Table Query Examples

The heat wave_| oad_r eport table can be queried after running Auto Parallel Load, as in the
following examples:

* View error information in case Auto Parallel Load stops unexpectedly:
SELECT | og FROM sys. heatwave_| oad_report WHERE type="error";
» View warnings to find out why tables cannot be loaded:

SELECT | og FROM sys. heat wave_| oad_report WHERE type="warn";

» View the generated load script to see commands that would be executed by Auto Parallel Load in
“nor mal " mode:

SELECT | 0g->>"$.sql" AS "Load Script" FROM sys. heatwave_| oad_r eport

18



Auto Parallel Load Command-Line Help

WHERE type = "sqgl" ORDER BY id;

View the number of load commands generated:

SELECT Count (*) AS "Total Load Commands Cenerated" FROM sys. heatwave_| oad_report
WHERE type = "sql" ORDER BY id;

View load script data for a particular table:

SELECT | 0g->>"$.sql" FROM sys. heat wave_| oad_r eport
WHERE type="sql " AND | og->>"$. schema_nane" = "db0" AND | og->>"$.table_nane" = "tbl"
ORDER BY i d;

Concatenate Auto Parallel Load generated DDL statements into a single string that can be
copied and pasted for execution. The gr oup_concat _nmax_| en variable sets the result length in
bytes for the GROUP_CONCAT( ) function to accommodate a potentially long string. (The default
group_concat _max_| en setting is 1024 bytes.)

SET SESSI ON group_concat _max_| en = 1000000;
SELECT GROUP_CONCAT(| og->>"$.sqgl " SEPARATOR ' ') FROM sys. heatwave_| oad_report
VWHERE type = "sql" ORDER BY id;

Auto Parallel Load Command-Line Help

To view Auto Parallel Load command-line help, issue the following statement:

CALL sys. heatwave_| oad( JSON_ARRAY(""), JSON_OBJECT("out put", "hel p"));

The command-line help provides usage documentation for the Auto Parallel Load utility.

Auto Parallel Load Examples

Load the tables belonging to a single schema. No options are specified, which means that the default
options are used.

CALL sys. heatwave_| oad(JSON_ARRAY("db0"), NULL) ;

Run Auto Parallel Load in dr yr un mode to determine if there are any warnings.

CALL sys. heatwave_| oad(JSON_ARRAY("tpch"), JSON OBJECT("npde", "dryrun“));

Load the tables belonging to multiple schemas. No options are specified, which means that the
default options are used.

CALL sys. heat wave_| oad( JSON_ARRAY( " db0", "db1", "db2", " db3"), NULL);

Load the tables belonging to multiple schemas. The not _di sabl e_unsupported_col ums
policy causes tables with unsupported columns to be excluded from the load operation. Unsupported
columns are those with unsupported data types.

CALL sys. heat wave_| oad(JSON_ARRAY("db0", "db1l", "db2", "db3"),
JSON_OBJECT( " pol i cy", "not _di sabl e_unsupported_col utms"));

Load the tables belonging to multiple schemas, excluding specified tables and a particular column:

CALL sys. heatwave_| oad(JSON ARRAY("db0", "db1", "db2", "db3"),
JSON_OBJECT("excl ude_|ist", JSON_ARRAY("db0.t 1", "db0.t2","db0.t3.cl1")));

Load tables that begin with an “hw” prefix from a schema named schena_cust oner 1.

SET @xc_list = (SELECT JSON _OBJECT(' exclude_list",

JSON_ARRAYAGE CONCAT(t abl e_schema, ' ."', tabl e_nane)))
FROM i nf or mat i on_schenma. t abl es
WHERE t abl e_schema = ' schena_cust oner_1'

AND t abl e_nanme NOT LIKE ' hwes ) ;
CALL sys. heatwave_| oad(JSON_ARRAY(' schema_customer _1'), @xc_list);

19


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_group-concat
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len

Change Propagation

e Load all schemas with tables that start with an “hw” prefix.

SET @b_list = (SELECT json_arrayagg(schema_nanme) FROM i nformati on_schema. schemat a) ;
SET @xc_list = (SELECT JSON _OBJECT(' exclude_list",

JSON_ARRAYAGH CONCAT(t abl e_schema, ' ."', tabl e_nane)))

FROM i nf or mat i on_schenma. t abl es

VWHERE t abl e_schema NOT | N

("mysql','information_schema', 'perfornmance_schema','sys')

AND t abl e_nanme NOT LIKE ' hwes ) ;
CALL sys. heatwave_| oad( @b_list, @xc_list);

You can checkdb_|i st andexc_|ist using SELECT JSON PRETTY( @b _|ist); and SELECT
JSON_PRETTY( @xc_list);

» Call Auto Parallel Load from a stored procedure:

DROP PROCEDURE | F EXI STS aut o_| oad_wr apper ;
DELIM TER //
CREATE PROCEDURE aut o_| oad_wr apper ()
BEG N
-- AUTQOVATED | NPUT
SET @b_list = (SELECT JSON_ARRAYAGH schenma_nane) FROM i nformati on_schema. schemat a) ;
SET @xc_list = (SELECT JSON_ARRAYAGG CONCAT(tabl e_schenm,'."', tabl e_nane))
FROM i nf or mat i on_schemna. t abl es WHERE t abl e_scherma = "db0");

CALL sys. heatwave_| oad( @b_|ist, JSON OBJECT("output”,"silent","exclude_list",
CAST( @xc_list AS JSON)));

-- CUSTOM QUTPUT

SELECT | og as ' Unsupported objects' FROM sys. heatwave_| oad_report WHERE type="warn"
AND st age="VERI FI CATION' and | og |ike "%Jnsupported% ;

SELECT Count (*) AS "Total Load commands Cener at ed"

FROM sys. heat wave_| oad_report WHERE type = "sgl" ORDER BY id;

END //
DELI M TER ;

CALL auto_| oad_wr apper();

4.2 Change Propagation

After tables are loaded into HeatWave, data changes are automatically propagated from | nnoDB
tables on the MySQL DB System to their counterpart tables in the HeatWave cluster.

Changes accumulate on the MySQL DB System node and are propagated to HeatWave in batch
transactions. Change propagation occurs every 200 milliseconds or when pending changes reach 64
MBs in size. Changes are applied using the READ COVM TTED isolation level.

A change propagation failure can cause table data in HeatWaveto become stale. Queries that access
stale table data are not offloaded to HeatWave for processing. To check if change propagation is
enabled globally, query the r api d_change_propagat i on_st at us variable:

nmysql > SELECT VARI ABLE _VALUE FROM per f or mance_schena. gl obal _st at us
WHERE VARl ABLE_NAME = ' rapi d_change_propagati on_status';

o m +
| VAR ABLE_VALUE |
o m +
| ON [
o m +

To check if change propagation is enabled for individual tables, query the POOL_TYPE data in
HeatWave Performance Schema tables. RAPI D_LOAD POOL_TRANSACTI ONAL indicates that
change propagation is enabled for the table. RAPI D_LOAD POOL_SNAPSHOT indicates that change
propagation is disabled.

nmysql > SELECT NAME, POOL_TYPE FROM rpd_t abl es,rpd_table_id
WHERE rpd_tables.ID = rpd_table_id.| D AND SCHEMA NAME LI KE 't pch';

20


https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

Change Propagation

t pch. orders
t pch. regi on
tpch.lineitem | RAPID _LOAD POOL_TRANSACTI ONAL

| RAPI D_LOAD _POOL_TRANSACTI ONAL |
| |
| |
| tpch.supplier | RAPI D_LOAD POOL_TRANSACTI ONAL |
| |
| |
| |

RAPI D_LOAD_POOL_TRANSACTI ONAL

tpch. partsupp | RAPI D_LOAD POOL_TRANSACTI ONAL
RAPI D_LQOAD_POOL_TRANSACTI ONAL
RAPI D_LQAD_POOL_TRANSACTI ONAL

t pch. part
t pch. cust oner

If change propagation is disabled for a particular table, you must unload and reload the table. See
Chapter 5, Unloading Tables, and Chapter 4, Loading Data.
Change propagation does not support cascading changes triggered by a foreign key constraint.

Change propagation is aborted if dictionary-encoded string column updates cause a dictionary
overflow, which occurs if the number of new unique values exceeds dictionary capacity.

21



22



Chapter 5 Unloading Tables

Unloading a table from HeatWave may be necessary to replace an existing table, to reload a table after
a change propagation failure has caused data become stale, to free up memory, or simply to remove a
table that is no longer used.

To unload a table from HeatWave, specify the SECONDARY _UNLQAD clause in an ALTER TABLE
statement:

nysqgl > ALTER TABLE orders SECONDARY_UNLOAD,

Data is removed from HeatWave only. The table contents on the MySQL DB System are not affected.

23


https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

24



Chapter 6 Running Queries

When HeatWave is enabled and the data you want to query is loaded, queries that qualify are
automatically offloaded from the MySQL DB System to HeatWave for accelerated processing.

No special action is required. Simply run the query from a MySQL DB System-connected MySQL
client or application. (Clients and applications do not connect to HeatWave directly.) For information
about connecting to a MySQL DB System, refer to the MySQL Database Service User Guide. After
HeatWave processes a query, results are sent back to the MySQL DB System and to the client or
application that issued the query.

Running queries is described under the following topics in this section:
* Query Offload Prerequisites

* Running a Query

* Query Runtimes and Estimates

» Tracking Scanned Data

* CREATE TABLE ... SELECT Statements

* INSERT ... SELECT Statements

» Auto Scheduling

» Auto Query Plan Improvement

» Debugging Queries

For related best practices, see Chapter 9, Best Practices.

Query Offload Prerequisites

The following prerequisites apply for offloading queries:

» The query must be a SELECT statement. | NSERT ... SELECT and CREATE TABLE ... SELECT
statements are supported, but only the SELECT portion of the statement is offloaded to HeatWave.
See CREATE TABLE ... SELECT Statements, and INSERT ... SELECT Statements.

 All tables accessed by the query must be defined with RAPI D as the secondary engine. See
Section 3.5, “Defining the Secondary Engine”.

» All tables accessed by the query must be loaded in HeatWave. See Chapter 4, Loading Data.

e aut oconmi t must be enabled. If aut ocomi t is disabled, queries are not offloaded and execution
is performed on the MySQL DB System. To check the aut ocommi t setting:

nysgl > SHOW VARI ABLES LI KE ' aut oconmi t';

dfmmcceoccc-ccooc- b moc=o== +
| Variable_nane | Value |
dfmmcceoccc-ccooc- b moc=o== +
| autoconmit | ON |
dfmmcceoccc-ccooc- b moc=o== +

» Queries must only use supported functions and operators. See Section 11.2, “Supported Functions
and Operators”.

* Queries must avoid known limitations. See Section 11.6, “Limitations”.

If any prerequisite is not satisfied, the query is not offloaded and falls back to the MySQL DB System
for execution by default. This behavior is controlled by the use_secondar y_engi ne variable, which

25


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit

Running a Query

is set on ON by default. A use_secondary_engi ne=CFF setting forces a query to execute on the
MySQL DB System. A use_secondary_engi ne=FORCED setting forces a query to execute on
HeatWave or fail if that is not possible.

Running a Query

Before running a query, use EXPLAI Nto determine if the query can be offloaded. If so, the Extr a

column of EXPLAI N output shows: “Usi ng secondary engi ne RAPI D" If that information does not

appeatr, the query cannot be offloaded.

nmysql > EXPLAI N SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT FROM orders
WHERE O ORDERDATE >= DATE ' 1994-03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O ORDERPRI ORI TY\ G
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkkkkkkkkkkkx*x 1 r ow kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkkkkkkkkkkx*
id: 1
sel ect _type: SIMPLE
table: orders
partitions: NULL
type: ALL
possi bl e_keys: NULL
key: NULL
key_ | en: NULL
ref: NULL
rows: 14862970
filtered: 33.33
Extra: Using where; Using tenporary; Using filesort; Using secondary
engi ne RAPI D

After using EXPLAI N to verify that the query can be offloaded, run the query and note the execution
time.

Note

For information about obtaining HeatWave query runtime estimates before
running a query, see Query Runtimes and Estimates.

nysqgl > SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT FROM orders
VWHERE O ORDERDATE >= DATE ' 1994- 03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O ORDERPRI ORI TY;

frmcccscosoosoosoos f=ccosoosoosos +
| O ORDERPRI ORI TY | ORDER_COUNT |
frmcccscosoosoosoos f=ccosoosoosos +
| 1- URGENT | 2017573 |
| 2-H GH | 2015859 |
| 3-MEDI UM | 2013174 |
| 4-NOT SPECI FIED | 2014476 |
| 5-LOW | 2013674 |
frmcccscosoosoosoos f=ccosoosoosos +

5 rows in set (0.04 sec)

To compare HeatWave query execution time with MySQL DB System execution time, disable the
use_secondary_engi ne variable and run the query again to see how long it takes to run on the
MySQL DB System.

nmysql > SET SESSI ON use_secondary_engi ne=OFF;
nmysql > SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER_COUNT FROM orders

WHERE O ORDERDATE >= DATE ' 1994- 03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O _ORDERPRI ORI TY;

] L | N +
| O ORDERPRI ORI TY | ORDER_COUNT |
] L | N +
| 1- URGENT | 2017573 |
| 2-H GH | 2015859 |
| 3-MEDI UM | 2013174 |
| 4-NOT SPECI FIED | 2014476 |
| 5-LOW | 2013674 |
] L | N +

26


https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Query Runtimes and Estimates

5 rows in set (8.91 sec)

If a query does not offload and you cannot determine why, refer to Chapter 10, Troubleshooting, or try
debugging the query using the procedure described in Debugging Queries.

Note

Concurrently issued queries are prioritized for execution. For information about
query prioritization, see Auto Scheduling.

Query Runtimes and Estimates

HeatWave query runtimes and runtime estimates can be viewed using HeatWave Advisor Query
Insights feature or by querying the per f or nance_schena. r pd_query_st at s table. Runtime data
is useful for query optimization, troubleshooting, and estimating the cost of running a particular query or
workload.

HeatWave query runtime data includes:

* Runtimes for successfully executed queries.

* Runtime estimates for EXPLAI N queries.

* Runtime estimates for queries cancelled using Ct r | +C.

» Runtime estimates for queries that fail due to an out-of-memory error.

Runtime data is available for queries in the HeatWave query history, which is a non-persistent store of
information about the last 200 executed queries.

Using Query Insights

* To view runtime data for all queries in the HeatWave history:

nmysql > CALL sys. heat wave_advi sor (JSON_OBJECT("query_i nsi ghts", TRUE));

» To view runtime data for queries executed by the current session only:

mysql > CALL sys. heat wave_advi sor (JSON_OBJECT( " query_i nsi ghts", TRUE,
"query_session_id", JSON_ARRAY(connection_id())));

For additional information about using Query Insights, see Section 8.3, “Query Insights”.

Using the rpd_query_stats Table

To view runtime data for all queries in the HeatWave query history:

nysql > SELECT query_id,
JSON_EXTRACT( JSON_UNQUOTE( gkrn_t ext ->' $**. sessionld'),' $[0]') AS session_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $** . accunul at edRapi dCost')," $[0]') AS tine_in_ns,
JSON_EXTRACT( JSON_UNQUOTE( gexec_t ext->"$**. error'),"'$[0]') AS error_nessage
FROM per f or mance_schema. rpd_query_stats;

To view runtime data for a particular HeatWave query, filtered by query ID:

nmysql > SELECT query_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $**. sessionld'), ' $[0]') AS session_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $** . accunul at edRapi dCost '), "' $[0]') AS tine_i n_ns,
JSON_EXTRACT( JSON_UNQUOTE( gexec_t ext->"$** error'), ' $[0]') AS error_nessage
FROM per f or mance_schema. rpd_query_stats WHERE query_id = 1;

EXPLAI N output includes the query ID. You can also query the
per f ormance_schena. r pd_query_st at s table for query IDs:

nmysql > SELECT query_id, LEFT(query_text,160) FROM perfornmance_schena.rpd_query_stats;

27


https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Tracking Scanned Data

Tracking Scanned Data

HeatWave tracks the amount of data scanned by all queries and by individual queries.

Data Scanned By All Queries

To view a cumulative total of data scanned (in MBs) by all successfully executed HeatWave queries
from the time the HeatWave cluster was last started, query the hw_dat a_scanned global status
variable. For example:

nmysqgl > SHOW GLOBAL STATUS LI KE ' hw_dat a_scanned' ;

The cumulative total does not include data scanned by failed queries, queries that were not offloaded
to HeatWave, or EXPLAI N queries.

The hw_dat a_scanned value is reset to 0 only when the HeatWave cluster is restarted.

If a subset of HeatWave nodes go offline, HeatWave retains the cumulative total of scanned data as
long as the HeatWave cluster remains in an active state. When the HeatWave cluster becomes fully
operational and starts processing queries again, HeatWave resumes tracking the amount of data
scanned, adding to the cumulative total.

Data Scanned By Individual Queries

To view the amount of data scanned by an individual HeatWave query or to view an
estimate for the amount of data that would be scanned by a query run with EXPLAI N, run
the query and query the t ot al BaseDat aScanned field in the QKRN_TEXT column of the
performance_schema. rpd_query_st at s table:

nmysqgl > SELECT query_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext ->' $**. sessionld'), "' $[0]') AS session_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $**. t ot al BaseDat aScanned' ), '$[0]') AS data_scanned,
JSON_EXTRACT( JSON_UNQUOTE( gexec_t ext->"$**. error'),"'$[0]') AS error_nessage
FROM per f or mance_schema. rpd_query_stats;

doocoocoooan dooccoooccoooao dooccoccccocooan doococococoocoooao +
| query_id | session_id | data_scanned | error_nessage |
doocoocoooan dooccoooccoooao dooccoccccocooan doococococoocoooao +
I 1] 8 | 66 | " I
doocoocoooan dooccoooccoooao dooccoccccocooan doococococoocoooao +

The example above retrieves any error message associated with the query ID. If a query fails or was
interrupted, the number of bytes scanned by the failed or interrupted query and the associated error
message are returned, as shown in the following examples:

nmysql > SELECT query_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext->' $**. sessionld'),' $[0]') AS session_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $**. t ot al BaseDat aScanned' ), '$[0]') AS data_scanned,
JSON_EXTRACT( JSON_UNQUOTE( gexec_t ext->"$** . error'),"' $[0]') AS error_nessage
FROM per f or mance_schema. rpd_query_stats;

doocococoooa dooccoooccoooao dooccocccococooan g R g Sy +
| query_id | session_id | data_scanned | error_nessage |
doocococoooa dooccoooccoooao dooccocccococooan g R g Sy +
| 1| 8 461 | "Operation was interrupted by the user." |
doocococoooa dooccoooccoooao dooccocccococooan g R g Sy +

nysql > SELECT query_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext->' $**. sessionld'), "' $[0]') AS session_id,
JSON_EXTRACT( JSON_UNQUOTE( gkr n_t ext - >' $**. t ot al BaseDat aScanned' ), '$[0]') AS data_scanned,
JSON_EXTRACT( JSON_UNQUOTE( gexec_text->"$** error'),"' $[0]') AS error_nessage
FROM per f or mance_schema. rpd_query_stats;
P EEEEEEEE e cccmmosooos LT R L T L T +

28


https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

CREATE TABLE ... SELECT Statements

| query_id | session_id | data_scanned | error_mnessage |

"Qut of nenory error during query execution in|
RAPI D. " |

CREATE TABLE ... SELECT Statements

The SELECT query of a CREATE TABLE ... SELECT statement is offloaded to HeatWave for
execution, and the table is created on the MySQL DB System. Offloading the SELECT query to
HeatWave reduces CREATE TABLE ... SELECT execution time in cases where the SELECT query

is long running and complex. SELECT queries that produce large result sets do not benefit from this
feature due to the large number of DML operations performed on the MySQL DB system instance.

The SELECT table must be loaded in HeatWave. For example, the following statement selects data
from the or der s table on HeatWave and inserts the result set into the or der s2 table created on the
MySQL DB System:

nmysql > CREATE TABLE orders2 SELECT * FROM orders;

The SELECT portion of the CREATE TABLE ... SELECT statement is subject to the same HeatWave
requirements and limitations as regular SELECT queries.

INSERT ... SELECT Statements

The SELECT query of an | NSERT ... SELECT statement is offloaded to HeatWave for execution,
and the result set is inserted into the specified table on the MySQL DB System. Offloading the SELECT
qguery to HeatWave reduces | NSERT ... SELECT execution time in cases where the SELECT query

is long running and complex. SELECT queries that produce large result sets do not benefit from this
feature due to the large number of DML operations performed on the MySQL DB system instance.

The SELECT table must be loaded in HeatWave, and the | NSERT table must be present on the MySQL
DB System. For example, the following statement selects data from the or der s table on tHeatWave
and inserts the result set into the or der s2 table on the MySQL DB System:

nmysqgl > | NSERT | NTO orders2 SELECT * FROM or ders;
Usage notes:

» The SELECT portion of the | NSERT ... SELECT statement is subject to the same HeatWave
requirements and limitations as regular SELECT queries.

» Functions, operators, and attributes deprecated by MySQL Server are not supported in the SELECT
query.

* The ON DUPLI CATE KEY UPDATE clause is not supported.

e« SELECT .. UNI ON ALL queries are not offloaded if the | NSERT table is the same as the SELECT
table because MySQL Server uses a temporary table in this case, which cannot be offloaded.

* | NSERT | NTO sone_vi ew SELECT statements are not offloaded. Setting
use_secondary_engi ne=FORCED does not cause the statement to fail with an error in this case.
The statement is executed on the MySQL DB System regardless of the use_secondary_engi ne
setting.

Auto Scheduling

HeatWave uses a workload-aware, priority-based, automated scheduling mechanism to schedule
concurrently issued queries for execution. The scheduling mechanism prioritizes short-running queries
but considers wait time in the queue so that costlier queries are eventually scheduled for execution.
This scheduling approach reduces query execution wait times overall.

29


https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Auto Query Plan Improvement

When HeatWave is idle, an arriving query is scheduled immediately for execution. It is not queued. A
query is queued only if a preceding query is running on HeatWave.

A light-weight cost estimate is performed for each query at query compilation time.
Queries cancelled via Ct r | - Care removed from the scheduling queue.

For a query that you can run to view the HeatWave query history including query start time, end time,
and wait time in the scheduling queue, see Section 11.5, “Metadata Queries”.

Auto Query Plan Improvement

The Auto Query Plan Improvement feature collects and stores query plan statistics in a statistics cache
when a query is executed in HeatWave. When a new query shares query execution plan nodes with
previously executed queries, the actual statistics collected from previously executed queries are used
instead of estimated statistics, which improves query execution plans, cost estimations, execution
times, and memory efficiency.

Each entry in the cache corresponds to a query execution plan node. A query execution plan may have
nodes for table scans, JO Ns, GROUP BY operations, and so on.

The statics cache is an LRU structure. When cache capacity is reached, the least recently used
entries are evicted from the cache as new entries are added. The number of entries permitted in

the statistics cache is 65536, which is enough to store statistics for 4000 to 5000 unique queries of
medium complexity. The maximum number of statistics cache entries is defined by the OCI-managed
rapi d_stats_cache_nax_entri es setting.

Debugging Queries

This section describes how to enable query tracing, and how to query the
| NFORVATI ON_SCHENMA. OPTI M ZER TRACE table for information about why a query is not offloaded
to HeatWave for processing.

In the following example, optimizer trace data is retrieved for a query that uses the LAST DAY()
function, which is currently not supported.

1. Enable tracing by setting the opt i m zer _trace and opti m zer _trace_of f set variables:

nmysql > SET SESSI ON opti mi zer_trace="enabl ed=on";
nmysql > SET optim zer_trace_of f set =-2;

2. Issue the query with EXPLAI N. If the Ext r a column does not show “Usi ng secondary engi ne
RAPI D', the query cannot be offloaded. For example:

nysql > EXPLAI N SELECT LAST_DAY( O ORDERDATE) FROM orders\G
PR R EEEEEEEEEEEEEEEEEEEEEEES 1. TOW R R EEEEEEEEEEEEEEEEEEEEEEEE
id: 1
sel ect _type: SIMPLE
tabl e: orders

partitions:
type:

possi bl e_keys:
key:

key_I en:

ref:

rows:
filtered:
Extra:

1rowin set,

NULL
ALL
NULL
NULL
NULL
NULL
1488913
100. 00
NULL

1 warning (0.00 sec)

3. Query the | NFORVATI ON_SCHENMA. OPTI M ZER TRACE table for offload failure information:

nmysql > SELECT QUERY, TRACE->'$**. Rapid _Ofload Fails'

30

FROM | NFORVATI ON_SCHENVA. OPTI M ZER_TRACE


https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimizer-trace-table.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_last-day
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_trace
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_trace_offset
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimizer-trace-table.html

Debugging Queries

P PP S +
| QUERY | TRACE- >' $**. Rapi d_Of f | oad_Fai | s' |
S P P S e S S +
| EXPLAI N SELECT LAST_DAY( O ORDERDATE) FROM orders |[{"Reason": "Construct QkrnExprTree(): |
| | "Function lastday is not yet |

supported"}], {"Reason": "Currently |
unsupported RAPID query conpil ation |
scenari o from physical M/SQL plan"}] |

The reason reported for the offload failure depends on the limitation encountered. For the most
common issues, such as unsupported clauses or functions, a specific reason is reported. For undefined
issues or unsupported query transformations performed by the optimizer, the following generic reason
is reported:

[{"Reason": "Currently unsupported RAPID query conpilation scenario"}]

For a query that does not meet the query cost threshold for HeatWave, the following reason is
reported:

[{"Reason": "The estimated query cost does not exceed secondary_engi ne_cost_threshold."}]

The query cost threshold prevents small queries of little cost from being offloaded to HeatWave. For
information about the query cost threshold, see Chapter 10, Troubleshooting.

For a query that attempts to access a column defined as NOT SECONDARY, the following reason is
reported:

[{"reason": "Columm risk_assessnent is marked as NOT SECONDARY. "}]

Columns defined as NOT SECONDARY are excluded when a table is loaded into HeatWave. See
Section 3.2, “Excluding Table Columns”.

31



32



Chapter 7 Table Load and Query Example

The following example demonstrates preparing and loading a table into HeatWave manually and
executing a query.

Tip

Instead of preparing and loading tables into HeatWave manually, consider
using the Auto Parallel Load utility. For more information, see Section 4.1, “Auto
Parallel Load".

It is assumed that HeatWave is enabled and the MySQL DB System has a schema named t pch with

a table named or der s. The example shows how to exclude a table column, encode string columns,
define RAPI D as the secondary engine, and load the table. The example also shows how to use
EXPLAI Nto verify that the query can be offloaded, and how to force query execution on the MySQL DB
System to compare MySQL DB System and HeatWave query execution times.

# The table used in this exanple:

nysql > USE t pch;
nysql > SHOW CREATE TABLE or ders\ G
IR R SR RS EEEEEEEEEEEEEEEEEEES] 1 I’OW IR R SR RS EEEEEEEEEEEEEREEEE SRS
Tabl e: orders
Create Tabl e: CREATE TABLE "orders” (
" O _ORDERKEY" int NOT NULL,
" O _CUSTKEY" int NOT NULL,
" O_ORDERSTATUS® char (1) COLLATE utf8nmb4_bin NOT NULL,
"O_TOTALPRI CE* deci mal (15, 2) NOT NULL,
" O _ORDERDATE date NOT NULL,
" O _ORDERPRI ORI TY" char (15) COLLATE utf8nb4_bin NOT NULL,
O CLERK char(15) COLLATE utf8nmb4_bin NOT NULL,
"O SHI PPRIORITY" int NOT NULL,
O _COWENT" varchar (79) COLLATE utf8nmb4_bin NOT NULL,
PRI MARY KEY (° O_ORDERKEY")
) ENG NE=I nnoDB DEFAULT CHARSET=ut f 8nmb4 COLLATE=ut f 8nb4_bi n

# Excl ude columms that you do not want to |oad, such as columms with unsupported data types
nysql > ALTER TABLE orders MODI FY O COMVENT varchar (79) NOT NULL NOT SECONDARY;

# Encode individual string colums as necessary. For exanple, apply dictionary encoding to
# string colums with a | ow nunber of distinct values. Variable-length encoding is the
# default if no encoding is specified.

nysql > ALTER TABLE orders MODI FY * O ORDERSTATUS' char (1) NOT NULL
COMMVENT ' RAPI D_COLUMN=ENCODI NG=SORTED ;

nysql > ALTER TABLE orders MODI FY " O ORDERPRI ORI TY' char (15) NOT NULL
COMMVENT ' RAPI D_COLUMN=ENCODI NG=SORTED ;

nysql > ALTER TABLE orders MODIFY " O CLERK' char (15) NOT NULL
COMMVENT ' RAPI D_COLUMN=ENCODI NG=SORTED ;

# Define RAPID as the secondary engine for the table
nysql > ALTER TABLE orders SECONDARY_ENG NE RAPI D
# Verify the table definition changes

nysql > SHOW CREATE TABLE or ders\ G
IR R SR RS EEEEEEEEEEEEEEEEEEES] 1 I’OW IR R SR RS EEEEEEEEEEEEEREEEE SRS
Tabl e: orders
Create Tabl e: CREATE TABLE "orders” (
" O ORDERKEY" int NOT NULL,
" O _CUSTKEY" int NOT NULL,
" O_ORDERSTATUS™ char (1) COLLATE utf8nmb4_bin NOT NULL COMMENT ' RAPI D_COLUMN=ENCODI NG=SORTED ,
"O_TOTALPRI CE* deci mal (15, 2) NOT NULL,
" O _ORDERDATE date NOT NULL,
" O _ORDERPRI ORI TY" char (15) COLLATE utf8nb4_bin NOT NULL COMVENT ' RAPI D_COLUWMN=ENCODI NG=SORTED ,

33


https://dev.mysql.com/doc/refman/8.0/en/explain.html

*O CLERK char(15) COLLATE utf8nb4_bin NOT NULL COMMVENT ' RAP| D_COLUMN=ENCODI NG=SORTED |
“O SHI PPRIORITY int NOT NULL,
O _COVMENT" var char (79) COLLATE utf8mb4_bin NOT NULL NOT SECONDARY,
PRI MARY KEY (" O ORDERKEY)
) ENG NE=I nnoDB DEFAULT CHARSET=utf 8mb4 COLLATE=utf8nb4_bi n SECONDARY_ENG NE=RAPI D

# Load the table into Heat Wave
mysql > ALTER TABLE orders SECONDARY_LOAD;

# Use EXPLAIN to determine if a query on the orders table can be of fl oaded.
# "Using secondary engine RAPID" in the Extra colum indicates that the query
# can be of f| oaded.

nysql > EXPLAI N SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT FROM orders
WHERE O ORDERDATE >= DATE ' 1994-03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O _ORDERPRI ORI TY\ G
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 1 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkkx*x
id: 1
sel ect _type: SIMLE
tabl e: orders
partitions: NULL

type: ALL
possi bl e_keys: NULL
key: NULL
key | en: NULL
ref: NULL

rows: 14862970
filtered: 33.33
Extra: Using where; Using tenporary; Using filesort; Using secondary
engi ne RAPI D
1 rowin set, 1 warning (0.00 sec)

# Execute the query and note the execution tine
nysql > SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT FROM orders

WHERE O ORDERDATE >= DATE ' 1994- 03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O ORDERPRI ORI TY;

dhocoocoooococooooooo dooooooooooooo +
| O ORDERPRI ORI TY | ORDER COUNT |
dhocoocoooococooooooo dooooooooooooo +
| 1- URGENT | 2017573 |
| 2-H cH | 2015859 |
| 3- MEDI UM | 2013174 |
| 4-NOT SPECI FIED | 2014476 |
| 5-LOW | 2013674 |
dhocoocoooococooooooo dooooooooooooo +

5 rows in set (0.04 sec)

To conpare Heat\Wave query execution tinme
with MySQL DB System execution tine, disable use_secondary_engi ne and run
the query again to see how long it takes to run on the MySQL DB System

H* H H*

mysql > SET SESSI ON use_secondary_engi ne=OFF;

nysql > SELECT O ORDERPRI ORI TY, COUNT(*) AS ORDER COUNT FROM orders
WHERE O ORDERDATE >= DATE ' 1994-03-01' GROUP BY O ORDERPRI ORI TY
ORDER BY O ORDERPRI ORI TY;

dhocoocoooococooooooo dooooooooooooo +
| O ORDERPRI ORI TY | ORDER COUNT |
dhocoocoooococooooooo dooooooooooooo +
| 1- URGENT | 2017573 |
| 2-H cH | 2015859 |
| 3- MEDI UM | 2013174 |
| 4-NOT SPECI FIED | 2014476 |
| 5-LOW | 2013674 |
dhocoocoooococooooooo dooooooooooooo +

5 rows in set (8.91 sec)

34



Chapter 8 Workload Optimization using Advisor

Table of Contents

S ¥ | (o I =Yg (oo o [ Vo PP OUP TR PTTR 35
8.2 AULO Data PIACEMENT ..... ittt ettt e et e ettt e et et a e e e eat e eee 39
8.3 QUETY INSIGNLS ..ottt ettt ettt et ettt r et e et e e e ane e e eanas 43
8.4 AQVISOI EXAMPIES ... ettt e e et e e 46
8.5 AQVISOr REPOIT TADIE ...t e e e a7

This section describes the Advisor utility, which provides the following optimization capabilities:
» Auto Encoding

Recommends string column encodings for improving query performance and reducing the amount of
memory required on HeatWave nodes. See Section 8.1, “Auto Encoding”.

» Auto Data Placement

Recommends data placement keys for optimizing JO Nand GROUP BY query performance. See
Section 8.2, “Auto Data Placement”.

* Query Insights

Provides runtimes for successfully executed queries and runtime estimates for EXPLAI N queries,
queries cancelled using Ct r | +C, and queries that fail due to out of memory errors. Runtime data is
useful for query optimization, troubleshooting, and estimating the cost of running a particular query or
workload. See Section 8.3, “Query Insights”.

Advisor is workload-aware and provides recommendations based on machine learning models, data
analysis, and HeatWave query history. Advisor analyzes the last 200 successfully executed HeatWave
gueries.

Advisor is implemented as a stored procedure named heat wave_advi sor, which resides in the
MySQL sys schema. Running Advisor involves issuing a CALL statement for the stored procedure with
optional arguments.

CALL sys. heatwave_advi sor (options);

Issue the following statement to view Advisor command-line help:

CALL sys. heat wave_advi sor (JSON_OBJECT( " out put ", "hel p"));

Advisor can be run from any MySQL client or connector.

Advisor Requirements
» To run Advisor, the HeatWave cluster must be active.
» The user must have the following MySQL privileges:
e The PROCESS privilege.
e The EXECUTE privilege on the sys schema.

e The SELECT privilege on the Performance Schema.

8.1 Auto Encoding

Auto Encoding provides string column encoding recommendations. Choosing the right string column
encodings can improve the performance of queries accessing those columns. The type of encoding

35


https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

Auto Encoding Syntax

applied to string columns also affects the amount of memory required on HeatWave nodes. HeatWave
supports two string column encoding types: variable-length and dictionary. HeatWave applies variable-
length encoding to string columns by default when data is loaded, which may not be the optimal
encoding choice in all cases. Auto Encoding generates string column encoding recommendations

by analyzing column data, HeatWave query history, and available MySQL node memory. For more
information about string column encoding, see Section 3.3, “Encoding String Columns”.

Auto Encoding Syntax

CALL sys. heatwave_advi sor ([options]);

}

options: {

JSON _OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue":
["output",{"normal "|"silent"|"hel p"}]
[target _schema, JSON_ARRAY({"schema_nane"[, "schema_nane"]}]
["excl ude_query", JSON_ARRAY("query_id"[,"query_id"] ...)]
["query_session_id", JSON_ARRAY("query_session_id"[,"query_session_id"] ...)]

["auto_enc", JSON_OBJECT(aut o_enc_option)]

aut o_enc_option: {

["node", {"of f"|"recommend"}]
["fixed_enc", JSON OBJECT("schena.thbl.col",{"varlen"|"dictionary"}
[,"schema.tbl.col",{"varlen"|"dictionary"}] ...]

}

For syntax examples, see Section 8.4, “Advisor Examples”.

Advisor options are specified as key-value pairs in J SON-object format. Options include:

e out put : Defines how Advisor produces output. Permitted values are:

< nor mal : The default. Produces summarized output that is sent to st dout and to the
heat wave_advi sor _report table. (See Section 8.5, “Advisor Report Table”.)

e si |l ent: Sends output to the heat wave_advi sor _r eport table only. (See Section 8.5, “Advisor
Report Table”.) The "si | ent " output type is useful if human-readable output is not required;
when the output is consumed by a script, for example.

* hel p: Displays Advisor command-line help. See Section 8.4, “Advisor Examples”.

target schena: Defines one or more schemas for Advisor to analyze. The list is specified in JSON-
array format. If a target schema is not specified, all schemas in the HeatWave cluster are analyzed.
When a target schema is specified, Advisor generates recommendations for tables belonging to the
target schema. For the most accurate recommendations, specify one schema at a time. Only run
Advisor on multiple schemas if your queries access tables in multiple schemas.

excl ude_query: Defines the IDs of queries to exclude when Advisor analyzes query statistics.
To identify query IDs, query the per f or mance_schenma. r pd_query_st at s table. For a query
example, see Section 8.4, “Advisor Examples”.

query_sessi on_i d: Defines session IDs for filtering queries by session ID. To identify session
IDs, query the per f or mance_schema. r pd_query_st at s table. For a query example, see
Section 8.4, “Advisor Examples”.

aut o_enc: Defines settings for Auto Encoding, which provides string column encoding
recommendations. Settings include:

< node: Defines the operational mode. Permitted values are:
« of f : The default. Disables the Auto Encoding feature.

« recomend: The Auto Encoding feature recommends string column encodings.

36



Running Auto Encoding

e fixed_enc: Defines an encoding type for specified columns. Use this option if you
know the encoding you want for a specific column and you are not interested in an
encoding recommendation for that column. Only applicable in r ecommend mode.
Columns with a fixed encoding type are excluded from encoding recommendations. The
fi xed_enc key is a fully qualified column name without backticks in the following format:
schena_nane. t bl _nane. col _nane. The value is the encoding type; either var | en or
di cti onary. Multiple key-value pairs can be specified in a comma-separated list.

Running Auto Encoding

Auto Encoding is enabled by specifying the aut o_enc option in r ecormend mode. See Auto
Encoding Syntax.

Note

If you intend to run Advisor for both encoding and data placement
recommendations, it is recommended that you run Auto Encoding first, apply
the recommended encodings, rerun your queries, and then run Auto Data
Placement. This sequence allows data placement performance benefits to be
calculated with string column encodings in place, which provides for greater
accuracy from Advisor internal models.

For Advisor to provide string column encoding recommendations, tables must be loaded in HeatWave
and a query history must be available. Run the queries that you intend to use or run a representative
set of queries. Failing to do so can affect query offload after Auto Encoding recommendations are
implemented due to query constraints associated with dictionary encoding. For dictionary encoding
limitations, see Section 11.4.2, “Dictionary Encoding”.

In the following example, Auto Encoding is run in r econmrend mode, which analyzes column data,
checks the amount of memory on the MySQL node, and provides encoding recommendations intended
to reduce the amount of space required on HeatWave nodes and optimize query performance. There is
no target schema specified, so Auto Encoding runs on all schemas loaded in HeatWave

CALL sys. heat wave_advi sor (JSON_OBJECT("aut o_enc", JSON_OBJECT( " node", "reconmend")));

The f i xed_enc option can be used in r ecomrend mode to specify an encoding for specific columns.
These columns are excluded from consideration when Auto Encoding generates recommendations.
Manually encoded columns are also excluded from consideration. (For manual encoding instructions,
see Section 3.3, “Encoding String Columns”.)

CALL sys. heat wave_advi sor (JSON_OBJECT("aut o_enc", JSON_OBJECT( " node", "recomrend", "fi xed_enc",
JSON_OBJECT( "t pch. CUSTOMER. C_ADDRESS", "varlen"))));

Advisor output provides information about each stage of Advisor execution, including recommended
column encodings and estimated HeatWave cluster memory savings.

mysql > CALL sys. heatwave_advi sor (JSON_OBJECT("t arget _schema", JSON_ARRAY("t pch_1024"),
"aut o_enc", JSON_OBJECT( " nmode", "recommend")));

| Version: 1.12 |
I I
| Qutput Mde: normal |
| Excluded Queries: O |
| Target Schemas: 1 |
I I

| Total 8 tables |oaded in HeatWave for 1 schemas |

37



Running Auto Encoding

Tabl es excl uded by user: 0 (within target schemas)

I
I
| SCHEMA TABLES
I

COLUWNS

NAVE LOADED LOADED
[ eooees  oceoee oooeoc |
| “tpch_1024" 8 61
I I
e e e m e e e mmme e e eeeee e esmmeccccmmeemmme——a +
8 rows in set (0.15 sec)
e e e e e e e e e e e e e e e e e e e eeeemmmeeemmeeemmmeeemeeememeeemmmeeeemeeeemmmeeecmmeeem————== +
| ENCODI NG SUGGESTI ONS
e e e e e e e e e e e e e e e e e e e eeeemmmeeemmeeemmmeeemeeememeeemmmeeeemeeeemmmeeecmmeeem————== +

Total Auto Encodi ng suggestions produced for 21 col ums

Queri es executed: 200
Total query execution tinme: 28.82 min
Most recent query executed on: Tuesday 8th June 2021 14:42:13
O dest query executed on: Tuesday 8th June 2021 14:11:45

Appl yi ng the suggested encodi ngs m ght inprove query performance and cl uster nenory usage
Esti mat ed Heat Wave cl uster nenory savi ngs: 355.60 G B

|

|

|

|

|

|

CURRENT SUGGESTED |

COLUMN COLUMN COLUMN |
NAVE ENCCDI NG ENCCDI NG |

| ceeee- s e |
| “tpch_1024 . CUSTOVER .  C_ADDRESS VARLEN DI CTI ONARY |
| “tpch_1024 . CUSTOVER .  C_COWVENT' VARLEN DI CTI ONARY |
| “tpch_1024 . CUSTOMER .  C_NMKTSEGVENT' VARLEN DI CTI ONARY |
| “tpch_1024 .  CUSTOMER .  C_NAME VARLEN DI CTI ONARY |
| “tpch_1024 . LI NEI TEM .  L_COWVENT VARLEN DI CTI ONARY |
| “tpch_1024 . LI NEI TEM .  L_SHI Pl NSTRUCT' VARLEN DI CTI ONARY |
| “tpch_1024 . LI NEI TEM .  L_SHI PMODE VARLEN DI CTI ONARY |
| “tpch_1024 . NATI ON' . N_COMVENT' VARLEN DI CTI ONARY |
| “tpch_1024° . NATI ON .  N_NAVE VARLEN DI CTI ONARY |
| “tpch_1024 . ORDERS . O CLERK VARLEN DI CTI ONARY |
| “tpch_1024 . ORDERS . O ORDERPRI ORI TY' VARLEN DI CTI ONARY |
| “tpch_1024 . PART . P_BRAND VARLEN DI CTI ONARY |
| “tpch_1024 . PART .  P_COMVENT VARLEN DI CTI ONARY |
| “tpch_1024 . PART . P_CONTAI NER VARLEN DI CTI ONARY |
| “tpch_1024 . PART . P_MFGR VARLEN DI CTI ONARY |
| “tpch_1024" . PARTSUPP .  PS_COMVENT' VARLEN DI CTI ONARY |
| “tpch_1024 .  REG ON . R_COMMVENT' VARLEN DI CTI ONARY |
| “tpch_1024° .  REG ON . R NAMVE VARLEN DI CTI ONARY |
| “tpch_1024 . SUPPLIER .  S_ADDRESS VARLEN DI CTI ONARY |
| “tpch_1024 .  SUPPLIER . S_NAME VARLEN DI CTI ONARY |
| “tpch_1024° . SUPPLIER . S_PHONE VARLEN DI CTI ONARY |
| |
| |
| |
| |

| Script generated for applying suggestions for 8 | oaded tabl es

| |
| Applying changes will take approximately 1.64 h

| |
| Retrieve script containing 61 generated DDL commands using the query bel ow

| SELECT | 0og->>"$.sqgl" AS "SQ Script" FROM sys. heat wave_advi sor _report WHERE type = "sqgl "
| ORDER BY i d;

| |
| Caution: Executing the generated script will alter the colum conment and secondary engi ne
| |
| |

flags in the schema

9 rows in set (18.20 sec)

To inspect the load script, which includes the DDL statements required to implement the recommended
encodings, query the heat wave_advi sor _report table:

SELECT | 0og->>"$.sql" AS "SQ. Script" FROM sys. heat wave_advi sor _report




Auto Data Placement

WHERE type = "sqgl" ORDER BY id;

To concatenate generated DDL statements into a single string that can be copied and pasted for
execution, issue the statements that follow. The gr oup_concat _max_| en variable sets the result
length in bytes for the GROUP_CONCAT( ) function to accommodate a potentially long string. (The
default gr oup_concat _max_| en setting is 1024 bytes.)

SET SESSI ON gr oup_concat _max_| en = 1000000;
SELECT GROUP_CONCAT( | og->>"$.sql " SEPARATOR ' ') FROM sys. heat wave_advi sor _report
WHERE type = "sqgl" ORDER BY id;

Usage Notes:

» Auto Encoding analyzes string columns (CHAR, VARCHAR, and TEXT-type columns) of tables that are
loaded in HeatWave. Automatically or manually excluded columns, columns greater than 8000 bytes,
and columns with manually defined encodings are excluded from consideration. Auto Encoding also
analyzes HeatWave query history to identify query constraints that preclude the use of dictionary
encoding. Dictionary-encoded columns are not supported in JO N operations, with string functions
and operators, or in LI KE predicates. For dictionary encoding limitations, see Section 11.4.2,
“Dictionary Encoding”.

» The time required to generate encoding recommendations depends on the number of queries to be
analyzed, the number of operators, and the complexity of each query.

» Encoding recommendations for the same table may differ after changes to data or data statistics.
For example, changes to table cardinality or the number of distinct values in a column can affect
recommendations.

» Auto Encoding does not generate recommendations for a given table if existing encodings do not
require modification.

» Auto Encoding only recommends dictionary encoding if it is expected to reduce the amount of
memory required on HeatWave nodes.

* If there is not enough MySQL node memory for the dictionaries of all columns that would benefit
from dictionary encoding, the columns estimated to save the most memory are recommended for
dictionary encoding.

» Auto Encoding uses the current state of tables loaded in HeatWave when generating
recommendations. Concurrent change propagation activity is not considered.

» Encoding recommendations are based on estimates and are therefore not guaranteed to reduce the
memory required on HeatWave nodes or improve query performance.

8.2 Auto Data Placement

Auto Data Placement generates data placement key recommendations. Data placement keys are
used to partition table data among HeatWave nodes when loading tables. Partitioning table data by
JO Nand GROUP BY key columns can improve query performance by avoiding costs associated with
redistributing data among HeatWave nodes at query execution time. The Data Placement Advisor
generates data placement key recommendations by analyzing table statistics and HeatWave query
history. For more information about data placement keys, see Section 3.4, “Defining Data Placement
Keys”.

Auto Data Placement Syntax
CALL sys. heatwave_advi sor ([options]);

options: {

JSON_OBJECT( " key", "val ue"[, "key", "val ue"] ...)
"key", "val ue":
["output”, {"normal "|"silent"|"hel p"}]
["target_schema", JSON_ARRAY({"schema_nane"[, "schema_nane"]}]
["excl ude_query", JSON_ARRAY("query_id"[,"query_id"] ...)]

39


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_group-concat
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len

Running Auto Data Placement

["query_session_id", JSON_ARRAY("query_session_id"[,"query_session_id"] ...)]
["aut o_dp", JSON_OBJECT(aut o_dp_option)]

aut o_dp_option: {
["benefit_threshol d", N
[ " max_conbi nati ons", N|

}
For syntax examples, see Section 8.4, “Advisor Examples”.
Advisor options are specified as key-value pairs in JSON-object format. Options include:
» out put : Defines how Advisor produces output. Permitted values are:

< nor mal : The default. Produces summarized output that is sent to st dout and to the
heat wave_advi sor _report table. (See Section 8.5, “Advisor Report Table”.)

e si | ent: Sends output to the heat wave_advi sor _report table only. (See Section 8.5, “Advisor
Report Table”.) The "si | ent " output type is useful if human-readable output is not required;
when the output is consumed by a script, for example.

« hel p: Displays Advisor command-line help. See Section 8.4, “Advisor Examples”.

» target _schena: Defines one or more schemas for Advisor to analyze. The list is specified in JSON-
array format. If a target schema is not specified, all schemas in HeatWave are analyzed. When a
target schema is specified, Advisor generates recommendations for tables belonging to the target
schema. For the most accurate recommendations, specify one schema at a time. Only run Advisor
on multiple schemas if your queries access tables in multiple schemas.

» excl ude_query: Defines the IDs of queries to exclude when Advisor analyzes query statistics.
To identify query IDs, query the per f or mance_schena. r pd_query_st at s table. For a query
example, see Section 8.4, “Advisor Examples”.

* query_sessi on_i d: Defines session IDs for filtering queries by session ID. To identify session
IDs, query the per f or mance_schena. r pd_query_st at s table. For a query example, see
Section 8.4, “Advisor Examples”.

» aut o_dp: Defines settings for the Data Placement feature, which recommends data placement keys.
Settings include:

e benefit_threshol d: The minimum query performance improvement expressed as a
percentage value. Advisor only suggests data placement keys estimated to meet or exceed
the benef it _t hreshol d. The default value is 0.01 (1%). Query performance is a combined
measure of all analyzed queries.

e max_conbi nati ons: The maximum number of data placement key combinations Advisor
considers before making recommendations. The default is 10000. The supported range is
1 to 100000. Specifying fewer combinations generates recommendations more quickly but
recommendations may not be optimal.

Running Auto Data Placement
Note

If you intend to run Advisor for both encoding and data placement
recommendations, it is recommended that you run Auto Encoding first, apply
the recommended encodings, rerun your queries, and then run Auto Data
Placement. This sequence allows data placement performance benefits to be
calculated with string column encodings in place, which provides for greater
accuracy from Advisor internal models.

For Advisor to generate data placement recommendations:

40



Running Auto Data Placement

» Tables must be loaded in HeatWave.

» There must be a query history with at least 5 queries. A query is counted if it includes a JO Non
tables loaded in the HeatWave cluster or GROUP BY keys. A query executed on a table that is no
longer loaded or that was reloaded since the query was run is not counted.

To view the query history, query the per f or mance_schena. r pd_query_st at s table. For
example:

mysql > SELECT query_id, LEFT(query_text,160) FROM perfornmance_schema.rpd_query_stats;

For the most accurate data placement recommendations, run Advisor on one schema at a time. In the
following example, Advisor is run on the t pch_1024 schema using the t ar get _schena option. No
other options are specified, which means that the default option settings are used.

CALL sys. heatwave_advi sor (JSON_OBJECT("target schema", JSON_ARRAY("t pch_1024")));

Advisor output provides information about each stage of Advisor execution. The data placement
suggestion output shows suggested data placement keys and the estimated performance benefit of
applying the keys.

The script generation output provides a query for retrieving the generated DDL statements for
implementing the suggested data placement keys. Data placement keys cannot be added to a table or
modified without reloading the table. Therefore, Advisor generates DDL statements for unloading the
table, adding the keys, and reloading the table.

mysql > CALL sys. heatwave_advi sor (JSON_OBJECT("target _schema", JSON_ARRAY("t pch_1024")));

Version: 1.12

I I
I I
| Qutput Mde: normal |
| Excluded Queries: O |
| Target Schemas: 1 |
I I

Total 8 tables |oaded in Heat\Wave for 1 schemas
Tabl es excl uded by user: 0 (within target schemas)

SCHEMA TABLES COLUMNS |
NANVE LOADED LOADED |
| ceeeee e |
“tpch_1024° 8 61
pch_
I I
dho 05 0000000000000 00000000000000C0C00000000050000000000000 +

| Auto Data Pl acement Configurati on: |
| M ni mum benefit threshold: 1% |
| Produci ng Data Pl acement suggestions for current setup: |
| Tabl es Loaded: 8 |
| Queries used: 189 |
| Total query execution tinme: 22.75 mn |
| Most recent query executed on: Tuesday 8th June 2021 16:29: 02 |
| O dest query executed on: Tuesday 8th June 2021 16: 05: 43 |
| Heat Wave cluster size: 5 nodes |
I I
I I
I I
I I

Al'l possible Data Pl acement conbi nati ons based on query history: 120
Expl ored Data Pl acenent conbi nations after pruning: 90

41



Running Auto Data Placement

Total Data Pl acenent suggestions produced for 2 tables |

TABLE DATA PLACENENT DATA PLACEMENT |
NAVE CURRENT KEY SUGGESTED KEY |
__________________________________ |
“tpch_1024" . LI NEI TEM L_ORDERKEY, L_LI NENUVBER L_ORDERKEY |
“tpch_1024" . SUPPLI ER S_SUPPKEY S_NATI ONKEY |

Expected benefit after applying Data Pl acement suggestions
Runti me saving: 6.17 min
Per f ormance benefit: 27%

Script generated for applying suggestions for 2 | oaded tabl es
Appl yi ng changes wi |l take approximately 1.18 h

| |
| |
| |
| |
| Retrieve script containing 12 generated DDL commands using the query bel ow |
| SELECT | 0g->>"$.sqgl" AS "SQ. Script" FROM sys. heatwave_advi sor_report WHERE type = "sqgl"|
| ORDER BY i d; |
| |
| |
| |
| |

Caution: Executing the generated script will alter the colum conmment and secondary engi ne
flags in the schema

9 rows in set (16.43 sec)

SELECT | 0og->>"$.sql" AS "SQ. Script" FROM sys. heatwave_advi sor_report WHERE type = "sql"
ORDER BY i d;

| SET SESSI ON i nnodb_paral | el _read_t hreads = 48; |
| ALTER TABLE "tpch_1024". LI NEl TEM SECONDARY_UNLOAD; |
| ALTER TABLE "tpch_1024". LI NEl TEM SECONDARY_ENG NE=NULL; |
| ALTER TABLE "tpch_1024". LI NEI TEM MODI FY " L_ORDERKEY" bigint NOT NULL COMVENT |
| ' RAPI D_COLUMN=DATA PLACEMENT_KEY=1'; |
| ALTER TABLE "tpch_1024". LI NEl TEM SECONDARY_ENG NE=RAPI D; |
| ALTER TABLE "tpch_1024". LI NEl TEM SECONDARY_LQAD; |
| SET SESSI ON i nnodb_paral | el _read_t hreads = 48; |
| ALTER TABLE "tpch_1024". SUPPLI ER° SECONDARY_UNLOAD; |
| ALTER TABLE "tpch_1024" . SUPPLI ER° SECONDARY_ENG NE=NULL; |
| ALTER TABLE "tpch_1024". SUPPLI ER° MODI FY * S _NATI ONKEY" int NOT NULL COMMENT |
| ' RAPI D_COLUMN=DATA PLACEMENT_KEY=1'; |
| ALTER TABLE "tpch_1024". SUPPLI ER° SECONDARY_ENG NE=RAPI D; |
| ALTER TABLE "tpch_1024" . SUPPLI ER° SECONDARY_LQAD; |

12 rows in set (0.00 sec)
Usage Notes:

« If atable already has data placement keys or columns are customized prior to running Advisor,
Advisor may generate DDL statements for removing previously defined data placement keys.

» Advisor provides recommendations only if data placement keys are estimated to improve query
performance. If not, an information message is returned and no recommendations are provided.

» Advisor provides data placement key recommendations based on approximate models.
Recommendations are therefore not guaranteed to improve query performance.

42



Query Insights

8.3 Query Insights

Query Insights provides:

* Runtimes for successfully executed queries

* Runtime estimates for EXPLAI N queries.

* Runtime estimates for queries cancelled using Ct r | +C.

» Runtime estimates for queries that fail due to an out-of-memory error.

Runtime data can be used for query optimization, troubleshooting, or to estimate the cost of running a
particular query or workload on HeatWave.

Query Insights Syntax
CALL sys. heatwave_advi sor ([options]);

options: {

JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue":
["output",{"normal "|"silent"|"hel p"}]
["target _schema", JSON_ARRAY({"schema_nane"[, "schenma_nane"]}]
["excl ude_query", JSON_ARRAY("query_id"[,"query_id"] ...)]
["query_session_id", JSON_ ARRAY("query_session_id"[,"query_session_id"] ...)]
["

query_insi ghts", { TRUE| FALSE} ]
}

For syntax examples, see Section 8.4, “Advisor Examples”.
Advisor options are specified as key-value pairs in JSON-object format. Options include:
» out put : Defines how Advisor produces output. Permitted values are:

e nor mal : The default. Produces summarized output that is sent to st dout and to the
heat wave_advi sor _report table. (See Section 8.5, “Advisor Report Table”.)

¢ si |l ent: Sends output to the heat wave_advi sor _report table only. (See Section 8.5, “Advisor
Report Table”.) The "si | ent " output type is useful if human-readable output is not required;
when the output is consumed by a script, for example.

* hel p: Displays Advisor command-line help. See Section 8.4, “Advisor Examples”.

» target _schena: Defines one or more schemas. The list is specified in JSON-array format. If a
target schema is not specified, all schemas in HeatWave are considered.

» excl ude_query: Defines the IDs of queries to exclude. To identify query IDs, query the
per formance_schema. rpd_query_st at s table. For a query example, see Section 8.4, “Advisor
Examples”.

e query_session_i d: Defines session IDs for filtering queries by session ID. To identify session
IDs, query the per f or mance_schema. r pd_query_st at s table. For a query example, see
Section 8.4, “Advisor Examples”.

* query_insi ght s: Provides runtimes for successfully executed queries and runtime estimates for
EXPLAI N queries, queries cancelled using Ct r | +C, and queries that fail due to an out-of-memory
error. The default setting is FALSE.

Running Query Insights

For Query Insights to provide runtime data, a query history must be available. Query Insights provides
runtime data for up to 200 queries, which is the HeatWave query history limit. To view the current
HeatWave query history, query the per f or mrance_schena. r pd_query_st at s table:

43


https://dev.mysql.com/doc/refman/8.0/en/explain.html

Running Query Insights

mysql > SELECT query_id, LEFT(query_text,160) FROM perfornmance_schena. rpd_query_stats;

The following example shows how to retrieve runtime data for the entire query history using Query
Insights. In this example, there are three queries in the query history: a successfully executed query, a
guery that failed due to an out of memory error, and a query that was cancelled using Ct r | +C. For an
explanation of Query Insights data, see Query Insights Data.

nmysql > CALL sys. heatwave_advi sor (JSON_OBJECT("query_i nsights", TRUE));
| I NITIALI ZI NG HEATWAVE ADVI SCR |

Version: 1.12

Qut put Mode: nor nal

I I
I I
I I
| Excluded Queries: O |
| Target Schenmas: All |
I I

Total 8 tables |oaded in HeatWave for 1 schemas |
Tabl es excluded by user: 0 (within target schemas) |
I

SCHEMA TABLES COLUMNS |
NAVE LOADED LOADED |
R s |
| “tpchi28® 8 61 |
[ [
e m e e e e e e e e e e e e e e e e e e +

Queri es executed on Heatwave: 4
Session IDs (as filter): None

QUERY-I D SESSION-I1 D QUERY- STRI NG EXEC- RUNTI ME  COMVENT
| .................................................
1 32 SELECT COUNT(*)
FROM t pch128. LI NEI TEM 0. 628
2 32 SELECT COUNT(*)
FROM t pch128. ORDERS 0.114 (est.) Explain.
3 32 SELECT COUNT(*)
FROM t pch128. ORDERS,
t pch128. LI NEl TEM 5.207 (est.) CQut of menory

error during
query execution

I
I
I
I
I
I
I
I
I
I
I
I
I
I
in RAPID. |
I
I
I
I
I
I
I
I
I
I
I
I
I

4 32 SELECT COUNT(*)

FROM t pch128. SUPPLI ER,

t pch128. LI NEl TEM 3.478 (est.) Operation was
interrupted by
the user.

TOTAL ESTI MATED: 3 EXEC- RUNTI ME: 8. 798 sec
TOTAL EXECUTED: 1 EXEC- RUNTI ME: 0. 628 sec

Retri eve detail ed query statistics using the query bel ow
SELECT | og FROM sys. heat wave_advi sor _report WHERE stage = "QUERY_I NSI GHTS" AND
type = "info";

nysql > SELECT | og FROM sys. heat wave_advi sor _report WHERE stage = " QUERY_I| NSI GHTS"
AND type = "info";




Query Insights Data

{"comrent": "", "query_id": 1, "query_text": "SELECT COUNT(*) FROM tpch128. LI NEl TEM,
"session_id": 32, "runtinme_executed_ns": 627.6099681854248,
“runtime_estimated_ns": 454.398817}

{"comrent": "Explain.", "query_id": 2, "query_text": "SELECT COUNT(*)
FROM t pch128. ORDERS", "session_id": 32, "runtine_executed_ns": null,
“runtime_estimated_ns": 113.592768}

{"comrent": "Qut of nenory error during query execution in RAPID.", "query_id": 3,
"query_text": "SELECT COUNT(*) FROM tpchl128. ORDERS, tpch128. LI NEl TEM,
"session_id": 32, "runtime_executed_ns": null, "runtinme_estinmted_ns": 5206.80822}
{"comrent": "Operation was interrupted by the user.", "query_id": 4,
"query_text": "SELECT COUNT(*) FROM tpch128. SUPPLI ER, tpch128. LIl NEl TEM',
"session_id": 32, "runtime_executed_ns": null, "runtime_estimated_ns": 3477.720953}
P S S +

4 rows in set (0.00 sec)

For Query Insights CALL statements examples that filter results by schema and session ID, see
Section 8.4, “Advisor Examples”.

Query Insights Data
Query Insights provides the following data:
e QUERY-ID
The query ID.
* SESSION-1D
The session ID that issued the query.
* QUERY- STRI NG
The query string. EXPLAI N, if specified, is not displayed in the query string.
* EXEC- RUNTI ME

The query execution runtime in seconds. Runtime estimates are differentiated from actual runtimes
by the appearance of the following text adjacent to the runtime: ( est . ) . Actual runtimes are shown
for successfully executed queries. Runtime estimates are shown for EXPLAI N queries, queries
cancelled by Ct r | +C, and queries that fail with an out-of-memory error.

» COMMENT
Comments associated with the query. Comments may include:
e Expl ai n: The query was run with EXPLAI N.

e Operation was interrupted by the user: The query was successfully offloaded to
HeatWave but was interrupted by a Ctrl+C key combination.

e Qut of nenory error during query execution in RAPID: The query was successfully
offloaded to HeatWave but failed due to an out-of-memory error.

e TOTAL- ESTI MATED and EXEC- RUNTI ME

The total number of queries with runtime estimates and total execution runtime (estimated).
e TOTAL- EXECUTED and EXEC- RUNTI VE

The total number of successfully executed queries and total execution runtime (actual).

e Retrieve detailed statistics using the query bel ow

45


https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Advisor Examples

The query retrieves detailed query statistics from the sys. heat wave_advi sor _report table. For
an example of the detailed statistics, see Running Query Insights.

Query Insights data can be retrieved in machine readable format for use in scripts; see Section 8.4,
“Advisor Examples”. Query Insights data can also be retrieved in JSON format or SQL table format by
guerying the sys. heat wave_advi sor _report table. See Section 8.5, “Advisor Report Table”.

8.4 Advisor Examples

This section provides Advisor CALL statement examples that you can reference when creating your
own statements.

Note

Examples may specify schemas, columns, connection IDs, and other objects
that are not be present on your HeatWave instance. Such examples must be
modified to work with your data.

* Advisor Command-line Help
» Auto Encoding Examples
» Auto Data Placement Examples

* Query Insights Examples

Advisor Command-line Help

» To view Advisor command-line help:

CALL sys. heatwave_advi sor (JSON _OBJECT("out put", "hel p"));

The command-line help provides usage documentation for the Advisor.

Auto Encoding Examples

* Running Auto Encoding to generate string column encoding recommendations for the t pch schema:

CALL sys. heat wave_advi sor (JSON_OBJECT("t arget _schema", JSON_ARRAY("t pch"),
"aut o_enc", JSON_OBJECT( " nbde", "recomend")));

* Running Auto Encoding with the fi xed_enc option to force variable-length encoding for the
t pch. CUSTOVER. C_ADDRESS column. Columns specified by the f i xed_enc option are excluded
from consideration by the Auto Encoding feature.

CALL sys. heatwave_advi sor (JSON _OBJECT("t ar get _schema", JSON_ARRAY( "t pch"),

"aut o_enc", JSON_OBJECT( " node", "recomend", "fi xed_enc",
JSON_OBJECT( "t pch. CUSTOMVER. C_ADDRESS", "varlen"))));

Auto Data Placement Examples

 Invoking Advisor without any options runs the Data Placement Advisor with the default option
settings.

CALL sys. heatwave_advi sor ( NULL) ;

* Running Advisor with only the t ar get _schena option runs the Data Placement Advisor on the
specified schemas with the default option settings.

CALL sys. heatwave_advi sor (JSON _OBJECT("t ar get _schema", JSON_ARRAY( "t pch", "enpl oyees")));

* Running the Advisor with the data placement nax_conbi nati ons and benefit _threshol d
parameters. For information about these options, see Auto Data Placement Syntax.

46


https://dev.mysql.com/doc/refman/8.0/en/call.html

Query Insights Examples

CALL sys. heatwave_advi sor (JSON_OBJECT( " aut o_dp", JSON_OBJECT( " max_conbi nati ons", 100,
"benefit_threshol d', 20)));

The following example shows how to view the HeatWave query history by querying the
performance_schenma. rpd_query_ st at s table, and how to exclude specific queries from Data
Placement Advisor analysis using the excl ude_query option:

SELECT query_id, LEFT(query_text,160) FROM performance_schena.rpd_query_stats;

CALL sys. heatwave_advi sor (JSON OBJECT("t arget _schema", JSON_ARRAY("t pch"),
"excl ude_query", JSON_ARRAY(1, 11, 12, 14)));

This example demonstrates how to invoke the Data Placement Advisor with options specified in a
variable:

SET @ptions = JSON_OBJECT(
"target_schemn", JSON_ARRAY("anal ytics45", "sanpl e_schema"),
"excl ude_query", JSON_ARRAY(12, 24),
"aut o_dp", JSON_OBJECT(
"benefit_threshol d", 12.5,
"max_conbi nati ons", 100

));

CALL sys. heatwave_advi sor( @ptions );

This example demonstrates how to invoke Advisor in silent output mode, which is useful if the output
is consumed by a script, for example. Auto Data Placement is run by default if no option such as
aut o_enc or query_i nsi ght s is specified.

CALL sys. heatwave_advi sor (JSON OBJECT("output”,"silent"));

Query Insights Examples

To view runtime data for all queries in the HeatWave query history for a particular schema:

CALL sys. heatwave_advi sor (JSON_OBJECT("t arget _schema", JSON_ARRAY("t pch"),
"query_insights", TRUE));

To view runtime data for queries issued by the current session:

CALL sys. heat wave_advi sor (JSON_OBJECT( " query_i nsi ghts", TRUE,
"query_session_id", JSON_ARRAY(connection_id())));

To view runtime data for queries issued by a particular session:

CALL sys. heatwave_advi sor (JSON_OBJECT("query_i nsi ghts", TRUE,
"query_session_id", JSON_ARRAY(8)));

This example demonstrates how to invoke the Query Insights Advisor in silent output mode, which is
useful if the output is consumed by a script, for example.

CALL sys. heatwave_advi sor (JSON_OBJECT( " query_i nsi ghts", TRUE, "out put","silent"));

8.5 Advisor Report Table

When running Advisor, detailed output is sent to the heat wave_advi sor _r eport table in the sys
schema.

The heat wave_advi sor _report table is a temporary table. It contains data from the last execution
of Advisor. Data is only available for the current session and is lost when the session terminates or
when the server is shut down

Advisor Report Table Query Examples

The heat wave_advi sor _report table can be queried after running Advisor, as in the following
examples:

47



Advisor Report Table Query Examples

View Advisor warning information:

SELECT | og FROM sys. heat wave_advi sor _report WHERE type="warn";

View error information in case Advisor stops unexpectedly:

SELECT | og FROM sys. heat wave_advi sor_report WHERE type="error";

View the generated DDL statements for Advisor recommendations:

SELECT | 0g->>"$.sql" AS "SQ. Script" FROM sys. heatwave_advi sor_report
VWHERE type = "sql" ORDER BY id;

Concatenate Advisor generated DDL statements into a single string that can be copied and
pasted for execution. The gr oup_concat _nmax_| en variable sets the result length in bytes
for the GROUP_CONCAT( ) function to accommodate a potentially long string. (The default
group_concat _max_| en setting is 1024 bytes.)

SET SESSI ON group_concat _max_| en = 1000000;
SELECT GROUP_CONCAT(| og- >>"$. sql " SEPARATOR ' ') FROM sys. heat wave_advi sor _report
WHERE type = "sql" ORDER BY id;

Retrieve Query Insights data in JSON format:

SELECT | og FROM sys. heat wave_advi sor_report WHERE stage = "QUERY_I NSI GHTS" AND type =

Retrieve Query Insights data in SQL table format:

SELECT | og->>"$. query_id" AS query_id,

| og->>"$. sessi on_i d* AS session_id,

| og->>"$. query_text" AS query_text,

| og->>"$. runti ne_esti mated_ns" AS runti ne_esti mat ed_ns,
| og->>"$. runti ne_execut ed_ns" AS runti ne_execut ed_ns,

| og->>"$. conment" AS conmment

FROM sys. heat wave_advi sor _r eport

VWHERE stage = "QUERY_I NSI GHTS' AND type = "info"

ORDER BY i d;

"info";

48


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_group-concat
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_group_concat_max_len

Chapter 9 Best Practices

HeatWave best practices are described under the following topics in this section:
* Provisioning

» Importing Data into the MySQL DB System

* Inbound Replication

* Preparing Data

* Loading Data

» Auto Encoding and Auto Data Placement

* Running Queries

* Monitoring

* Reloading Data

Provisioning

To determine the appropriate HeatWave cluster size for a workload, generate a node count estimate in
the console. Node count estimates are generated by the HeatWave Auto Provisioning feature, which
uses machine learning models to predict the number of required nodes based on node shape and data
sampling. For instructions, see Generating a Node Count Estimate, in the MySQL Database Service
User Guide.

Generate a node count estimate:

* When adding a HeatWave cluster to a DB System, to determine the number of nodes required for
the data you intend to load.

» Periodically, to ensure that you have an appropriate number of HeatWave nodes for your data.
Over time, data size may increase or decrease, so it is important to monitor the size of your data by
performing node count estimates.

* When encountering out-of-memory errors while running queries. In this case, the HeatWave cluster
may not have sufficient memory capacity.

* When the data growth rate is high.

» When the transaction rate (the rate of updates and inserts) is high.

Importing Data into the MySQL DB System

MySQL Shell is the recommended utility for importing data into the MySQL DB System. MySQL Shell
dump and load utilities are purpose-built for use with MySQL Database Service; useful for all types of
exports and imports. MySQL Shell supports export to, and import from, Object Storage. The minimum
supported source version of MySQL is 5.7.9. For more information, see Importing and Exporting
Databases, in the MySQL Database Service User Guide.

Inbound Replication

For an OLTP workload that resides in an on-premise instance of MySQL Server, inbound replication is
recommended for replicating data to the MySQL DB System for offload to the HeatWave cluster. For
more information, see Replication, in the MySQL Database Service User Guide.

49


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-0F9C7157-AC89-4BDE-A663-CF15D2922001
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/replication.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html

Preparing Data

Preparing Data

The following practices are recommended when preparing data for loading into HeatWave:

* Instead of preparing and loading tables into HeatWave manually, consider using the Auto Parallel

Load utility. See Section 4.1, “Auto Parallel Load”.
Tip
An Auto Parallel Load command is generated in the console when performing

a node count estimate. For more information, see Generating a Node Count
Estimate.

» To minimize the number of HeatWave nodes required for your data, exclude table columns that are

not accessed by your queries. For information about excluding columns, see Section 3.2, “Excluding
Table Columns”.

To save space in memory, set CHAR, VARCHAR, and TEXT-type column lengths to the minimum
length required for the longest string value.

Where appropriate, apply dictionary encoding to CHAR, VARCHAR, and TEXT-type columns.
Dictionary encoding reduces memory consumption on the HeatWave cluster nodes. Use the
following criteria when selecting string columns for dictionary encoding:

1. The column is not used as a key in JO N queries.

2. Your queries do not perform operations such as LI KE, SUBSTR, CONCAT, etc., on the column.
Variable-length encoding supports string functions and operators and LI KE predicates; dictionary
encoding does not.

3. The column has a limited number of distinct values. Dictionary encoding is best suited to columns
with a limited number of distinct values, such as “country” columns.

4. The column is expected to have few new values added during change propagation. Avoid
dictionary encoding for columns with a high number of inserts and updates. Adding a significant
number of a new, unique values to a dictionary encoded column can cause a change propagation
failure.

The following columns from the TPC Benchmark™ H (TPC-H) provide examples of string columns
that are suitable and unsuitable for dictionary encoding:

* ORDERS. O ORDERPRI ORI TY

This column is used only in range queries. The values associated with column are limited.
During updates, it is unlikely for a significant number of new, unique values to be added. These
characteristics make the column suitable for dictionary encoding.

e LI NEI TEM L_COMMENT

This column is not used in joins or other complex expressions, but as a comment field, values are
expected to be unique, making the column unsuitable for dictionary encoding.

When in doubt about choosing an encoding type, use variable-length encoding, which is applied by
default when tables are loaded into HeatWave, or use the HeatWave Encoding Advisor to obtain
encoding recommendations. See Section 8.1, “Auto Encoding”.

Data is partitioned by the table's primary key when no data placement keys are defined. Only
consider defining data placement keys if partitioning data by the primary key does not provide
suitable performance.

50


https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-0F9C7157-AC89-4BDE-A663-CF15D2922001
https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-0F9C7157-AC89-4BDE-A663-CF15D2922001
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Loading Data

Reserve the use of data placement keys for the most time-consuming queries. In such cases, define
data placement keys on:

¢ The most frequently used JO N keys.
¢ The keys of the longest running queries.

Consider using Auto Data Placement for data placement recommendations. See Section 8.2, “Auto
Data Placement”.

Loading Data

Instead of preparing and loading tables into HeatWave manually, consider using the Auto Parallel Load
utility. See Section 4.1, “Auto Parallel Load”.

The loading of data into HeatWave can be classified into three types: Initial Bulk Load, Incremental
Bulk Load, and Change Propagation.

« Initial Bulk Load: Performed when loading data into HeatWave for the first time, or when reloading
data after a failure or intended stoppage. The best time to perform an initial bulk load is during off-
peak hours, as bulk load operations can affect OLTP performance on the MySQL DB System.

 Incremental Bulk Load: Performed when there is a substantial amount of data to load into tables that
are already loaded in HeatWave. An incremental bulk load involves these steps:

1. Performing a SECONDARY_UNLQAD operation to unload a table from HeatWave. See Chapter 5,
Unloading Tables.

2. Importing data into the table on the MySQL DB System node. See Importing and Exporting
Databases in the MySQL Database Service User Guide.

3. Performing a SECONDARY_LQOAD operation to reload the table into HeatWave. See Chapter 4,
Loading Data.

Depending on the amount of data, an incremental bulk load may be a more expedient method of
loading new data than waiting for change propagation to occur. It also provides greater control over
when new data is loaded. As with initial build loads, the best time to perform an incremental bulk load
is during off-peak hours, as bulk load operations can affect OLTP performance on the MySQL DB
System.

» Change Propagation: After tables are loaded into HeatWave, data changes are automatically
propagated from | nnoDB tables on the MySQL DB System to their counterpart tables in HeatWave.
See Section 4.2, “Change Propagation”.

Use the following strategies to improve load performance:
* Increase the number of read threads

For medium to large tables, increase the number of read threads to 32 by setting the
i nnodb_paral | el _read_t hr eads variable on the MySQL DB System.

nmysql > SET SESSI ON i nnodb_paral | el _read_t hreads = 32;
If the MySQL DB System is not busy, you can increase the value to 64.
Tip

The Auto Parallel Load utility automatically optimizes the number of parallel
read threads for each table. See Section 4.1, “Auto Parallel Load”.

» Load tables concurrently

51


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_parallel_read_threads

Auto Encoding and Auto Data Placement

If you have many small and medium tables (less than 20GB in size), load tables from multiple
sessions:

Sessi on 1:
nysql > ALTER TABLE suppl i er SECONDARY_LOAD,

Sessi on 2:
nysql > ALTER TABLE parts SECONDARY_LOAD,

Sessi on 3:
nysql > ALTER TABLE regi on SECONDARY_LOAD;

Sessi on 4:
nysql > ALTER TABLE part supp SECONDARY_LOAD,

» Avoid or reduce conflicting operations

Data load operations share resources with other OLTP DML and DDL operations on the MySQL DB
System. To improve load performance, avoid or reduce conflicting DDL and DML operations. For
example, avoid running DDL and large DML operations on the LI NEI TEMtable while executing an
ALTER TABLE LI NEI TEM SECONDARY_LOAD operation.

Auto Encoding and Auto Data Placement

The Advisor utility analyzes your data and HeatWave query history to provide string column encoding
and data placement key recommendations. Consider re-running Advisor for updated recommendations
when queries change, when data changes significantly, and after reloading modified tables.

In all cases, re-run your queries before running Advisor. See Chapter 8, Workload Optimization using
Advisor.

Running Queries

The following practices are recommended when running queries:

« If a query fails to offload and you cannot identify the reason, enable tracing and query the
| NFORVATI ON_SCHENMA. OPTI M ZER TRACE table to debug the query. See Debugging Queries.

If the optimizer trace does not return all of the trace information, increase the optimizer

trace buffer size. The M SSI NG BYTES BEYOND MAX MEM S| ZE column of the

| NFORVATI ON_SCHENMA. OPTI M ZER TRACE table shows how many bytes are missing from a
trace. If the column shows a non-zero value, increase the opti ni zer _trace_max_nem si ze
setting accordingly. For example:

SET optim zer_trace_max_nem si ze=1000000;

o If an | NFORVATI ON_SCHENMA. OPTI M ZER _TRACE query trace indicates that a subquery is not yet
supported, try unnesting the subquery. For example, the following query contains a subquery and is
not offloaded as indicated by the EXPLAI N output, which does not show “Using secondary engine”.

nmysql > EXPLAI N SELECT COUNT(*) FROM orders o WHERE o_total price> (SELECT AV o_total price)
FROM orders WHERE o_cust key=0. o_cust key)\ G
EEEEEEEEEEEEEEEEEEEEEEEEESESE] 1 rOW EEEEEEEEEEEEEEEEEEEEEEEEESSE]
id: 1
sel ect _type: PRI MARY
table: o
partitions: NULL
type: ALL
possi bl e_keys: NULL
key: NULL
key_ |l en: NULL
ref: NULL
rows: 14862970
filtered: 100.00
Extra: Using where

52


https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimizer-trace-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimizer-trace-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_trace_max_mem_size
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimizer-trace-table.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Running Queries

R R R R R R R R R 2 r ow R R R R R R R R R
id: 2
sel ect _type: DEPENDENT SUBQUERY
tabl e: orders
partitions: NULL
type: ALL
possi bl e_keys: NULL
key: NULL
key_ | en: NULL
ref: NULL
rows: 14862970
filtered: 10.00
Extra: Using where
2 rows in set, 2 warnings (0.00 sec)

This query can be rewritten as follows to unnest the subquery so that it can be offloaded.

nmysql > EXPLAI N SELECT COUNT(*) FROM orders o
(SELECT o_custkey, AVG o_total price) a_total price
FROM or ders GROUP BY o_cust key) a
WHERE 0. 0_cust key=a. o_custkey AND o0.0_total price>a.a_total price

» By default, SELECT queries are offloaded to HeatWave for execution and fall back to the MySQL DB
system if that is not possible. To force a query to execute on HeatWave or fail if that is not possible,
setthe use_secondary_engi ne vari abl e to FORCED. In this mode, a SELECT statement returns
an error if it cannot be offloaded. The use_secondary_engi ne variable can be set as shown:

e Using a SET statement before running queries:
mysql > SET SESSI ON use_secondary_engi ne = FORCED
e Using a SET_VAR optimizer hint when issuing a query:
mysql > SELECT /*+ SET_VAR(use_secondary_engine = FORCED) */ ... FROM...
« If you encounter out-of-memory errors when running queries:

1. Avoid or rewrite queries that produce a Cartesian product. In the following query, a JO N
predicated is not defined between the suppl i er and nat i on tables, which causes the query to
select all rows from both tables:

nysqgl > SELECT s_nati onkey, s_suppkey, |_comment FROM |ineitem supplier, nation
VWHERE s_suppkey = | _suppkey LIMT 10;

ERROR 3015 (HYO00): Cut of nenory in storage engine 'Failure detected in RAPID;, query

execution cannot proceed' .

To avoid the Cartesian product, add a relevant predicate between the suppl i er and nat i on
tables to filter out rows:

mysql > SELECT s_nati onkey, s_suppkey, |_comment FROM |ineitem supplier, nation
VWHERE s_nati onkey = n_nati onkey and s_suppkey = | _suppkey LIMT 10;

2. Avoid or rewrite queries that produce a Cartesian product introduced by the MySQL optimizer.
Due to lack of quality statistics or non-optimal cost decisions, MySQL optimizer may introduce
one or more Cartesian products in a query even if a query has predicates defined among all
participating tables. For example:

nmysql > SELECT o_orderkey, c_custkey, |_shipdate, s_nationkey, s_suppkey, |_conmment
FROM | i nei tem supplier, nation, custoner, orders

WHERE c_custkey = o_custkey AND o_orderkey = | _orderkey
AND c_nationkey = s_nationkey AND c_nationkey = n_nationkey AND c_custkey < 3000000
LIMT 10;

ERROR 3015 (HY000): Qut of menory in storage engine 'Failure detected in RAPID;

53


https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Running Queries

guery execution cannot proceed'

The EXPLAI N plan output shows that there is no common predicate between the first two table
entries (NATI ON and SUPPLI ER).

mysql > EXPLAI N SELECT o_orderkey, c_custkey, |_shipdate, s_nationkey, s_suppkey, | _conment
FROM |i nei tem supplier, nation, custoner, orders
WHERE c_custkey = o_custkey AND o_orderkey = | _orderkey AND c_nationkey = s_nationkey
AND c_nationkey = n_nati onkey AND c_custkey < 3000000 LIMT 10\ G

R R R S S Sk S S S S S S 1 r ow R R R S S S S S S S S S

id:

sel ect _type:
t abl e:
partitions:
type:
possi bl e_keys:
key:

key_I| en:
ref:

rows:
filtered:
Extra:

1

SI MPLE
suppl i er
NULL
ALL
NULL
NULL
NULL
NULL
99626
100. 00
Usi ng secondary engi ne RAPI D

R R R Sk S S S S S S S S 2 r ow R R Sk S S S S S S S S S

id:

sel ect _type:
t abl e:
partitions:
type:
possi bl e_keys:
key:

key_I| en:
ref:

rows:
filtered:
Extra:

1

S| MPLE
nation
NULL
ALL
NULL
NULL
NULL
NULL
25

10. 00
Usi ng where; Using join buffer (hash join); Using secondary engi ne RAPI D

R R R S S S Sk S S S S S S S 3 r ow R R R S S S S S S S S S

id:

sel ect _type:
t abl e:
partitions:
type:
possi bl e_keys:
key:

key_I| en:
ref:

rows:
filtered:
Extra:

1

S| MPLE
cust omer
NULL
ALL
NULL
NULL
NULL
NULL
1382274
5. 00
Usi ng where; Using join buffer (hash join); Using secondary engi ne RAPI D

R R R S S Sk S S S S S S S S 4 r ow R R R Sk S S S S S S S S

id:

sel ect _type:
t abl e:
partitions:
type:
possi bl e_keys:
key:

key_I| en:
ref:

rows:
filtered:
Extra:

1

S| MPLE
orders
NULL

ALL

NULL
NULL
NULL
NULL
14862970
10. 00
Usi ng where; Using join buffer (hash join); Using secondary engi ne RAPI D

R R R Sk S Sk Sk S S S S S S S 5 r ow R R R S S S Sk S S S S S

id:

sel ect _type:

t abl e:
partitions:
type:
possi bl e_keys:
key:

key_I| en:

ref:

rows:

1

SI MPLE
lineitem
NULL

ALL

NULL
NULL
NULL
NULL
56834662

54



Running Queries

filtered: 10.00
Extra: Using where; Using join buffer (hash join); Using secondary engi ne RAPID

To force a join order so that there are predicates associated with each pair of tables, add a
STRAI GHT_JO N hint. For example:

mysql > EXPLAI N SELECT o_orderkey, c_custkey, |_shipdate, s_nationkey, s_suppkey, | _conmment
FROM SUPPLI ER STRAI GHT_JO N CUSTOVER STRAI GHT_JO N NATI ON STRAI GHT_JO N ORDERS

STRAI GHT_JO N LI NEI TEM WHERE c_cust key = o_custkey and o_orderkey = | _orderkey
AND c_nationkey = s_nationkey AND c_nationkey = n_nationkey AND c_custkey < 3000000
LIMT 10\ G
R R R S S Sk kS S S S S S 1 r ow R R R Sk S S Sk S S S S S S
id: 1

sel ect _type: SIMPLE
tabl e: supplier
partitions: NULL

type: ALL
possi bl e_keys: NULL
key: NULL
key_l en: NULL
ref: NULL
rows: 99626

filtered: 100.00
Extra: Using secondary engi ne RAPI D
R R R S S Sk S S S S S S S S 2 I’OW R R R Sk S Sk Sk S S S S S S
id: 1
sel ect _type: SIMPLE
tabl e: cust oner
partitions: NULL

type: ALL
possi bl e_keys: NULL
key: NULL
key_len: NULL
ref: NULL

rows: 1382274
filtered: 5.00
Extra: Using where; Using join buffer (hash join); Using secondary engi ne RAPI D
R R R Sk S S S S S S S S 3 r ow R R R S S S S S S S
id: 1
sel ect _type: SIMPLE
tabl e: nation
partitions: NULL

type: ALL
possi bl e_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 25

filtered: 10.00
Extra: Using where; Using join buffer (hash join); Using secondary engi ne RAPI D
R R R S S Sk Sk S S S S S S 4 r ow R R R S S S S S S S S S
id: 1
sel ect _type: SIMPLE
tabl e: orders
partitions: NULL

type: ALL
possi bl e_keys: NULL
key: NULL
key_len: NULL
ref: NULL

rows: 14862970
filtered: 10.00
Extra: Using where; Using join buffer (hash join); Using secondary engi ne RAPI D

R R R Sk S S Sk S S S S S S 5 r ow R R R Sk S S S S S S S S

id: 1
sel ect _type: SIMPLE
table: lineitem
partitions: NULL
type: ALL
possi bl e_keys: NULL
key: NULL

key_len: NULL

55



Monitoring

ref: NULL
rows: 56834662
filtered: 10.00
Extra: Using where; Using join buffer (hash join); Using secondary engi ne RAPID

3. Avoid or rewrite queries that produce a very large result set. This is a common cause of out of
memory errors during query processing. Use aggregation functions, a GROUP BY clause, or a
LI M T clause to reduce the result set size.

4. Avoid or rewrite queries that produce a very large intermediate result set. In certain cases, large
result sets can be avoided by adding a STRAI GHT_JO N hint, which enforces a join order in a
decreasing of selectiveness.

5. Check the size of your data by performing a node count estimate. If your data has grown
substantially, the HeatWave cluster may require additional nodes. For instructions, see
Generating a Node Count Estimate, in the MySQL Database Service User Guide.

6. HeatWave optimizes for network usage by default. Try running the query with the
M N_MEM CONSUMPTI ON strategy by setting by setting r api d_executi on_strat egy to
M N_MEM CONSUMPTI ON. The rapi d_executi on_strat egy variable can be set as shown:

* Using a SET statement before running queries:

nysqgl > SET SESSI ON rapi d_execution_strategy = M N_MEM CONSUVPTI ON,
* Using a SET_VAR optimizer hint when issuing a query:

nysql > SELECT /*+ SET_VAR(rapi d_execution_strategy = M N_MEM CONSUMPTION) */ ... FROM...

» Unloading tables that are not used. These tables consume memory on HeatWave nodes
unnecessarily. See Chapter 5, Unloading Tables.

» Excluding table columns that are not accessed by your queries. These columns consume
memory on HeatWave nodes unnecessarily. This strategy requires reloading data. See
Section 3.2, “Excluding Table Columns”.

7. After running queries, consider using HeatWave Advisor for encoding and data placement
recommendations. See Chapter 8, Workload Optimization using Advisor.

Monitoring

The following monitoring practices are recommended:

» Monitor operating system memory usage. Use the console to set an alarm to notify you when
memory usage on HeatWave nodes remains above 450GB for an extended period of time. If
memory usage exceeds this threshold, either reduce the size of your data or add nodes to the
HeatWave cluster. For information about using metrics, alarms, and notifications, refer to MySQL
Database Service Metrics, in the MySQL Database Service User Guide.

* Monitor change propagation status. If change propagation is interrupted, table data becomes stale
and queries that access tables with stale data are not offloaded. For instructions, see Section 4.2,
“Change Propagation”.

Reloading Data

Reloading data is recommended in the following cases:

 After resizing the cluster by adding or removing nodes. Reloading data distributes the data among all
nodes of the resized cluster.

56


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/heatwave.html#GUID-0F9C7157-AC89-4BDE-A663-CF15D2922001
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/mysql-database-metrics.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/doc/mysql-database-metrics.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html

Reloading Data

» After a maintenance window. Maintenance involves a restart, which requires that you reload data into
HeatWave. Consider setting up a MySQL Database Service event notification or Service Connector
Hub notification to let you know when an update has occurred.

¢ For information about MySQL DB System maintenance, see Maintenance.
« For information about MySQL Database Service events, see MySQL Database Service Events.
 For information about Service Connector Hub, see Service Connector Hub.
 For table load instructions, see Chapter 4, Loading Data.
Tip

Instead of loading data into HeatWave manually, consider using the Auto
Parallel Load utility, which prepares and loads tables for you using an
optimized number of parallel load threads. See Section 4.1, “Auto Parallel
Load".

» When the HeatWave cluster is restarted. Data in the HeatWave cluster is lost in this case, requiring
reload.

57


https://docs.oracle.com/en-us/iaas/mysql-database/doc/maintenance.html
https://docs.oracle.com/en-us/iaas/mysql-database/doc/managing-db-system.html#GUID-6569BD97-50E2-4379-ADA3-B2971597EA32
https://docs.oracle.com/en-us/iaas/Content/service-connector-hub/overview.htm

58



Chapter 10 Troubleshooting

» Problem: Queries are not offloaded.

« Solution A: Your query contains an unsupported predicate, function, operator, or has encountered
some other limitation. See Chapter 6, Running Queries.

« Solution B: Query execution time is less than the query cost threshold.

HeatWave is designed for fast execution of large analytic queries. Smaller, simpler queries, such
as those that use indexes for quick lookups, often execute faster on the MySQL DB System.

To avoid offloading inexpensive queries to HeatWave, the optimizer uses a query cost estimate
threshold value. Only queries that exceed the threshold value on the MySQL DB System are
considered for offload.

The query cost threshold unit value is the same unit value used by the MySQL optimizer for query
cost estimates. The threshold is 100000.00000. The ratio between a query cost estimate value and
the actual time required to execute a query depends on the type of query, the type of hardware,
and MySQL DB System configuration.

To determine the cost of a query on the MySQL DB System:
1. Disable use_secondary_engi ne to force MySQL DB System execution.
2. Run the query using EXPLAI N.

3. Querythe Last _query_cost status variable. If the value is less than 100000.00000, the
guery cannot be offloaded.

< Solution C: The table you are querying is not loaded. You can check the load status of a table in
HeatWave by querying LOAD STATUS data from HeatWave Performance Schema tables. For
example:

nysqgl > USE perfornmance_schens;
nysqgl > SELECT NAME, LOAD STATUS FROM rpd_t abl es, rpd_table_id
VWHERE rpd_tables.|D = rpd_table_id.|D;

| LOAD_STATUS [
e LR e T +
| tpch. supplier | AVAI L_RPDGSTABSTATE |
| tpch. partsupp | AVAI L_RPDGSTABSTATE |
| tpch.orders | AVAI L_RPDGSTABSTATE |
| tpch.lineitem | AVAI L_RPDGSTABSTATE |
| tpch. cust oner | AVAI L_RPDGSTABSTATE |
| tpch.nation | AVAI L_RPDGSTABSTATE |
| tpch.region | AVAI L_RPDGSTABSTATE |
| tpch. part | AVAI L_RPDGSTABSTATE |

For information about load statuses, see Section 11.10.4, “The rpd_tables Table”.

Alternatively, run the following statement:

nysql > ALTER TABLE tbl name SECONDARY_LOAD;

The following error is reported if the table is already loaded:

ERROR 13331 (HY000): Table is already |oaded.

* Solution D: The HeatWave cluster has failed. To determine the status of the HeatWave cluster, run
the following statement:

nmysql > SHOW GLOBAL STATUS LI KE ' rapi d_pl ugi n_boot st rapped' ;
ffoccocooooooooooocoocssooooooooooooo ffocscocooooooo +

59


https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Last_query_cost

| Vari abl e_name | Val ue |

See for Section 11.7, “System Variables” for r api d_pl ugi n_boot st r apped status values.

If the HeatWave cluster has failed, restart it and reload your data. For restart instructions, refer to
the MySQL Database Service User Guide.

» Problem: You cannot alter the table definition to exclude a column, define a string column encoding,

or define data placement keys.

Solution: Column attributes must be defined before or at the same that you define a secondary
engine for a table. Defining a column attribute is not possible after a table is defined with a secondary
engine, as DDL operations are not permitted on tables defined with a secondary engine. If you

need to perform a DDL operation on a table that is defined with a secondary engine, remove the
SECONDARY_ENG NE option first:

mysql > ALTER TABLE orders SECONDARY_ENG NE NULL;

Problem: You have encountered an out-of-memory error when executing a query.

Solution: HeatWave optimizes for network usage rather than memory. If you encounter out of
memory errors when running a query, try running the query with the M N_VEM CONSUVPTI ON
strategy by setting r api d_execut i on_strat egy prior to executing the query:

SET SESSI ON rapi d_execution_strategy = M N_VEM CONSUMPTI ON;

Also consider checking the size of your data by performing a node count estimate. If your data
has grown substantially, you may require additional HeatWave nodes. For node count estimate
instructions, refer to the MySQL Database Service User Guide.

Avoid or rewrite queries that produce a Cartesian product. For more information, see Running
Queries.

Problem: A table load operation fails with “ERROR HYO0O0O: Error while running parallel scan.”

Solution: TEXT-type values larger than 8000 bytes are rejected during SECONDARY _LOAD operations.
Reduce the size of TEXT-type values to less than 8000 bytes or exclude the column before loading
the table. See Section 3.2, “Excluding Table Columns”.

Problem: Change propagation fails with the following error: “Blob/text value of n bytes was
encountered during change propagation but RAPID supports text values only up to 8000 bytes.”

Solution: TEXT-type values larger than 8000 bytes are rejected during change propagation. Reduce
the size of TEXT-type values to less than 8000 bytes. Should you encounter this error, check the
change propagation status for the affected table. If change propagation is disabled, reload the table.
See Section 4.2, “Change Propagation”.

Problem: A warning was encountered when running Auto Parallel Load.

Solution: When Auto Parallel Load encounters an issue that produces a warning, it automatically
switches to dr yr un mode to prevent further problems. In this case, the load statements generated
by the Auto Parallel Load utility can still be obtained using the SQL statement provided in utility's
output, but those load statements should be avoided or used with caution, as they may be
problematic.

« If a warning message indicates that the HeatWave cluster or service is not active or online, this
means that the load cannot start because a HeatWave cluster is not attached to the MySQL
DB System or is not active. In this case, provision and enable a HeatWave cluster and run Auto
Parallel Load again.

60


https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://docs.cloud.oracle.com/en-us/iaas/mysql-database/index.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

 If a warning message indicates that MySQL host memory is insufficient to load all of the tables,
the estimated dictionary size for dictionary-encoded columns may be too large for MySQL host
memory. Try changing column encodings to VARLEN to free space in MySQL host memory.

« If a warning message indicates that HeatWave cluster memory is insufficient to load all of the
tables, the estimated table size is too large for HeatWave cluster memory. Try excluding certain
schemas or tables from the load operation or increase the size of the cluster.

 If a warning message indicates that a concurrent table load is in progress, this means that another
client session is currently loading tables into HeatWave. While the concurrent load operation is
in progress, the accuracy of Auto Parallel Load estimates cannot be guaranteed. Wait until the
concurrent load operation finishes before running Auto Parallel Load.

Problem: When attempting to retrieve generated Auto Parallel Load or Advisor DDL statements, an
error message indicates that the heat wave _advi sor _report or heat wave | oad report table
does not exist. For example:

nysql > SELECT | og->>"$.sql" AS "SQ Script" FROM sys. heatwave_advi sor _report
WHERE type = "sqgl" ORDER BY id;
ERROR 1146 (42S02): Tabl e 'sys. heatwave_advi sor_report' doesn't exist

nysql > SELECT | og->>"$.sql" AS "SQ Script" FROM sys. heatwave_| oad_report
WHERE type = "sgl" ORDER BY id;
ERROR 1146 (42S02): Table 'sys. heatwave | oad _report’' doesn't exi st

Solution: This error can occur when querying a report table from a different session. Query the
report table using the same session that issued the Auto Parallel Load or Advisor CALL statement.
This error also occurs if the session used to call Auto Parallel Load or Advisor has timed out or was
terminated. In this case, run Auto Load or Advisor again before querying the report table.

61



62



Chapter 11 Reference

Table of Contents

T8 o oo 1 (=T I B = = W 1Y o1 63
11.2 Supported FUNCLIONS aNd OPEIAtOrS .....c.uuiiiiiieiiii e et e e e e e e e e e e e e e et e e e ean s 64
11.2.1 Aggregate FUNCLIONS ......cocueiiii e e e e e e e e e e e e et e e e e et e e aaeeeanas 64
2 N 1 0= o @ o T=T = (o] = 65
11.2.3 Cast FUNCLIONS aNd OPEIAtOrS ......cuuuiieiieeiieeei et e e e eei s e et e e et e et e eeaeaetaeeanaeeanaens 65
11.2.4 Comparison FUNCtions and OPErAtOrS .........ccvuuuieeruieeiieeiiieeetneeeineeeeeeeaaeeainaeennaaeenaaes 65
11.2.5 Control Flow FUNCctions and OPErators .........cccuuieernieiinieeiieeeine e e eeieeeaeeeaaeeenneeeenaes 66
11.2.6 Date and Time FUNCLIONS .......iiiiiiiieiiiii et e e e et e e e eae s 66
2 A e To (o= I @ 0 1= - o] £ 68
11.2.8 Mathematical FUNCHONS .........iiiiiiiiei e e e 68
11.2.9 String FUNCtioNs and OPEIatOrS ..........cccvuuieiinieiii e e e e e e e e e e eeanns 69
11.2.10 WINAOW FUNCHONS ...eitiiieiiiiiiee ettt e et e e et e e e et e e e eaa e e eeennns 70
B ST o) oo 1 (=T BT 1/ o T [P 71
11.4 String Column ENcoding REFEIENCE ......cvviiiiiiiii e e e 71
11.4.1 Variable-length ENCOTING ....cvvniiiiiieii et e e e e e 71
2 o T o 1o T o 2 = o o 1] o P 73
11.5 Metadata QUETIES ...uiiuiieiiieiieee ettt e et e e e e e e e et e e e et e et e e e et e et e et e et e e st e eaaeeteereeens 73
IO S I 11 = o] SO 77
11.7 SYStEM VANADIES ......ieieiii e 82
11.8 Secondary ENgiNe Variables ..........ooiiiiiiiiiiiii e 84
11.9 StatuS VariabIes ..... oo 86
11.10 Performance SChema TabIES ........uiiiiiii e 87
11.10.1 The rpd_exec_stats Table ........ccoouiiiiiiii e 87
11.10.2 The rpd_NOAES TabIE ...c.uuiiiii e e e e e e e e e e eanees 87
11.10.3 The rpd_table _id Table ......coouiiriiie e e e 88
11.10.4 The rpd_tables Table .........ooviiiiii e e e e aans 89
11.10.5 The rpd_column_id Table ......coouiiiiiii e e e e e 20
11.10.6 The rpd_columns Table .........oooeniiiii e 20
11.10.7 The rpd_query_stats Table ........cocouiiiiiii e 91
11.11 Generating tPCh SAMPIE DAtA .. .cvuuiiiiiiii e e e e 91

11.1 Supported Data Types

HeatWave supports the following data types. Columns with unsupported data types must be excluded
(defined as NOT SECONDARY) before loading a table. See Section 3.2, “Excluding Table Columns”.

» Numeric data types:
* BIG NT
* Bl NARY
» BOCL
e DECI MAL
» DOUBLE
e FLOAT

« I NT

I NTEGER

63


https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Supported Functions and Operators

* MVEDI UM NT
e SMALLI NT
o TI NYI NT
» Date and time data types:

* DATE

DATETI ME

 TI ME

TI MESTAMP

* YEAR

Temporal types are supported only with the default strict SQL mode. See Strict SQL Mode.
» String data types:

* CHAR

* VARCHAR

e TEXT-types including TEXT, TI NYTEXT, MEDI UMTEXT, and LONGTEXT.
« ENUM

For ENUMIlimitations, see Section 11.6, “Limitations”.

11.2 Supported Functions and Operators

This section describes functions and operators supported by HeatWave.

11.2.1 Aggregate Functions

The following table shows supported aggregate functions. The VARLEN Support column identifies
functions that support variable-length encoded string columns. See Section 3.3, “Encoding String
Columns”.

Table 11.1 Aggregate (GROUP BY) Functions

Name VARLEN Support |Description

AVE) Return the average value of the argument
COUNT() Yes Return a count of the number of rows returned
COUNT( DI STI NCT) Return the count of a number of different values
MAX() Yes Return the maximum value

M N() Yes Return the minimum value

STD() Return the population standard deviation
STDDEV() Return the population standard deviation
STDDEV_POP() Return the population standard deviation
STDDEV_SAMP() Return the sample standard deviation

SUM ) Return the sum

VAR_POP() Return the population standard variance

64



https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sql-mode-strict
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_avg
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_max
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_std
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev-pop
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev-samp
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_var-pop

Arithmetic Operators

Name VARLEN Support |Description
VAR _SAMP() Return the sample variance
VARI ANCE( ) Return the population standard variance

11.2.2 Arithmetic Operators

The following table shows supported arithmetic operators. Arithmetic operators are not supported with

variable-length encoded string columns. See Section 3.3, “Encoding String Columns”.

Table 11.2 Arithmetic Operators

Name Description

D Vv Integer division

/ Division operator

- Minus operator

% MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

11.2.3 Cast Functions and Operators

The following operations are supported with the CAST() function.

« CAST() to DECI MAL.

« CAST() to YEAR

e CAST() of VARLEN DATE, DATETI VE, Tl ME, and YEAR column values to DOUBLE.

» CAST() of VARLEN DECI MAL and DOUBLE column values to temporal types such as DATE,

DATETI MVE, Tl ME, and YEAR.

o CAST() of TI ME, DATETI ME, TI MESTAMP, and DATE values to REAL, Tl MVE, DATETI Mg, DATE, and

YEAR.

e CAST() of values from DATETI ME, TI MESTAMP, DATE, and TI ME types to DOUBLE.

o CAST() of temporal types to VARCHAR.

e CAST() of DECI MAL and | NTEGER types to DECI MAL. For example:

CAST(cl AS DECI MAL(5, 2))

e CAST() of | NTECER values to SI GNED and UNSI GNED.

e CAST() of ENUMcolumns to CHAR, DECI MAL, FLOAT, and to SI GNED and UNSI GNED numeric

values. CAST() operates on the ENUMi

ndex rather than the ENUMvalues.

o CAST() of FLOAT and DOUBLE values to DECI MVAL.

11.2.4 Comparison Functions and Operators

The following table shows supported comparison functions and operators. The VARLEN Support
column identifies functions and operators that support variable-length encoded string columns. See

Section 3.3, “Encoding String Columns”.

65



https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_var-samp
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_variance
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_div
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_divide
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_minus
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_mod
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_plus
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_times
https://dev.mysql.com/doc/refman/8.0/en/arithmetic-functions.html#operator_unary-minus
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html

Control Flow Functions and Operators

Table 11.3 Comparison Functions and Operators

Name VARLEN Support |Description

BETWVEEN . . . Yes Check whether a value is within a range of values

AND . ..

COALESCE() Yes Return the first non-NULL argument. Not supported as a
JO N predicate.

= Yes Equal operator

<=> NULL-safe equal to operator

> Yes Greater than operator

>= Yes Greater than or equal operator

GREATEST() Yes Return the largest argument.

I N() Yes Check whether a value is within a set of values

I'S Test a value against a boolean

I S NOT Test a value against a boolean

'S NOT NULL Yes NOT NULL value test

I'S NULL Yes NULL value test

I SNULL() Test whether the argument is NULL

LEAST() Yes Return the smallest argument.

< Yes Less than operator

<= Yes Less than or equal operator

LI KE Yes Simple pattern matching

NOT Yes Check whether a value is not within a range of values

BETWEEN . . .

AND . ..

= <> Yes Not equal operator

NOT | N() Yes Check whether a value is not within a set of values

NOT LI KE Yes Negation of simple pattern matching

STRCMP() Yes Compare two strings.

11.2.5 Control Flow Functions and Operators

The following table shows supported control flow operators. The VARLEN Support column identifies
functions and operators that support variable-length encoded string columns. See Section 3.3,
“Encoding String Columns”.

Table 11.4 Control Flow Functions and Operators

Name VARLEN Support |Description

CASE Yes Case operator

I F() Yes If/else construct

I FNULL() Yes Null if/else construct

NULLI F() Yes Return NULL if exprl = expr2

11.2.6 Date and Time Functions

The following table shows supported date and time functions. The VARLEN Support column identifies
functions that support variable-length encoded string columns. See Section 3.3, “Encoding String
Columns”.

66


https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_between
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_between
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_coalesce
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_equal-to
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_greatest
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_in
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is-not
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is-not-null
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is-null
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_isnull
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_least
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-between
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-between
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-between
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-in
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_not-like
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#function_strcmp
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#operator_case
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#function_if
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#function_ifnull
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#function_nullif

Date and Time Functions

Table 11.5 Date and Time Functions

Name VARLEN Support |Description

ADDDATE( ) Add time values (intervals) to a date value

ADDTI ME() Yes Add time

CURDATE() Return the current date

CURRENT _DATE() , Synonyms for CURDATE( )

CURRENT_DATE

CURRENT _TI MVE() , Synonyms for CURTI ME()

CURRENT_TI ME

CURRENT_TI MESTAMP() , Synonyms for NOW( )

CURRENT_TI MESTAWVP

CURTI ME() Return the current time

DATE() Yes Extract the date part of a date or datetime
expression

DATE_ADD() Yes Add time values (intervals) to a date value

DATE_FORMAT() Yes Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDI FF() Subtract two dates

DAY() Yes Synonym for DAYOFMONTH( )

DAYNAME( ) Yes Return the name of the weekday

DAYOFMONTH( ) Yes Return the day of the month (0-31)

DAYORWEEK( ) Return the weekday index of the argument

DAYOFYEAR() Yes Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM _UNI XTI ME() Format Unix timestamp as a date

HOUR() Yes Extract the hour

LOCALTI ME(), LOCALTI ME Synonym for NOW( )

LOCALTI MESTAMP, Synonym for NOW( )

LOCALTI MESTAMP( )

MAKEDATE( ) Create a date from the year and day of year.
Supports FLOAT, DOUBLE, | NTEGER, and YEAR
type values.

M CROSECOND( ) Yes Return the microseconds from argument

M NUTE() Yes Return the minute from the argument

MONTH( ) Yes Return the month from the date passed

MONTHNAME( ) Yes Return the name of the month

NOW( ) Return the current date and time

QUARTER() Yes Return the quarter from a date argument

SECOND( ) Return the second (0-59)

STR TO DATE() Yes Convert a string to a date

SUBTI ME() Yes Subtract times

T ME() Yes Extract the time portion of the expression passed

TI ME_FORVAT() Yes Format as time.

TI ME_TO SEC()

Return the argument converted to seconds

67


https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_adddate
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_addtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_curdate
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-time
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_curtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-add
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-sub
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_datediff
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_day
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayofmonth
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayname
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayofmonth
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayofweek
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayofyear
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_extract
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_from-unixtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_hour
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_localtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_localtimestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_makedate
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_microsecond
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_minute
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_monthname
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_quarter
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_second
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_str-to-date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_subtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_time-to-sec

Logical Operators

11.2.7 Logical Operators

Name VARLEN Support |Description

TI MESTAMP() Yes With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

TI MESTAMPDI FF() Yes Subtract an interval from a datetime expression

TO DAYS() Yes Return the date argument converted to days

TO_SECONDS( ) Yes Return the date or datetime argument converted
to seconds since Year O

UNI X_TI MESTAMP() Return a Unix timestamp

VEEK( ) Yes Return the week number. Restrictions apply. See
Section 11.6, “Limitations”

VEEKDAY( ) Return the weekday index

WEEKOFYEAR( ) Return the calendar week of the date (1-53)

YEAR() Yes Return the year

YEARVEEK( ) Return the year and week

The following table shows supported logical operators.

Table 11.6 Logical Operators

Name Description
AND, && Logical AND
NOT, ! Negates value
[1,0R Logical OR
XOR Logical XOR

11.2.8 Mathematical Functions

The following table shows supported mathematical functions. Mathematical functions are not supported
with variable-length or dictionary-encoded columns.

Table 11.7 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASI N() Return the arc sine

ATAN() Return the arc tangent

CEl L() Return the smallest integer value not less than the
argument. The function is not applied to Bl G NT values.
The input value is returned. CEl L() is a synonym for
CEl LI NQ) .

CEl LI N&) Return the smallest integer value not less than the
argument. The function is not applied to Bl G NT values.
The input value is returned. CEl LI N&) is a synonym for
CEI L().

COos() Return the cosine

COT() Return the cotangent

68



https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_timestampdiff
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_to-days
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_to-seconds
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_week
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_weekday
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_weekofyear
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_year
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_yearweek
https://dev.mysql.com/doc/refman/8.0/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/8.0/en/logical-operators.html#operator_not
https://dev.mysql.com/doc/refman/8.0/en/logical-operators.html#operator_or
https://dev.mysql.com/doc/refman/8.0/en/logical-operators.html#operator_xor
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_abs
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_acos
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_asin
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_atan
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceil
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceil
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceiling
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceiling
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceiling
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ceil
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_cos
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_cot

String Functions and Operators

Name Description

DEGREES( ) Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument. The function is not applied to Bl G NT values. The
input value is returned.

LN() Return the natural logarithm of the argument

LOEH ) Return the natural logarithm of the first argument

LOGLO() Return the base-10 logarithm of the argument

MOD( ) Return the remainder

RADI ANS() Return argument converted to radians

ROUND( ) Round the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

11.2.9 String Functions and Operators

The following table shows supported string functions and operators. With the exception of the
FORNVAT( ) function, string functions and operators described in the following table are supported with
variable-length encoded columns. Dictionary encoded columns are not supported.

Table 11.8 String Functions and Operators

Name Description

ASCI I () Return numeric value of left-most character

Bl T_LENGTH() Return length of argument in bits

CHAR_LENGTH() Return number of characters in argument

CONCAT() Return concatenated string

CONCAT_W5() Return concatenated with separator

FIND_I N_SET() Index (position) of first argument within second argument
FORNMAT() Return a number formatted to specified number of decimal

places. Does not support variable-length-encoded columns.

FROM BASE64()

Decode base64 encoded string and return result

GREATEST() Return the largest argument. Not supported with temporal
columns.

HEX() Hexadecimal representation of decimal or string value

| NSERT() Return the index of the first occurrence of substring

I NSTR() Return the index of the first occurrence of substring

LEAST() Return the smallest argument. Not supported with temporal
columns.

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LI KE Simple pattern matching

LOCATE() Return the position of the first occurrence of substring

69



https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_degrees
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_exp
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_floor
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_ln
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_log
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_log10
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_mod
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_radians
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_round
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_sin
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_sqrt
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_tan
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_truncate
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_ascii
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_bit-length
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_char-length
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat-ws
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_find-in-set
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_format
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_from-base64
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_greatest
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_hex
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_insert
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_instr
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_least
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_left
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_length
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_locate

Window Functions

Name Description

LOVER() Return the argument in lowercase

LPAIX ) Return the string argument, left-padded with the specified
string

LTRI M) Remove leading spaces

NOT LI KE Negation of simple pattern matching

OCTET_LENGTH() Synonym for LENGTH( )

ORI ) Return character code for leftmost character of the argument

PCSI T1 ON() Synonym for LOCATE( )

REPEAT() Repeat a string the specified number of times

QUOTE() Escape the argument for use in an SQL statement

REGEXP Whether string matches regular expression

REGEXP_LI KE()

Whether string matches regular expression

REGEXP_REPLACE()

Replace substrings matching regular expression. Supports
up to three arguments.

REGEXP_SUBSTR()

Return substring matching regular expression. Supports up
to three arguments.

REPLACE( ) Replace occurrences of a specified string
REVERSE( ) Reverse the characters in a string

Rl GHT() Return the specified rightmost number of characters
RLI KE Whether string matches regular expression

RPALX ) Append string the specified number of times

RTRI M) Remove trailing spaces

STRCMVP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRI N& ) Return the substring as specified

SUBSTRI NG _| NDEX()

Return a substring from a string before the specified number
of occurrences of the delimiter

TO BASE64()

Return the argument converted to a base-64 string

TRI M) Remove leading and trailing spaces
UNHEX( ) Return a string containing hex representation of a number
UPPER() Convert to uppercase

11.2.10 Window Functions

This section describes HeatWave window function support. For optimal performance, window functions
in HeatWave utilize a massively parallel, partitioning-based algorithm. For general information about
window functions, see Window Functions, in the MySQL Reference Manual.

HeatWave window function support includes support for:

» W NDOWand OVER clauses in conjunction with PARTI TI ON BY, ORDER BY, and W NDOWframe
specifications.

» Nonaggregate window functions supported by MySQL Server, as described in Window Function
Descriptions

» The following aggregate functions used as window functions:

70


https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_lower
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_lpad
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_ltrim
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_not-like
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_octet-length
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_ord
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_position
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_repeat
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#function_regexp-like
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#function_regexp-replace
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#function_regexp-substr
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_replace
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_reverse
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_right
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_rpad
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_rtrim
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#function_strcmp
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_substr
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_substring
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_substring-index
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_to-base64
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_trim
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_unhex
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_upper
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html

Supported SQL Modes

COUNT()

SUM))

AVH)
* M N()

- MAX()
11.3 Supported SQL Modes

Default MySQL DB System SQL modes are supported, which include ONLY _FULL_CGROUP_BY,
STRI CT_TRANS_TABLES, NO ZERO | N_DATE, NO_ZERO DATE, ERROR_FOR DI VI SI ON_BY_ZERQ,
and NO_ENG NE_SUBSTI TUTI ON. See Server SQL Modes.

In addition, the following SQL modes are supported:
e ANSI _QUOTES
« H GH_NOT_PRECEDENCE

« | GNORE_SPACE

NO_BACKSLASH_ESCAPES

* REAL_AS FLOAT

TI ME_TRUNCATE_FRACTI ONAL

11.4 String Column Encoding Reference

HeatWave supports two string column encoding types:
» Section 11.4.1, “Variable-length Encoding”
e Section 11.4.2, “Dictionary Encoding”

String column encoding is automatically applied when tables are loaded into HeatWave. Variable-
length encoding is the default.

To use dictionary encoding, you must define the encoding type explicitly for individual string columns.
See Section 3.3, “Encoding String Columns”.

11.4.1 Variable-length Encoding

Variable-length (VARLEN) encoding has the following characteristics:

« ltis the default encoding type. No action is required to use variable-length encoding. It is applied
to string columns by default when tables are loaded with the exception of string columns defined
explicitly as dictionary-encoded columns.

« It minimizes the amount of data stored for string columns by efficiently storing variable length column
values.

« Itis more efficient than dictionary encoding with respect to storage and processing of string columns
with a high number of distinct values relative to the cardinality of the table.

* It permits more operations involving string columns to be offloaded than dictionary encoding.

71


https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_avg
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_max
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_only_full_group_by
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_strict_trans_tables
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_zero_in_date
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_zero_date
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_error_for_division_by_zero
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_engine_substitution
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_high_not_precedence
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ignore_space
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_backslash_escapes
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_real_as_float
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_time_truncate_fractional

Variable-length Encoding

« It supports all character sets and collation types supported by the MySQL DB System. User defined
character sets are not supported.

* VARLEN columns can be declared as NULL.
11.4.1.1 VARLEN Supported Expressions, Filters, Functions, and Operators
For supported functions and operators, refer to Section 11.2, “Supported Functions and Operators”.

VARLEN Supported Filters

e Column-to-column filters, excluding the <=> filter. Both columns must be VARLEN-encoded.

Column-to-column filters must use columns that are encoded with the same character set and
collation.

» Column-to-constant filters, excluding the <=> filter.

The character set and collation of the constant variable must match the character set and collation of
the constant.

VARLEN Supported Relational Operators
« GROUP BY
« JON
¢« LIMT

* ORDER BY

11.4.1.2 VARLEN Encoding Limits

e The maximum size of VARLEN-encoded columns for base tables is 8000 bytes. For example, if using
a 4-byte character set, a VARCHAR column is limited to 2000 characters (VARCHAR( 2000) ).

TEXT-type values larger than 8000 bytes are rejected by table load and change propagation
operations. Both operations fail with an error when encountering a TEXT-type value larger than 8000
bytes. (This limit is not enforced for VARLEN-encoded VARCHAR columns.)

» The maximum size of VARLEN-encoded columns for final and intermediate results generated by
HeatWave is 16382 bytes.

* When a query includes VARLEN-encoded columns, the maximum number of columns produced by
any physical operator is 128. However, the actual maximum number of columns depends on factors
such as MySQL limits, protocol limits, the total number of columns, column types, and column widths
(the string length of supported string-type columns). For example, for any physical operator, the
maximum number of 8000-byte VARLEN-encoded columns is 31 if the query only uses VARLEN-
encoded columns. The maximum number of 16382-byte VARLEN-encoded columns is 15. On the
other hand, HeatWave can only produce a maximum of 128 VARLEN-encoded columns that are 1
byte in size if the query includes only VARLEN-encoded columns. If a query includes non-VARLEN-
encoded columns, the column number limits are likely to be lower.

» Only expressions with non-boolean types are supported.
11.4.1.3 VARLEN Column Memory Requirements
» For HeatWave nodes, a VARLEN-encoded column value requires enough memory for the data plus

two bytes for length information. Internal fragmentation or headers can affect the actual amount of
memory required.

72


https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html

Dictionary Encoding

There is no memory requirement on the MySQL DB System node, apart from a small memory
footprint for metadata.

11.4.1.4 VARLEN Encoding and Performance

The presence of VARLEN-encoded VARCHAR or CHAR columns does not affect table load
performance.

Table load and change propagation operations perform more slowly on VARLEN-encoded TEXT-type
columns than on VARLEN-encoded VARCHAR columns.

There are two main differences with respect to HeatWave result processing for variable-length
encoding compared to dictionary encoding:

« A dictionary decode operation is not required, which means that fewer CPU cycles are required.

« Because VARLEN-encoded columns use a larger number of bytes than dictionary-encoded
columns, the network cost for sending results from HeatWave to the MySQL DB System is greater.

11.4.2 Dictionary Encoding

Dictionary encoding (SORTED) has the following characteristics:

Best suited to string columns with a low number of distinct values relative to the cardinality of the
table. Dictionary encoding reduces the space required for column values on the HeatWave nodes but
requires space on the MySQL DB System node for dictionaries.

Supports GROUP BY and ORDER BY operations on string columns.

Supports only a subset of the operations supported by variable-length encoding such as LI KE
with prefix expressions, and comparison with the exact same column. Dictionary-encoded columns
cannot be compared in any way with other columns or constants, or with other dictionary-encoded
columns.

Does not support JO N operations.

Does not support operations that use string operators. Queries that use string operators on
dictionary-encoded string columns are not offloaded.

Does not support LI KE predicates.
Does not support comparison with variable-length encoded columns.

The dictionaries required to decode dictionary-encoded string columns must fit in MySQL DB System
node memory. Dictionary size depends on the size of the column and the number of distinct values.
Load operations for tables with dictionary-encoded string columns that have a high number of distinct
values can fail if there is not enough available memory on the MySQL DB System node.

11.5 Metadata Queries

This section provides metadata queries that you can use to retrieve information about data, queries,
and HeatWave.

To identify table columns defined as NOT SECONDARY on the MySQL DB System, query the EXTRA
column of the | NFORMVATI ON_SCHEMA. COLUMWNS table. For example:

nysql > SELECT COLUWMN_NAME, EXTRA FROM | NFORVATI ON_SCHENMA. COLUWNS
WHERE TABLE NAME LIKE 't1' AND EXTRA LI KE ' %\NOT SECONDARY% ;

73


https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/information-schema-columns-table.html

Metadata Queries

dococococoooooooc focococococooooooooc +

You can also view columns defined as NOT SECONDARY for an individual table using SHOW CREATE
TABLE.

To identify explicitly encoded string columns in tables on the MySQL DB System, query the
COLUVN_COMVENT column of the | NFORVATI ON_SCHENMA. COLUMWNS table. For example:

nysql > SELECT COLUMN_NAME, COLUMN_COMVENT FROM | NFORVATI ON_SCHEMA. COLUMNS
VWHERE TABLE_NAME LI KE 'orders' AND COLUMN_COMMENT LI KE ' %ENCODI NG% ;

+
I
+
| O CLERK | RAPI D_COLUVN=ENCODI NG=SORTED |
| O _ORDERPRI ORI TY | RAPI D_COLUMN=ENCODI NG=SORTED |
| O ORDERSTATUS | RAPI D_COLUMN=ENCODI NG=SORTED |
| O CLERK | RAPI D_COLUVN=ENCODI NG=SORTED |
| O _ORDERPRI ORI TY | RAPI D_COLUMN=ENCODI NG=SORTED |
| O ORDERSTATUS | RAPI D_COLUMN=ENCODI NG=SORTED |

+

You can also view explicitly defined column encodings for an individual table using SHOW CREATE
TABLE.

To identify columns defined as data placement keys in tables on the MySQL DB System, query the
COLUVN_COWMVENT column of the | NFORVATI ON_SCHEMA. COLUMWNS table. For example:

nysql > SELECT COLUMN NAME, COLUMN COMVENT FROM | NFORMATI ON_SCHEMA. COLUMNS
WHERE TABLE NAME LI KE 'orders' AND COLUWN COMMENT LI KE ' %OATA PLACEMVENT KEY% ;

You can also view data placement keys for an individual table using SHOW CREATE TABLE.

To identify columns defined as data placement keys in tables that are loaded in HeatWave, query the
DATA PLACENMENT | NDEX column of the per f or mance_schemna. r pd_col umms table for columns
with a DATA_PLACEMENT_| NDEX value greater than 0, which indicates that the column is defined as
a data placement key. For example:

nysql > SELECT TABLE _NAME, COLUMN _NAME, DATA_PLACEMENT_| NDEX
FROM per f or nance_schema. rpd_col ums r1
JO N performance_schema. rpd_colum_id r2 ONrl1. COLUMN_ ID = r2.1D
WHERE r 1. TABLE | D = (SELECT | D FROM performance_schena. rpd_table_id
WHERE TABLE NAME = 'orders') AND r2. TABLE_NAME = 'orders'
AND r 1. DATA PLACEMENT_| NDEX > 0 ORDER BY r 1. DATA PLACEMENT_| NDEX;

dimccccococco= dimccccccoccccoos dimccccocccccococccooccoooe +
| TABLE_NAME | COLUWN NAME | DATA PLACEMENT | NDEX |
dimccccococco= dimccccccoccccoos dimccccocccccococccooccoooe +
| orders | O_TOTALPRI CE | 1|
| orders | O _ORDERDATE | 2 |
| orders | O_COMVENT | 3|
dimccccococco= dimccccccoccccoos dimccccocccccococccooccoooe +

For information about data placement key index values, see Section 3.4, “Defining Data Placement
Keys”.

To determine if data placement partitions were used by a JO N or GROUP BY query, you can query
the QEP_TEXT column of the per f or mance_schemna. r pd_query_st at s table to view pr epart
data. (pr epart is short for “pre-partitioning”.) The pr epart data for a GROUP BY operation contains
a single value; for example: " prepart " : #, where # represents the number of HeatWave nodes.

A value greater than 1 indicates that data placement partitions were used. The pr epart data for

a JO N operation has two values that indicate the number of HeatWave nodes; one for each JO N
branch; for example: " prepart " : [ #, #] . A value greater than 1 for a JO N branch indicates that
the JO N branch used data placement partitions. (A value of " prepart": [ 1, 1] indicates that data

74


https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-columns-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-columns-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

Metadata Queries

placement partitions were not used by either JO N branch.) pr epar t data is only generated if a
GROUP BY or JO Noperation is executed. To query QEP_TEXT pr epart data for the last executed

query:

mysql > SELECT CONCAT( '“"prepart":[', (JSON_EXTRACT(QEP_TEXT->>"$**. prepart”, "$[0][0]")),
", ", (JSON_EXTRACT( QEP_TEXT->>"$** . prepart", "$[0][1]')) , ']' )
FROM per f or mance_schema. rpd_query_stats WHERE query_id = (sel ect max(query_id)
FROM per f or mance_schena. rpd_query_stats);

| concat( '"prepart":[', (JSON_EXTRACT(QEP_TEXT->>"$**. prepart”, '$[0][0]')), |
|"," , (JSON_EXTRACT( QEP_TEXT->>"$**. prepart", "$[0][1]"')) , '1' )

* To identify tables on the MySQL DB System that are defined with a secondary engine, query the
CREATE_OPTI ONS column of the | NFORMATI ON_SCHENA. TABLES table. The CREATE _OPTI ONS
column shows the SECONDARY _ENG NE clause, if defined.

nysql > SELECT TABLE SCHEMA, TABLE NAMVE, CREATE OPTI ONS FROM | NFORVATI ON_SCHEMA. TABLES
WHERE CREATE_OPTI ONS LI KE ' %SECONDARY_ENGI NE% AND TABLE_SCHEMA LI KE 'tpch' ;

focoooooooosoos doococoooooooa S Sy +

| TABLE_SCHEMA | TABLE NAVE | CREATE OPTI ONS [

e dhecccmmoomo== e cccmocccccmmooccomooooo=< +
| tpch | custoner | SECONDARY_ENG NE="RAPI D' |
| tpch | lineitem | SECONDARY_ENG NE="RAPI D' |
| tpch | nation | SECONDARY_ENG NE="RAPI D' |
| tpch | orders | SECONDARY_ENG NE="RAPI D' |
| tpch | part | SECONDARY ENG NE="RAPI D' |
| tpch | partsupp | SECONDARY_ENG NE="RAPI D' |
| tpch | region | SECONDARY_ENG NE="RAPI D' |
| tpch | supplier | SECONDARY_ENG NE="RAPI D' |
e dhecccmmoomo== e cccmocccccmmooccomooooo=< +

You can also view create options for an individual table using SHOWV CREATE TABLE.
Note

You can use the show _create_tabl e _skip_secondary_engi ne
variable to exclude the SECONDARY ENG NE clause from SHOW

CREATE TABLE output, and from CREATE TABLE statements

dumped by the nysql dunp utility. mysql dunp also provides a - -

show- cr eat e- ski p- secondar y- engi ne option that enables the

show create_tabl e _skip_secondary_engi ne system variable for

the duration of the dump operation. It may be necessary to exclude the
SECONDARY ENG NE option from CREATE TABLE statements when creating
a dump file, as DDL operations cannot be performed on tables defined with a
secondary engine.

» The time required to load a table into HeatWave depends on data size. You can monitor load
progress by issuing the following query, which returns a percentage value indicating load progress.

nysql > SELECT VARI ABLE_VALUE
FROM per f or mance_schena. gl obal _st at us
WHERE VARI ABLE NAME = 'rapi d_| oad_progress';

fccocooooooosoooos +
| VARI ABLE_VALUE |
fccocooooooosoooos +
| 100. 000000 [
fccocooooooosoooos +

» To check the load status of a table in the HeatWave cluster, query the LOAD STATUS data from
HeatWave Performance Schema tables. For example:

nmysql > USE performance_schema;
nmysql > SELECT NAME, LQOAD STATUS FROM rpd_t abl es,rpd_table_id
WHERE rpd_tables.ID = rpd_table_id.| D AND SCHEMA NAME LI KE 't pch';

75


https://dev.mysql.com/doc/refman/8.0/en/information-schema-tables-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_show-create-skip-secondary-engine
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_show-create-skip-secondary-engine

Metadata Queries

t pch. suppl i er
t pch. part supp
t pch. orders
tpch.lineitem
t pch. cust oner
t pch. nati on

t pch. regi on

t pch. part

AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |
AVAI L_RPDGSTABSTATE |

For information about load statuses, see Section 11.10.4, “The rpd_tables Table”.

To check whether change propagation is enabled or disabled for a particular table,

query the POOL_ TYPE data from the HeatWave Performance Schema tables.

RAPI D LOAD POOL_TRANSACTI ONAL indicates that change propagation is enabled for the table.
RAPI D_LOAD POOL_SNAPSHOT indicates that change propagation is disabled.

nmysql > SELECT NAME, POOL_TYPE FROM rpd_tabl es, rpd_table_id
WHERE rpd_tables.ID = rpd_table_id.| D AND SCHEMA NAME LI KE 't pch';

dimccccccococccooo dieccccccoccccocccccoccccooocccoo +

| NAME | POOL_TYPE

dimccccccococccooo dieccccccoccccocccccoccccooocccoo +
t pch. orders | RAPI D_LOAD POOL_TRANSACTI ONAL |
t pch. regi on | RAPI D_LOAD POOL_TRANSACTI ONAL |

tpch. lineitem| RAPI D _LOAD POOL_TRANSACTI ONAL |

—
e}

o

>

.supplier | RAPI D_LOAD POOL_TRANSACTI ONAL
tpch. partsupp | RAPI D_LOAD_POOL_TRANSACTI ONAL |
t pch. part | RAPI D_LOAD POOL_TRANSACTI ONAL |
tpch. custonmer | RAPI D_LOAD POOL_TRANSACTI ONAL |
dimccccccococccooo dieccccccoccccocccccoccccooocccoo +

To check the global change propagation status, query the r api d_change_propagati on_st at us
variable:

nysql > SELECT VARI ABLE_VALUE FROM per f or mance_schena. gl obal _st at us
WHERE VARI ABLE_NAME = 'rapi d_change_propagati on_status';

fr=cccscoscoscs=== +
| VARI ABLE_VALUE |
fr=cccscoscoscs=== +
| ON |
fr=cccscoscoscs=== +

To view the number of queries offloaded to the HeatWave cluster for execution:

nmysql > SELECT VARI ABLE VALUE
FROM per f or mance_schena. gl obal _st at us
WHERE VARI ABLE_NAME = 'rapid_query_offload_count';

fr=cccscoscoscs=== +
| VAR ABLE_VALUE |
fr=cccscoscoscs=== +
| 62 |
fr=cccscoscoscs=== +

To view HeatWave query history including query start time, end time, and wait time in the scheduling
queue, as discussed in Auto Scheduling.

SELECT QUERY_I D,
CONNECTI ON_| D,
QUERY_START,
QUERY_END,
QUEUE_WAI T,
SUBTI ME(
SUBTI ME( QUERY_END, SEC TO TI ME(RPD_EXEC / 1000)),
SEC_TO_TI ME( GET_RESULT / 1000)
) AS EXEC_START
FROM (
SELECT QUERY_I D,

76



Limitations

STR_TO_DATE(
JSON_UNQUOTE(
JSON_EXTRACT( QEXEC_TEXT->>"$**. queryStartTi ne", '$[0]")
)
' or- % %dl % % 9%s. %
) AS QUERY_START,
JSON_EXTRACT( QEXEC_TEXT- >>" $** . t i meBet weenMakePushedJoi nAndRpdExec", ' $[0]')
AS QUEUE_WAI T,
STR_TO_DATE(
JSON_UNQUOTE(
JSON_EXTRACT( QEXEC_TEXT- >>" $**. quer yEndTi me", '$[0]")
)
' or- % %dl % % 9%s. %
) AS QUERY_END,
JSON_EXTRACT( QEXEC _TEXT- >>"$**. r pdExec. nsec", '$[0]') AS RPD_EXEC,
JSON_EXTRACT( QEXEC _TEXT- >>"$**. get Resul ts. msec", '$[0]') AS GET_RESULT,
JSON_EXTRACT( EXEC_TEXT->>"$** . thread", '$[0]') AS CONNECTI ON_I D
FROM per f or mance_schema. rpd_query_stats
) tnp;
The query returns the following data:
« QUERY_ID
The ID assigned to the query by HeatWave. IDs are assigned in first in first out (FIFO) order.
* CONNECTION_I D
The connection ID of the client that issued the query.
e QUERY_START
The time the query was issued.
* QUERY_END
The time the query finished executing.
« QUEUE VAI T
The amount of time the query waited in the scheduling queue.
¢ EXEC START

The time that HeatWave started executing the query.

11.6 Limitations

This section lists functionality that is not supported by HeatWave. It is not an exhaustive list with
respect to data types, functions, operators, and SQL modes. For data types, functions, operators, and
SQL modes that are supported by HeatWave, see Section 11.1, “Supported Data Types”, Section 11.2,
“Supported Functions and Operators”, and Section 11.3, “Supported SQL Modes”. If a particular

data type, function, operator, or SQL mode does not appear in those tables and lists, it should be
considered unsupported.

* Functions:
 Bit functions and operators.

e CAST() AS SI GNED and UNSI GNED on temporal values. For supported CAST() operations, see
Section 11.2.3, “Cast Functions and Operators”.

e COALESCE() as aJO N predicate.

¢ Full-text search functions.

77


https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_coalesce

Limitations

XML, JSON, Spatial, and other domain specific functions.

» Encryption and compression functions.

Loadable Functions.

GREATEST() and LEAST() functions with temporal data type columns.

« A CASE control flow operator or | F() function that contains columns not within an aggregation
function and not part of the GROUP BY key.

Date functions on the YEAR type.

String functions and operators on columns that are not VARLEN-encoded. See Section 3.3,
“Encoding String Columns”.

< In some cases, comparison functions with a mixture of string and non-string arguments due to
HeatWave returning incorrect results.

The AVQE ) aggregate function with enumeration and temporal data types.

The following aggregate functions with enumeration, string, and temporal data types:
* STIX)

 STDDEV()

e STDDEV_POP()

« STDDEV_SAMP()

* SUM)

« VAR POP()

« VAR SAMP()

 VARI ANCE()

With the exception of SUM ) , the same aggregate functions within a semi-join predicate due to
the undeterministic nature of floating-point results and potential mismatches. For example, the
following use is not supported:

SELECT FROM A WHERE al | N ( SELECT VAR POP(bl) FROM B);

The same aggregate functions with numeric data types other than those supported by HeatWave.
See Section 11.1, “Supported Data Types”.

« WEEK( dat e[, node]) does not support the def aul t _week f or mat system variable. To use
the node argument, the node value must be defined explicitly.

» Data types:
< Spatial data types. See Spatial Data Types.

« Decimal values with a precision greater than 18 in expression operations, with the exception of
ABS() expression operations.

« ENUMtype columns as part of a UNI ON or non-top level UNI ON ALL SELECT list or as a JO Nkey,
except when used inside a supported expression.

* ENUMtype support is limited to:



https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_greatest
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#function_least
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#operator_case
https://dev.mysql.com/doc/refman/8.0/en/flow-control-functions.html#function_if
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_avg
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_std
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev-pop
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_stddev-samp
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_var-pop
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_var-samp
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_variance
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_week
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_week_format
https://dev.mysql.com/doc/refman/8.0/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_abs
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html

Limitations

« Comparison with string or numeric constants, and other numeric, non-temporal expressions
(numeric columns, constants, and functions with a numeric result).

« Comparison operators (<, <=, <=>, =, >=, > and BETWEEN) with numeric arguments.
« Comparison operators (=, <=>, and <>) with string constants.
« enumcol IS [NOT] {NULL| TRUE| FALSE}

e The | N() function in combination with numeric arguments (constants, functions, or columns)
and string constants.

e COUNT(), SUM ), and AVE ) aggregation functions on ENUMcolumns. The functions operate
on the numeric index value, not the associated string value.

e CAST(enum col AS {[NJCHAR [ (X)]]| SI GNED| UNSI GNED| FLOAT| DOUBLE| DECI MAL
[ (M N)]}). The numeric index value is cast, not the associated string value.

e« CAST(enum col ) AS {[N] CHAR} is supported only in the SELECT list and when it is not
nested in another expression.

» Character sets and collations:
e The gb18030_chi nese_ci character set and collation.
» Variables:

e tine_zone andti nest anp variable settings are not passed to HeatWave when queries are
offloaded.

e Thesql select |imt asaglobal variable. It is only supported as a session variable.



https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_in
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_avg
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_timestamp
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_select_limit

Limitations

« JO Ntypes:

Antijoins, with the exception of supported | Nand EXI STS antijoin variants listed below.

Implicit casting (query cast injection) of the YEAR type to other types. It can only be joined with
itself.

Implicit casting (query cast injection) of the VARCHAR type to types other than DATETI ME,
TI MESTAMP, and DATE.

Temporal to numeric implicit casting (query cast injection). Therefore, temporal types cannot be
joined with numeric types.

EXI STS semijoins and antijoins are supported in the following variants only:

e SELECT ... WHERE ... EXISTS (...)

e SELECT ... WHERE ... EXISTS (...) IS TRUE

e SELECT ... WHERE ... EXISTS (...) IS NOT FALSE

e SELECT ... WHERE ... NOT EXISTS (...) IS FALSE

« SELECT ... WHERE ... NOT EXISTS (...) IS NOT TRUE

Depending on transformations and optimizations performed by MySQL, other variants of EXI STS
semijoins may or may not be offloaded.

I N semijoins and antijoins other than the following variants:

e SELECT ... WHERE ... IN (...)
« SELECT ... WHERE ... IN(...) IS TRUE
« SELECT ... WHERE ... NOT IN(...) IS FALSE

Depending on transformations and optimizations performed by MySQL, other variants of | N
semijoins may or may not be offloaded.

A query with a supported semijoin or antijoin condition may be rejected for offload due to how
MySQL optimizes and transforms the query.

Semijoin and antijoin queries use the best plan found after evaluating the first 10000 possible
plans, or after investigating 10000 possible plans since the last valid plan. The plan evaluation
count is reset to zero after each derived table, after an outer query, and after each subquery. The
plan evaluation limit is required because the DUPSWEEDOUT join strategy, which is not supported
by HeatWave, may be used as a fallback strategy by MySQL during join order optimization

(for related information, see FIRSTMATCH). The plan evaluation limit prevents too much time
being spent evaluating plans in cases where MySQL generates numerous plans that use the
DUPSWEEDQOUT semijoin strategy.

Outer join queries without an equality condition defined for the two tables.

 Index and optimizer hints. See Index Hints, and Optimizer Hints.

Semijoin strategies other than FI RSTMATCH. MySQL attempts to enforce the FI RSTMVATCH strategy
and ignores all other semijoin strategies specified explicitly as subquery optimizer hints. However,
MySQL may still select the DUPSWEEDOUT semijoin strategy during JO N order optimization,

80


https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Limitations

even if an equivalent plan could be offered using the FI RSTMATCH strategy. (A plan that uses the
DUPSWEEDOUT semijoin strategy would produce incorrect results if executed on HeatWave.)

For general information about subquery optimizer hints, see Subquery Optimizer Hints.
SQL modes:

¢ Most non-default MySQL DB System SQL modes. For a list of supported SQL modes, see
Section 11.3, “Supported SQL Modes”.

Other:
e The W TH ROLLUP modifier in GROUP BY clauses in the following cases:
 In queries that contain distinct aggregations.
 In queries that contain duplicate GROUP BY keys.
e COUNT( NULL) in cases where it is used as an input argument for non-aggregate operators.

¢ UNI ON ALL queries with an ORDER BY or LI M T clause, between different column types,
between dictionary-encoded columns, or between ENUMcolumns.

UNI ON queries with or without an ORDER BY or LI M T clause, between different column types,
between dictionary-encoded columns, or between ENUMcolumns.

UNI ON and UNI ON ALL subqueries with or without an ORDER BY or LI M T clause, between

different column types, between dictionary-encoded columns, between ENUMcolumns, or specified

inan | Nor EXI STS clause.

e Comparison predicates, GROUP BY, JO N, and so on, if the key column is DOUBLE PRECI SI ON.

» Type conversion on relational data. For example, SELECT CONCAT(2, L_COWMMENT) from
LI NEI TEM is not supported.

* Queries with an impossible WHERE condition (queries known to have an empty result set). For
example, the following query is not offloaded:

SELECT AVGE(cl) AS value FROMt1l WHERE cl1 |'S NULL;

* Querying of YEAR type data using expressions and other functions. For example, the following
queries are not offloaded:

SELECT YEAR(d) + 1 FROM t1;

81


https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-subquery
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/year.html

System Variables

SELECT YEAR(d) + cl FROMt1; # where cl is an integer columm
String operations involving columns with different collations.
Explicit partition selection. See Partition Selection.

Primary keys with column prefixes.

Virtual generated columns.

Queries that are executed as part of a trigger.

Queries that call a stored program.

Queries that are executed as part of a stored program.

Queries that are part of a multi-query transaction.

Views.

CREATE VIEW ... AS SELECT queries. Setting use_secondar y_engi ne=FORCED does
not cause the statement to fail with an error. The statement is executed on the MySQL Database
Service instance regardless of the use_secondar y_engi ne setting.

Partial query offload for regular SELECT queries. If all elements of the query are supported, the
entire query is offloaded; otherwise, the query is executed on the MySQL DB System by default.
(HeatWave supports CREATE TABLE ... SELECT and | NSERT ... SELECT statements
where only the SELECT portion of the operation is offloaded to HeatWave. See Chapter 6, Running
Queries.)

SET timezone = tinmezone, with the ti nezone value specified as a an offset from UTC in
the form of [ Hl H: MMand prefixed with a + or - is supported only by the UNI X_TI MESTAMP() and
FROM_UNI XTI ME() functions. Named time zones are not supported. For information about time
zone offsets, see MySQL Server Time Zone Support.

Row widths in intermediate and final query results that exceed 4MB in size. A query that exceeds
this row width limit is not offloaded to HeatWave for processing.

11.7 System Variables

HeatWave maintains several variables that configure its operation. Variables are set when the
HeatWave cluster is enabled. Most HeatWave variable settings are managed by OCI and cannot be

modified directly.

e rapi d_bootstrap

Command-Line Format

--rapi d-boot strap[ ={ OFF| ON| | DLE} ]

Introduced

8.0.17

System Variable

rapi d_boot strap

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Enumeration
Default Value OFF
Valid Values | DLE

ON

82



https://dev.mysql.com/doc/refman/8.0/en/partitioning-selection.html
https://dev.mysql.com/doc/refman/8.0/en/create-view.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_from-unixtime
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

System Variables

The setting for this variable is managed by OCI and cannot be modified directly. Defines the
HeatWave cluster bootstrap state. States include:

* OFF

The HeatWave cluster is not bootstrapped (not initialized).
e | DLE

The HeatWave cluster is idle (stopped).
* ON

The HeatWave cluster is bootstrapped (started).

e rapi d_dnem si ze

Command-Line Format --rapi d-dnem si ze=#
Introduced 8.0.17

System Variable rapi d_dnem si ze
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 2048

Minimum Value 512

Maximum Value 2097152

The setting for this variable is managed by OCI and cannot be modified directly. Specifies the
amount of DMEM available on each core of each node, in bytes.

e rapi d_nenory_heap_si ze

Command-Line Format --rapi d- menory- heap- si ze=#
Introduced 8.0.17

System Variable rapi d_menory_heap_si ze
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value unlimted

Minimum Value 67108864

Maximum Value unlimted

The setting for this variable is managed by OCI and cannot be modified directly. Defines the amount
of memory available for the HeatWave plugin, in bytes. Ensures that HeatWave does not use more
memory than is allocated to it.

83



https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Secondary Engine Variables

e rapi d_execution_strategy

Command-Line Format --
rapi d_execution_strategy[ ={M N_RUNTI ME|
M N_NVEM_CONSUMPTI ON} ]
Introduced 8.0.22
System Variable rapi d_execution_strategy
Scope Session
Dynamic No
SET_VARHint Applies No
Type Enumeration
Default Value M N_RUNTI MVE
Valid Values M N_RUNTI ME
M N_MEM CONSUMPTI ON

Specifies the query execution strategy to use. Minimum runtime (M N_RUNTI ME) or minimum
memory consumption (M N_NVEM CONSUMPTI ON).

HeatWave optimizes for network usage rather than memory. If you encounter out of memory errors
when running a query, try running the query with the M N_MEM_CONSUVPTI ON strategy by setting by
setting r api d_executi on_strat egy prior to executing the query:

SET SESSI ON rapi d_execution_strategy = M N_MEM CONSUMPTI ON;
See Chapter 10, Troubleshooting.

e rapi d_stats_cache_nmax_entries

Command-Line Format --rapi d-stats-cache-nmax-entri es=#
Introduced 8.0.25

System Variable rapi d_stats _cache nax_entries
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 1048576

The setting for this variable is managed by OCI and cannot be modified directly. Specifies the
maximum number of entries in the statistics cache.

The number of entries permitted in the statistics cache by default is 65536, which is enough to store
statistics for 4000 to 5000 unique queries of medium complexity.

For more information, see Auto Query Plan Improvement.
11.8 Secondary Engine Variables

This section describes MySQL DB System variables intended for use with HeatWave.

e use_secondary_engi ne

84


https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Secondary Engine Variables

Introduced 8.0.13
System Variable use_secondary_engi ne
Scope Session
Dynamic Yes
SET_VAR Hint Applies Yes
Type Enumeration
Default Value ON
Valid Values OFF
ON
FORCED

Whether to execute queries using the secondary engine. These values are permitted:

using the secondary engine (RAPID) is disabled.

OFF: Queries execute using the primary storage (InnoDB) on the MySQL DB System. Execution

ON: Queries execute using the secondary engine (RAPID) when conditions warrant, falling back

to the primary storage engine (InnoDB) otherwise. In the case of fallback to the primary engine,
whenever that occurs during statement processing, the attempt to use the secondary engine is
abandoned and execution is attempted using the primary engine.

FORCED: Queries always execute using the seco

ndary engine (RAPID) or fall if that is not possible.

Under this mode, a query returns an error if it cannot be executed using the secondary engine,
regardless of whether the tables that are accessed have a secondary engine defined.

show create_tabl e_ski p_secondary_engi ne

Command-Line Format

--show creat e-t abl e- ski p- secondary-
engi ne[ ={ OFF| ON} ]

Introduced 8.0.18

System Variable show create_tabl e_skip_secondary_engi
Scope Session

Dynamic Yes

SET_VARHint Applies Yes

Type Boolean

Default Value OFF

Whether to exclude the SECONDARY ENG NE clause from SHON CREATE TABLE output, and from

CREATE TABLE statements dumped by the nysql

nysql dunp provides the - - show cr eat e- ski p-

dunp utility.

secondar y- engi ne option. When specified, it

enables the show _creat e _tabl e_ski p_secondary_engi ne system variable for the duration of

the dump operation.

Attempting a mysql dunp operation with the - - show- cr eat e- ski p- secondar y-
engi ne option on a MySQL Server release prior to MySQL 8.0.18 that does not support the
show create_ tabl e skip_secondary_engi ne variable causes an error.

85


https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_show-create-skip-secondary-engine
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_show-create-skip-secondary-engine
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_show-create-skip-secondary-engine

Status Variables

11.9 Status Variables

Several status variables provide operational information about HeatWave. You can retrieve status data
using SHOW STATUS syntax. For example:

nysql > SHOW STATUS LI KE ' r api d% ;

dieccocccooccccoosccoosoccooocooooo dmocccosocooo +
Vari abl e_nane | Val ue |
dieccocccooccccoosccoosoccooocooooo dmocccosocooo +
hw_dat a_scanned 0
rapi d_change_propagati on_st at us ON
rapi d_cl uster_status ON
rapi d_core_count 64
rapi d_heap_usage 58720397

[ [
[ [
[ [
[ [
[ [
rapi d_| oad_progress | 100. 000000
[ [
[ [
[ [
[ [

rapi d_pl ugi n_boot st r apped YES

rapi d_prel oad_st ats_st at us Avai |l abl e

rapi d_query_of fl oad_count 46

rapi d_service_stat us ONLI NE
dieccocccooccccoosccoosoccooocooooo dmocccosocooo +

hw dat a_scanned

Tracks the amount of data scanned by successfully executed HeatWave queries. Data is tracked in
megabytes and is a cumulative total of data scanned since the HeatWave cluster was last started.
The counter is reset to 0 when the HeatWave cluster is restarted (when the r api d_boot strap
state changes from OFF or | DLE to ON.)

rapi d_change_propagati on_st at us
The change propagation status.

A status of ON indicates that change propagation is enabled globally, permitting changes to | nnoDB
tables on the MySQL DB System to be propagated to their counterpart tables in the HeatWave
cluster.

rapi d_cl uster_status

The HeatWave cluster status.

rapi d_core_count

The HeatWave node core count. The value remains at O until all HeatWave nodes are started.
rapi d_heap_usage

MySQL DB System node heap usage.

rapi d_| oad_progress

A percentage value indicating the status of a table load operation.
rapi d_pl ugi n_boot st rapped

The bootstrap mode.

rapi d_prel oad_stats_status

Reports the state of preload statistics collection. Column-level statistics are collected for tables
on the MySQL DB System when generating a node count estimate. You can generate a node
count estimate when adding or modifying a HeatWave cluster. States include Not started, I n
progress,and Statistics collected.

rapi d_query_of fl oad_count

86


https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Performance Schema Tables

The number of queries offloaded to HeatWave for processing.
e rapi d_service_status

Reports the status of the cluster as it is brought back online after a node failure.
» Secondary_engi ne_executi on_count

The number of queries executed by HeatWave. Execution occurs if query processing using
the secondary engine advances past the preparation and optimization stages. The variable is
incremented regardless of whether query execution is successful.

11.10 Performance Schema Tables

HeatWave Performance Schema tables provide information about HeatWave nodes, and about tables
and columns that are currently loaded in HeatWave.

Information about HeatWave nodes is available only when r api d_boot st r ap mode is O\.
Information about tables and columns is available only after tables are loaded in the HeatWave cluster.
See Chapter 4, Loading Data.

11.10.1 The rpd_exec_stats Table
Note

The Performance Schema table described here is available as of MySQL
8.0.24.

The r pd_exec_st at s table stores query execution statistics produced by HeatWave nodes in JSON
format. One row of execution statistics is stored for each node that participates in the query. The table
stores a maximum of 200 rows per node. Data is stored only for successfully executed queries.

The r pd_exec_st at s table has these columns:
e« QUERY_ID
The query ID.
« NCDE_I D
The HeatWave node ID.
« EXEC TEXT

Query execution statistics.

11.10.2 The rpd_nodes Table

The r pd_nodes table provides information about HeatWave nodes.
The r pd_nodes table has these columns:
* ID
A unigue identifier for the HeatWave node.
* CORES
The number of cores used by the HeatWave node.

e VEMORY_TOTAL (renamed from DRAMin MySQL 8.0.24)

87



The rpd_table_id Table

The total memory in bytes allocated to the HeatWave node.
» STATUS
The status of the HeatWave node. Possible statuses include:
* NOTAVAI L_RNSTATE
Not available.
¢ AVAI L_RNSTATE
Available.
« DOWN_RNSTATE
Down.
¢ SPARE_RNSTATE
Spare.
¢ DEAD RNSTATE
The node is not operational.
. IP
IP address of the HeatWave node.
« PORT
The port on which the HeatWave node was started.
* MEMORY_USACE

Node memory usage in bytes. The value is refreshed every four seconds. If a query starts and
finishes in the four seconds between refreshes, the memory used by the query is not accounted for
in the reported value. Introduced in MySQL 8.0.24.

The r pd_nodes table is read-only.

The r pd_nodes table may not show the current status for a new node or newly configured node
immediately. The r pd_nodes table is updated after the node has successfully joined the cluster.

If additional nodes fail while node recovery is in progress, the newly failed nodes are not detected and
their status is not updated in the per f or mance_schena. r pd_nodes table until after the current
recovery operation finishes and the nodes that failed previously have rejoined the cluster.

11.10.3 The rpd_table id Table

The r pd_t abl e_i d table provides the ID, name, and schema of the tables loaded in HeatWave.
The r pd_t abl e_i d table has these columns:
* ID
A unique identifier for the table.
 NAME

The full table name including the schema.

88



The rpd_tables Table

« SCHEMA NAMVE
The schema name.
« TABLE_ NANME
The table name.
« RONB

The total number of rows initially loaded. The reported value is not updated as changes are
propagated to HeatWave. Introduced in MySQL 8.0.24.

The rpd_t abl e_i d table is read-only.

11.10.4 The rpd_tables Table

The r pd_t abl es table provides the system change number (SCN) and load pool type for tables
loaded in HeatWave.

The r pd_t abl es table has these columns:
* ID

A unigue identifier for the table.
* SNAPSHOT _SCN

The system change number (SCN) of the table snapshot. The SCN is an internal number that
represents a point in time according to the system logical clock that the table snapshot was
transactionally consistent with the source table.

« POOL_TYPE

The load pool type of the table. Possible values are RAPI D_LOAD POOL_SNAPSHOT and
RAPI D_LOAD POOL_TRANSACTI ONAL.

« LOAD STATUS
The load status of the table. Statuses include:
* NOLOAD_ RPDGSTABSTATE
The table is not yet loaded.
¢ LOADI NG_RPDGSTABSTATE
The table is being loaded.
e AVAI L_RPDGSTABSTATE
The table is loaded and available for queries.
e UNLOADI NG_RPDGSTABSTATE
The table is being unloaded.

* | NRECOVERY_RPDGSTABSTATE

The table is being recovered. After completion of the recovery operation, the table is placed back

in the UNAVAI L_ RPDGSTABSTATE state if there are pending recoveries.

* UNAVAI L_RPDGSTABSTATE

89



The rpd_column_id Table

The table is unavailable.

The r pd_t abl es table is read-only.

11.10.5 The rpd_column_id Table

The r pd_col unm_i d table provides information about columns of tables that are loaded in HeatWave.
The r pd_col unm_.i d table has these columns:
* ID
A unique identifier for the column.
* NAME
The full column name including the schema name and table name.
« SCHEMA NANE
The schema name.
 TABLE_NAME
The table name.
« COLUWMN_NAME
The column name.
* NDV

Number of distinct values in the column as initially loaded. The reported value is not updated as
changes are propagated to HeatWave. Introduced in MySQL 8.0.24.

The r pd_col unm_.i d table is read-only.

11.10.6 The rpd_columns Table

The r pd_col unms table provides column encoding information for columns of tables loaded in
HeatWave.

The r pd_col unns table has these columns:
« TABLE | D
A unique identifier for the table.
« COLUWN | D
A unique identifier for the table column.
» ENCODI NG
The type of encoding used. Possible values include VARLEN and SORTED.
 DATA PLACEMENT_| NDEX

The data placement key index ID associated with the column. Index value ranges from 1 to
16. For information about data placement key index values, see Section 3.4, “Defining Data
Placement Keys”. NULL indicates that the column is not defined as a data placement key.

90



The rpd_query_stats Table

For a DATA PLACENMENT | NDEX query that identifies columns with data placement keys, see
Section 11.5, “Metadata Queries”.

The r pd_col unms table is read-only.

11.10.7 The rpd_query_stats Table

Note

The Performance Schema table described here is available as of MySQL
8.0.24.

The r pd_query_st at s table stores query compilation and execution statistics produced by the
HeatWave plugin in JSON format. One row of data is stored for each query. The table stores data for
the last 200 executed queries. Data is stored only for successfully executed queries.

The r pd_query_st at s table has these columns:

QUERY_I D
The query ID.

QUERY_TEXT

The query.

QEXEC_TEXT

Query execution plan.

QKRN _TEXT

Logical query execution plan.
QEP_TEXT

Query execution log.

Includes pr epar t data, which can be queried to determine if a JO N or GROUP BY query used data
placement partitions. See Section 11.5, “Metadata Queries”.

11.11 Generating tpch Sample Data

Examples in this guide and in the HeatWave Quickstart use the t pch sample database, which is an
ad-hoc decision support database derived from the TPC Benchmark™ H (TPC-H) specification. For
an overview of the t pch schema, refer to the Logical Database Design section of the specification
document.

The HeatWave Quickstart describes how to create the t pch schema and tables and load t pch sample
data. The following instructions describe how to generate t pch sample data using the dbgen utility.
The instructions assume you are on a Linux system that has gcc and neke libraries installed.

To generate t pch sample data:

1.

2.

Download the TPC-H tools zip file from TPC Download Current.
Extract the zip file to a location on your system.

Change to the dbgen directory and make a copy of the makefile template.

$ cd 2.18.0/dbgen
$ cp nekefile.suite makefile

91


https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave1.html#MYAAS-GUID-AD2F350D-E2AE-4AFF-BD12-54449D403F85
http://www.tpc.org/tpch/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://docs.oracle.com/en-us/iaas/mysql-database/doc/heatwave1.html#MYAAS-GUID-AD2F350D-E2AE-4AFF-BD12-54449D403F85
http://tpc.org/tpc_documents_current_versions/current_specifications5.asp

Generating tpch Sample Data

4. Configure the following settings in the makefile:

CC = gcc

DATABASE= ORACLE
MACHI NE = LI NUX
WORKLQOAD = TPCH

5. Run nake to build the dbgen utility:

$ nmake

6. Issue the following dbgen command to generate a 1GB set of data files for the t pch database:

$ ./dbgen -s 1

The operation may take a few minutes. When finished, the following data files appear in the working
directory, one for each table in the t pch database:

$1s -1 *.thl
cust omer. t bl
lineitemthl
nati on. t bl
orders. thl
part supp. t bl
part.tbl
region. tbl
suppl i er.thl

92



	HeatWave User Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction
	1.1 Architecture
	1.2 MySQL Autopilot

	Chapter 2 Before You Begin
	Chapter 3 Preparing Data
	3.1 Identifying Tables to Load
	3.2 Excluding Table Columns
	3.3 Encoding String Columns
	3.4 Defining Data Placement Keys
	3.5 Defining the Secondary Engine

	Chapter 4 Loading Data
	4.1 Auto Parallel Load
	4.2 Change Propagation

	Chapter 5 Unloading Tables
	Chapter 6 Running Queries
	Chapter 7 Table Load and Query Example
	Chapter 8 Workload Optimization using Advisor
	8.1 Auto Encoding
	8.2 Auto Data Placement
	8.3 Query Insights
	8.4 Advisor Examples
	8.5 Advisor Report Table

	Chapter 9 Best Practices
	Chapter 10 Troubleshooting
	Chapter 11 Reference
	11.1 Supported Data Types
	11.2 Supported Functions and Operators
	11.2.1 Aggregate Functions
	11.2.2 Arithmetic Operators
	11.2.3 Cast Functions and Operators
	11.2.4 Comparison Functions and Operators
	11.2.5 Control Flow Functions and Operators
	11.2.6 Date and Time Functions
	11.2.7 Logical Operators
	11.2.8 Mathematical Functions
	11.2.9 String Functions and Operators
	11.2.10 Window Functions

	11.3 Supported SQL Modes
	11.4 String Column Encoding Reference
	11.4.1 Variable-length Encoding
	11.4.1.1 VARLEN Supported Expressions, Filters, Functions, and Operators
	11.4.1.2 VARLEN Encoding Limits
	11.4.1.3 VARLEN Column Memory Requirements
	11.4.1.4 VARLEN Encoding and Performance

	11.4.2 Dictionary Encoding

	11.5 Metadata Queries
	11.6 Limitations
	11.7 System Variables
	11.8 Secondary Engine Variables
	11.9 Status Variables
	11.10 Performance Schema Tables
	11.10.1 The rpd_exec_stats Table
	11.10.2 The rpd_nodes Table
	11.10.3 The rpd_table_id Table
	11.10.4 The rpd_tables Table
	11.10.5 The rpd_column_id Table
	11.10.6 The rpd_columns Table
	11.10.7 The rpd_query_stats Table

	11.11 Generating tpch Sample Data


