Dell EMC PowerMax: End-to-End Efficient Encryption

January 2022

H18483.1

White Paper

Abstract

This document describes how Dell EMC PowerMax end-to-end encryption protects data confidentiality by encrypting data from the application host.

Dell Technologies

Copyright

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2020-2022 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners. Published in the USA January 2022 H18483.1.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

Contents

Executive summary	4
End-to-end efficient encryption	5
Efficient encryption with PowerMax	6
Requirements, limitations, and restrictions	12
Conclusion	12
Appendix: Technical support and resources	13

Executive summary

Overview

Securing sensitive data is one of the greatest challenges faced by organizations today. Increasing regulatory and legislative demands and the constantly changing threat landscape have brought data security to the forefront of IT issues.

Dell EMC PowerMax end-to-end efficient encryption addresses these challenges with two powerful capabilities:

- Increasing data security on the application host, combined with Data at Rest Encryption (D@RE) on the PowerMax array
- Providing maximum data reduction on the PowerMax array

End-to-end efficient encryption integrates PowerMax storage with Thales software to provide host-LUN encryption along with data reduction on the PowerMax system.

Revisions

Date	Description
September 2020	Initial release: PowerMaxOS Q3 2020
January 2022	Template update

We value your feedback

Dell Technologies and the authors of this document welcome your feedback on this document. Contact the Dell Technologies team by <a href="mailto:email

Author: Richard Pace

Note: For links to other documentation for this topic, see the <u>PowerMax Info Hub</u>.

Terminology

The following table provides definitions for some of the terms that are used in this document.

Table 1. Terminology

Term	Definition
PowerMaxOS	The PowerMax operating environment that runs on PowerMax and VMAX All Flash arrays.
Management module control station (MMCS)	Monitors the array environment, provides remote notification and remote support capabilities, and allows authorized Dell Technologies personnel to access the array locally or remotely.
Key Management Interoperability Protocol (KMIP)	OASIS protocol used between encryption-capable applications (for example, PowerMax and VMAX D@RE) and key-manager servers to obtain and manage the keys that the encryption processes use.
Public Key Infrastructure (PKI)	A set of roles, policies, and procedures to manage digital certificates and public key encryption.
Certificate Authority (CA)	Entity that issues digital certificates.

Term	Definition
AES Algorithm	Advanced Encryption Standard (AES) algorithm.
Hash-based Message Authentication Code (HMAC)	Used to sign I/O module firmware to check integrity of cryptographic operations.
Key Trust Platform (KTP)	This component resides on the MMCS and communicates using the OASIS KMIP with the key manager to manage encryption keys. The component is also called the KMIP client.
Vormetric Data Security Manager (DSM)	Thales key manager that is available in hardware and virtual versions.
Cluster	Multiple DSM VMs or appliances sharing configuration settings and encryption keys. Configuration and key life-cycle changes made to one cluster node are replicated to all members within the same cluster.
Vormetric Transparent Encryption (VTE)	Thales agent or driver which runs on the application host.
Guarded device	Host device that is encrypted by Thales VTE.

End-to-end efficient encryption

Overview

End-to-end efficient encryption increases data security by combining Thales host encryption with PowerMax back-end Data at Rest Encryption (D@RE). This combination protects information from any unauthorized access, whether in flight or at rest on hard drives. End-to-end efficient encryption uses industry-standard AES encryption technology.

End-to-end efficient encryption protects data while taking advantage of PowerMax space-saving data reduction technology. Thales software encrypts and decrypts data that are written from the application host to the PowerMax array. PowerMax decrypts the data to process through the data reduction engine, and D@RE re-encrypts the data.

End-to-end encryption architecture

PowerMaxOS and Thales software work together to encrypt data from the application host without sacrificing the space-saving efficiency of data reduction.

Here is a summary of the encryption process:

- 1. Thales VTE software encrypts data when written from the host application.
- 2. Encrypted data arrives at the PowerMax in system cache.
- 3. Data is decrypted using an additional I/O module that is installed.
- 4. The PowerMax array applies the data reduction process to the data.
- 5. The data is re-encrypted using back-end D@RE encryption before it is written to storage.

The following figure shows the architecture for end-to-end encryption with a PowerMax system.

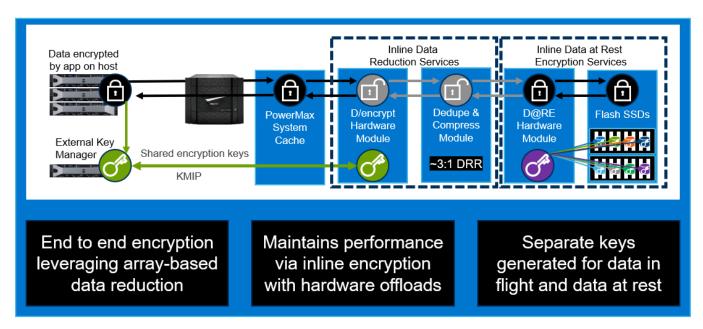


Figure 1. Efficient data-encryption architecture

Efficient encryption with PowerMax

Introduction

PowerMax and Thales integrate to provide an end-to-end encryption solution. PowerMax uses its existing D@RE solution to provide back-end encryption, and Thales provides two external components for encryption at the application host:

- Data Security Manager (DSM)
 - Provides centralized management of policies and keys
 - Communicates with KMIP communication protocol that resides on the PowerMax MMCS
 - Is deployed either as a virtual or hardware-based appliance
- Vormetric Transparent Encryption (VTE)
 - Host-based agent which encrypts user data before sending it to the array
 - Coordinates with DSM for management of encryption keys

In addition to the Thales external components, the requirements for PowerMax are as follows:

- D@RE must be enabled on the PowerMax array at initialization
- An additional encryption-capable I/O module must be installed in each director of the PowerMax array

Prerequisites for deployment

The following prerequisites are required before deploying end-to-end efficient encryption with PowerMax.

- IPv4 network connectivity between PowerMax and all DSM appliances
- Static IP assignments for all DSM-appliance network interfaces that connect to the PowerMax array
- PKI infrastructure and internal or external Certificate Authority Self-signed certificates are not recommended for production
- Both DSM and VTE running an approved version of software releases

and VTE

Configuring DSM Before integration with PowerMax, you must deploy both Thales DSM key manager and VTE host-based software.

> For installation and configuration information, see the Dell EMC PowerMax End-to-End Encryption Deployment Guide.

Data at Rest Encryption

End-to-end efficient encryption uses Data at Rest Encryption (D@RE) for the on-array back-end at rest encryption. You must add D@RE at the initial array installation and configure it to use embedded key management. The embedded key manager with D@RE provides encryption for all data written to the system and requires little to no management after installation.

For more information about D@RE, see the document Dell EMC PowerMax and VMAX All Flash: Data at Rest Encryption.

Enabling the PowerMax array

You must enable the PowerMax array before using end-to-end efficient encryption. Enabling the PowerMax is done when both the additional I/O module is installed in each director and the MMCS is registered with the DSM.

Encryption I/O module

To use end-to-end efficient encryption, you must add the encryption I/O modules to the PowerMax system. The encryption I/O modules are necessary to encrypt and decrypt data in cache when the application host reads from or writes to the system. This addition allows the system to take advantage of the space-saving data-reduction features.

When you order a PowerMax system with end-to-end efficient encryption, it is delivered with the additional I/O modules installed and configured. You can add end-to-end efficient encryption to an existing D@RE-enabled PowerMax system as an upgrade. The upgrade requirements are as follows:

- Add one encryption I/O module per director, inserted in any available front-end slot (2, 3, 8, or 9)
- Change the system BIN file
 - Change the Hbe_capable_system flag to YES
 - The BIN file must reflect the addition of the new I/O modules
- No ports must be configured

Figure 2. Encryption I/O module slots

Note: If you are adding an engine to an existing PowerMax system and also adding end-to-end efficient encryption, you must add the engine first. Once you add the engine, you must perform an online configuration change to satisfy the requirements listed previously.

Registering the MMCS and DSM

Registering the MMCS and DSM together establishes communication. Communication between both components uses the KMIP communication protocol that resides on the MMCS to communicate with the DSM. The DSM acts as an external key manager for the encryption at the host applications. When an encryption policy is set for a volume, keys are generated and shared with the MMCS for decryption when the data is in cache.

After the MMCS and DSM are registered, the PowerMax system is in the Encryption Enabled state, as shown in the following two figures.

Figure 3. System set as Enabled in Unisphere System Properties

```
Disks Service : Deferred

Data at Rest Encryption : Enabled

End-to-end Efficient Encryption : Enabled

Time Window Definition Format : N/A

PowerPath Initiator Registration : Enabled
```

Figure 4. System set as Enabled in Solutions Enabler (symcfg list -v)

Note: Registering the MMCS and DSM is a field-support activity that must be performed by Dell Technologies personnel.

Encrypting a volume

Efficient encryption from the host using Thales is set per volume. You can set encryption on a subset of volumes, and not all volumes are required to participate in end-to-end efficient encryption. Encryption on the back-end with D@RE encrypts all data, regardless if it set for efficient encryption or not.

You can encrypt a volume in two steps:

- Create an encryption-capable volume
- Guard a volume

Creating an encryption-capable volume

The encryption capable attribute identifies volumes that participate in encryption from the host and benefit from the PowerMax data reduction capabilities. You cannot add the attribute to an existing volume or remove it after a volume is created. A volume that is created with the encryption-capable attribute does not automatically encrypt the host data, and it must go through the encryption process. If a capable volume is to be encrypted, it must be guarded.

You can set a volume as encryption capable when creating a volume using one of the following methods:

- Solutions Enabler: Add the option **-eff_encrypt_capable** (Figure 5).
- Unisphere: Apply the setting under the **Advanced** tab (Figure 6)

Figure 5. Creating a volume through Solutions Enabler with the -eff_encrypt_capable option

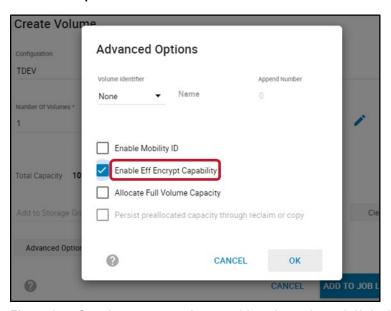


Figure 6. Creating an encryption-capable volume through Unisphere

After you create a volume, the volume properties reflect it as encryption-capable, as shown in the following two figures.

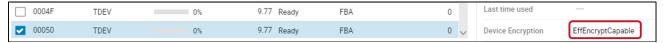


Figure 7. Viewing volume properties using Unisphere

```
Vendor ID : EMC

Product ID : SYMMETRIX

Product Revision : 5978

Device WWN : 60000970000197600626533030303530

Device ID Type : Compatibility

Device Emulation Type : FBA

Device Encryption : EffEncryptCapable
```

Figure 8. Viewing volume properties using Solutions Enabler > symdev show command

Guarding a volume

Guarding an encryption-capable volume activates encryption for all I/O to that volume from the host application. Guarding a capable volume encrypts all new data and does not encrypt any data that had previously been written to that volume.

Guarding a volume requires the following configuration:

- VTE enabled host
- Access to set policy on the DSM

For more information about guarding a volume, see the *Thales Data Security Manager, DSM Administration Guide for DSM release* and *Thales VTE Agent Installation and configuration Guide for VTE release*.

The following is an example of the process for guarding a volume.

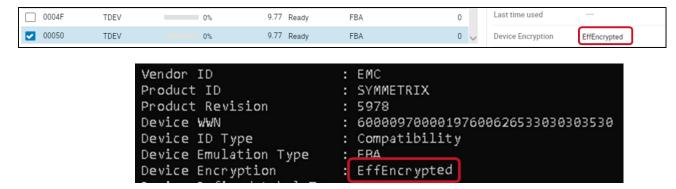
1. Use the **symdev show** command to show the volume physical name.

```
Device Physical Name
                         /dev/sdat
                         : 00050
Device Symmetrix Name
Device Serial ID
                        : N/A
Symmetrix ID
                         : 000197600626
Number of RAID Groups
Encapsulated Device
                        : No
Encapsulated WWN
Encapsulated Device Flags: None
Encapsulated Array ID : N/A
Encapsulated Device Name : N/A
Attached BCV Device
                        : N/A
Attached VDEV TGT Device : N/A
Vendor ID
                        : EMC
Product ID
                        : SYMMETRIX
Product Revision
                        : 5978
Device WWN
                        : 60000970000197600626533030303530
                        : Compatibility
Device ID Type
Device Emulation Type
                        : FBA
                        : EffEncryptCapable
Device Encryption
```

2. From the VTE enabled host, enter the VTE-specific command **voradmin esg config new <volume_physical_name>** to prepare the volume to be encrypted.

```
# > voradmin esg config new /dev/sdat
```

3. DSM sets the encryption policy, and the volume path is identified using the volume physical name. Check the **Efficient Storage Device** option in DSM.



4. Guard the volume with the VTE command **secfsd -guard <volume_physical_name>**.

```
# > secfsd -guard /dev/sdat
secfsd: Path is guarded
```

Once the policy is set and the volume is guarded, DSM and PowerMax generate and share encryption keys (see Figure 1).

The volume properties from Unisphere and Solutions Enabler reflect the new encryption status.

Requirements, limitations, and restrictions

The following list includes the requirements, limitations, and restrictions for PowerMax end-to-end efficient encryption.

- End-to-end efficient encryption is available only through a request for product qualification (RPQ).
- D@RE using only an internal key server is required.
- Installing one back-end I/O module in a front-end slot (2, 3, 8, 9) for each director is required.
- You must set the encryption capable setting upon device creation. This
 configuration cannot be set or removed from existing devices.
- Devices to be guarded must be in a storage group with compression enabled.
- Encryption-capable devices cannot be used with local or remote replication (SnapVX or SRDF).
- VMware vSphere Virtual Volumes vVols are not supported.
- VPLEX devices are not supported.
- Mixed CKD and FBA arrays are not supported.
- Thales rekey is not supported.

Conclusion

End-to-end efficient encryption prevents unauthorized access to sensitive data that is in flight from a host application, or data at rest within the PowerMax safe. This solution brings together encryption from Thales (using Vormetric transparent encryption with data security external key management) and PowerMax Data at Rest Encryption with easy-to-manage internal key management. Incorporating both encryption technologies allows you to take advantage of the space-saving data reduction while ensuring that all sensitive data is secure.

Appendix: Technical support and resources

<u>Dell.com/support</u> is focused on meeting customer needs with proven services and support.

<u>Storage and data protection technical white papers and videos</u> provide expertise that helps ensure customer success with Dell EMC storage and data protection products.

For additional information, see the following Dell Technologies and Thales publications:

- Dell EMC PowerMax End-to-End Efficient Encryption Deployment Guide
- Dell EMC PowerMax and VMAX All Flash: Data at Rest Encryption
- Dell EMC PowerMax: Data Reduction
- Dell EMC Solutions Enabler Array Controls and Management CLI user Guide
- Dell EMC Unisphere for PowerMax Product Guide
- Thales Data Security Manager, DSM Administration Guide for DSM release
- Thales VTE Agent Installation and Configuration Guide for VTE release