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A b s t r a c t 

A solut ion to the problem of representing compo­
si t ional s t ructure using d is t r ibuted representations 
is described. T h e method uses circular convolut ion 
to associate i tems, which are represented by vec­
tors. A r b i t r a r y var iable bindings, short sequences 
of various lengths, frames, and reduced represen­
tat ions can be compressed in to a fixed w id th vec­
tor . These representations are i tems in their own 
r igh t , and can be used in construct ing composit ional 
structures. T h e noisy reconstruct ions given by 
convolut ion memories can be cleaned up by using a 
separate associative memory tha t has good recon­
struct ive propert ies. 

1 I n t r o d u c t i o n 

Dis t r ibu ted representations [H in ton , 1984] are at t ract ive 
for a number of reasons. They offer the possibi l i ty of rep­
resenting concepts in a cont inuous space, they degrade 
graceful ly w i t h noise, and they can be processed in a 
paral lel network of s imple processing elements. How­
ever, the problem of representing composi t ional struc­
ture in d is t r ibu ted representations has been for some 
t ime a prominent concern of bo th followers and crit ics 
of the connectionist fa i th [Fodor and Py lyshyn, 1988; 
H in ton , 1990] . 

Using connectionist networks, e.g., back propagat ion 
nets, Hopf ie ld nets, Bol tzrnann machines, or Wi l lshaw 
nets, it is easy to represent associations of a fixed num­
ber of i tems. The di f f icul ty w i t h representing composi­
t iona l s t ructure in al l of these networks is tha t items and 
associations are represented in different spaces. H in ton 
[1990] discusses th is problem and proposes a framework 
in which "reduced descript ions" are used. Th is frame­
work requires tha t a number of vectors be compressed 
(reduced) in to a single vector of the same size as each 
of the or ig ina l vectors. Th is vector acts as a reduced 
descript ion of the set of vectors and itself can be a mem­
ber of another set of vectors. The reduct ion must be 
reversible so tha t one can move in bo th directions in a 
par t -whole hierarchy. In this way, composi t ional struc­
ture is represented. However, H in ton does not suggest 
any concrete way of per forming th is reducing mapping. 

Some researchers have bu i l t models or designed frame-

works in which some some composi t ional s t ructure is 
present in d is t r ibu ted representations. For some exam­
ples see the papers of Touretzky, Pol lack, or Smolensky 
in [ A I J , 1990]. 

In this paper I propose a new method for representing 
composi t ional s t ructure in d is t r ibu ted representations. 
Ci rcu lar convolut ion is used to construct associations of 
vectors. The representation of an association is a vec­
tor of the same d imensional i ty as the vectors which are 
associated. Th is al lows the construct ion of representa­
t ions of objects w i t h composi t ional s t ructure. 1 call these 
Holographic Reduced Representations (HRRs ) , since con-
vo lu t ion and correlat ion based memories are closely re-
lated to holographic storage, and they provide an im-
plementat ion of H in ton 's [1990] reduced descript ions. 1 
describe how HRRs and error correct ing associative i tem 
memories can be used to bu i ld d is t r ibu ted connection­
ist systems which manipu la te complex structures. The 
i tem memories are necessary to clean up the noisy i tems 
extracted f rom the convolut ion representations. 

2 Assoc ia t i ve m e m o r i e s 

Associative memories are used to store associations be­
tween items which are represented is a d is t r ibu ted fash­
ion as vectors. Nearly al l work on associative memory 
has been concerned w i t h s tor ing i tems or pairs of i tems. 

Convolut ion-corre lat ion memories (sometimes refered 
to as holographic- l ike) and ma t r i x memories have been 
regarded as al ternate methods for imp lement ing asso­
ciat ive memory [Wi l l shaw, 1981; Murdock , 1983; Pike, 
1984; Schonemann, 1987]. M a t r i x memories have re­
ceived more interest, probably due to their relat ive s im­
p l ic i ty and their higher capacity in terms of the number 
of elements in the i tems being associated. 

The properties of m a t r i x memories are well under­
s tood. T w o of the best known m a t r i x memories are 
"Wi l l shaw" networks [Wi l l shaw, 1981] and Hopfield 
networks.[Hopf ie ld, 1982] M a t r i x memories can be used 
to construct auto-associative (or "content addressable") 
memories for pat tern correction and complet ion. They 
can also be used to represent associations between two 
vectors. Af ter two vectors are associated one can be used 
as a cue to retrieve the other. 

There are three operat ions used in associative mem­
ories: encoding, decoding, and trace composi t ion. The 
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In mat r ix memories the encoding operation is the 
outer product, and in convolution memories the encod­
ing operation is convolut ion. Addi t ion and superposition 
have both been used as the trace composition operation 
in mat r ix and convolution memories. 

2.1 C o n v o l u t i o n - c o r r e l a t i o n m e m o r i e s 

In nearly all convolution memory models the ape­
riodic convolut ion operation has been used to form 
associations.2 The aperiodic convolution of two vectors 
w i th n elements each results in a vector wi th 2n - 1 
elements. This result can be convolved wi th another 
vector (recursive convolut ion); and if that vector has n 
elements, the result has 3 n - 2 elements. Thus the result­
ing vectors grow w i th recursive convolution. This same 
growing property is exhibited in a much more dramatic 
form by both mat r i x memories and Smolensky's [1990J 
tensor product representations. 

Researchers have used three solutions to this problem 
of growth w i t h recursive associations - (a) l imi t the depth 
of composition (Smolensky [1990]), (b) discard elements 

1 There are usually distributional constraints on the ele­
ments of the vectors, e.g., the elements should be drawn from 
independent distributions. 

2The exception is the non-linear correlograph of Willshaw 
[1981], first published in 1969. 

outside the n central ones (Metcalfe [1982]), and (c) use 
infinite vectors (Murdock [1982]). 

The growth problem can be avoided entirely by the 
use of circular convolution, an operation well known in 
signal processing. The result of the circular convolution 
of two vectors of n elements has just n elements. Since 
circular convolution does not have the growth property, 
it can be used recursively in connectionist systems wi th 
fixed width vectors. 

There is a close relationship between matr ix and 
convolution memories A convolution of two vectors 
(whether circular or aperiodic) can be regarded as a com­
pression of the outer product of those two vectors. The 
compression is achieved by summing along the trans-
diagonals of the outer product. 
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2.2 D i s t r i b u t i o n a l c o n s t r a i n t s o n v e c t o r s 

For correlation to decode convolution the elements of 
each vector must be independently distr ibuted w i th 
mean zero and variance 1/n so that the euclidean length 
of each vector has a mean of one. Examples of suit-
able distr ibut ions are the normal distr ibut ion and the 
discrete d is t r ibut ion w i t h values equiprobably ± l / / n . 
The analysis of signal strength and capacity depends on 
elements of vectors being independently distr ibuted. 

The tension between these constraints and the need 
for vectors to have meaningful features is discussed in 
Plate [1991]. 

2.3 H o w m u c h i n f o r m a t i o n i s s t o r e d 

Since a convolution trace only has n numbers in i t , it 
may seem strange tha t several pairs of vectors can be 
stored " i n " i t , since each of those vectors also has n 
numbers. The reason is that the vectors are stored wi th 
very poor f idel i ty; to successfully store a vector we only 
need to store enough informat ion to discriminate it f rom 
the other vectors. If M vectors are used to represent M 
different (equiprobable) i tems, then about 2k log M bits 
of informat ion are needed to represent k pairs of those 
items.4 The size of the vectors does not enter into this 
calculat ion, only the number of vectors matters. 

3 A d d i t i o n M e m o r i e s 

One of the simplest ways to store a set of vectors is to add 
them together. Such storage does not allow for recall or 
reconstruction of the stored items, but it does allow for 
recognit ion, i.e., determining whether a part icular i tem 
has been stored or not. 

The principle of addi t ion memory can be stated as 
"adding together two high dimensional vectors gives 
something which is similar to each and not very similar 
to anyth ing else."5 Th is principle underlies both convo­
lu t ion and matr ix memories and the same sort of analysis 
can be applied to the linear versions of each. Add i t ion 
memories are discussed at greater length in Plate [ l 9 9 l ] 

4Slightly less than 2f log M bits are required since the 
pairs are unordered 

5This applies to the degree that the elements of the vectors 
are randomly and independently distributed. 

4 T h e need for recons t ruc t i ve i t e m 
memor ies 

If a system using convolution representations is to do 
some sort of recall (as opposed to recognit ion), then it 
must have an addit ional error correcting associative i tem 
memory. This is needed to clean up the noisy vectors re­
trieved f rom the convolution traces. This reconstructive 
memory must store all the items that the system could 
produce. When given as input a noisy version of one 
of those items it must either output the closest i tem or 
indicate that the input is not close enough to any of the 
stored items. 

For example, suppose the system is to store pairs of 
letters, and suppose each one of the 26 letters is repre­
sented by the random vectors a, b, . . . ,z. The i tem mem­
ory must store these 26 vectors and must be able to out­
put the closest i tem for any input vector (the "clean" op­
eration). Such a system is shown in Figure 3. The trace 
is a sum of convolved pairs, e.g., t = a ® b -f c ® d -f e ® f . 
When the system is given one i tem as an input cue its 
task is to output the i tem that cue was associated wi th 
in the trace. It should also output a scalar value (the 
strength) which is high when the input cue was a mem­
ber of a pair, and low when the input cue was not a 
member of a pair. When given a as a cue it should pro­
duce b and a high strength. When given g as a cue 
it should give a low strength. The i tem it outputs is 
unimportant when the strength is low. 

The convolution trace stores only a few associations 
or items, and the i tem memory stores many items. The 
item memory acts as an auto-associator to clean up the 
noisy items retrieved f rom the convolution trace. 

The exact method of implementat ion of the i tem mem­
ory is unimportant . Hopfield networks are probably not 
a good candidate because of their low capacity. Kanerva 
networks [Kanerva, 1988] have sufficient capacity, but 
can only store binary vectors.6 For experiments I have 
been using a nearest neighbor matching memory. 

5 Represen t ing mo re comp lex s t r u c t u r e 
Pairs of items are easy to represent in any type of asso-
ciative memory, but convolution memory is also suited 
to the representation of more complex structure. 

5.1 Sequences 

Sequences can be represented in a number of ways using 
convolution encoding. An entire sequence can be repre-

Although most of this paper assumes items are repre­
sented as real vectors, convolution memories also work with 
binary vectors [Willshaw, 198l]. 
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sented in one memory trace (prov id ing the soft capacity 
l im i ts are not exceeded), or chunking can be used to rep­
resent a sequence of any length in a number of memory 
traces. 

Murdock [1983; 1987] proposes a chaining method of 
representing sequences in a single memory trace, and 
models a large number of psychological phenomena w i th 
i t . The technique used stores both i tem and pair infor­
mat ion in the memory trace, for example, i f the sequence 
of vectors to be stored is a b c , then the trace is 

where and are suitable weighting constants less 
than 1, generated f r om a two or three underly ing param­
eters, w i t h The retrieval of the sequence 
begins w i t h re t r iev ing the strongest component of the 
trace, which w i l l be a. From there the retrieval is by 
chaining — correlat ing the trace w i th the current i tem 
to retrieve the next i t em. The end of the sequence is de­
tected when the correlat ion of the trace w i th the current 
i tem is not s imi lar to any i tem in the i tem memory. 

Another way to represent sequences is to use the entire 
previous sequence as context rather than just the previ­
ous i tem [Murdock , 1987]. Th is makes it possible to store 
sequences w i t h repet i t ions of i tems. To store abc , the 
trace is: Th is type of sequence can 
be retrieved in a s imi lar way to the previous, except that 
the retr ieval cue must be bu i l t up using convolutions. 

The retr ieval of later i tems in both these representa­
tions could be improved by subtract ing off prefix com­
ponents as the i tems in the sequence are retrieved. 

Yet another way to represent sequences is to use a 
fixed cue for each posi t ion of the sequence, so to store 
abc , the trace is: The retrieval 
(and storage) cues p i can be arb i t rary or generated in 
some manner f rom a single vector, e.g.,  

5.2 C h u n k i n g o f sequences 

A l l of the above methods have soft l imi ts on the length 
of sequences tha t can be stored. As the sequences get 
longer the noise in the retrieved items increases unt i l 
the i tems are impossible to identi fy. Th is l im i t can be 
overcome by chunking — creating new "non te rmina l " 
items representing subsequences [Murdock, 1987]. 

The second sequence representation method is the 
most sui table one to do chunking w i t h . Suppose we 
want to represent the sequence a b e d e f g h . We can cre­
ate three new i tems representing subsequences: 

These new i tems must be added to the i tem memory and 
marked in some way as non-terminals. The representa­
t ion for the whole sequence is: 

Decoding th is chunked sequence is sl ight ly more dif­
ficult, requi r ing the use of a stack and decisions on 
whether an i tem is a non te rmina l tha t should be further 
decoded. A machine to decode such representations is 
described in section 7.2. 

5.3 V a r i a b l e b i n d i n g 

I t is simple to implement variable b ind ing w i t h convolu­
t ion : convolve the variable representation w i t h the value 
representation. I f i t is desired tha t the representation of 
a variable b inding should be somewhat s imi lar to bo th 
the variable and the value, the vectors for those can be 
added in . Th is gives ra as the represen­
tat ion of a variable b ind ing . 

This type of variable b ind ing can also be implemented 
in other types of associative memory, e.g., the t r ip le-
space of Bo l tzCONS [Touretzky and H in ton . 1985], or 
the outer product of roles and fil lers in D U C S [Touretzky 
and Geva, 1987]. However, in those systems the variable 
and value objects were of a different dimension than the 
binding object. Thus i t was not possible add components 
of the variable and the value to the representation of the 
binding, nor use the b ind ing itself as an i tem in another 
association. 

5.4 F r a m e - s l o t r e p r e s e n t a t i o n s 

Frames can be represented using convolut ion encoding 
in an analogous manner to cross products of roles and 
fillers in [H in ton , 1981] or the frames of DUCS [Touret­
zky and Geva, 1987]. A frame consists of a frame label 
and a set of roles, each represented by a vector. An in ­
stantiated frame is the sum of the frame label and the 
roles (slots) convolved w i t h their respective fil lers. For 
example, suppose we have a (very s impl i f ied) frame for 
"seeing". The vector for the frame label is Lsee and the 
vectors for the roles are ragent and robject- Th is frame 
could be instant iated w i th the fillers f jane and fspot, to 
represent "Jane saw Spot " : 

Fil lers (or roles) can be retrieved f rom the instant iated 
frame by correlat ing w i t h the role (or f i l ler). The vectors 
representing roles could be frame specific, i.e., ragent-see 
could be different f rom or they could be the 
same (or jus t s imi lar ) . Uninstant ia ted frames can also be 
stored as the sums of the vectors representing their com­
ponents, e.g., Section 7.1 
describes one way of man ipu la t i ng uninstant ia ted frames 
and selecting appropr iate roles to fi l l . 

The frame representation can be made simi lar to any 
vector by adding some of tha t vector to i t . For example, 
we could add to the above instant iated frame to 
make the representation for Jane doing something have 
some s imi lar i ty to the representation for Jane. 

6 Reduced Represen ta t i ons 

Using 'he types of representations described in the last 
Lection, it is a t r i v ia l step to bu i ld ing reduced represen­
tat ions which can represent complex hierarchical struc­
ture in a fixed w id th vector. We can use an instant iated 
f rame7 as a fi l ler instead of fs p o t in the f rame bu i l t in the 
previous section. For example, "Spot r a n . " : 

7 Normalization of lengths of vectors becomes an issue, but 
1 do not consider this for lack of space. 
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This representation can be manipulated wi th or wi th­
out chunking. Wi thout chunking, we could extract the 
agent of the object by correlating wi th robject ® ragent-
Using chunking, we could extract the object by correlat­
ing wi th r0bject, clean it up, and then extract its agent, 
giving a less noisy vector than without chunking. 

This implements Hinton's idea [1990] of a system being 
able to focus attention on constituents as well as being 
able to have the whole meaning present at once. It also 
suggests the possibility of sacrificing accuracy for speed 
— if chunks are not cleaned up the retrievals are less 
accurate. 

7 Simple Machines t ha t use H R R s 

In this section two simple machines that operate on com­
plex convolution representations are described. Both of 
these machines have been successfully simulated on a 
convolution calculator using vectors with 1024 elements. 
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The machine that accomplishes this operation is 
shown in Figure 4. 

7.2 C h u n k e d sequence r e a d o u t m a c h i n e 
A machine that reads out the chunked sequences de­
scribed in section 5.2 can be bui l t using two buffers, a 
stack, a classifier, a correlator, a clean up memory, and 
three gating paths. The classifier tells whether the item 
most prominent in the trace is a terminal, a non-terminal 
(chunk) or nothing. At each iteration the machine ex­
ecutes one of three action sequences depending on the 
output of the classifier. The stack could be implemented 
in any of a number of ways; including the way suggested 
in [Plate, 1991] , or in a network wi th fast weights. The 
machine is shown in Figure 5. 

The control loop for the chunked sequence readout 
machine is: 

L o o p : (unti l stack gives END signal) 
Clean up the trace to recover most prominent i tem: 
x = Clean(t). 
Classify x as a terminal, non-terminal, or nothing 
(in which case "pop" is the appropriate action) and 
do the appropriate of the following action sequences. 

This machine is an example of a system that can have 
the whole meaning present and that can also focus at­
tention on constituents. 

8 Ma thema t i ca l proper t ies 
Mathematical properties of circular convolution and cor­
relation are discussed in Plate [ l 99 l ] , including: alge­
braic properties; the reason convolution is an approx­
imate inverse for correlation; the existence and useful­
ness of exact inverses of convolutions; and the variances 
of dot products of various convolution products. 



F i g u r e 5: A chunked sequence readout machine. 

9 Discussion 

Circular convolution is a bilinear operation, and one con­
sequence of the l ineari ty is low storage efficiency. How­
ever, the storage efficiency is high enough to he usable 
and scales linearly. Convolut ion is endowed wi th several 
positive features by vir tue of its linear properties. One 
is that it can be computed very quickly using FFTs. An­
other is that analysis of the capacity, scaling, and gener-
alization properties is straightforward. Another is that 
there is a possibil ity that a system using HRRs could 
retain ambigui ty while processing ambiguous input. 

Convolut ion could be used as a fixed mapping in a con-
nectionist network to replace one or more of the usual 
weight-matr ix by vector mappings. Activations could be 
propagated forward very quickly using FFTs, and gra­
dients could be propagated backward very quickly us­
ing FFTs as well . Such a network could learn to take 
advantage of the convolution mapping and could learn 
distr ibuted representations for its inputs. 

Memory models using circular convolution provide 
a way of representing compositional structure in dis­
t r ibuted representations. The operations involved are 
linear and the properties of the scheme are relatively easy 
to analyze. There is no learning involved and the scheme 
works w i th a wide range of vectors. Systems employ­
ing this representation need to have an error-correcting 
auto-associative memory. 
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