
ECharts: A Declarative Framework for Rapid
Construction of Web-based VisualizationI

Deqing Lia, Honghui Meib, Yi Shena, Shuang Sua, Wenli Zhanga, Junting
Wanga, Ming Zua, Wei Chenb,∗

aBaidu Inc.
bState Key Lab of CAD&CG, Zhejiang University

Abstract

While there have been a dozen of authoring systems and programming toolkits

for visual design and development, users who do not have programming skill-

s, such as data analysts or interface designers, still may feel cumbersome to

efficiently implement a web-based visualization.

In this paper, we present ECharts, an open-sourced, web-based, cross-platform

framework that supports the rapid construction of interactive visualization. The

motivation is driven by three goals: easy-to-use, rich built-in interactions, and

high performance. The kernel of ECharts is a suite of declarative visual design

language that customizes built-in chart types. The underlying streaming archi-

tecture, together with a high-performance graphics renderer based on HTML5

canvas, enables the high expandability and performance of ECharts. We report

the design, implementation, and applications of ECharts with a diverse variety

of examples. We compare the utility and performance of ECharts with C3.js,

HighCharts, and Chart.js. Results of the experiments demonstrate the efficiency

and scalability of our framework. Since the first release in June 2013, ECharts

has iterated 63 versions, and attracted over 22,000 star counts and over 1,700

IWei Chen is supported by National 973 Program of China (2015CB352503), National
Natural Science Foundation of China (61772456, 61761136020).

∗Corresponding author
Email addresses: lideqing@baidu.com (Deqing Li), meihonghui@zju.edu.cn (Honghui

Mei), shenyi01@baidu.com (Yi Shen), sushuang@baidu.com (Shuang Su),
zhangwenli01@baidu.com (Wenli Zhang), wangjunting@baidu.com (Junting Wang),
zuming@baidu.com (Ming Zu), chenwei@cad.zju.edu.cn (Wei Chen)

Preprint submitted to Visual Informatics April 24, 2018



related projects in the GitHub. ECharts is regarded as a leading visualization

development tool in the world, and ranks the third in the GitHub visualization

tab.

Keywords: information visualization, web-based visualization

2010 MSC: 00-01, 99-00

Figure 1: Examples of ECharts chart types. From top to down, left to right: s-

catterplot, line chart, candle-stick charts, geomap, radar chart, node-link graph,

heatmap, tree diagram, sankey diagram, parallel coordinates, gauge chart,

treemap.

1. Introduction

With the boosting of data, there is a dire demand on presenting and ana-

lyzing the data [1], eliciting the rapid construction tools of data visualization.

While there have been a dozen of authoring systems and programming toolk-

its for visual design and development [2], it is still cumbersome for users, such5

as data analysts or interface designers, to rapidly implement a web-based and

interactive visualization [3].

2



A recent trend is to enable visualization construction in graphical user in-

terfaces (GUI), without textual programming [4]. Typically, these tools lack of

expressiveness, especially in specifying interactions. Meanwhile, the design of10

graph grammar [5] is essential for navigating the design space (e.g., Lyra [4] is

built upon the visualization grammar Vega [6]).

Declarative languages such as D3.js [7] and Vega [6] are popular tools for

building visualizations. With the encapsulation of underlying data transforma-

tions and control flow exposed to users, these declarative languages allow users15

to focus on the visual design. However, users have to be very skilled at web de-

velopment. For example, D3.js requires users to be familiar with HTML, CSS,

SVG and DOM. Similarly, Vega requires users to master a new set of graphics

syntaxes. These requirments make the development non-trivial.

We argue that the flexibility and complexity of visual design should not be20

limited by the requirement on programming skills [8]. The essential motivation

of this work is to fill this gap through a declarative object option and compos-

able visualization components, which are modeled with the user-configurable

declarative object option. When users create visualizations, they do not have

to be proficient in web-relevant programming. Instead, they only need to take25

a few minutes to be familiar with the provided visual components, and config-

ure the components by specifying data, visual encoding, annotation and visual

style.

Here we contribute ECharts, an easy-to-use framework to construct interac-

tive visualization. The main contribution sconfirm to three goals.30

Easy-to-use. There are some difficulties for users to learn the visual rep-

resentations if a declarative language is employed. It is desirable to allow users

to focus on the design of the visualization rather than on the use of some tools.

Rich builit-in interactions. Efficient data exploration and analysis de-

mand a wealth of configurable interactions. ECharts designs and implements35

rich built-in interactions that are attached to each chart type, minimizing the

requirement of customization of user.

High performance. By introducing a streaming system architecture and

3



incremental rendering mode, high performance is achieved with ECharts, even

when handling millions of data points.40

2. Related Work

2.1. Grammars of Visualization

Charting tools such as Excel[9] and ManyEyes[10] support rapid generation

of charts by selecting appropriate forms from predefined visual templates. One

main drawback of this scheme is that the expressiveness of visualization is fully45

bound by the provided templates.

Wilkinson [11] introduces The Grammar of Graphics for a more wide range of

graphical specification and “shun chart typology”. It has far-reaching influence

that formal languages are designed to describe the rules of generating graphics.

Following this idea, many softwares and frameworks are implemented to bring50

more customization for users, such as Tableau[12] (formerly Polaris [13]), gg-

plot2 [14, 15], and ggivs[16]. Some visualization frameworks abstract low-level

graphics drawing to achieve more concise specification, such as InfoVis Toolk-

it [17], Improvise [18], prefuse [19], and Flare[20]. In these frameworks, inheri-

table visualization widgets or composable operators are introduced to ease the55

users’ burden. On the other side, those declarative, domain specific languages

(DSL) for information visualization, including ProtoVis [21, 22], D3.js [7], and

Vega [6], allow users to specify visualizations by directly mapping data to visual

elements without computational details. Based on this, Vega-lite [23] abstracts

more over data models, graphical marks, visual encodings and other detailed60

specifications. Such a high-level abstraction enables rapid construction of vi-

sual forms by leveraging partial specification that omits low-level details and

resolves ambiguities with default values.

However, complex visual design always stands opposite to simplicity and

efficiency. The design of ECharts seeks to achieve a good balance between rapid65

construction and expressive visual design.

4



2.2. Graphics Libraries

With the drastic development of web technology, such as Cascading Style

Sheets (CSS), Java applets, JavaScripts, and AJAX, an increasing number of

applications are deployed through web sites. For visualization tools, web-based70

approaches provide a simple solution to support cross-platform deployment and

enable easy sharing and communication between collaborators and audiences.

These web tools make users focus on core issues [24] without maintenance.

Early construction tools for web-based visualization utilize Java and Flash.

Processing [25, 26, 27] provides support of Java applet in its first edition.75

Flare [20] is an ActionScript library for creating visualizations that runs in

the Adobe Flash Player. Later, visualization construction tools turn to use

JavaScript and Scalable Vector Graphics (SVG), including Raphaël[28], JavaScrip-

t InfoVis Toolkit (JIT)[29], ProtoVis and D3.js. Essentially, SVG can produce

the best quality of 2D drawings, and JavaScript provides flexible and easy-to-use80

callback of user input events received by DOM elements when specifying user

interactions.

Despite its convenience, using SVG has a low performance because the DOM

structures of all SVG elements and corresponding styles and events need to be

maintained in the web browser. An alternative scheme is to utilize HTML585

canvas for 2D drawing. For instance, using canvas in Vega [6] achieves a 2×

to 4× performance speedup over SVG. Other tools such as iVisDesigner [30],

iVolVER [31] and Data-Driven Guides [32] employ canvas for high performance.

However, as interaction specification for individual graphical objects is not na-

tively supported by HTML5 canvas, tools using canvas must design an own90

event handling mechanism.

ECharts implements a 2D vector drawing library named ZRender, which sup-

ports display of visual forms in HTML5 canvas and manages graphic elements,

rendering as well as events. Details of ZRender can be found in Section 5.2.

5



2.3. Customization of Visual Design95

The most popular web-based visualization design engine, D3.js, fully ex-

ploits the capability of web presentation by directing link data to native web

presentation, i.e., SVG. This leads to a high expressiveness. However, users may

still feel cumbersome when a visual design contains complex visual mappings

to the “d” attribute of SVG path elements. For that, D3.js provides modules100

to encapsulate common visual tasks including shapes, scales, layouts, and in-

teractions. This provides a flexible choice subject to users expertise, but still

causes confusion when high-level and low-level declarations are mixed. Vega

overcomes this problem by modeling complex forms as the combination of basic

shapes that are arranged by predefined layouts.105

Recently proposed Data-Driven Guides (DDG) [32] supports convenient cre-

ation of charts and flexible visual design by means of a data guide mechanism.

The guides are simple shapes with data mapped to one of their attributes, for

example, a series of parallel lines whose length is bound to one of the data at-

tributes. Based on such guides, designers can then draw SVG shapes on the top110

of data guides.

To provide flexibility while preserving simplicity, ECharts provides a special

component series which allows users to modify a predefined chart by changing

its rendering process.

One of the most complex tasks in creating visualization is to specify user115

interactions. One common solution is to attach event listeners. Event listeners

are callback functions that are revoked when the specified events occur and

react to user inputs. Based on this, D3.js introduces event handlers called

behaviors for the reuse of interaction techniques. In Vega, events are extracted

from the input stream as signals and trigger predicates which can affect visual120

mappings. On the other hand, a reactive programming method [33] avoids the

dreaded “callback hell” but is hard for novices to design. Likewise, Vega-Lite

allows users to simply define a new interaction by transforming predefined ones.

However, only the selection operation is supported by Vega-Lite.

In ECharts, rich interactions are automatically attached to generated charts,125

6



and new interactions can still be specified by means of an easy-to-use event

system.

3. Declarative Visualization Design

ECharts employs an all-in-one JSON format option to declare the compo-

nents, styles, data and interactions, resulting in a logicless and stateless mode.130

The main advantage of JSON format lies in that it is safe to store, transmit and

execute, and is easy to do further validation.

Following the conventions of well-known tools like Microsoft Excel, ECharts

uses series to abstract a group of graphic elements that are mapped and encoded

from data. For example, all lines or bars in a cartesian coordinate system135

form a series. Similarly, pie chart, treemap, graph or other chart types can

be abstracted as a series. In other words, a series is an instance of a type of

chart. Besides, ECharts uses component to name the functional unit like data

zooming, visual encoding and toolbox.

ECharts provides a method setOption to create or update the components140

and series from the accepted option. If the setOption is to update the data,

ECharts employs a key-based diff algorithm to find the difference of data and

use proper transitions to display it.

3.1. Declarative Options

The declarative option is a hierarchical JSON object. On the top level,145

all components, series and global settings are declared. In particular, global

settings, such as color palette, font and animation, are universal settings that

are posed on different series and components. ECharts checks whether the

key in the top level is registered as a component, then creates all components.

Otherwise the values are set as global settings.150

Components like legend, tooltip, brushing, visualMap etc, are all op-

tional. Different components can be composed for different visualization pur-

poses.

7



On the component level, properties are configured subject to associated com-

ponents, including layout, styles and states. Most states in ECharts components155

are stored in the global option and change synchronously when a user interaction

happens. After getting the current global option including components states,

the view can be easily repeated in another environment. This is very useful for

debugging, replay and automated testing.

There is also a series field that contains one or more series of datasets and160

their chart types. Most of the chart types have a coordinate system, like carte-

sian, polar and geographic. A coordinate system is also defined as a component

on the top level. For a series, there are three ways to index the corresponding

coordinate system: index, ID and name, which are common for indexing any

other component.165

Figure 2 presents an outline of a basic option.

Figure 2: The structure of a basic option.

8



3.2. Chart Types

To make it amenable for various scenarios, ECharts provides a variety of

chart types, which may be divided into three categories, including built-in, cus-

tomized, and extended.170

Specifically, built-in chart types provide a convenient way to create charts

that are most commonly used; if a specific layout or chart type is required,

which is not provided with built-in chart types, users can use a customized

series to specify the layout; the extended mode serves as an alternative to make

customized chart types, and has more control over the rendering process and175

interactions.

Generally speaking, the built-in mode is the easiest one. Otherwise, if a

chart type can be reused for other cases, it is recommended to be formulated as

extension. Nevertheless, the customization mode has the maximum flexibility.

3.2.1. Built-in Chart Types180

Built-in chart types include general-purposed chart types like scatterplots,

line charts, bar charts, pie charts, geomap, and candle-stick charts.

ECharts supports 19 built-in chart types. Some of them are shown in Fig-

ure 1.

3.2.2. Customized Chart Types185

With the customized chart types, users only need to concentrate on the

rendering logic, without implementing details like creating or releasing graphic

elements, or transition animation, or visual map. Section 4.2 presents more

details on the customization process.

Figure 3 shows examples of customized chart types.190

3.2.3. Extended Chart Types

ECharts provides an extension mechanism to support adding new features

(Section 4.3). Figure 3(e) shows an example of tag cloud extension.

9



3.3. Coordinates Systems

In ECharts, the coordinate systems can be configured within the declara-195

tive object model. The basic coordinate systems are Cartesian coordinate

system and Polar coordinate system. The former can be used through the

configuration xAxis and yAxis; while the latter is specified with: polar, ra-

diusAxis and angleAxis; Both coordinate systems can receive more than two

axes, which are identified by the index. ECharts Cartesian coordinate system200

supports three kinds of axes: value, category and time.

ECharts provides two special coordinate systems: calendar and geomap. In

addition, ECharts automatically maps temporal or spatial information in the

data to corresponding coordinate systems. These systems can receive arbitrary

graphic elements targeted at specific positions. That means, other charts, such205

as pie chart, can be drawn within the coordinate system.

3.4. Components

Each component in ECharts contains three types of functions: visual en-

coding, guide, and interaction. Corresponding modules are integrated into

different stages in the pipeline. Some components like tooltip and markPoint210

focus on the guide. Some components like dataZoom focus on the interaction.

Most components are responsible for more than two functions.

3.4.1. Visual Encoding

Each chart is a combination of data-driven visual encodings, like height in

bar, position in scatterplots, area in pie, etc. Visual encoding components are215

used for this purpose. Visual channels like color, color lightness, size, glyph

are composable and can be encoded in these components from different levels of

data. For example, a legend component encodes color for different series. Based

on this, a visualMap component can modify the color lightness to indicate the

value comparison in each series. In particular, the alpha channel of color is used220

to encode the data selection status if brushing component is included.

10



Most visual encoding components are interactive, like selecting the series

with legend components, filtering data in range with visualMap components.

3.4.2. Guide

The Guide function provides descriptive information over the visualization.225

Components can use labels, guide lines, glyphs to label out the particular items

or show additional information.

Most components in ECharts play the role of guide components. Coordi-

nate system uses labels and ticks to show the range of data and helps reading

the value. Legend uses labels with encoded color to show what the series is of230

each element in the view. VisualMap can be used as a color bar.

3.4.3. Interactions

ECharts provides a set of interactive components to support interactions

operations like: panning, zooming, selecting. In particular, legend components

can unselect unnecessary series. dataZoom components can filter data along235

a specified dimension and brushing components can highlight selected data

within the specified area. Each interactions component triggers an event;

These events are necessary in linking multiple charts instances. The properties

in the events like selected data indices are useful when performing statistics on

data or showing detailed information are needed.240

4. Customization of Visualization Design

4.1. Interaction Specification

The declarative object model supports event listeners: callback functions

that receive input events targeted at specific graphic element. ECharts provides

this feature for the entire mouse event types and event types built by ECharts.245

To keep the consistency with other callback functions in ECharts, the function

receives an object params that includes the information of the targeted graphic

element, to support data-driven interaction. The data information includes

componentType, seriesType, data and dataIndex.

11



Both internal and external procedures control the interactive behavior of the250

visualization view. This ensures that there is only one mechanism that handles

interactions, rather than one for each. This mechanism works by dispatching

ECharts’s built-in events to registered event listeners when some elements are

triggered, or manipulating related data and updating visualization.

We propose an extensional architecture that focuses on data streaming to255

enable direct reuse of defined interactions of existing components (e.g. the hover

event on a legend). This can reduce the workload when developing a new chart

type for EChart. This is feasible because the handled data can be pulled into a

separate module and each component has an individual processor, making the

interactions on charts and components separate.260

4.2. Customization Series

In the scope of data visualization, chart types are not enumerable. It is

always expected to be able to implement new visual forms with the help of

low-level libraries like D3.js. When creating a new type of chart, the features

provided by the existing charts and components (e.g., zooming, tooltip, layout,265

visual encoding, user configuration, platform compatibility) should be adopted

almost transparently. Consequently, the developers need to be proficient in

underlying libraries and take much workload to implement and debug the logic,

which is unnecessary in most cases.

We take OHLC 1 chart as an example, which is a type of stock chart used in270

US as shown in Figure 3(b). To create a new chart type of OHLC together with

the feature of “zoom” and “tooltip”, developers have to consider the creation

of graphic elements and the layout in a coordinate system. Moverover, a set

of interactions need to be specified: the hover interaction to show and hide

“tooltip”, the “zoom” interaction of data or graphic elements correspondingly,275

and the animation of triggered visual elements. Moreover, new chart types and

existing chart types are usually needed to be composed in the same coordinates.

1OHLC chart, https://en.wikipedia.org/wiki/Open-high-low-close_chart

12

https://en.wikipedia.org/wiki/Open-high-low-close_chart


To resolve the aforementioned issues, ECharts introduces “Customization

Series”, with the rationale of decomposing the correlated complicated features

and orchestrating them in framework level for reuse.280

New chart types like OHLC chart and its variants are not provided as built-

in chart types, and the graphic elements are different from existing chart types,

which inevitably cause new implementation work. But the logic of layout in

coordinates, tooltip, animation and zooming, can be reused transparently or

with few configurations.285

Benefitted from the data-driven stream architecture (Figure 5), features like

“zoom”, “visual encoding” and “tooltip” can be decoupled in different stages

of the pipeline and be reused transparently. Only the rendering stage that is

to be exposed as an extension point, called renderItem, and is provided by

developers, is responsible for transforming data to the definitions of graphic290

elements.

Some layout utilities are provided renderItem, such as api.coord(datum),

which can map data points into the declared coordinates. Some visual encoding

utilities are also provided, such as api.style() that retrieves the current visual

mapping result, where the mapping is performed in the previous stage. The295

“zoom” works in a similar fashion. The transform animation of graphic elements

is adapted implicitly with the same mechanism despite the difference of chart

types.

In this way, only few lines of code are needed to create a new chart type.

An example in Section 6.1 illustrates more details.300

4.3. ECharts Extension

Based on the design of declarative options and extensional architecture,

ECharts allows users to import plugins written by other users. This faciliates to

create relatively complex charts or combine ECharts with other libraries. For

instance, ECharts can work together with an online map library (e.g. ArcGIS305

used in Figure. 3(g)) to create elements drawn on a map. The plugins not on-

ly work with coordinates, but also other components such as visual encoding

13



(e.g. Figure 3(f) shows an example of node-link graph which colors of nodes are

assigned by the plugin corresponding to the community detection result of the

graph).310

Moreover, ECharts extensions also provide support for complex chart types

(Section 3.2.3), statistical computing, web framework combination (e.g. with

AngularJs or Vue), and generating ECharts options with other programming

languages (e.g. Python or R).

4.4. Cross-platform Presentation315

The cross-platform compatibility of ECharts ensures that charts behave sim-

ilarly on various platforms and support adaptations on certain platforms when

necessary.

This means that charts should have the same presentation and interaction

on different platforms, and sometimes a few adaptations (like layout changes)320

may be required. This is so-called responsive design, which is described in

Section 4.4.2.

4.4.1. Universal Appearance and Behavior

Charts created with ECharts are typically embedded in Web pages, and

may be presented in different Web browsers, Operating Systems, and devices.325

ECharts provides rendering charts with Canvas, SVG, and VML, which have

advantages on different platforms.

It is essential for ECharts to provide a universal appearance of the charts,

and means of interactions. Besides, this job should be done implicitly, which

means that users do not need to do extra work to ensure that. For example,330

it is expected that a chart looks the same in a Google Chrome Web browser

of Macintosh Operating System and in a Internet Explorer Web browser of

Windows Operating System.

For that, ECharts uses a rendering engine called ZRender to manage ren-

dering elements and render to different platforms in a universal way. Please see335

Section 5.2 for more information.

14



4.4.2. Responsive Design

Visualizations on mobile devices have a different design from that on PC, as

shown in Figure 3(h). This is because mobile devices have a small screen size.

In this case, ECharts uses a policy similar to CSS Media Queries2, with340

which users need to set rules (option) for each device requirement (query).

Figure 4 shows an example.

The baseOption sets the overall options, so that most options do not need

to be repeated in media. And users can set the rule according to device width,

height, or aspect ratio, and set special options for each rule respectively.345

In this way, it is ensured that the least code is required for the common

parts, and special rules can be applied for certain device sizes.

5. Architecture

5.1. Streaming Architecture

A modern universal charting library is required to be componentized, ex-350

tensible and interactive. To achieve this goal, ECharts introduces a streaming

architecture (Figure 5). In a complicated visualization instance there are usu-

ally multiple visual components cooperating with each others, responsible for

performing different types of layout, visual encoding, user interaction and ren-

dering. Some of those jobs are dependent with other jobs, and some may be355

conflicted with others. The simplest example is that both “legend” compo-

nents and some components dedicated in visual mapping are able to control the

appearance of chart elements dynamically.

Here, at least two issues should be considered. Firstly, for extendibility

consideration, components that have dependency relationship should not know360

each other, neither the existence of instance nor the component type. ECharts

uses a universal abstraction of data as the source and target of each process to

build the relationship of components but keep them independent. Secondly, the

2CSS Media Queries, www.w3.org/TR/css3-mediaqueries

15

www.w3.org/TR/css3-mediaqueries


priority of processes is needed to be ruled, where stage mechanism is introduced.

Thus ECharts is designed as a data-driven streaming pipeline with stages of data365

processing, visual encoding and rendering, which produces graphic elements

finally. The flow is unidirectional, that is, any user interactions can only modify

the raw option or data, and run the pipeline from the beginning. Moreover,

each stage can be exposed to developers as an extension point.

The main advantage of the designed architecture, is that both human inter-370

action and the interaction from program are implemented in the same way. This

enables programming interface to take control of generating charts and allows

users to create custom components or extensions.

5.1.1. Progressive Visualization

Visualizing millions of data points usually takes several seconds to transmit375

data from server to browser. Users always need to wait a long time for data

processing and rendering before see and interact with the visualizations. Ad-

ditionally, when performing updates caused by user interactions, the main UI

thread is blocked and cannot react to concurrent animations and interactions.

To address this problem, we introduce incremental rendering techniques based380

on our streaming architecture. As shown in Figure 6, data can be loaded and

split into several small chunks. Chunks are pushed into the pipeline one by one,

and then be processed and rendered.

When data is loading, or changed causing by user interactions, ECharts will

create tasks for operating the split data chunks. These tasks include data filter-385

ing, visual encoding, graphic elements creation, etc. Created tasks are sorted by

their priorities and the indexes of corresponding data chunks before being exe-

cuted. Only a limited number of tasks can be executed in each frame to ensure

that the execution time is less than 16ms. Then the requestAnimationFrame is

called and remaining tasks are paused and wait to be executed until next frame.390

If a new interaction happens during the process, all running tasks are discarded

and new tasks are created.

In this way, the main UI thread of ECharts is never blocked. Users can

16



always interact with the visualization smoothly with immediate feedback.

5.1.2. Multi-Thread Rendering395

When running all tasks in the main UI thread, Canvas drawing must wait un-

til the data processing and vice versa (Figure 7). Even after optimization, draw-

ing on canvas still costs much time, especially when drawing complex shapes

like a circle. The next task can only start after the latest task is finished and

waste much time on I/O blocks. To further improve the performance of EChart-400

s, we implement a multi-thread mode that separate data processing and canvas

drawing in different threads.

The web worker enables scripts to run in a background thread. It provides

a possibility of multi-thread rendering. To make ECharts run in the worker, a

mock canvas is created and used in the ECharts instance. This mock canvas405

records all operations, like changing fillStyle, filling or stroking a path, drawing

a text, during the rendering process. These operations and corresponding pa-

rameters are stored in a Float32Array commands list. After finishing one task,

the command list is transmitted to the main thread with postMessage function.

The real Canvas created in the main thread repeats the received commands and410

draw the graph on the screen. Meanwhile, in the worker thread, ECharts does

not have to wait for the drawing to be finished and moves to the next task

immediately.

5.2. ZRender

We additionally design and implement a 2D vector library named ZRender415

for graphic elements management, renderer management and event system. It

supports multiple rendering backends, including Canvas, SVG and VML.

5.2.1. Graphic Elements Management

In ZRender, graphic elements like rectangle, circle, text and image are stored

in a tree structure, which is similar to a DOM tree. In the tree, leaf nodes are420

called displayable, which can be texts, images, paths and drawn on the canvas.

Internal nodes are called group. Group stores other groups or displayables

17



as children. Each node has scale, rotation, position properties. The transfor-

mations of a group node are applied on its children nodes and accumulated in

a top-down manner before visualization.425

There are three types of displayable in ZRender, namely, text, image and

path. Text and image basically wrap the interface of canvas. For path, a

proxy is generated to store the path commands data in a Float32Array. This

data will be used in the hit test of the event system. It is also useful for

rebuilding the path data during the rendering process.430

5.2.2. Renderer Management

An operation on the elements will trigger ZRender to refresh updates in the

next frame. For each render, ZRender traverses the tree, updates the trans-

formations of all nodes, identifies all displayables needed to be drawn and

sends them into a render queue. The object-wise culling is performed by using435

a rectangle-based bounding box for each shown displayable.

Thereafter, the queues are sorted along z and zlevel. Displayables are

drawn sequentially along the order. If Canvas is employed, zlevel determines

which canvas is to be drawn. The displayables on the same zlevel are not

redrawn if they are not changed.440

5.2.3. Event System

Unlike DOM, displayables drawn in Canvas do not trigger any mouse

events. To solve this problem, we implemented an event system which sup-

ports mouse event detection and event bubbling. For mobile devices, we also

simulate pinch events so that the view can zoomed through two finger pinch445

operations.

When a mouse moving event happens, ZRender traverses all the displayables

in the renderer queue, which is updated in the last renderer, in a reversed or-

der. For each displayable, we first do a fast check if the mouse position (x, y)

is inside its bounding box to accelerate the hit test. For text and image dis-450

playables, the bounding box test will be adequate to return the found element

18



directly. For path, it needs to further hit test to determine if the point is in the

actual drawn area. After finding the hit displayable, it will throw a proper

event, which can be click, mousemove, mouseover, mouseout, and bubbles to

the root node.455

The entire event system including the hit test is implemented in pure JavaScrip-

t and only depends on the displayable data. Thus it works well on Canvas,

SVG, VML or any other graphic interfaces.

6. Examples

Since the first release of ECharts 1.0 in June 2013, ECharts has been updated460

to 3.0 in Dec. 2017. A vast number of examples can be found in our official

website (http://echarts.baidu.com) and gallery (http://gallery.echartsjs.com),

together with basic applications in the tutorial for users. Here we describe

two kinds of examples to illustrate the usage of customization series and the

extension capabilities.465

The source code of ECharts is available on GitHub: https://github.com/ecomfe/echarts.

6.1. Customization Series

As mentioned above, customization series brings the capabilities of creating

new chart types with few codes but still powered by common features such as

data zooming, visual encoding, tooltip. Here we take the first customized chart470

in Figure 3 as an example.

This kind of chart is usually used to present performance profile, but is not

implemented as a built-in chart type of ECharts. It can be placed in cartesian

coordinates, with the X axis representing timeline and the Y axis listing cate-

gories. To implement this chart type,Z‘’ the only work is to provide a simple475

function renderItem (Figure 9), in which the value of each datum is retrieved

and converted to positions in canvas based on cartesian coordinates and then

graphic elements are declared.

To fulfill the implementation, more sophisticated features are needed. It

should be noted that, zooming is required to check the detailed information in480

19



a tiny duration. Meanwhile, animation is needed for the smooth transitions of

graphic elements when zooming or sliding the data window. Other features like

visual encoding and tooltip are also needed. As shown in Figure 9, all these tasks

can be easily accomplished with few lines of codes empowered with ECharts.

7. Discussions and Comparisons485

The declarative options allow users to create visual charts in a simple way

and focus on the design of the visualization. In addition, rich built-in compo-

nents with configurable options provide the flexible specification of interactions.

The extensional architecture enables customization for advanced users.

7.1. Discussions490

To achieve the optimum performance, ECharts leverages Canvas which does

not have the time-consuming DOM manipulations. For that, implementing a

lightweight DOM-like system is needed. Benefited from the JIT in modern

browsers, the cost of manipulating the attributes on element graphic is quite

small, and can be ignored. By using a dirty flag, we can batch all updates495

and redraw only once. The state change of canvas is costly because of value

parsing and validation. Accordingly, for each redraw, we compare two adjacent

displayables and only update the different style and transform. In this way, we

can prune many unnecessary states changes in Canvas. As a result, animating

7000 rectangles in different colors can be done in 20 milliseconds on chrome 62,500

with full mouse interactions like dragging and clicking.

There are some disadvantages to use Canvas. One is the memory cost.

Memory usually matters in platforms like mobile devices. Too many canvas

instances in one page will cause the browser out of memory and crash. Another

disadvantage is that a large-sized canvas costs much time for the browser to505

do compositing with backgrounds, leading to an unsatisfying experience when

user scrolling the page with many charts, especially on the mobile devices. To

address this bottleneck, ECharts implements an SVG backend for the scenarios

of drawing many charts on mobile devices.

20



7.2. Comparisons510

In this section, we compare ECharts with other existing chart libraries, in-

cluding HighCharts, Chart.js, and C3.

Four libraries support common charts, such as line charts, bar charts and pie

charts. HighCharts uses declarative options and design of data series. However,

the items of options and structures of the input data used in HighCharts are515

highly constrained. In contrast, ECharts provides a more flexible way to con-

struct options by assembling components in need and and to freely specify data

attributes using encode keyword. Althgough HighCharts can also specify event

listeners and import plugins, its expandability is limited due to its constrained

options. For instance, HighCharts cannot work with online map libraries while520

ECharts can seamlessly integrate with online map like Baidu map. Chart.js and

C3 do not offer the customization of visual design, and thus can not generate

complex visualizations.

It should be noted that, the extensional architecture of ECharts, including

components and the further specification of event listeners, provides a flexi-525

ble way to support customization of chart design and user interaction. These

features are not supported by HighCharts, Chart.js and C3.

Benefited by the ZRender engine, ECharts can render charts with HTML5

canvas while remaining DOM-like manipulations. This enables a high perfor-

mance as a large number of SVG elements on the web page is time- and memory-530

consuming. Chart.js also supports rendering with canvas, while HighCharts and

C3 can only manipulate SVG.

Table 1 summarizes the differences between ECharts and other three li-

braries.

7.3. Performance Comparison535

In this section, we compare the performance of ECharts with C3.js, High-

Charts, and Chart.js, which are widely employed charting library. The metrics

include chart initialization time and animation framerate.

21



Table 1: Comparison of ECharts and HightCharts, Chart.js, and C3.

Library Extended charts Custom interactions Canvas

HighCharts 7 7 7

Chart.js 7 7 3

C3 7 7 7

ECharts 3 3 3

The initialization time is the duration from the creation to the rendering

accomplishment of a chart. Fully rendered means all graphic elements have540

been drawn on the screen and users can interact with the page. ECharts draws

the elements directly after setOption, but Chart.js runs it in the next tick. Thus

we measure the ending time in a setTimeout operation and make sure the draw

is actually finished. Because SVG in chrome is rendered asynchronously, we can

not get the accurate finish time, and have to run this part in Firefox Quantum.545

The animation framerate indicates the performance of redrawing charts.

This performance is essential for smooth user experiences during interaction-

s. We enable transition animations and update the data in every 5 seconds.

The transition duration is set to 5 seconds. Then we record the average FPS

with Firefox Quantum development tool.550

For each performance metric, we test the performance of four libraries when

generating different types of charts, including line chart, scatterplots, and bar

charts, at different sizes of datasets.

Figure 10 reports the performance of four tools. ECharts and Chart.js have

shorter initialization time compared to HighCharts and C3. This may caused by555

the heavy workload of creating the DOM tree of SVG elements. In the framerate

tests, ECharts also performs well in all three types of charts. Benefited from

using canvas, Chart.js has relatively high performance, while C3 has the lowest

framerates.

The results of performance tests show that ECharts compares favorably with560

other three tools in terms of performance.

22



8. Impact

We released the ECharts official version 1.0.0 on June 30, 2013, and has

iterated 63 versions up to now. Till Jan. 2018, there are more than 22,000

star counts and over 1,700 related projects in the GitHub, making ECharts the565

third in the GitHub visualization tab. In the meantime, there are nearly 7,000

daily Baidu index3 and 90,000 weekly active developers, and four thousand daily

downloads.

To our best knowledge, in the web front-end industry of China, ECharts

acquires the recognition rate as high as 90% and the utilization rate as high570

as 74%. This means that ECharts is the most popular visualization toolkit in

China. It has been employed by 90% Baidu’s internal software product, and

used by external agencies, such as the Chinese Foreign Ministry, China National

Bureau of Statistics, China National Patent Offices, Alibaba, Tencent, Huawei

and Lenovo.575

In addition, universities and research institutions widely leverage ECharts

for studying, research and development. We have made a thorough investigation

and concluded that almost all universities that have visualization or statistics

courses employ ECharts as basic visualization toolkits. Representatives include

Zhejiang University, Beijing University, Wuhan University and CAS.580

Besides being well known in China, we have numerous foreign users, some of

which even contributed code to online ECharts community. Some international

users gave us constructive feedback, like:

1. “Went with ECharts 3 at the end, it has almost all the functionality I

need”585

2. “This library looks amazingly powerful and complete”

3. “It looks amazing and easy to use for charts”

3Baidu index of ECharts, https://zhishu.baidu.com/?tpl=trend&word=ECharts

23

https://zhishu.baidu.com/?tpl=trend&word=ECharts


9. Conclusion

We introduce ECharts, an efficient web-based framework for rapid construc-

tion of cross-platform visualizations. ECharts is designed to provide easy-to-use590

visual specification that allows users who do not have programming skills to

construct web-based visualizations. Users are allowed to freely configure com-

ponents, styles, data and interactions through a declarative option. Such design

reduces the workloads to take control of the constructing process and visual

structures. Users can further specify visual effects, including novel visual de-595

signs and interactions, by utilizing well-designed interfaces. ECharts is built on

a high-performance rendering and management system of HTML5 canvas, called

ZRender. We present examples to illustrate the possibilities of our design, per-

formance benchmarks of graph drawing, and the usability in real applications.

References600

[1] X.-M. Wang, T.-Y. Zhang, Y.-X. Ma, J. Xia, W. Chen, A Survey of Visual

Analytic Pipelines, Journal of Computer Science and Technology 31 (4)

(2016) 787–804.

[2] H. Mei, Y. Ma, Y. Wei, W. Chen, Design Space of Construction Tools

for Information Visualization: A Survey, Journal of Visual Languages and605

ComputingTo appear.

[3] L. Grammel, M. Tory, M.-A. Storey, How Information Visualization Novices

Construct Visualizations, IEEE Transactions on Visualization and Com-

puter Graphics 16 (6) (2010) 943–952.

[4] A. Satyanarayan, J. Heer, Lyra: An interactive visualization design envi-610

ronment, in: Computer Graphics Forum, Vol. 33, Wiley Online Library,

2014, pp. 351–360.

[5] T. Ichikawa, E. Jungert, R. R. Korfhage, Visual Languages and Applica-

tions, Springer Science & Business Media, 2013.

24



[6] A. Satyanarayan, R. Russell, J. Hoffswell, J. Heer, Reactive Vega: A615

Streaming Dataflow Architecture for Declarative Interactive Visualization,

IEEE Transactions on Visualization and Computer Graphics 22 (1) (2016)

659–668.

[7] M. Bostock, V. Ogievetsky, J. Heer, D3 Data-Driven Documents, IEEE

Transactions on Visualization and Computer Graphics 17 (12) (2011) 2301–620

2309.

[8] J. Heer, F. Van Ham, S. Carpendale, C. Weaver, P. Isenberg, Creation and

collaboration: Engaging new audiences for information visualization, in:

Information Visualization, Springer, 2008, pp. 92–133.

[9] Microsoft Excel, https://products.office.com/excel/, last Accessed:625

Dec. 2017.

[10] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, M. McKeon,

ManyEyes: a Site for Visualization at Internet Scale, IEEE Transactions

on Visualization and Computer Graphics 13 (6) (2007) 1121–1128.

[11] L. Wilkinson, The Grammar of Graphics, Springer, 2005.630

[12] Tableau software, https://www.tableau.com/, last Accessed: Dec. 2017.

[13] C. Stolte, D. Tang, P. Hanrahan, Polaris: A System for Query, Analysis,

and Visualization of Multidimensional Relational Databases, IEEE Trans-

actions on Visualization and Computer Graphics 8 (1) (2002) 52–65.

[14] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer, 2009.635

[15] H. Wickham, A Layered Grammar of Graphics, Journal of Computational

and Graphical Statistics 19 (1) (2010) 3–28.

[16] ggvis 0.4 overview, https://ggvis.rstudio.com/, last Accessed: Dec.

2017.

25

https://products.office.com/excel/
https://www.tableau.com/
https://ggvis.rstudio.com/


[17] J. D. Fekete, The InfoVis Toolkit, in: IEEE Symposium on Information640

Visualization, 2004, pp. 167–174.

[18] C. Weaver, Building Highly-Coordinated Visualizations in Improvise, in:

IEEE Symposium on Information Visualization, 2004, pp. 159–166.

[19] J. Heer, S. K. Card, J. A. Landay, prefuse: A Toolkit for Interactive Infor-

mation Visualization, in: Proceedings of the SIGCHI Conference on Human645

Factors in Computing Systems, CHI ’05, ACM, New York, NY, USA, 2005,

pp. 421–430.

[20] Flare, http://flare.prefuse.org/, last Accessed: Dec. 2017.

[21] M. Bostock, J. Heer, Protovis: A Graphical Toolkit for Visualization, IEEE

Transactions on Visualization and Computer Graphics 15 (6) (2009) 1121–650

1128.

[22] J. Heer, M. Bostock, Declarative Language Design for Interactive Visual-

ization, IEEE Transactions on Visualization and Computer Graphics 16 (6)

(2010) 1149–1156.

[23] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, J. Heer, Vega-Lite: A655

Grammar of Interactive Graphics, IEEE Transactions on Visualization and

Computer Graphics 23 (1) (2017) 341–350.

[24] F. Mwalongo, M. Krone, G. Reina, T. Ertl, State-of-the-Art Report in

Web-based Visualization, in: Computer Graphics Forum, Vol. 35, Wiley

Online Library, 2016, pp. 553–575.660

[25] Processing, http://processing.org, last Accessed: Dec. 2017.

[26] C. Reas, B. Fry, Processing: A Learning Environment for Creating Inter-

active Web Graphics, in: ACM SIGGRAPH 2003 Web Graphics, ACM,

2003, pp. 1–1.

26

http://flare.prefuse.org/
http://processing.org


[27] C. Reas, B. Fry, Processing.org: A Networked Context for Learning Com-665

puter Programming, in: ACM SIGGRAPH 2005 Web Program, ACM,

2005, p. 14.

[28] Raphaël—JavaScript Library, http://dmitrybaranovskiy.github.io/

raphael/, last Accessed: Dec. 2017.

[29] JavaScript InfoVis Toolkit, http://philogb.github.io/jit/, last Ac-670

cessed: Dec. 2017.

[30] D. Ren, T. Höllerer, X. Yuan, iVisDesigner: Expressive Interactive De-

sign of Information Visualizations, IEEE Transactions on Visualization and

Computer Graphics 20 (12) (2014) 2092–2101.

[31] G. G. Méndez, M. A. Nacenta, S. Vandenheste, iVoLVER: Interactive Visu-675

al Language for Visualization Extraction and Reconstruction, in: Proceed-

ings of the 2016 CHI Conference on Human Factors in Computing Systems,

CHI ’16, ACM, 2016, pp. 4073–4085.

[32] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,

H. Pfister, Data-driven guides: Supporting expressive design for informa-680

tion graphics, IEEE Transactions on Visualization and Computer Graphics

23 (1) (2017) 491–500.

[33] A. Satyanarayan, K. Wongsuphasawat, J. Heer, Declarative Interaction

Design for Data Visualization, in: Proceedings of the 27th Annual ACM

Symposium on User Interface Software and Technology, UIST ’14, ACM,685

New York, NY, USA, 2014, pp. 669–678.

27

http://dmitrybaranovskiy.github.io/raphael/
http://dmitrybaranovskiy.github.io/raphael/
http://dmitrybaranovskiy.github.io/raphael/
http://philogb.github.io/jit/


Figure 3: Example of custom chart types: (a) x -range plot, (b) OHLC plot, (c)

calendar, (d) polar heatmap, (e) tag cloud, (f) map drawn with ArcGIS API.

(g) shows the responsive design of charts on PC (left) and mobile (right).

28



Figure 4: Media Query for Responsive Design.

29



Figure 5: The design of the data-driven architecture, where the raw data and

the settings are modeled, and go through the stages of processing, layout, visual

encoding, and are rendered as graphic elements finally. User interactions or

programming call can trigger the pipeline from the beginning.

Figure 6: The flowchart of progressive visualization

Figure 7: The flowchart of the single-thread mode in ECharts

30



Figure 8: The flowchart of the multi-thread mode in ECharts

Figure 9: The implementation of the “renderItem”.

31



Figure 10: Comparisons among ECharts, HighCharts, Chart.js, and C3 concern-

ing the initialization time and animation framerate for different chart types.

32


	Introduction
	Related Work
	Grammars of Visualization
	Graphics Libraries
	Customization of Visual Design

	Declarative Visualization Design
	Declarative Options
	Chart Types
	Built-in Chart Types
	Customized Chart Types
	Extended Chart Types

	Coordinates Systems
	Components
	Visual Encoding
	Guide
	Interactions


	Customization of Visualization Design
	Interaction Specification
	Customization Series
	ECharts Extension
	Cross-platform Presentation
	Universal Appearance and Behavior
	Responsive Design


	Architecture
	Streaming Architecture
	Progressive Visualization
	Multi-Thread Rendering

	ZRender
	Graphic Elements Management
	Renderer Management
	Event System


	Examples
	Customization Series

	Discussions and Comparisons
	Discussions
	Comparisons
	Performance Comparison

	Impact
	Conclusion

