
MySQL Connector/J 8.0 Developer Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/J
8.0, a JDBC and X DevAPI driver for communicating with MySQL servers.

MySQL Connector/J 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to
MySQL Connector/J 8.0.

For notes detailing the changes in each release of Connector/J 8.0, see MySQL Connector/J 8.0 Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2022-01-18 (revision: 71727)

https://dev.mysql.com/doc/relnotes/connector-j/8.0/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Overview of MySQL Connector/J .. 1
2 Compatibility with MySQL and Java Versions ... 3
3 What's New in Connector/J 8.0? .. 5
4 Connector/J Installation .. 7

4.1 Installing Connector/J from a Binary Distribution ... 7
4.2 Installing Connector/J Using Maven ... 8
4.3 Installing from Source ... 9
4.4 Upgrading from an Older Version .. 11

4.4.1 Upgrading to MySQL Connector/J 8.0 ... 11
4.5 Testing Connector/J .. 16

5 Connector/J Examples ... 19
6 Connector/J Reference .. 21

6.1 Driver/Datasource Class Name .. 21
6.2 Connection URL Syntax .. 21
6.3 Configuration Properties .. 25

6.3.1 Authentication .. 32
6.3.2 Connection ... 33
6.3.3 Session .. 35
6.3.4 Networking ... 36
6.3.5 Security ... 38
6.3.6 Statements ... 42
6.3.7 Prepared Statements .. 43
6.3.8 Result Sets .. 44
6.3.9 Metadata .. 46
6.3.10 BLOB/CLOB processing ... 47
6.3.11 Datetime types processing .. 48
6.3.12 High Availability and Clustering ... 50
6.3.13 Performance Extensions ... 55
6.3.14 Debugging/Profiling ... 59
6.3.15 Exceptions/Warnings .. 62
6.3.16 Tunes for integration with other products ... 63
6.3.17 JDBC compliance ... 63
6.3.18 X Protocol and X DevAPI ... 64

6.4 JDBC API Implementation Notes ... 67
6.5 Java, JDBC, and MySQL Types .. 70
6.6 Handling of Date-Time Values ... 72

6.6.1 Preserving Time Instants .. 72
6.6.2 Fractional Seconds ... 77

6.7 Using Character Sets and Unicode .. 77
6.8 Using Query Attributes .. 79
6.9 Connecting Securely Using SSL .. 81
6.10 Connecting Using Unix Domain Sockets ... 86
6.11 Connecting Using Named Pipes .. 87
6.12 Connecting Using Various Authentication Methods .. 88

6.12.1 Connecting Using PAM Authentication ... 88
6.12.2 Connecting Using Kerberos .. 88
6.12.3 Connecting Using Multifactor Authentication ... 89

6.13 Using Source/Replica Replication with ReplicationConnection .. 90
6.14 Support for DNS SRV Records .. 90
6.15 Client Session State Tracker ... 91
6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes ... 92

7 JDBC Concepts ... 99
7.1 Connecting to MySQL Using the JDBC DriverManager Interface 99
7.2 Using JDBC Statement Objects to Execute SQL .. 100

iii

MySQL Connector/J 8.0 Developer Guide

7.3 Using JDBC CallableStatements to Execute Stored Procedures 101
7.4 Retrieving AUTO_INCREMENT Column Values through JDBC ... 104

8 Connection Pooling with Connector/J .. 109
9 Multi-Host Connections .. 113

9.1 Configuring Server Failover for Connections Using JDBC .. 113
9.2 Configuring Server Failover for Connections Using X DevAPI .. 116
9.3 Configuring Load Balancing with Connector/J ... 116
9.4 Configuring Source/Replica Replication with Connector/J .. 119
9.5 Advanced Load-balancing and Failover Configuration ... 122

10 Using the X DevAPI with Connector/J: Special Topics ... 125
10.1 Connection Compression Using X DevAPI .. 125
10.2 Schema Validation .. 126

11 Using the Connector/J Interceptor Classes .. 129
12 Using Logging Frameworks with SLF4J .. 131
13 Using Connector/J with Tomcat .. 133
14 Using Connector/J with Spring .. 135

14.1 Using JdbcTemplate ... 136
14.2 Transactional JDBC Access ... 137
14.3 Connection Pooling with Spring .. 139

15 Troubleshooting Connector/J Applications ... 141
16 Known Issues and Limitations .. 149
17 Connector/J Support .. 151

17.1 Connector/J Community Support .. 151
17.2 How to Report Connector/J Bugs or Problems .. 151

Index .. 153

iv

Preface and Legal Notices
This manual describes how to install, configure, and develop database applications using MySQL
Connector/J, the JDBC driver for communicating with MySQL servers.

Licensing information. This product may include third-party software, used under license. If
you are using a Commercial release of MySQL Connector/J 8.0, see the MySQL Connector/J 8.0
Commercial License Information User Manual for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a
Community release of MySQL Connector/J 8.0, see the MySQL Connector/J 8.0 Community License
Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Legal Notices
Copyright © 1998, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

v

https://downloads.mysql.com/docs/licenses/connector-j-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.0-gpl-en.pdf

Documentation Accessibility

for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

vi

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 Overview of MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as
a number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Chapter 2, Compatibility with MySQL and Java Versions for
compatibility information.

Connector/J 8.0 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLExceptions, support for large update counts,
support for local and offset date-time variants from the java.time package, support for JDBC-4.x
XML processing, support for per connection client information, and support for the NCHAR, NVARCHAR
and NCLOB data types. See Chapter 2, Compatibility with MySQL and Java Versions for compatibility
information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics

• For installation instructions for Connector/J, see Chapter 4, Connector/J Installation.

• For help with connection strings, connection options, and setting up your connection through JDBC,
see Chapter 6, Connector/J Reference.

• For information on connection pooling, see Chapter 8, Connection Pooling with Connector/J.

• For information on multi-host connections, see Chapter 9, Multi-Host Connections.

• For information on using the X DevAPI with Connector/J, see Chapter 10, Using the X DevAPI with
Connector/J: Special Topics.

1

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

2

Chapter 2 Compatibility with MySQL and Java Versions
Here is some compatibility information for Connector/J 8.0:

• JDBC versions: Connector/J 8.0 implements JDBC 4.2. While Connector/J 8.0 works with libraries
of higher JDBC versions, it returns a SQLFeatureNotSupportedException for any calls of
methods supported only by JDBC 4.3 and higher.

• MySQL Server versions: Connector/J 8.0 supports MySQL 5.7 and 8.0.

• JRE versions: Connector/J 8.0 supports JRE 8 or higher.

• JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.0. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

3

4

Chapter 3 What's New in Connector/J 8.0?
Note

Connector/J 8.0 was formerly known as Connector/J 6.0; see Changes in
MySQL Connector/J 8.0.7 for an explanation of the version number change.
This section describes differences between Connector/J 8.0 and Connector/J
5.1.

Here is a summary of major new features of Connector/J 8.0 (for details on the differences between
the Connector/J 5.1 and 8.0 and for instructions on migrating, see Section 4.4.1, “Upgrading to MySQL
Connector/J 8.0”):

• It supports MySQL 5.7 and 8.0.

• It supports the JDBC 4.2 specification.

• It is a MySQL driver for the Java 8 platform.

• It supports the new X DevAPI, through which native support by MySQL 5.7 and 8.0 for JSON,
NoSQL, document collection, and other features are provided to Java applications. See Using
MySQL as a Document Store and the X DevAPI User Guide for details.

5

https://dev.mysql.com/doc/relnotes/connector-j/8.0/en/news-8-0-7.html
https://dev.mysql.com/doc/relnotes/connector-j/8.0/en/news-8-0-7.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/

6

Chapter 4 Connector/J Installation

Table of Contents
4.1 Installing Connector/J from a Binary Distribution ... 7
4.2 Installing Connector/J Using Maven ... 8
4.3 Installing from Source ... 9
4.4 Upgrading from an Older Version .. 11

4.4.1 Upgrading to MySQL Connector/J 8.0 ... 11
4.5 Testing Connector/J .. 16

You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysql-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 4.2, “Installing
Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 4.4, “Upgrading
from an Older Version” before continuing.

Important

You may also need to install the following third-party libraries on your system for
Connector/J 8.0 to work:

• Protocol Buffers (required for using X DevAPI)

• Simple Logging Facade API (required for using the logging
capabilities provided by the default implementation of
org.slf4j.Logger.Slf4JLogger by Connector/J)

These and other third-party libraries are required for building Connector/J from
source (see the section for more information on the required libraries, including
the required versions).

4.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

Using Platform-independent Archives: .tar.gz or .zip archives are available for installing
Connector/J on any platform. Using the appropriate graphical or command-line utility (for example, tar
for the .tar.gz archive and WinZip for the .zip archive), extract the JAR archive from the .tar.gz
or .zip archive to a suitable location.

Note

Because there are potentially long file names in the distribution, the Connector/
J archives use the GNU Tar archive format. Use GNU Tar or a compatible
application to unpack the .tar.gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,

7

https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Configuring the CLASSPATH

Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

Configuring the CLASSPATH

Once mysql-connector-java-version.jar has been extracted from the binary distribution
package to the right place, finish installing the driver by placing the JAR archive in your Java classpath,
either by adding its full file path to your CLASSPATH environment variable, or by directly specifying the
file path with the command line switch -cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the
following forms, depending on your command shell:

Bourne-compatible shell (sh, ksh, bash, zsh):
$> export CLASSPATH=/path/mysql-connector-java-ver.jar:$CLASSPATH

C shell (csh, tcsh):
$> setenv CLASSPATH /path/mysql-connector-java-ver.jar:$CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within
the user's .profile, .login, or other login file, or globally by editing the global /etc/profile file.

For Windows platforms, you set the environment variable through the System Control Panel.

Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your
vendor's documentation for information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for
some J2EE application servers, see Chapter 8, Connection Pooling with Connector/J, Section 9.3,
“Configuring Load Balancing with Connector/J”, and Section 9.5, “Advanced Load-balancing and
Failover Configuration”. However, the authoritative source for JDBC connection pool configuration
information is the documentation for your own application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can
put the driver's .jar file in the WEB-INF/lib subdirectory of your web application, as this is a
standard location for third-party class libraries in J2EE web applications. You can also use the
MysqlDataSource or MysqlConnectionPoolDataSource classes in the com.mysql.cj.jdbc
package, if your J2EE application server supports or requires them. The javax.sql.XADataSource
interface is implemented using the com.mysql.cj.jdbc.MysqlXADataSource class, which
supports XA distributed transactions. The various MysqlDataSource classes support the following
parameters (through standard set mutators):

• user

• password

• serverName

• databaseName

• port

4.2 Installing Connector/J Using Maven

8

Installing from Source

You can also use Maven dependencies manager to install and configure the Connector/J library in
your project. Connector/J is published in The Maven Central Repository with "GroupId: mysql" and
"ArtifactId: mysql-connector-java", and can be linked to your project by adding the following
dependency in your pom.xml file:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>x.y.z</version>
</dependency>

Note that if you use Maven to manage your project dependencies, you do not need to explicitly refer to
the library protobuf-java as it is resolved by dependency transitivity. However, if you do not want
to use the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the
unneeded sub-library. For example:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>x.y.z</version>
 <exclusions>
 <exclusion>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 </exclusion>
 </exclusions>
</dependency>

4.3 Installing from Source
Caution

Read this section only if you want to build a customized version of Connector/J
from source, or if you are interested in helping us test our new code. To just get
MySQL Connector/J up and running on your system, install Connector/J using
a standard binary release distribution; see Section 4.1, “Installing Connector/J
from a Binary Distribution” for instructions.

To install MySQL Connector/J from source, make sure that you have the following software on your
system:

Tip

It is suggested that the latest versions available for the following software
be used for compiling Connector/J; otherwise, some features might not be
available.

• A Git client, if you want to check out the sources from our GitHub repository (available from http://git-
scm.com/downloads).

• Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/), and the Ant
JUnitLauncher (ant-junitlauncher-1.10.6.jar, available from, for example, the Maven
Central Repository at https://search.maven.org/artifact/org.apache.ant/ant-junitlauncher/1.10.6/jar).

• JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

• The following third-party libraries:

• JUnit 5.6 (see installation and download information in the JUnit 5 User Guide). The following Jar
files are required:

• junit-jupiter-api-5.6.2.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-api/5.6.2/jar).

9

https://search.maven.org/search?q=g:mysql%20AND%20a:mysql-connector-java
http://git-scm.com/downloads
http://git-scm.com/downloads
http://ant.apache.org/
https://search.maven.org/artifact/org.apache.ant/ant-junitlauncher/1.10.6/jar
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/#dependency-diagram
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.6.2/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.6.2/jar

Installing from Source

• junit-jupiter-engine-5.6.2.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-engine/5.6.2/jar).

• junit-platform-commons-1.6.2.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.6.2/jar).

• junit-platform-engine-1.6.2.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.6.2/jar).

• junit-platform-launcher-1.6.2.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.6.2/jar).

• These additional Jar files, which JUnit 5 depends on:

• apiguardian-api-1.1.0.jar (available from, for example, https://search.maven.org/
artifact/org.apiguardian/apiguardian-api/1.1.0/jar).

• opentest4j-1.2.0.jar (available from, for example, https://search.maven.org/artifact/
org.opentest4j/opentest4j/1.2.0/jar).

• Javassist 3.27 or newer (javassist.jar, available from, for example, https://search.maven.org/
artifact/org.javassist/javassist/3.27.0-GA/bundle.

• Protocol Buffers Java API 3.11.4 (protobuf-java-3.11.4.jar, available from, for example,
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.11.4/bundle).

• C3P0 0.9.5.5 or newer (both c3p0-0.9.5.5.jar and c3p0-0.9.5.5.src.zip, available
from, for example, https://search.maven.org/artifact/com.mchange/c3p0/0.9.5.5/jar or https://
sourceforge.net/projects/c3p0/).

• Simple Logging Facade API 1.7.30 or newer (slf4j-api-1.7.30.jar, available from, for
example, https://search.maven.org/artifact/org.slf4j/slf4j-api/1.7.30/jar or https://www.slf4j.org/
download.html).

• Java Hamcrest 2.2 or newer (hamcrest-2.2.jar, available from, for example, https://
search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar).

To build MySQL Connector/J from source, follow these steps:

1. Make sure that you have JDK 1.8.x installed.

2. Obtain the sources for Connector/J by one of the following means:

• Download the platform independent distribution archive (in .tar.gz or .zip format) for
Connector/J, which contains the sources, from the Connector/J Download page. Extract contents
of the archive into a folder named, for example, mysql-connector-j.

• Download a source RPM package for Connector/J from Connector/J Download page and install
it.

• Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysql/mysql-connector-j. The latest release of the Connector/J 8.0 series is on
the release/8.0 branch; use the following command to check it out:

$> git clone --branch release/8.0 https://github.com/mysql/mysql-connector-j.git

Under the current directory, the command creates a mysql-connector-j subdirectory , which
contains the code you want.

10

https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.6.2/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.6.2/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.6.2/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.0/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.0/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.javassist/javassist/3.27.0-GA/bundle
https://search.maven.org/artifact/org.javassist/javassist/3.27.0-GA/bundle
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.11.4/bundle
https://search.maven.org/artifact/com.mchange/c3p0/0.9.5.5/jar
https://sourceforge.net/projects/c3p0/
https://sourceforge.net/projects/c3p0/
https://search.maven.org/artifact/org.slf4j/slf4j-api/1.7.30/jar
https://www.slf4j.org/download.html
https://www.slf4j.org/download.html
https://repo1.maven.org/maven2/org/hamcrest/hamcrest/2.2/hamcrest-2.2.jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

3. Place all the required third-party libraries in a separate directory—for example, /home/username/
ant-extralibs.

4. Change your current working directory to the mysql-connector-j directory created in step 2
above.

5. In the directory, create a file named build.properties to indicate to Ant the locations of the
root directories for your JDK 1.8.x installation, as well as the location of the extra libraries. The
file should contain the following property settings, with the “path_to_*” parts replaced by the
appropriate file paths:

com.mysql.cj.build.jdk=path_to_jdk_1.8
com.mysql.cj.extra.libs=path_to_folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant -D options.

Note

Going from Connector/J 5.1 to 8.0, a number of Ant properties for building
Connector/J have been renamed or removed; see Section 4.4.1.4, “Changes
for Build Properties” for details.

6. Issue the following command to compile the driver and create a .jar file for Connector/J:

$> ant dist

This creates a build directory in the current directory, where all the build output goes. A directory
is created under the build directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled .class files, and a .jar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution,
issue the following command:

$> ant -projecthelp

7. Install the newly created .jar file for the JDBC driver as you would install a binary .jar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

4.4 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply
with new standards.

4.4.1 Upgrading to MySQL Connector/J 8.0

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 might require certain
changes to your code or the environment in which it runs. Here are some changes for Connector/J
going from 5.1 to 8.0, for which adjustments might be required:

4.4.1.1 Running on the Java 8 Platform

Connector/J 8.0 is created specifically to run on the Java 8 platform. While Java 8 is known to be
strongly compatible with earlier Java versions, incompatibilities do exist, and code designed to work
on Java 7 might need to be adjusted before being run on Java 8. Developers should refer to the
incompatibility information provided by Oracle.

11

http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading to MySQL Connector/J 8.0

4.4.1.2 Changes in Connection Properties

A complete list of Connector/J 8.0 connection properties are available in connector-j-reference-set-
config. The following are connection properties that have been changed (removed, added, have their
names changed, or have their default values changed) going from Connector/J 5.1 to 8.0.

Properties that have been removed (do not use them during connection):

• useDynamicCharsetInfo

• useBlobToStoreUTF8OutsideBMP , utf8OutsideBmpExcludedColumnNamePattern, and
utf8OutsideBmpIncludedColumnNamePattern: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for
supporting characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

• useJvmCharsetConverters: JVM character set conversion is now used in all cases

• The following date and time properties:

• dynamicCalendars

• noTzConversionForTimeType

• noTzConversionForDateType

• cacheDefaultTimezone

• useFastIntParsing

• useFastDateParsing

• useJDBCCompliantTimezoneShift

• useLegacyDatetimeCode

• useSSPSCompatibleTimezoneShift

• useTimezone

• useGmtMillisForDatetimes

• dumpMetadataOnColumnNotFound

• relaxAutoCommit

• strictFloatingPoint

• runningCTS13

• retainStatementAfterResultSetClose

• nullNamePatternMatchesAll (removed since release 8.0.9)

Properties that have been added:

• mysqlx.useAsyncProtocol (deprecated since release 8.0.22)

Property that has its name changed:

• com.mysql.jdbc.faultInjection.serverCharsetIndex changed to
com.mysql.cj.testsuite.faultInjection.serverCharsetIndex

• loadBalanceEnableJMX to ha.enableJMX

• replicationEnableJMX to ha.enableJMX

12

https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-configuration-properties.html#connector-j-reference-set-config
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-configuration-properties.html#connector-j-reference-set-config

Upgrading to MySQL Connector/J 8.0

Properties that have their default values changed:

• nullCatalogMeansCurrent is now false by default

4.4.1.3 Changes in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version
5.1 to 8.0. You might need to adjust your API calls accordingly:

• The name of the class that implements java.sql.Driver in MySQL Connector/J has changed
from com.mysql.jdbc.Driver to com.mysql.cj.jdbc.Driver. The old class name has been
deprecated.

• The names of these commonly-used classes and interfaces have also been changed:

• ExceptionInterceptor: from com.mysql.jdbc.ExceptionInterceptor to
com.mysql.cj.exceptions.ExceptionInterceptor

• StatementInterceptor: from com.mysql.jdbc.StatementInterceptorV2 to
com.mysql.cj.interceptors.QueryInterceptor

• ConnectionLifecycleInterceptor: from com.mysql.jdbc.ConnectionLifecycleInterceptor
to com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor

• AuthenticationPlugin: from com.mysql.jdbc.AuthenticationPlugin to
com.mysql.cj.protocol.AuthenticationPlugin

• BalanceStrategy: from com.mysql.jdbc.BalanceStrategy to
com.mysql.cj.jdbc.ha.BalanceStrategy

• MysqlDataSource: from com.mysql.jdbc.jdbc2.optional.MysqlDataSource to
com.mysql.cj.jdbc.MysqlDataSource

• MysqlDataSourceFactory: from
com.mysql.jdbc.jdbc2.optional.MysqlDataSourceFactory to
com.mysql.cj.jdbc.MysqlDataSourceFactory

• MysqlConnectionPoolDataSource: from
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource to
com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• MysqlXADataSource: from com.mysql.jdbc.jdbc2.optional.MysqlXADataSource to
com.mysql.cj.jdbc.MysqlXADataSource

• MysqlXid: from com.mysql.jdbc.jdbc2.optional.MysqlXid to
com.mysql.cj.jdbc.MysqlXid

4.4.1.4 Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 4.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0”

Table 4.1 Changes with the Build Properties from Connector/J 5.1 to 8.0

Old name New name

com.mysql.jdbc.extra.libs com.mysql.cj.extra.libs

com.mysql.jdbc.jdk com.mysql.cj.build.jdk

debug.enable com.mysql.cj.build.addDebugInfo

com.mysql.jdbc.noCleanBetweenCompiles com.mysql.cj.build.noCleanBetweenCompiles

13

Upgrading to MySQL Connector/J 8.0

Old name New name

com.mysql.jdbc.commercialBuild com.mysql.cj.build.commercial

com.mysql.jdbc.filterLicense com.mysql.cj.build.filterLicense

com.mysql.jdbc.noCryptoBuild com.mysql.cj.build.noCrypto

com.mysql.jdbc.noSources com.mysql.cj.build.noSources

com.mysql.jdbc.noMavenSources com.mysql.cj.build.noMavenSources

major_version com.mysql.cj.build.driver.version.major

minor_version com.mysql.cj.build.driver.version.minor

subminor_version com.mysql.cj.build.driver.version.subminor

version_status com.mysql.cj.build.driver.version.status

extra.version com.mysql.cj.build.driver.version.extra

snapshot.version com.mysql.cj.build.driver.version.snapshot

version com.mysql.cj.build.driver.version

full.version com.mysql.cj.build.driver.version.full

prodDisplayName com.mysql.cj.build.driver.displayName

prodName com.mysql.cj.build.driver.name

fullProdName com.mysql.cj.build.driver.fullName

buildDir com.mysql.cj.build.dir

buildDriverDir com.mysql.cj.build.dir.driver

mavenUploadDir com.mysql.cj.build.dir.maven

distDir com.mysql.cj.dist.dir

toPackage com.mysql.cj.dist.dir.prepare

packageDest com.mysql.cj.dist.dir.package

com.mysql.jdbc.docs.sourceDir com.mysql.cj.dist.dir.prebuilt.docs

4.4.1.5 Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 4.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0”

Table 4.2 Changes with the Test Properties from Connector/J 5.1 to 8.0

Old name New name

buildTestDir com.mysql.cj.testsuite.build.dir

junit.results com.mysql.cj.testsuite.junit.results

com.mysql.jdbc.testsuite.jvm com.mysql.cj.testsuite.jvm

test com.mysql.cj.testsuite.test.class

methods com.mysql.cj.testsuite.test.methods

com.mysql.jdbc.testsuite.url com.mysql.cj.testsuite.url

com.mysql.jdbc.testsuite.admin-url com.mysql.cj.testsuite.url.admin

com.mysql.jdbc.testsuite.ClusterUrl com.mysql.cj.testsuite.url.cluster

com.mysql.jdbc.testsuite.url.sha256defaultcom.mysql.cj.testsuite.url.openssl

com.mysql.jdbc.testsuite.cantGrant com.mysql.cj.testsuite.cantGrant

com.mysql.jdbc.testsuite.no-multi-
hosts-tests

com.mysql.cj.testsuite.disable.multihost.tests

14

Upgrading to MySQL Connector/J 8.0

Old name New name

com.mysql.jdbc.test.ds.host com.mysql.cj.testsuite.ds.host

com.mysql.jdbc.test.ds.port com.mysql.cj.testsuite.ds.port

com.mysql.jdbc.test.ds.db com.mysql.cj.testsuite.ds.db

com.mysql.jdbc.test.ds.user com.mysql.cj.testsuite.ds.user

com.mysql.jdbc.test.ds.password com.mysql.cj.testsuite.ds.password

com.mysql.jdbc.test.tabletype com.mysql.cj.testsuite.loadstoreperf.tabletype

com.mysql.jdbc.testsuite.loadstoreperf.useBigResultscom.mysql.cj.testsuite.loadstoreperf.useBigResults

com.mysql.jdbc.testsuite.MiniAdminTest.runShutdowncom.mysql.cj.testsuite.miniAdminTest.runShutdown

com.mysql.jdbc.testsuite.noDebugOutputcom.mysql.cj.testsuite.noDebugOutput

com.mysql.jdbc.testsuite.retainArtifactscom.mysql.cj.testsuite.retainArtifacts

com.mysql.jdbc.testsuite.runLongTests com.mysql.cj.testsuite.runLongTests

com.mysql.jdbc.test.ServerController.basedircom.mysql.cj.testsuite.serverController.basedir

com.mysql.jdbc.ReplicationConnection.isSlavecom.mysql.cj.testsuite.replicationConnection.isReplica

com.mysql.jdbc.test.isLocalHostnameReplacementRemoved

com.mysql.jdbc.testsuite.driver Removed

com.mysql.jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests
have been removed from the test suite.

4.4.1.6 Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0. Applications
that used to catch the removed exceptions should now catch the corresponding exceptions listed in
Table 4.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]” in their
names in Table 4.3.

Table 4.3 Changes for Exceptions from Connector/J 5.1 to 8.0

Removed Exception in Connector/J 5.1 Exception to Catch in Connector/J 8.0

com.mysql.jdbc.exceptions.jdbc4.CommunicationsException com.mysql.cj.jdbc.exceptions.CommunicationsException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLDataException java.sql.SQLDataException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLInvalidAuthorizationSpecException java.sql.SQLInvalidAuthorizationSpecException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientConnectionException java.sql.SQLNonTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientException java.sql.SQLNonTransientException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLQueryInterruptedException com.mysql.cj.jdbc.exceptions.MySQLQueryInterruptedException

com.mysql.jdbc.exceptions.MySQLStatementCancelledException com.mysql.cj.jdbc.exceptions.MySQLStatementCancelledException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLSyntaxErrorException java.sql.SQLSyntaxErrorException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTimeoutException java.sql.SQLTimeoutException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransactionRollbackException java.sql.SQLTransactionRollbackException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientConnectionException java.sql.SQLTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientException java.sql.SQLTransientException

15

Testing Connector/J

Removed Exception in Connector/J 5.1 Exception to Catch in Connector/J 8.0

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

4.4.1.7 Other Changes

Here are other changes with Connector/J 8.0:

• Removed ReplicationDriver. Instead of using a separate driver, you can now obtain a
connection for a replication setup just by using the jdbc:mysql:replication:// scheme.

• See Chapter 4, Connector/J Installation for third-party libraries required for Connector/J 8.0 to work.

• Connector/J 8.0 always performs time offset adjustments on date-time values, and the adjustments
require one of the following to be true:

• The MySQL server is configured with a canonical time zone that is recognizable by Java (for
example, Europe/Paris, Etc/GMT-5, UTC, etc.)

• The server's time zone is overridden by setting the Connector/J connection property
serverTimezone (for example, serverTimezone=Europe/Paris).

4.5 Testing Connector/J
The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are
divided into the following categories:

• Unit tests: They are methods located in packages aligning with the classes that they test.

• Functional tests: Classes from the package testsuite.simple. Include test code for the main
features of Connector/J.

• Performance tests: Classes from the package testsuite.perf. Include test code to make
measurements for the performance of Connector/J.

• Regression tests: Classes from the package testsuite.regression. Includes code for testing
bug and regression fixes.

• X DevAPI and X Protocol tests: Classes from the package testsuite.x for testing X DevAPI and
X Protocol functionality.

The bundled Ant build file contains targets like test, which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. Besides the requirements for
building Connector/J from the source code described in Section 4.3, “Installing from Source”, a number
of the tests also require the File System Service Provider 1.2 for the Java Naming and Directory
Interface (JNDI), available at http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-
archive-downloads-java-plat-419418.html)—place the jar files downloaded from there into the lib
directory or in the directory pointed to by the property com.mysql.cj.extra.libs.

To run the test using Ant, in addition to the properties required for Section 4.3, “Installing from Source”,
you must set the following properties in the build.properties file or through the Ant -D options:

• com.mysql.cj.testsuite.jvm: the JVM to be used for the tests. If the property is not set, the
JVM supplied with com.mysql.cj.build.jdk will be used.

• com.mysql.cj.testsuite.url: it specifies the JDBC URL for connection to a MySQL test
server; see Section 6.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies
the JDBC URL for connection to a MySQL test server compiled with OpenSSL; see Section 6.2,
“Connection URL Syntax”.

16

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html

Testing Connector/J

• com.mysql.cj.testsuite.mysqlx.url: it specifies the X DevAPI URL for connection to a
MySQL test server; see Section 6.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.mysqlx.url.openssl: (for release 8.0.26 and earlier only) it
specifies the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see
Section 6.2, “Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

• Building the test target with ant test runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class names in the
com.mysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding
methods in the com.mysql.cj.testsuite.test.methods variable, separating multiple methods
by commas; for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest \
-Dcom.mysql.cj.testsuite.test.methods=testIndexOfIgnoreCase,testGetBytes test

While the test results are partially reported by the console, complete reports in HTML and XML formats
are provided. View the HTML report by opening buildtest/junit/report/index.html. XML
version of the reports are located in the folder buildtest/junit.

Note

Going from Connector/J 5.1 to 8.0, a number of Ant properties for testing
Connector/J have been renamed or removed; see Section 4.4.1.5, “Change for
Test Properties” for details.

17

18

Chapter 5 Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a
summary and links to these examples.

• Example 7.1, “Connector/J: Obtaining a connection from the DriverManager”

• Example 7.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 7.3, “Connector/J: Calling Stored Procedures”

• Example 7.4, “Connector/J: Using Connection.prepareCall()”

• Example 7.5, “Connector/J: Registering output parameters”

• Example 7.6, “Connector/J: Setting CallableStatement input parameters”

• Example 7.7, “Connector/J: Retrieving results and output parameter values”

• Example 7.8, “Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()”

• Example 7.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 7.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets”

• Example 8.1, “Connector/J: Using a connection pool with a J2EE application server”

• Example 15.1, “Connector/J: Example of transaction with retry logic”

19

20

Chapter 6 Connector/J Reference

Table of Contents
6.1 Driver/Datasource Class Name .. 21
6.2 Connection URL Syntax .. 21
6.3 Configuration Properties .. 25

6.3.1 Authentication .. 32
6.3.2 Connection ... 33
6.3.3 Session .. 35
6.3.4 Networking ... 36
6.3.5 Security ... 38
6.3.6 Statements ... 42
6.3.7 Prepared Statements .. 43
6.3.8 Result Sets .. 44
6.3.9 Metadata .. 46
6.3.10 BLOB/CLOB processing ... 47
6.3.11 Datetime types processing .. 48
6.3.12 High Availability and Clustering ... 50
6.3.13 Performance Extensions ... 55
6.3.14 Debugging/Profiling ... 59
6.3.15 Exceptions/Warnings .. 62
6.3.16 Tunes for integration with other products ... 63
6.3.17 JDBC compliance ... 63
6.3.18 X Protocol and X DevAPI ... 64

6.4 JDBC API Implementation Notes ... 67
6.5 Java, JDBC, and MySQL Types .. 70
6.6 Handling of Date-Time Values ... 72

6.6.1 Preserving Time Instants .. 72
6.6.2 Fractional Seconds ... 77

6.7 Using Character Sets and Unicode .. 77
6.8 Using Query Attributes .. 79
6.9 Connecting Securely Using SSL .. 81
6.10 Connecting Using Unix Domain Sockets .. 86
6.11 Connecting Using Named Pipes .. 87
6.12 Connecting Using Various Authentication Methods ... 88

6.12.1 Connecting Using PAM Authentication ... 88
6.12.2 Connecting Using Kerberos .. 88
6.12.3 Connecting Using Multifactor Authentication ... 89

6.13 Using Source/Replica Replication with ReplicationConnection ... 90
6.14 Support for DNS SRV Records .. 90
6.15 Client Session State Tracker ... 91
6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes ... 92

This section of the manual contains reference material for MySQL Connector/J.

6.1 Driver/Datasource Class Name

The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.cj.jdbc.Driver.

6.2 Connection URL Syntax

This section explains the syntax of the URLs for connecting to MySQL.

21

protocol

This is the generic format of the connection URL:

protocol//[hosts][/database][?properties]

The URL consists of the following parts:

Important

Any reserved characters for URLs (for example, /, :, @, (,), [,], &, #, =, ?,
and space) that appear in any part of the connection URL must be percent
encoded.

protocol

There are the possible protocols for a connection:

• jdbc:mysql: is for ordinary and basic JDBC failover connections.

• jdbc:mysql:loadbalance: is for load-balancing JDBC connections. See Section 9.3,
“Configuring Load Balancing with Connector/J” for details.

• jdbc:mysql:replication: is for JDBC replication connections. See Section 9.4, “Configuring
Source/Replica Replication with Connector/J” for details.

• mysqlx: is for X DevAPI connections.

• jdbc:mysql+srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: is for load-balancing JDBC connections that make use of DNS
SRV records.

• jdbc:mysql+srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: is for X DevAPI connections that make use of DNS SRV records.

hosts

Depending on the situation, the hosts part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific
properties, and user credentials.

• Single host:

• Single-host connections without adding host-specific properties:

• The hosts part is written in the format of host:port. This is an example of a simple single-host
connection URL:

jdbc:mysql://host1:33060/sakila

• host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value
of localhost is used.

• port is a standard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol.
If port is not specified, the corresponding default is used.

• Single-host connections adding host-specific properties:

22

hosts

• In this case, the host is defined as a succession of key=value pairs. Keys are used to identify
the host, the port, as well as any host-specific properties. There are two alternate formats for
specifying keys:

• The “address-equals” form:

address=(host=host_or_ip)(port=port)(key1=value1)(key2=value2)...(keyN=valueN)

Here is a sample URL using the“address-equals” form :

jdbc:mysql://address=(host=myhost)(port=1111)(key1=value1)/db

• The “key-value” form:

(host=host,port=port,key1=value1,key2=value2,...,keyN=valueN)

Here is a sample URL using the “key-value” form :

jdbc:mysql://(host=myhost,port=1111,key1=value1)/db

• The host and the port are identified by the keys host and port. The descriptions of the format
and default values of host and port in Single host without host-specific properties [22]
above also apply here.

• Other keys that can be added include user, password, protocol, and so on. They override
the global values set in the properties part of the URL. Limit the overrides to user, password,
network timeouts, and statement and metadata cache sizes; the effects of other per-host
overrides are not defined.

• Different protocols may require different keys. For example, the mysqlx: scheme uses two
special keys, address and priority. address is a host:port pair and priority an
integer. For example:

mysqlx://(address=host:1111,priority=1,key1=value1)/db

• key is case-sensitive. Two keys differing in case only are considered conflicting, and there are
no guarantees on which one will be used.

• Multiple hosts

There are two formats for specifying multiple hosts:

• List hosts in a comma-separated list:

host1,host2,...,hostN

Each host can be specified in any of the three ways described in Single host [22] above. Here
are some examples:

jdbc:mysql://myhost1:1111,myhost2:2222/db
jdbc:mysql://address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)/db
jdbc:mysql://(host=myhost1,port=1111,key1=value1),(host=myhost2,port=2222,key2=value2)/db
jdbc:mysql://myhost1:1111,(host=myhost2,port=2222,key2=value2)/db
mysqlx://(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2)/db

• List hosts in a comma-separated list, and then encloses the list by square brackets:

[host1,host2,...,hostN]

This is called the host sublist form, which allows sharing of the user credentials by all hosts in
the list as if they are a single host. Each host in the list can be specified in any of the three ways
described in Single host [22] above. Here are some examples:

jdbc:mysql://sandy:secret@[myhost1:1111,myhost2:2222]/db

23

database

jdbc:mysql://sandy:secret@[address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)]/db
jdbc:mysql://sandy:secret@[myhost1:1111,address=(host=myhost2)(port=2222)(key2=value2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

• User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the java.sql.DriverManager (see Section 6.3, “Configuration Properties” for
details). When set with the connection URL, there are several ways to specify them:

• Prefix the a single host, a host sublist (see Multiple hosts [23]), or any host in a list of hosts with
the user credentials with an @:

 user:password@host_or_host_sublist

For example:

mysqlx://sandy:secret@[(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2))]/db

• Use the keys user and password to specify credentials for each host:

(user=sandy)(password=mypass)

For example:

jdbc:mysql://[(host=myhost1,port=1111,user=sandy,password=secret),(host=myhost2,port=2222,user=finn,password=secret)]/db
jdbc:mysql://address=(host=myhost1)(port=1111)(user=sandy)(password=secret),address=(host=myhost2)(port=2222)(user=finn)(password=secret)/db

In both forms, when multiple user credentials are specified, the one to the left takes precedence—
that is, going from left to right in the connection string, the first one found that is applicable to a host
is the one that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

database

The default database or catalog to open. If the database is not specified, the connection is made with
no default database. In this case, either call the setCatalog() method on the Connection instance,
or specify table names using the database name (that is, SELECT dbname.tablename.colname
FROM dbname.tablename...) in your SQL statements. Opening a connection without specifying the
database to use is, in general, only useful when building tools that work with multiple databases, such
as GUI database managers.

Note

Always use the Connection.setCatalog() method to specify the desired
database in JDBC applications, rather than the USE database statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=value pairs
separated by the symbol “&.” Here are some examples:

jdbc:mysql://(host=myhost1,port=1111),(host=myhost2,port=2222)/db?key1=value1&key2=value2&key3=value3

The following are true for the key-value pairs:

• key and value are just strings. Proper type conversion and validation are performed internally in
Connector/J.

24

Configuration Properties

• key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

• Any host-specific values specified with key-value pairs as explained in Single host with host-specific
properties [22] and Multiple hosts [23] above override the global values set here.

See Section 6.3, “Configuration Properties” for details about the configuration properties.

6.3 Configuration Properties
Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the
preferred method when using implementations of java.sql.DataSource):

• com.mysql.cj.jdbc.MysqlDataSource

• com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• As a key-value pair in the java.util.Properties instance passed to
DriverManager.getConnection() or Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource
setURL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useServerPrepStmts alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useServerPrepStmts=true.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the
XML character literal & to separate configuration parameters, as the
ampersand is a reserved character for XML.

The properties are listed by categories in the following tables and then in the subsections that follow.
Click on a property name in the tables to see its full description in the subsections.

Table 6.1 Authentication Properties

Name Default Value Since Version

user - all versions

password - all versions

password1 - 8.0.28

password2 - 8.0.28

password3 - 8.0.28

authenticationPlugins - 5.1.19

disabledAuthenticationPlugins- 5.1.19

ociConfigFile - 8.0.27

defaultAuthenticationPlugin mysql_native_password 5.1.19

ldapServerHostname - 8.0.23

Table 6.2 Connection Properties

Name Default Value Since Version

connectionAttributes - 5.1.25

25

Configuration Properties

Name Default Value Since Version

connectionLifecycleInterceptors- 5.1.4

useConfigs - 3.1.5

clientInfoProvider com.mysql.cj.jdbc.CommentClientInfoProvider5.1.0

createDatabaseIfNotExist false 3.1.9

databaseTerm CATALOG 8.0.17

detectCustomCollations false 5.1.29

disconnectOnExpiredPasswordstrue 5.1.23

interactiveClient false 3.1.0

passwordCharacterEncoding - 5.1.7

propertiesTransform - 3.1.4

rollbackOnPooledClose true 3.0.15

useAffectedRows false 5.1.7

Table 6.3 Session Properties

Name Default Value Since Version

sessionVariables - 3.1.8

characterEncoding - 1.1g

characterSetResults - 3.0.13

connectionCollation - 3.0.13

customCharsetMapping - 8.0.26

trackSessionState false 8.0.26

Table 6.4 Networking Properties

Name Default Value Since Version

socksProxyHost - 5.1.34

socksProxyPort 1080 5.1.34

socketFactory com.mysql.cj.protocol.StandardSocketFactory3.0.3

connectTimeout 0 3.0.1

socketTimeout 0 3.0.1

dnsSrv false 8.0.19

localSocketAddress - 5.0.5

maxAllowedPacket 65535 5.1.8

tcpKeepAlive true 5.0.7

tcpNoDelay true 5.0.7

tcpRcvBuf 0 5.0.7

tcpSndBuf 0 5.0.7

tcpTrafficClass 0 5.0.7

useCompression false 3.0.17

useUnbufferedInput true 3.0.11

Table 6.5 Security Properties

Name Default Value Since Version

paranoid false 3.0.1

26

Configuration Properties

Name Default Value Since Version

serverRSAPublicKeyFile - 5.1.31

allowPublicKeyRetrieval false 5.1.31

sslMode PREFERRED 8.0.13

trustCertificateKeyStoreUrl - 5.1.0

trustCertificateKeyStoreTypeJKS 5.1.0

trustCertificateKeyStorePassword- 5.1.0

fallbackToSystemTrustStore true 8.0.22

clientCertificateKeyStoreUrl- 5.1.0

clientCertificateKeyStoreTypeJKS 5.1.0

clientCertificateKeyStorePassword- 5.1.0

fallbackToSystemKeyStore true 8.0.22

tlsCiphersuites - 5.1.35

tlsVersions - 8.0.8

allowLoadLocalInfile false 3.0.3

allowLoadLocalInfileInPath - 8.0.22

allowMultiQueries false 3.1.1

allowUrlInLocalInfile false 3.1.4

requireSSL false 3.1.0

useSSL true 3.0.2

verifyServerCertificate false 5.1.6

Table 6.6 Statements Properties

Name Default Value Since Version

cacheDefaultTimeZone true 8.0.20

continueBatchOnError true 3.0.3

dontTrackOpenResources false 3.1.7

queryInterceptors - 8.0.7

queryTimeoutKillsConnection false 5.1.9

Table 6.7 Prepared Statements Properties

Name Default Value Since Version

allowNanAndInf false 3.1.5

autoClosePStmtStreams false 3.1.12

compensateOnDuplicateKeyUpdateCountsfalse 5.1.7

emulateUnsupportedPstmts true 3.1.7

generateSimpleParameterMetadatafalse 5.0.5

processEscapeCodesForPrepStmtstrue 3.1.12

useServerPrepStmts false 3.1.0

useStreamLengthsInPrepStmts true 3.0.2

Table 6.8 Result Sets Properties

Name Default Value Since Version

clobberStreamingResults false 3.0.9

27

Configuration Properties

Name Default Value Since Version

emptyStringsConvertToZero true 3.1.8

holdResultsOpenOverStatementClosefalse 3.1.7

jdbcCompliantTruncation true 3.1.2

maxRows -1 all versions

netTimeoutForStreamingResults600 5.1.0

padCharsWithSpace false 5.0.6

populateInsertRowWithDefaultValuesfalse 5.0.5

scrollTolerantForwardOnly false 8.0.24

strictUpdates true 3.0.4

tinyInt1isBit true 3.0.16

transformedBitIsBoolean false 3.1.9

Table 6.9 Metadata Properties

Name Default Value Since Version

getProceduresReturnsFunctionstrue 5.1.26

noAccessToProcedureBodies false 5.0.3

nullDatabaseMeansCurrent false 3.1.8

useHostsInPrivileges true 3.0.2

useInformationSchema false 5.0.0

Table 6.10 BLOB/CLOB processing Properties

Name Default Value Since Version

autoDeserialize false 3.1.5

blobSendChunkSize 1048576 3.1.9

blobsAreStrings false 5.0.8

clobCharacterEncoding - 5.0.0

emulateLocators false 3.1.0

functionsNeverReturnBlobs false 5.0.8

locatorFetchBufferSize 1048576 3.2.1

Table 6.11 Datetime types processing Properties

Name Default Value Since Version

connectionTimeZone - 3.0.2

forceConnectionTimeZoneToSessionfalse 8.0.23

noDatetimeStringSync false 3.1.7

preserveInstants true 8.0.23

sendFractionalSeconds true 5.1.37

sendFractionalSecondsForTimetrue 8.0.23

treatUtilDateAsTimestamp true 5.0.5

yearIsDateType true 3.1.9

zeroDateTimeBehavior EXCEPTION 3.1.4

28

Configuration Properties

Table 6.12 High Availability and Clustering Properties

Name Default Value Since Version

autoReconnect false 1.1

autoReconnectForPools false 3.1.3

failOverReadOnly true 3.0.12

maxReconnects 3 1.1

reconnectAtTxEnd false 3.0.10

retriesAllDown 120 5.1.6

initialTimeout 2 1.1

queriesBeforeRetrySource 50 3.0.2

secondsBeforeRetrySource 30 3.0.2

allowReplicaDownConnections false 6.0.2

allowSourceDownConnections false 5.1.27

ha.enableJMX false 5.1.27

loadBalanceHostRemovalGracePeriod15000 6.0.3

readFromSourceWhenNoReplicasfalse 6.0.2

selfDestructOnPingMaxOperations0 5.1.6

selfDestructOnPingSecondsLifetime0 5.1.6

ha.loadBalanceStrategy random 5.0.6

loadBalanceAutoCommitStatementRegex- 5.1.15

loadBalanceAutoCommitStatementThreshold0 5.1.15

loadBalanceBlocklistTimeout 0 5.1.0

loadBalanceConnectionGroup - 5.1.13

loadBalanceExceptionChecker com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker5.1.13

loadBalancePingTimeout 0 5.1.13

loadBalanceSQLExceptionSubclassFailover- 5.1.13

loadBalanceSQLStateFailover - 5.1.13

loadBalanceValidateConnectionOnSwapServerfalse 5.1.13

pinGlobalTxToPhysicalConnectionfalse 5.0.1

replicationConnectionGroup - 8.0.7

resourceId - 5.0.1

serverAffinityOrder - 8.0.8

Table 6.13 Performance Extensions Properties

Name Default Value Since Version

callableStmtCacheSize 100 3.1.2

metadataCacheSize 50 3.1.1

useLocalSessionState false 3.1.7

useLocalTransactionState false 5.1.7

prepStmtCacheSize 25 3.0.10

prepStmtCacheSqlLimit 256 3.0.10

parseInfoCacheFactory com.mysql.cj.PerConnectionLRUFactory5.1.1

serverConfigCacheFactory com.mysql.cj.util.PerVmServerConfigCacheFactory5.1.1

29

Configuration Properties

Name Default Value Since Version

alwaysSendSetIsolation true 3.1.7

maintainTimeStats true 3.1.9

useCursorFetch false 5.0.0

cacheCallableStmts false 3.1.2

cachePrepStmts false 3.0.10

cacheResultSetMetadata false 3.1.1

cacheServerConfiguration false 3.1.5

defaultFetchSize 0 3.1.9

dontCheckOnDuplicateKeyUpdateInSQLfalse 5.1.32

elideSetAutoCommits false 3.1.3

enableEscapeProcessing true 6.0.1

enableQueryTimeouts true 5.0.6

largeRowSizeThreshold 2048 5.1.1

readOnlyPropagatesToServer true 5.1.35

rewriteBatchedStatements false 3.1.13

useReadAheadInput true 3.1.5

Table 6.14 Debugging/Profiling Properties

Name Default Value Since Version

logger com.mysql.cj.log.StandardLogger 3.1.1

profilerEventHandler com.mysql.cj.log.LoggingProfilerEventHandler5.1.6

useNanosForElapsedTime false 5.0.7

maxQuerySizeToLog 2048 3.1.3

profileSQL false 3.1.0

logSlowQueries false 3.1.2

slowQueryThresholdMillis 2000 3.1.2

slowQueryThresholdNanos 0 5.0.7

autoSlowLog true 5.1.4

explainSlowQueries false 3.1.2

gatherPerfMetrics false 3.1.2

reportMetricsIntervalMillis 30000 3.1.2

logXaCommands false 5.0.5

traceProtocol false 3.1.2

enablePacketDebug false 3.1.3

packetDebugBufferSize 20 3.1.3

useUsageAdvisor false 3.1.1

resultSetSizeThreshold 100 5.0.5

autoGenerateTestcaseScript false 3.1.9

Table 6.15 Exceptions/Warnings Properties

Name Default Value Since Version

dumpQueriesOnException false 3.1.3

30

Configuration Properties

Name Default Value Since Version

exceptionInterceptors - 5.1.8

ignoreNonTxTables false 3.0.9

includeInnodbStatusInDeadlockExceptionsfalse 5.0.7

includeThreadDumpInDeadlockExceptionsfalse 5.1.15

includeThreadNamesAsStatementCommentfalse 5.1.15

useOnlyServerErrorMessages true 3.0.15

Table 6.16 Tunes for integration with other products Properties

Name Default Value Since Version

overrideSupportsIntegrityEnhancementFacilityfalse 3.1.12

ultraDevHack false 2.0.3

Table 6.17 JDBC compliance Properties

Name Default Value Since Version

useColumnNamesInFindColumn false 5.1.7

pedantic false 3.0.0

useOldAliasMetadataBehavior false 5.0.4

Table 6.18 X Protocol and X DevAPI Properties

Name Default Value Since Version

xdevapi.auth PLAIN 8.0.8

xdevapi.compression PREFERRED 8.0.20

xdevapi.compression-
algorithms

zstd_stream,lz4_message,deflate_stream8.0.22

xdevapi.compression-
extensions

- 8.0.22

xdevapi.connect-timeout 10000 8.0.13

xdevapi.connection-
attributes

- 8.0.16

xdevapi.dns-srv false 8.0.19

xdevapi.fallback-to-
system-keystore

true 8.0.22

xdevapi.fallback-to-
system-truststore

true 8.0.22

xdevapi.ssl-keystore - 8.0.22

xdevapi.ssl-keystore-
password

- 8.0.22

xdevapi.ssl-keystore-type JKS 8.0.22

xdevapi.ssl-mode REQUIRED 8.0.7

xdevapi.ssl-truststore - 6.0.6

xdevapi.ssl-truststore-
password

- 6.0.6

xdevapi.ssl-truststore-
type

JKS 6.0.6

xdevapi.tls-ciphersuites - 8.0.19

31

Authentication

Name Default Value Since Version

xdevapi.tls-versions - 8.0.19

6.3.1 Authentication

• user

The user to connect as

Since Version all versions

• password

The password to use when connecting.

Since Version all versions

• password1

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of
the connection property password and can also be set with user credentials in the connection string.

Since Version 8.0.28

• password2

The password to use in the second phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• password3

The password to use in the third phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• authenticationPlugins

Comma-delimited list of classes that implement the interface
com.mysql.cj.protocol.AuthenticationPlugin. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
also disabled in the connection property 'disabledAuthenticationPlugins'.

Since Version 5.1.19

• disabledAuthenticationPlugins

Comma-delimited list of authentication plugins client-side protocol names or classes implementing
the interface com.mysql.cj.protocol.AuthenticationPlugin. The authentication plugins listed will
not be used for authenticating users and, if anyone of them is required during the authentication
exchange, the connection fails. The default authentication plugin specified in the property
'defaultAuthenticationPlugin' cannot be disabled.

Since Version 5.1.19

• ociConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is
"~/.oci/config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

32

Connection

Since Version 8.0.27

• defaultAuthenticationPlugin

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface com.mysql.cj.protocol.AuthenticationPlugin. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the
property 'authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled
with the property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or
class can be set for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this propertys default value if that plugin
cannot be used. However, when a value is explicitly provided to this property, Connector/J then
overrides the server-side default authentication plugin and always tries first the plugin specified with
this property.

Default Value mysql_native_password

Since Version 5.1.19

• ldapServerHostname

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this
property is not set, Connector/J takes the system property 'java.security.krb5.kdc' and extracts
the hostname (short name) from its value and uses it. If neither is set, the connection fails with an
exception.

Since Version 8.0.23

6.3.2 Connection

• connectionAttributes

A comma-delimited list of user-defined key:value pairs (in addition to standard MySQL-
defined key:value pairs) to be passed to MySQL Server for display as connection attributes
in the PERFORMANCE_SCHEMA.SESSION_CONNECT_ATTRS table. Example usage:
connectionAttributes=key1:value1,key2:value2 This functionality is available for use with MySQL
Server version 5.6 or later only. Earlier versions of MySQL Server do not support connection
attributes, causing this configuration option to be ignored. Setting connectionAttributes=none will
cause connection attribute processing to be bypassed, for situations where Connection creation/
initialization speed is critical.

Since Version 5.1.25

• connectionLifecycleInterceptors

A comma-delimited list of classes that implement
"com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor" that should notified of connection
lifecycle events (creation, destruction, commit, rollback, setting the current database and
changing the autocommit mode) and potentially alter the execution of these commands.
ConnectionLifecycleInterceptors are "stackable", more than one interceptor may be specified via the
configuration property as a comma-delimited list, with the interceptors executed in order from left to
right.

Since Version 5.1.4

• useConfigs

33

Connection

Load the comma-delimited list of configuration properties before parsing the URL or applying user-
specified properties. These configurations are explained in the 'Configurations' of the documentation.

Since Version 3.1.5

• clientInfoProvider

The name of a class that implements the com.mysql.cj.jdbc.ClientInfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientInfo() methods

Default Value com.mysql.cj.jdbc.CommentClientInfoProvider

Since Version 5.1.0

• createDatabaseIfNotExist

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

Default Value false

Since Version 3.1.9

• databaseTerm

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database". This property sets for Connector/J
which of the JDBC terms "catalog" and "schema" is used in an application to refer to a database.
The property takes one of the two values CATALOG or SCHEMA and uses it to determine
(1) which Connection methods can be used to set/get the current database (e.g. setCatalog()
or setSchema()?), (2) which arguments can be used within the various DatabaseMetaData
methods to filter results (e.g. the catalog or schemaPattern argument of getColumns()?), and
(3) which fields in the ResultSet returned by DatabaseMetaData methods contain the database
identification information (i.e., the TABLE_CAT or TABLE_SCHEM field in the ResultSet returned by
getTables()?).

If databaseTerm=CATALOG, schemaPattern for searches are ignored and calls of schema methods
(like setSchema() or get Schema()) become no-ops, and vice versa.

Default Value CATALOG

Since Version 8.0.17

• detectCustomCollations

Should the driver detect custom charsets/collations installed on server (true/false, defaults to 'false').
If this option set to 'true' driver gets actual charsets/collations from server each time connection
establishes. This could slow down connection initialization significantly.

Default Value false

Since Version 5.1.29

• disconnectOnExpiredPasswords

If "disconnectOnExpiredPasswords" is set to "false" and password is expired then server enters
"sandbox" mode and sends ERR(08001, ER_MUST_CHANGE_PASSWORD) for all commands that
are not needed to set a new password until a new password is set.

Default Value true

34

Session

Since Version 5.1.23

• interactiveClient

Set the CLIENT_INTERACTIVE flag, which tells MySQL to timeout connections based on
INTERACTIVE_TIMEOUT instead of WAIT_TIMEOUT

Default Value false

Since Version 3.1.0

• passwordCharacterEncoding

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name
specified in the property 'connectionCollation' or to the Java encoding specified in the property
'characterEncoding', in that order of priority. The "utf8mb4" default collation is used if none of the
properties is set.

Since Version 5.1.7

• propertiesTransform

An implementation of com.mysql.cj.conf.ConnectionPropertiesTransform that the driver will use to
modify URL properties passed to the driver before attempting a connection

Since Version 3.1.4

• rollbackOnPooledClose

Should the driver issue a rollback() when the logical connection in a pool is closed?

Default Value true

Since Version 3.0.15

• useAffectedRows

Don't set the CLIENT_FOUND_ROWS flag when connecting to the server (not JDBC-compliant, will
break most applications that rely on "found" rows vs. "affected rows" for DML statements), but does
cause "correct" update counts from "INSERT ... ON DUPLICATE KEY UPDATE" statements to be
returned by the server.

Default Value false

Since Version 5.1.7

6.3.3 Session

• sessionVariables

A comma or semicolon separated list of name=value pairs to be sent as SET [SESSION] ... to the
server when the driver connects.

Since Version 3.1.8

• characterEncoding

Instructs the server to set session system variables 'character_set_client' and
'character_set_connection' to the default character set for the specified Java encoding and set

35

Networking

'collation_connection' to the default collation for this character set. If neither this property nor the
property 'connectionCollation' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8mb4".

Since Version 1.1g

• characterSetResults

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null", the server will send data in its original character set and the driver
will decode it according to the result metadata.

Since Version 3.0.13

• connectionCollation

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to the corresponding character
set. This property overrides the value of 'characterEncoding' with the character set this collation
belongs to. If neither this property nor the property 'characterEncoding' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8mb4" default collation.

Since Version 3.0.13

• customCharsetMapping

A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and
'detectCustomCollations=true', Connector/J needs to know which Java character
encoding to use for the data represented by these character sets. Example usage:
'customCharsetMapping=charset1:UTF-8,charset2:Cp1252'.

Since Version 8.0.26

• trackSessionState

Receive server session state changes on query results. These changes are accessible via
MysqlConnection.getServerSessionStateController().

Default Value false

Since Version 8.0.26

6.3.4 Networking

• socksProxyHost

Name or IP address of SOCKS host to connect through.

Since Version 5.1.34

• socksProxyPort

Port of SOCKS server.

36

Networking

Default Value 1080

Since Version 5.1.34

• socketFactory

The name of the class that the driver should use for creating socket connections to the server. This
class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have public no-args
constructor.

Default Value com.mysql.cj.protocol.StandardSocketFactory

Since Version 3.0.3

• connectTimeout

Timeout for socket connect (in milliseconds), with 0 being no timeout. Only works on JDK-1.4 or
newer. Defaults to '0'.

Default Value 0

Since Version 3.0.1

• socketTimeout

Timeout (in milliseconds) on network socket operations (0, the default means no timeout).

Default Value 0

Since Version 3.0.1

• dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting
list of hosts in a multi-host failover connection? Note that a single host name and no port must be
provided when this option is enabled.

Default Value false

Since Version 8.0.19

• localSocketAddress

Hostname or IP address given to explicitly configure the interface that the driver will bind the client
side of the TCP/IP connection to when connecting.

Since Version 5.0.5

• maxAllowedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect
if set larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the
property "blobSendChunkSize", this setting has a minimum value of "8203" if "useServerPrepStmts"
is set to "true".

Default Value 65535

Since Version 5.1.8 37

Security

• tcpKeepAlive

If connecting using TCP/IP, should the driver set SO_KEEPALIVE?

Default Value true

Since Version 5.0.7

• tcpNoDelay

If connecting using TCP/IP, should the driver set SO_TCP_NODELAY (disabling the Nagle
Algorithm)?

Default Value true

Since Version 5.0.7

• tcpRcvBuf

If connecting using TCP/IP, should the driver set SO_RCV_BUF to the given value? The default
value of '0', means use the platform default value for this property)

Default Value 0

Since Version 5.0.7

• tcpSndBuf

If connecting using TCP/IP, should the driver set SO_SND_BUF to the given value? The default
value of '0', means use the platform default value for this property)

Default Value 0

Since Version 5.0.7

• tcpTrafficClass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields ?See the
documentation for java.net.Socket.setTrafficClass() for more information.

Default Value 0

Since Version 5.0.7

• useCompression

Use zlib compression when communicating with the server (true/false)?

Default Value false

Since Version 3.0.17

• useUnbufferedInput

Don't use BufferedInputStream for reading data from the server

Default Value true

Since Version 3.0.11

6.3.5 Security

• paranoid

38

Security

Take measures to prevent exposure sensitive information in error messages and clear data
structures holding sensitive data when possible? (defaults to 'false')

Default Value false

Since Version 3.0.1

• serverRSAPublicKeyFile

File path to the server RSA public key file for sha256_password authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

• allowPublicKeyRetrieval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false

Since Version 5.1.31

• sslMode

By default, network connections are SSL encrypted; this property permits secure connections
to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - (default) Establish encrypted
connections if the server enabled them, otherwise fall back to unencrypted connections;
"REQUIRED" - Establish secure connections if the server enabled them, fail otherwise;
"VERIFY_CA" - Like "REQUIRED" but additionally verify the server TLS certificate against the
configured Certificate Authority (CA) certificates; "VERIFY_IDENTITY" - Like "VERIFY_CA", but
additionally verify that the server certificate matches the host to which the connection is attempted.

This property replaced the deprecated legacy properties "useSSL", "requireSSL", and
"verifyServerCertificate", which are still accepted but translated into a value for "sslMode"
if "sslMode" is not explicitly set: "useSSL=false" is translated to "sslMode=DISABLED";
{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"sslMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"}
is translated to "sslMode=REQUIRED"; {"useSSL=true" AND "verifyServerCertificate=true"}
is translated to "sslMode=VERIFY_CA". There is no equivalent legacy settings for
"sslMode=VERIFY_IDENTITY". Note that, for ALL server versions, the default setting of "sslMode" is
"PREFERRED", and it is equivalent to the legacy settings of "useSSL=true", "requireSSL=false", and
"verifyServerCertificate=false", which are different from their default settings for Connector/J 8.0.12
and earlier in some situations. Applications that continue to use the legacy properties and rely on
their old default settings should be reviewed.

The legacy properties are ignored if "sslMode" is set explicitly. If none of "sslMode" or "useSSL" is
set explicitly, the default setting of "sslMode=PREFERRED" applies.

Default Value PREFERRED

Since Version 8.0.13

39

Security

• trustCertificateKeyStoreUrl

URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is
used.

Since Version 5.1.0

• trustCertificateKeyStoreType

Key store type for trusted root certificates.

NULL or empty means use the default, which is "JKS". Standard key store types supported by the
JVM are "JKS" and "PKCS12", your environment may have more available depending on what
security products are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

• trustCertificateKeyStorePassword

Password for the trusted root certificates key store.

Since Version 5.1.0

• fallbackToSystemTrustStore

Whether the absence of setting a value for 'trustCertificateKeyStoreUrl' falls back to
using the system-wide default trust store or one defined through the system properties
'javax.net.ssl.trustStore*'.

Default Value true

Since Version 8.0.22

• clientCertificateKeyStoreUrl

URL for the client certificate KeyStore

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is
used.

Since Version 5.1.0

• clientCertificateKeyStoreType

Key store type for client certificates.

NULL or empty means use the default, which is "JKS". Standard key store types supported by the
JVM are "JKS" and "PKCS12", your environment may have more available depending on what
security products are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0
40

Security

• clientCertificateKeyStorePassword

Password for the client certificates key store.

Since Version 5.1.0

• fallbackToSystemKeyStore

Whether the absence of setting a value for 'clientCertificateKeyStoreUrl' falls back to using the
system-wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value true

Since Version 8.0.22

• tlsCiphersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named
'enabledSSLCipherSuites', which remains as an alias.

Since Version 5.1.35

• tlsVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols
enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS
versions and, by doing that, avoid TLS negotiation fallback. Allowed and default values are TLSv1.2,
TLSv1.3. Prior to version 8.0.28, this property was named 'enabledTLSProtocols', which remains as
an alias.

Since Version 8.0.8

• allowLoadLocalInfile

Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true" overrides whatever path is set in 'allowLoadLocalInfileInPath', allowing uploading
files from any location.

Default Value false

Since Version 3.0.3

• allowLoadLocalInfileInPath

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this
path are forbidden.

Since Version 8.0.22

• allowMultiQueries

Allow the use of ';' to delimit multiple queries during one statement (true/false). Default is 'false', and
it does not affect the addBatch() and executeBatch() methods, which rely on rewriteBatchStatements
instead.

Default Value false

41

Statements

Since Version 3.1.1

• allowUrlInLocalInfile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false

Since Version 3.1.4

• requireSSL

For 8.0.12 and earlier: Require server support of SSL connection if useSSL=true? (defaults to 'false').

For 8.0.13 and later: DEPRECATED. See sslMode property description for details.

Default Value false

Since Version 3.1.0

• useSSL

For 8.0.12 and earlier: Use SSL when communicating with the server (true/false), default is 'true'
when connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is 'false'.

For 8.0.13 and later: Default is 'true'. DEPRECATED. See sslMode property description for details.

Default Value true

Since Version 3.0.2

• verifyServerCertificate

For 8.0.12 and earlier: If "useSSL" is set to "true", should the driver verify the server's
certificate? When using this feature, the key store parameters should be specified by the
"clientCertificateKeyStore*" properties, rather than system properties. Default is 'false' when
connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+ and "useSSL" was not explicitly set to "true".
Otherwise default is 'true'.

For 8.0.13 and later: Default is 'false'. DEPRECATED. See sslMode property description for details.

Default Value false

Since Version 5.1.6

6.3.6 Statements

• cacheDefaultTimeZone

Caches clients default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it wont be aware of time zone changes if they
happen at runtime.

Default Value true

Since Version 8.0.20

• continueBatchOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows
either way (defaults to 'true').

Default Value true

42

Prepared Statements

Since Version 3.0.3

• dontTrackOpenResources

The JDBC specification requires the driver to automatically track and close resources, however
if your application doesn't do a good job of explicitly calling close() on statements or result sets,
this can cause memory leakage. Setting this property to true relaxes this constraint, and can
be more memory efficient for some applications. Also the automatic closing of the Statement
and current ResultSet in Statement.closeOnCompletion() and Statement.getMoreResults
([Statement.CLOSE_CURRENT_RESULT | Statement.CLOSE_ALL_RESULTS]), respectively,
ceases to happen. This property automatically sets holdResultsOpenOverStatementClose=true.

Default Value false

Since Version 3.1.7

• queryInterceptors

A comma-delimited list of classes that implement "com.mysql.cj.interceptors.QueryInterceptor"
that should be placed "in between" query execution to influence the results. QueryInterceptors are
"chainable", the results returned by the "current" interceptor will be passed on to the next in in the
chain, from left-to-right order, as specified in this property.

Since Version 8.0.7

• queryTimeoutKillsConnection

If the timeout given in Statement.setQueryTimeout() expires, should the driver forcibly abort the
Connection instead of attempting to abort the query?

Default Value false

Since Version 5.1.9

6.3.7 Prepared Statements

• allowNanAndInf

Should the driver allow NaN or +/- INF values in PreparedStatement.setDouble()?

Default Value false

Since Version 3.1.5

• autoClosePStmtStreams

Should the driver automatically call .close() on streams/readers passed as arguments via set*()
methods?

Default Value false

Since Version 3.1.12

• compensateOnDuplicateKeyUpdateCounts

Should the driver compensate for the update counts of "ON DUPLICATE KEY" INSERT statements
(2 = 1, 0 = 1) when using prepared statements?

Default Value false

Since Version 5.1.7

43

Result Sets

• emulateUnsupportedPstmts

Should the driver detect prepared statements that are not supported by the server, and replace them
with client-side emulated versions?

Default Value true

Since Version 3.1.7

• generateSimpleParameterMetadata

Should the driver generate simplified parameter metadata for PreparedStatements when no
metadata is available either because the server couldn't support preparing the statement, or server-
side prepared statements are disabled?

Default Value false

Since Version 5.0.5

• processEscapeCodesForPrepStmts

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property 'enableEscapeProcessing'.

Default Value true

Since Version 3.1.12

• useServerPrepStmts

Use server-side prepared statements if the server supports them?

Default Value false

Since Version 3.1.0

• useStreamLengthsInPrepStmts

Honor stream length parameter in PreparedStatement/ResultSet.setXXXStream() method calls (true/
false, defaults to 'true')?

Default Value true

Since Version 3.0.2

6.3.8 Result Sets

• clobberStreamingResults

This will cause a 'streaming' ResultSet to be automatically closed, and any outstanding data still
streaming from the server to be discarded if another query is executed before all the data has been
read from the server.

Default Value false

Since Version 3.0.9

• emptyStringsConvertToZero

Should the driver allow conversions from empty string fields to numeric values of '0'?

Default Value true

Since Version 3.1.8

44

Result Sets

• holdResultsOpenOverStatementClose

Should the driver close result sets on Statement.close() as required by the JDBC specification?

Default Value false

Since Version 3.1.7

• jdbcCompliantTruncation

Should the driver throw java.sql.DataTruncation exceptions when data is truncated as is required
by the JDBC specification when connected to a server that supports warnings (MySQL 4.1.0 and
newer)? This property has no effect if the server sql-mode includes STRICT_TRANS_TABLES.

Default Value true

Since Version 3.1.2

• maxRows

The maximum number of rows to return (0, the default means return all rows).

Default Value -1

Since Version all versions

• netTimeoutForStreamingResults

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? (value has unit of seconds, the value '0' means the driver will
not try and adjust this value)

Default Value 600

Since Version 5.1.0

• padCharsWithSpace

If a result set column has the CHAR type and the value does not fill the amount of characters
specified in the DDL for the column, should the driver pad the remaining characters with space (for
ANSI compliance)?

Default Value false

Since Version 5.0.6

• populateInsertRowWithDefaultValues

When using ResultSets that are CONCUR_UPDATABLE, should the driver pre-populate the "insert"
row with default values from the DDL for the table used in the query so those values are immediately
available for ResultSet accessors? This functionality requires a call to the database for metadata
each time a result set of this type is created. If disabled (the default), the default values will be
populated by the an internal call to refreshRow() which pulls back default values and/or values
changed by triggers.

Default Value false

Since Version 5.0.5

• scrollTolerantForwardOnly

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet.TYPE_FORWARD_ONLY'?

45

Metadata

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the
prohibited directions.

Default Value false

Since Version 8.0.24

• strictUpdates

Should the driver do strict checking (all primary keys selected) of updatable result sets (true, false,
defaults to 'true')?

Default Value true

Since Version 3.0.4

• tinyInt1isBit

Should the driver treat the datatype TINYINT(1) as the BIT type (because the server silently converts
BIT -> TINYINT(1) when creating tables)?

Default Value true

Since Version 3.0.16

• transformedBitIsBoolean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT for future
compatibility with MySQL-5.0, as MySQL-5.0 has a BIT type?

Default Value false

Since Version 3.1.9

6.3.9 Metadata

• getProceduresReturnsFunctions

Pre-JDBC4 DatabaseMetaData API has only the getProcedures() and getProcedureColumns()
methods, so they return metadata info for both stored procedures and functions. JDBC4
was extended with the getFunctions() and getFunctionColumns() methods and the expected
behaviours of previous methods are not well defined. For JDBC4 and higher, default
'true' value of the option means that calls of DatabaseMetaData.getProcedures() and
DatabaseMetaData.getProcedureColumns() return metadata for both procedures and
functions as before, keeping backward compatibility. Setting this property to 'false' decouples
Connector/J from its pre-JDBC4 behaviours for DatabaseMetaData.getProcedures() and
DatabaseMetaData.getProcedureColumns(), forcing them to return metadata for procedures only.

Default Value true

Since Version 5.1.26

• noAccessToProcedureBodies

When determining procedure parameter types for CallableStatements, and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or select on mysql.proc should
the driver instead create basic metadata (all parameters reported as INOUT VARCHARs) instead of
throwing an exception?

Default Value false

Since Version 5.0.3

46

BLOB/CLOB processing

• nullDatabaseMeansCurrent

When DatabaseMetadata methods ask for a 'catalog' or 'schema' parameter, does the value null
mean use the current database? See also property 'databaseTerm'.

Default Value false

Since Version 3.1.8

• useHostsInPrivileges

Add '@hostname' to users in DatabaseMetaData.getColumn/TablePrivileges() (true/false), defaults
to 'true'.

Default Value true

Since Version 3.0.2

• useInformationSchema

Should the driver use the INFORMATION_SCHEMA to derive information used by
DatabaseMetaData? Default is 'true' when connecting to MySQL 8.0.3+, otherwise default is 'false'.

Default Value false

Since Version 5.0.0

6.3.10 BLOB/CLOB processing

• autoDeserialize

Should the driver automatically detect and de-serialize objects stored in BLOB fields?

Default Value false

Since Version 3.1.5

• blobSendChunkSize

Chunk size to use when sending BLOB/CLOBs via ServerPreparedStatements. Note that this value
cannot exceed the value of "maxAllowedPacket" and, if that is the case, then this value will be
corrected automatically.

Default Value 1048576

Since Version 3.1.9

• blobsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

Default Value false

Since Version 5.0.8

• clobCharacterEncoding

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection characterEncoding

Since Version 5.0.0

47

Datetime types processing

• emulateLocators

Should the driver emulate java.sql.Blobs with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods (getInputStream(), getBytes(),
and so forth) on the blob data stream has been accessed. For this to work, you must use a column
alias with the value of the column to the actual name of the Blob. The feature also has the following
restrictions: The SELECT that created the result set must reference only one table, the table must
have a primary key; the SELECT must alias the original blob column name, specified as a string, to
an alternate name; the SELECT must cover all columns that make up the primary key.

Default Value false

Since Version 3.1.0

• functionsNeverReturnBlobs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for GROUP BY clauses?

Default Value false

Since Version 5.0.8

• locatorFetchBufferSize

If 'emulateLocators' is configured to 'true', what size buffer should be used when fetching BLOB data
for getBinaryInputStream?

Default Value 1048576

Since Version 3.2.1

6.3.11 Datetime types processing

• connectionTimeZone

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax
'java.time.ZoneId' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default
is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM
and MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is
the same as the JVM default time zone. If set to "SERVER" then the driver attempts to detect the
session time zone from the values configured on the MySQL server session variables 'time_zone'
or 'system_time_zone'. The time zone detection and subsequent mapping to a Java time zone may
fail due to several reasons, mostly because of time zone abbreviations being used, in which case an
explicit time zone must be set or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do
that the 'forceConnectionTimeZoneToSession' connection option must be set to "true".

Please note that setting a value to 'connectionTimeZone' in conjunction with
'forceConnectionTimeZoneToSession=false' and 'preserveInstants=false' has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions
of time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated
in the future.

See also 'forceConnectionTimeZoneToSession' and 'preserveInstants' for more details.
48

Datetime types processing

Since Version 3.0.2

• forceConnectionTimeZoneToSession

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to
the current server session 'time_zone' variable. If the time zone value is given as a geographical
time zone, then Connector/J sets this value as-is in the server session, in which case the time zone
system tables must be populated beforehand (consult the MySQL Server documentation for further
details); but, if the value is given as an offset from Greenwich/UTC in any of the supported syntaxes,
then the server session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as java.sql.Timestamp or
java.time.OffsetDateTime when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or
'CURDATE()'.

This option has no effect if used in conjunction with 'connectionTimeZone=SERVER' since, in this
case, the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preserveInstants' for more details.

Default Value false

Since Version 8.0.23

• noDatetimeStringSync

Don't ensure that ResultSet.getDatetimeType().toString().equals(ResultSet.getString())

Default Value false

Since Version 3.1.7

• preserveInstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-
based objects such as java.sql.Timestamp or java.time.OffsetDateTime instead of their original visual
form. Otherwise, the driver always uses the JVM default time zone for rendering the values it sends
to the server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the
session time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So,
to store the correct correct UTC value internally, the driver converts the value from the original time
zone to the session time zone before sending to the server. On retrieval, Connector/J converts the
received value from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target SQLType, either the explicit one or the
default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
java.sql.Timestamp or java.time.OffsetDateTime.

Note that this option has no effect if used in conjunction with 'connectionTimeZone=LOCAL' since,
in this case, the source and target time zones are the same. Though, in this case, its still possible to
store a correct instant value if set 'forceConnectionTimeZoneToSession=true'.

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true

49

High Availability and Clustering

Since Version 8.0.23

• sendFractionalSeconds

If set to "false", the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true

Since Version 5.1.37

• sendFractionalSecondsForTime

If set to "false", the fractional seconds of java.sql.Time will be ignored as required by JDBC
specification. If set to "true", its value is rendered with fractional seconds allowing to store
milliseconds into MySQL TIME column. This option applies only to prepared statements, callable
statements or updatable result sets. It has no effect if sendFractionalSeconds=false.

Default Value true

Since Version 8.0.23

• treatUtilDateAsTimestamp

Should the driver treat java.util.Date as a TIMESTAMP for the purposes of
PreparedStatement.setObject()?

Default Value true

Since Version 5.0.5

• yearIsDateType

Should the JDBC driver treat the MySQL type "YEAR" as a java.sql.Date, or as a SHORT?

Default Value true

Since Version 3.1.9

• zeroDateTimeBehavior

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros (used by MySQL to represent invalid dates)? Valid values are "EXCEPTION", "ROUND" and
"CONVERT_TO_NULL".

Default Value EXCEPTION

Since Version 3.1.4

6.3.12 High Availability and Clustering

• autoReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for a queries issued on a stale or dead connection, which belong to the current transaction,
but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and
data consistency when applications don't handle SQLExceptions properly, and is only designed to
be used when you are unable to configure your application to handle SQLExceptions resulting from
dead and stale connections properly. Alternatively, as a last option, investigate setting the MySQL
server variable "wait_timeout" to a high value, rather than the default of 8 hours.

50

High Availability and Clustering

Default Value false

Since Version 1.1

• autoReconnectForPools

Use a reconnection strategy appropriate for connection pools (defaults to 'false')

Default Value false

Since Version 3.1.3

• failOverReadOnly

When failing over in autoReconnect mode, should the connection be set to 'read-only'?

Default Value true

Since Version 3.0.12

• maxReconnects

Maximum number of reconnects to attempt if autoReconnect is true, default is '3'.

Default Value 3

Since Version 1.1

• reconnectAtTxEnd

If autoReconnect is set to true, should the driver attempt reconnections at the end of every
transaction?

Default Value false

Since Version 3.0.10

• retriesAllDown

When using loadbalancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250ms if no servers are
available.

Default Value 120

Since Version 5.1.6

• initialTimeout

If autoReconnect is enabled, the initial time to wait between re-connect attempts (in seconds,
defaults to '2').

Default Value 2

Since Version 1.1

• queriesBeforeRetrySource

Number of queries to issue before falling back to the primary host when failed over (when
using multi-host failover). Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host.
Setting both properties to 0 disables the automatic fall back to the primary host at transaction
boundaries. Defaults to 50.

51

High Availability and Clustering

Default Value 50

Since Version 3.0.2

• secondsBeforeRetrySource

How long should the driver wait, when failed over, before attempting to reconnect to the primary
host? Whichever condition is met first, 'queriesBeforeRetrySource' or 'secondsBeforeRetrySource'
will cause an attempt to be made to reconnect to the source host. Setting both properties to 0
disables the automatic fall back to the primary host at transaction boundaries. Time in seconds,
defaults to 30

Default Value 30

Since Version 3.0.2

• allowReplicaDownConnections

By default, a replication-aware connection will fail to connect when configured replica hosts are
all unavailable at initial connection. Setting this property to 'true' allows to establish the initial
connection. It won't prevent failures when switching to replicas i.e. by setting the replication
connection to read-only state. The property 'readFromSourceWhenNoReplicas' should be used for
this purpose.

Default Value false

Since Version 6.0.2

• allowSourceDownConnections

By default, a replication-aware connection will fail to connect when configured source hosts are
all unavailable at initial connection. Setting this property to 'true' allows to establish the initial
connection, by failing over to the replica servers, in read-only state. It won't prevent subsequent
failures when switching back to the source hosts i.e. by setting the replication connection to read/
write state.

Default Value false

Since Version 5.1.27

• ha.enableJMX

Enables JMX-based management of load-balanced connection groups, including live addition/
removal of hosts from load-balancing pool. Enables JMX-based management of replication
connection groups, including live replica promotion, addition of new replicas and removal of source
or replica hosts from load-balanced source and replica connection pools.

Default Value false

Since Version 5.1.27

• loadBalanceHostRemovalGracePeriod

Sets the grace period to wait for a host being removed from a load-balanced connection, to be
released when it is currently the active host.

Default Value 15000

Since Version 6.0.3

52

High Availability and Clustering

• readFromSourceWhenNoReplicas

Replication-aware connections distribute load by using the source hosts when in read/write state
and by using the replica hosts when in read-only state. If, when setting the connection to read-only
state, none of the replica hosts are available, an SQLException is thrown back. Setting this property
to 'true' allows to fail over to the source hosts, while setting the connection state to read-only, when
no replica hosts are available at switch instant.

Default Value false

Since Version 6.0.2

• selfDestructOnPingMaxOperations

If set to a non-zero value, the driver will report close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called if the connection's count of commands sent to
the server exceeds this value.

Default Value 0

Since Version 5.1.6

• selfDestructOnPingSecondsLifetime

If set to a non-zero value, the driver will close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called if the connection's lifetime exceeds this value
(in milliseconds).

Default Value 0

Since Version 5.1.6

• ha.loadBalanceStrategy

If using a load-balanced connection to connect to SQL nodes in a MySQL Cluster/NDB configuration
(by using the URL prefix "jdbc:mysql:loadbalance://"), which load balancing algorithm should the
driver use: (1) "random" - the driver will pick a random host for each request. This tends to work
better than round-robin, as the randomness will somewhat account for spreading loads where
requests vary in response time, while round-robin can sometimes lead to overloaded nodes if
there are variations in response times across the workload. (2) "bestResponseTime" - the driver
will route the request to the host that had the best response time for the previous transaction.
(3) "serverAffinity" - the driver initially attempts to enforce server affinity while still respecting and
benefiting from the fault tolerance aspects of the load-balancing implementation. The server affinity
ordered list is provided using the property 'serverAffinityOrder'. If none of the servers listed in the
affinity list is responsive, the driver then refers to the "random" strategy to proceed with choosing the
next server.

Default Value random

Since Version 5.0.6

• loadBalanceAutoCommitStatementRegex

When load-balancing is enabled for auto-commit statements (via
loadBalanceAutoCommitStatementThreshold), the statement counter will only increment when the
SQL matches the regular expression. By default, every statement issued matches.

Since Version 5.1.15

53

High Availability and Clustering

• loadBalanceAutoCommitStatementThreshold

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of 0 causes load-balanced connections to only rebalance
when exceptions are encountered, or auto-commit is disabled and transactions are explicitly
committed or rolled back.

Default Value 0

Since Version 5.1.15

• loadBalanceBlocklistTimeout

Time in milliseconds between checks of servers which are unavailable, by controlling how long a
server lives in the global blocklist.

Default Value 0

Since Version 5.1.0

• loadBalanceConnectionGroup

Logical group of load-balanced connections within a classloader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version 5.1.13

• loadBalanceExceptionChecker

Fully-qualified class name of custom exception checker. The class must implement
com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker interface, and is used to inspect
SQLExceptions and determine whether they should trigger fail-over to another host in a load-
balanced deployment.

Default Value com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker

Since Version 5.1.13

• loadBalancePingTimeout

Time in milliseconds to wait for ping response from each of load-balanced physical connections
when using load-balanced Connection.

Default Value 0

Since Version 5.1.13

• loadBalanceSQLExceptionSubclassFailover

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given SQLException should trigger failover. The comparison is done using
Class.isInstance(SQLException) using the thrown SQLException.

Since Version 5.1.13

• loadBalanceSQLStateFailover

Comma-delimited list of SQLState codes used by default load-balanced exception checker
to determine whether a given SQLException should trigger failover. The SQLState of a given
SQLException is evaluated to determine whether it begins with any value in the comma-delimited list.

Since Version 5.1.13

54

Performance Extensions

• loadBalanceValidateConnectionOnSwapServer

Should the load-balanced Connection explicitly check whether the connection is live when swapping
to a new physical connection at commit/rollback?

Default Value false

Since Version 5.1.13

• pinGlobalTxToPhysicalConnection

When using XAConnections, should the driver ensure that operations on a given XID are always
routed to the same physical connection? This allows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

Default Value false

Since Version 5.0.1

• replicationConnectionGroup

Logical group of replication connections within a classloader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

Since Version 8.0.7

• resourceId

A globally unique name that identifies the resource that this datasource or connection is connected
to, used for XAResource.isSameRM() when the driver can't determine this value based on
hostnames used in the URL

Since Version 5.0.1

• serverAffinityOrder

A comma separated list containing the host/port pairs that are to be used in load-balancing
"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this
URL will be used and they must be identical in case and type, i.e., can't use an IP address in one
place and the corresponding host name in the other.

Since Version 8.0.8

6.3.13 Performance Extensions

• callableStmtCacheSize

If 'cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value 100

Since Version 3.1.2

• metadataCacheSize

The number of queries to cache ResultSetMetadata for if cacheResultSetMetaData is set to
'true' (default 50)

Default Value 50

Since Version 3.1.1

55

Performance Extensions

• useLocalSessionState

Should the driver refer to the internal values of autocommit and transaction isolation that are set
by Connection.setAutoCommit() and Connection.setTransactionIsolation() and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for commit() or rollback() method calls?

Default Value false

Since Version 3.1.7

• useLocalTransactionState

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
commit() or rollback() should actually be sent to the database?

Default Value false

Since Version 5.1.7

• prepStmtCacheSize

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

Since Version 3.0.10

• prepStmtCacheSqlLimit

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing
for?

Default Value 256

Since Version 3.0.10

• parseInfoCacheFactory

Name of a class implementing com.mysql.cj.CacheAdapterFactory, which will be used to create
caches for the parsed representation of client-side prepared statements.

Default Value com.mysql.cj.PerConnectionLRUFactory

Since Version 5.1.1

• serverConfigCacheFactory

Name of a class implementing com.mysql.cj.CacheAdapterFactory<String, Map<String, String>>,
which will be used to create caches for MySQL server configuration values

Default Value com.mysql.cj.util.PerVmServerConfigCacheFactory

Since Version 5.1.1

• alwaysSendSetIsolation

Should the driver always communicate with the database when Connection.setTransactionIsolation()
is called? If set to false, the driver will only communicate with the database when the requested
transaction isolation is different than the whichever is newer, the last value that was set via
Connection.setTransactionIsolation(), or the value that was read from the server when the
connection was established. Note that useLocalSessionState=true will force the same behavior as
alwaysSendSetIsolation=false, regardless of how alwaysSendSetIsolation is set.

56

Performance Extensions

Default Value true

Since Version 3.1.7

• maintainTimeStats

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false
removes at least two calls to System.getCurrentTimeMillis() per query.

Default Value true

Since Version 3.1.9

• useCursorFetch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and "defaultFetchSize"
> 0 (or setFetchSize() > 0 is called on a statement) then the cursor-based result set will be used.
Please note that "useServerPrepStmts" is automatically set to "true" in this case because cursor
functionality is available only for server-side prepared statements.

Default Value false

Since Version 5.0.0

• cacheCallableStmts

Should the driver cache the parsing stage of CallableStatements

Default Value false

Since Version 3.1.2

• cachePrepStmts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements,
the "check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value false

Since Version 3.0.10

• cacheResultSetMetadata

Should the driver cache ResultSetMetaData for Statements and PreparedStatements? (Req.
JDK-1.4+, true/false, default 'false')

Default Value false

Since Version 3.1.1

• cacheServerConfiguration

Should the driver cache the results of 'SHOW VARIABLES' and 'SHOW COLLATION' on a per-URL
basis?

Default Value false

Since Version 3.1.5

• defaultFetchSize

The driver will call setFetchSize(n) with this value on all newly-created Statements

57

Performance Extensions

Default Value 0

Since Version 3.1.9

• dontCheckOnDuplicateKeyUpdateInSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As
a side effect, obtaining the statement's generated keys information will return a list where normally it
wouldn't. Also be aware that, in this case, the list of generated keys returned may not be accurate.
The effect of this property is canceled if set simultaneously with 'rewriteBatchedStatements=true'.

Default Value false

Since Version 5.1.32

• elideSetAutoCommits

If using MySQL-4.1 or newer, should the driver only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by Connection.setAutoCommit(boolean)?

Default Value false

Since Version 3.1.3

• enableEscapeProcessing

Sets the default escape processing behavior for Statement objects. The method
Statement.setEscapeProcessing() can be used to specify the escape processing behavior for an
individual Statement object. Default escape processing behavior in prepared statements must be
defined with the property 'processEscapeCodesForPrepStmts'.

Default Value true

Since Version 6.0.1

• enableQueryTimeouts

When enabled, query timeouts set via Statement.setQueryTimeout() use a shared java.util.Timer
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will
be memory used by the TimerTask for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might
want to consider disabling this functionality.

Default Value true

Since Version 5.0.6

• largeRowSizeThreshold

What size result set row should the JDBC driver consider "large", and thus use a more memory-
efficient way of representing the row internally?

Default Value 2048

Since Version 5.1.1

• readOnlyPropagatesToServer

Should the driver issue appropriate statements to implicitly set the transaction access mode on
server side when Connection.setReadOnly() is called? Setting this property to 'true' enables InnoDB
read-only potential optimizations but also requires an extra roundtrip to set the right transaction

58

Debugging/Profiling

state. Even if this property is set to 'false', the driver will do its best effort to prevent the execution of
database-state-changing queries. Requires minimum of MySQL 5.6.

Default Value true

Since Version 5.1.35

• rewriteBatchedStatements

Should the driver use multiqueries (regardless of the setting of "allowMultiQueries") as well as
rewriting of prepared statements for INSERT into multi-value inserts when executeBatch() is
called? Notice that this has the potential for SQL injection if using plain java.sql.Statements
and your code doesn't sanitize input correctly. Notice that for prepared statements, server-side
prepared statements can not currently take advantage of this rewrite option, and that if you don't
specify stream lengths when using PreparedStatement.set*Stream(), the driver won't be able to
determine the optimum number of parameters per batch and you might receive an error from the
driver that the resultant packet is too large. Statement.getGeneratedKeys() for these rewritten
statements only works when the entire batch includes INSERT statements. Please be aware using
rewriteBatchedStatements=true with INSERT .. ON DUPLICATE KEY UPDATE that for rewritten
statement server returns only one value as sum of all affected (or found) rows in batch and it isn't
possible to map it correctly to initial statements; in this case driver returns 0 as a result of each batch
statement if total count was 0, and the Statement.SUCCESS_NO_INFO as a result of each batch
statement if total count was > 0.

Default Value false

Since Version 3.1.13

• useReadAheadInput

Use newer, optimized non-blocking, buffered input stream when reading from the server?

Default Value true

Since Version 3.1.5

6.3.14 Debugging/Profiling

• logger

The name of a class that implements "com.mysql.cj.log.Log" that will be used to log messages to.
(default is "com.mysql.cj.log.StandardLogger", which logs to STDERR)

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.1.1

• profilerEventHandler

Name of a class that implements the interface com.mysql.cj.log.ProfilerEventHandler that will be
used to handle profiling/tracing events.

Default Value com.mysql.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

• useNanosForElapsedTime

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution if available (JDK >= 1.5)?

Default Value false

59

Debugging/Profiling

Since Version 5.0.7

• maxQuerySizeToLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing

Default Value 2048

Since Version 3.1.3

• profileSQL

Trace queries and their execution/fetch times to the configured 'profilerEventHandler'

Default Value false

Since Version 3.1.0

• logSlowQueries

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value false

Since Version 3.1.2

• slowQueryThresholdMillis

If 'logSlowQueries' is enabled, how long should a query take (in ms) before it is logged as slow?

Default Value 2000

Since Version 3.1.2

• slowQueryThresholdNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to true, and this property is set to
a non-zero value, the driver will use this threshold (in nanosecond units) to determine if a query was
slow.

Default Value 0

Since Version 5.0.7

• autoSlowLog

Instead of using slowQueryThreshold* to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value true

Since Version 5.1.4

• explainSlowQueries

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value false

Since Version 3.1.2

• gatherPerfMetrics

60

Debugging/Profiling

Should the driver gather performance metrics, and report them via the configured logger every
'reportMetricsIntervalMillis' milliseconds?

Default Value false

Since Version 3.1.2

• reportMetricsIntervalMillis

If 'gatherPerfMetrics' is enabled, how often should they be logged (in ms)?

Default Value 30000

Since Version 3.1.2

• logXaCommands

Should the driver log XA commands sent by MysqlXaConnection to the server, at the DEBUG level
of logging?

Default Value false

Since Version 5.0.5

• traceProtocol

Should the network protocol be logged at the TRACE level?

Default Value false

Since Version 3.1.2

• enablePacketDebug

When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code

Default Value false

Since Version 3.1.3

• packetDebugBufferSize

The maximum number of packets to retain when 'enablePacketDebug' is true

Default Value 20

Since Version 3.1.3

• useUsageAdvisor

Should the driver issue 'usage' warnings advising proper and efficient usage of JDBC and MySQL
Connector/J to the 'profilerEventHandler'?

Default Value false

Since Version 3.1.1

61

Exceptions/Warnings

• resultSetSizeThreshold

If 'useUsageAdvisor' is true, how many rows should a result set contain before the driver warns that it
is suspiciously large?

Default Value 100

Since Version 5.0.5

• autoGenerateTestcaseScript

Should the driver dump the SQL it is executing, including server-side prepared statements to
STDERR?

Default Value false

Since Version 3.1.9

6.3.15 Exceptions/Warnings

• dumpQueriesOnException

Should the driver dump the contents of the query sent to the server in the message for
SQLExceptions?

Default Value false

Since Version 3.1.3

• exceptionInterceptors

Comma-delimited list of classes that implement com.mysql.cj.exceptions.ExceptionInterceptor.
These classes will be instantiated one per Connection instance, and all SQLExceptions thrown by
the driver will be allowed to be intercepted by these interceptors, in a chained fashion, with the first
class listed as the head of the chain.

Since Version 5.1.8

• ignoreNonTxTables

Ignore non-transactional table warning for rollback? (defaults to 'false').

Default Value false

Since Version 3.0.9

• includeInnodbStatusInDeadlockExceptions

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default Value false

Since Version 5.0.7

• includeThreadDumpInDeadlockExceptions

Include a current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value false

Since Version 5.1.15

62

Tunes for integration with other products

• includeThreadNamesAsStatementComment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in
Innodb deadlock dumps, useful in correlation with "includeInnodbStatusInDeadlockExceptions=true"
and "includeThreadDumpInDeadlockExceptions=true".

Default Value false

Since Version 5.1.15

• useOnlyServerErrorMessages

Don't prepend 'standard' SQLState error messages to error messages returned by the server.

Default Value true

Since Version 3.0.15

6.3.16 Tunes for integration with other products

• overrideSupportsIntegrityEnhancementFacility

Should the driver return "true" for DatabaseMetaData.supportsIntegrityEnhancementFacility() even
if the database doesn't support it to workaround applications that require this method to return "true"
to signal support of foreign keys, even though the SQL specification states that this facility contains
much more than just foreign key support (one such application being OpenOffice)?

Default Value false

Since Version 3.1.12

• ultraDevHack

Create PreparedStatements for prepareCall() when required, because UltraDev is broken and issues
a prepareCall() for _all_ statements? (true/false, defaults to 'false')

Default Value false

Since Version 2.0.3

6.3.17 JDBC compliance

• useColumnNamesInFindColumn

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a
"column name" to ResultSet methods like findColumn(), or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned
by ResultSetMetaData.getColumnLabel(), and if no AS clause, the column name. Setting this
property to "true" will give behavior that is congruent to JDBC-3.0 and earlier versions of the JDBC
specification, but which because of the specification bug could give unexpected results. This property
is preferred over "useOldAliasMetadataBehavior" unless you need the specific behavior that it
provides with respect to ResultSetMetadata.

Default Value false

Since Version 5.1.7

• pedantic

Follow the JDBC spec to the letter.

Default Value false

63

X Protocol and X DevAPI

Since Version 3.0.0

• useOldAliasMetadataBehavior

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases (if any) for ResultSetMetaData.getColumnName() or ResultSetMetaData.getTableName()
rather than the original column/table name? In 5.0.x, the default value was true.

Default Value false

Since Version 5.0.4

6.3.18 X Protocol and X DevAPI

• xdevapi.auth

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256_MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the
mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQL41" is used for unencrypted connections.

Default Value PLAIN

Since Version 8.0.8

• xdevapi.compression

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or
"REQUIRED" enables compression algorithm negotiation between Connector and Server, and turns
on compression of large X Protocol packets, as long as a consensus is reached between client and
server regarding the compression algorithm to use. If a consensus cannot be reached, connection
fails if the option is set to "REQUIRED" and continues without compression if the option is set to
"PREFERRED". Setting this option as "DISABLED" skips the compression negotiation phase and
forbids the interchange of compressed messages between client and server.

Default Value PREFERRED

Since Version 8.0.20

• xdevapi.compression-algorithms

A comma-delimited list of compression algorithms, each one identified by its name and
operating mode (e.g. "lz4_message" -- consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the
order and which algorithms will be attempted when negotiating connection compression with the
server.

The compression algorithm 'deflate_stream' is supported natively. Additional compression
algorithms require using third-party libraries and enabling them with the connection property
'xdevapi.compression-extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"lz4_message", and "deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream
64

X Protocol and X DevAPI

Since Version 8.0.22

• xdevapi.compression-extensions

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support
for additional compression algorithms. Each triplet must contain: first, an algorithm name and
operating mode (e.g. "lz4_message" -- consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface java.io.InputStream that will be used
to inflate data compressed with the named algorithm; third, a fully-qualified class name of a class
implementing the interface java.io.OutputStream that will be used to deflate data using the named
algorithm. Along with this setting, the library containing implementations of the designated classes
must be available in the applications class path.

Any number of triplets defining compression algorithms and their inflater and deflater
implementations can be provided but only the ones supported and enabled on the MySQL Server
can be used.

The compression algorithm 'deflate_stream' is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"lz4_message", and "deflate_stream".

Since Version 8.0.22

• xdevapi.connect-timeout

X DevAPI-specific timeout for socket connect (in milliseconds), with "0" being no timeout. Defaults to
"10000". If 'xdevapi.connect-timeout' is not set explicitly and 'connectTimeout' is, 'xdevapi.connect-
timeout' takes up the value of 'connectTimeout'.

Default Value 10000

Since Version 8.0.13

• xdevapi.connection-attributes

An X DevAPI-specific comma-delimited list of user-defined key=value pairs (in addition to standard X
Protocol-defined key=value pairs) to be passed to MySQL Server for display as connection attributes
in PERFORMANCE_SCHEMA tables session_account_connect_attrs and session_connect_attrs.
Example usage: xdevapi.connection-attributes=key1=value1,key2=value2 or xdevapi.connection-
attributes=[key1=value1,key2=value2]. This functionality is available for use with MySQL Server
version 8.0.16 or later only. Earlier versions of X Protocol do not support connection attributes,
causing this configuration option to be ignored. For situations where Session creation/initialization
speed is critical, setting xdevapi.connection-attributes=false will cause connection attribute
processing to be bypassed.

Since Version 8.0.16

65

X Protocol and X DevAPI

• xdevapi.dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value false

Since Version 8.0.19

• xdevapi.fallback-to-system-keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
keystore' (or 'clientCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide key
store defined through the system properties 'javax.net.ssl.keyStore*'. If not specified, the value of
'fallbackToSystemKeyStore' is used.

Default Value true

Since Version 8.0.22

• xdevapi.fallback-to-system-truststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
truststore' (or 'trustCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide default
trust store or one defined through the system properties 'javax.net.ssl.trustStore*'. If not specified,
the value of 'fallbackToSystemTrustStore' is used.

Default Value true

Since Version 8.0.22

• xdevapi.ssl-keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use
'clientCertificateKeyStoreUrl' value.

Since Version 8.0.22

• xdevapi.ssl-keystore-password

X DevAPI-specific password for the client certificate key store. If not specified, use
'clientCertificateKeyStorePassword' value.

Since Version 8.0.22

• xdevapi.ssl-keystore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
'clientCertificateKeyStoreType' value.

Default Value JKS

Since Version 8.0.22

• xdevapi.ssl-mode

X DevAPI-specific SSL mode setting. If not specified, use 'sslMode'. Because the "PREFERRED"
mode is not applicable to X Protocol, if 'xdevapi.ssl-mode' is not set and 'sslMode' is set to
"PREFERRED", 'xdevapi.ssl-mode' is set to "REQUIRED".

Default Value REQUIRED

66

JDBC API Implementation Notes

Since Version 8.0.7

• xdevapi.ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreUrl' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStorePassword' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-type

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

• xdevapi.tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL
sockets. If not specified, the value of 'enabledSSLCipherSuites' is used.

Since Version 8.0.19

• xdevapi.tls-versions

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are TLSv1.2, TLSv1.3.

Since Version 8.0.19

6.4 JDBC API Implementation Notes
MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the
publicly available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible
on how certain functionality should be implemented. This section gives details on an interface-by-
interface level about implementation decisions that might affect how you code applications with MySQL
Connector/J.

• BLOB

You can emulate BLOBs with locators by adding the property emulateLocators=true to your
JDBC URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve
the other data and then use retrieval methods (getInputStream(), getBytes(), and so forth) on
the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for
example:

SELECT id, 'data' as blob_data from blobtable

You must also follow these rules:

67

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

JDBC API Implementation Notes

• The SELECT must reference only one table. The table must have a primary key.

• The SELECT must alias the original BLOB column name, specified as a string, to an alternate
name.

• The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported
by the DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the
corresponding PreparedStatement.setBlob() or ResultSet.updateBlob() (in the case of
updatable result sets) methods to save changes back to the database.

• Connection

The isClosed() method does not ping the server to determine if it is available. In accordance with
the JDBC specification, it only returns true if closed() has been called on the connection. If you
need to determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver
will throw an exception if the connection is no longer valid.

• DatabaseMetaData

Foreign key information (getImportedKeys()/getExportedKeys() and
getCrossReference()) is only available from InnoDB tables. The driver uses SHOW CREATE
TABLE to retrieve this information, so if any other storage engines add support for foreign keys, the
driver would transparently support them as well.

• PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the
server-side prepared statements. Client-side prepared statements are used by default because
early MySQL versions did not support the prepared statement feature or had problems with
its implementation. Server-side prepared statements and binary-encoded result sets are used
when the server supports them. To enable usage of server-side prepared statements, set
useServerPrepStmts=true.

Be careful when using a server-side prepared statement with large parameters that
are set using setBinaryStream(), setAsciiStream(), setUnicodeStream(),
setCharacterStream(), setNCharacterStream(), setBlob(), setClob(), or
setNCLob(). To re-execute the statement with any large parameter changed to a nonlarge
parameter, call clearParameters() and set all parameters again. The reason for this is as
follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged
only when PreparedStatement.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

• If a parameter changes from large to nonlarge, the driver must reset the server-side state of
the prepared statement to allow the parameter that is being changed to take the place of the
prior large value. This removes all of the large data that has already been sent to the server,
thus requiring the data to be re-sent, using the setBinaryStream(), setAsciiStream(),
setUnicodeStream(), setCharacterStream(), setNCharacterStream(), setBlob(),
setClob(), or setNCLob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

68

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

JDBC API Implementation Notes

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the
most efficient way to operate and, due to the design of the MySQL network protocol, is easier to
implement. If you are working with ResultSets that have a large number of rows or large values and
cannot allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_READ_ONLY);
stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created
with the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close
it) before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level
locks or row-level locks in some other storage engine such as InnoDB) is when the statement
completes.

If the statement is within scope of a transaction, then locks are released when the transaction
completes (which implies that the statement needs to complete first). As with most other databases,
statements are not complete until all the results pending on the statement are read or the active
result set for the statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCursorFetch to true, and then calling
setFetchSize(int) with int being the desired number of rows to be fetched each time:

conn = DriverManager.getConnection("jdbc:mysql://localhost/?useCursorFetch=true", "user", "s3cr3t");
stmt = conn.createStatement();
stmt.setFetchSize(100);
rs = stmt.executeQuery("SELECT * FROM your_table_here");

• Statement

Connector/J includes support for both Statement.cancel() and
Statement.setQueryTimeout(). Both require a separate connection to issue the KILL QUERY
statement. In the case of setQueryTimeout(), the implementation creates an additional thread to
handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest
themselves as RuntimeException rather than failing silently, as there
is currently no way to unblock the thread that is executing the query being
cancelled due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
setCursorName() has no effect.

Connector/J also supplies two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to
send data to the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a

69

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Java, JDBC, and MySQL Types

FileInputStream or URLInputStream that represents the path given as an argument to the
statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE
statement, and will automatically be closed by the driver, so it needs to be reset before each call
to execute*() that would cause the MySQL server to request data to fulfill the request for LOAD
DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or
URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send
data in response to a LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using
setLocalInfileInputStream().

6.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numeric type
can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision
may occur.

Connector/J issues warnings or throws DataTruncation exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table. The first column
lists one or more MySQL data types, and the second column lists one or more Java types to which the
MySQL types can be converted.

Table 6.19 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and
SET

java.lang.String,
java.io.InputStream, java.io.Reader,
java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION,
NUMERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer,
java.lang.Long, java.lang.Double,
java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The ResultSet.getObject() method uses the type conversions between
MySQL and Java types, following the JDBC specification where appropriate.
The values returned by ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName() are shown in the table below. For more information
on the JDBC types, see the reference on the java.sql.Types class.

70

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Java, JDBC, and MySQL Types

Table 6.20 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

BIT(1) BIT java.lang.Boolean

BIT(> 1) BIT byte[]

TINYINT(1) SIGNED,
BOOLEAN

If
tinyInt1isBit=true
and
transformedBitIsBoolean=false:
BIT

If
tinyInt1isBit=true
and
transformedBitIsBoolean=true:
BOOLEAN

If
tinyInt1isBit=false:
TINYINT

If tinyInt1isBit=true and
transformedBitIsBoolean=false:
java.lang.Boolean

If tinyInt1isBit=true and
transformedBitIsBoolean=true:
java.lang.Boolean

If tinyInt1isBit=false:
java.lang.Integer

TINYINT(> 1)
SIGNED

TINYINT java.lang.Integer

TINYINT(any)
UNSIGNED

TINYINT UNSIGNED java.lang.Integer

SMALLINT[(M)]
[UNSIGNED]

SMALLINT
[UNSIGNED]

java.lang.Integer (regardless of whether it is
UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT
[UNSIGNED]

java.lang.Integer (regardless of whether it is
UNSIGNED or not)

INT,INTEGER[(M)] INTEGER java.lang.Integer

INT,INTEGER[(M)]
UNSIGNED

INTEGER UNSIGNED java.lang.Long

BIGINT[(M)] BIGINT java.lang.Long

BIGINT[(M)]
UNSIGNED

BIGINT UNSIGNED java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)]
[UNSIGNED]

DOUBLE java.lang.Double (regardless of whether it is
UNSIGNED or not)

DECIMAL[(M[,D])]
[UNSIGNED]

DECIMAL java.math.BigDecimal (regardless of whether
it is UNSIGNED or not)

DATE DATE java.sql.Date

DATETIME DATETIME java.time.LocalDateTime

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property
is set to false, then the returned object type
is java.sql.Short. If set to true (the
default), then the returned object is of type
java.sql.Date with the date set to January 1st,
at midnight.

71

Handling of Date-Time Values

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

CHAR(M) CHAR java.lang.String

VARCHAR(M) VARCHAR java.lang.String

BINARY(M), CHAR(M)
BINARY

BINARY byte[]

VARBINARY(M),
VARCHAR(M) BINARY

VARBINARY byte[]

BLOB BLOB byte[]

TINYBLOB TINYBLOB byte[]

MEDIUMBLOB MEDIUMBLOB byte[]

LONGBLOB LONGBLOB byte[]

TEXT TEXT java.lang.String

TINYTEXT TINYTEXT java.lang.String

MEDIUMTEXT MEDIUMTEXT java.lang.String

LONGTEXT LONGTEXT java.lang.String

JSON JSON java.lang.String

GEOMETRY GEOMETRY byte[]

ENUM('value1','value2',...)CHAR java.lang.String

SET('value1','value2',...)CHAR java.lang.String

6.6 Handling of Date-Time Values

6.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no
matter what time zones the database server and the clients are operating in.

TIMESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming
values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting
from MySQL 8.0.19, you can also specify a time zone offset when storing TIMESTAMP values (see
The DATE, DATETIME, and TIMESTAMP Types for details), in which case the TIMESTAMP values are
converted to the UTC from the specified offset instead of the session time zone. But, once stored, the
original offset information is no longer preserved.

The situation is less straightforward with the DATETIME data type: it does not represent an instant
and, when no time zone offset is specified, there is no time zone conversion for DATETIME values, so
they are stored and retrieved as they are. However, with a specified time zone offset, the input value
is converted to the session time zone before it is stored; the result is that, when retrieved in a different
session with a different time zone offset as the specified one, the DATETIME value becomes different
from the original input value.

Because MySQL data types other than TIMESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results.
For example:

72

https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Preserving Time Instants

• When storing java.sql.Timestamp to, for example, a DATETIME column, you might not get back
the same instant value when retrieving it into a client that is in a different time zone than the one the
client was in when storing the value.

• When storing, for example, a java.time.LocalDateTime to a TIMESTAMP column, you might
not be storing the correct UTC-based value for it, because the time zone for the value is actually
undefined.

Therefore, do not pass instant date-time types (java.util.Calendar, java.util.Date,
java.time.OffsetDateTime, java.sql.Timestamp) to non-instant date-time types (for example,
java.sql.DATE, java.time.LocalDate, java.time.LocalTime, java.time.OffsetTime)
or vice versa, when working with the server.

The rest of the section discusses how to preserve time instants when working with Connector/J.

Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session,
for which timestamps are generated, and the event timestamps are associated with the JVM time zone
of the application server. These timestamps are to be stored onto a MySQL Server, and are also to be
retrieved from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or
retrieved from the server using Connector/J. Because the MySQL Server always assumes implicitly
that a time instant value references to the connection session time zone (which is set by the session
time_zone variable) when being saved to or retrieved form the server, a time instant value is properly
preserved only in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time
zone conversion is needed. Note that in this case, time instants are really preserved only if the
server and the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the
JVM's time zone is different from the server's session time zone), Connector/.J performs one of the
following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

b. Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

c. Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

• preserveInstants={true|false}: Whether to attempt to preserve time instant values by
adjusting timestamps.

• When it is false, no conversions are attempted; a timestamp is sent to the server as-is for
storage, and its visual presentation, not the actual time instant is preserved. When it is retrieved
from the server by Connector/J, different time zones might be associated with it, as the retrieval
might happen in different JVM time zones. For example: For example:

• Time zones: UTC for JVM, UTC+1 for server session

• Original timestamp from client (in UTC): 2020-01-01 01:00:00

73

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion of 2020-01-01 00:00:00 UTC+1 to UTC)

• Timestamp value retrieved later into a server section (in UTC+1): 2020-01-01 01:00:00
(after internal conversion of 2020-01-01 00:00:00 from UTC to UTC+1)

• Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020-01-01 01:00:00

• Comment: Time instant is not preserved

• When it is true, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connectionTimeZone and
forceConnectionTimeZoneToSession.

When storing a value, the conversion is performed only if the target data type, either the explicit
one or the default one, is TIMESTAMP. When retrieving a value, the conversion is performed only if
the source column has the TIMESTAMP, DATETIME, or a character data type and the target class
is an instant-preserving one, like java.sql.Timestamp or java.time.OffsetDateTime.

• connectionTimeZone={LOCAL|SERVER|user-defined-time-zone}: Specifies how the
server's session time zone (in reference to which the timestamps are saved onto the server) is to be
determined by Connector/J. It takes on one of the following values:

• LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as
the JVM time zone for Connector/J, or (b) should be set as the same as the JVM time zone
for Connector/J. Connector/J takes the situation as (a) or (b) depending on the value of the
connection property forceConnectionTimeZoneToSession.

• SERVER: Connector/J should query the session's time zone from the server, instead of making
any assumptions about it. If the session time zone actually turns out to be different from
Connector/J's JVM time zone and preserveInstants=true, Connector/J performs time zone
conversion between the session time zone and the JVM time zone.

• user-defined-time-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnectionTimeZoneToSession.

Note

For Connector/J 8.0.23 and later, serverTimezone is an alias
for connectionTimeZone. For Connector/J 8.0.22 and earlier,
serverTimezone was used to override the session time zone setting on the
server.

• forceConnectionTimeZoneToSession={true|false}: Controls whether the session
time_zone variable is to be set to the value specified in connectionTimeZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above
for preserving time instants:

• Solution 1: Use either preserveInstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session
time zone occurs, and no time zone conversion occurs. For example:

• Time zones: UTC+1 for both the JVM and the server session

74

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion needed)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

• Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020-01-01 01:00:00

• Comment: Time instant is preserved without conversion.

Note

This setting corresponds to the default behavior of Connector/J 5.1

• Solution 2a: Use preserveInstants=true&connectionTimeZone=SERVER . Connector/J then
queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone. For example:

• Time zones: UTC+2 for JVM, UTC+1 for server session

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion from UTC+2
to UTC+1)

• Timestamp value stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

• Timestamp value retrieved later into a server session in UTC+1: 2020-01-01 01:00:00 (after
internal conversion from UTC to UTC+1)

• Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion from UTC+1 to UTC+2)

• Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and
returned to an application: 2020-01-01 03:00:00 (after conversion from UTC+1 to UTC+3)

• Comment: Time instant is preserved.

Notes

• This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
useLegacyDatetimeCode=false.

75

Preserving Time Instants

• Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which
no timezone conversions are required when storing or achieving the timestamps. For example:

• Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal
conversion from UTC+1 to UTC)

• Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020-01-01 01:00:00 (no conversion needed)

• Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020-01-01 03:00:00 (after internal conversion from UTC to UTC+3)

• Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020-01-01
03:00:00 (no conversion needed)

• Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

• • Altering the session time zone affects the results of MySQL functions
such as NOW(), CURTIME(), or CURDATE()—if you do not want those
functions to be affected, do not use this setting.

• If you use this setting on different clients in different time zones, the
clients are going to modify their connection session's time zones to
different values; if you want to keep the same visual date-time value
representation for the same time instant for all the clients and in all their
sessions, store the values to a DATETIME instead of a TIMESTAMP
column and use non-instant Java classes for them, for example,
java.time.LocalDateTime.

• Solution 2c: Use preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time
zone to the user-defined time zone, and converts the timestamps between the user-defined time
zone and the JVM time zone. A typical use case for this setting is when the session time zone value
on the server is known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

• Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Europe/Berlin by Connector/J

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion between
JVM time zone (UTC+2) and user-defined time zone (Europe/Berlin=UTC+1))

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal
conversion from UTC+1 to UTC)

76

Fractional Seconds

• Timestamp value retrieved into a server session (time zone modified to Europe/Berlin (=UTC
+1) by Connector/J): 2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

• Comment: Time instant is preserved with conversion and with the session time zone being
changed by Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without
actually correcting the unrecognizable time zone value on the server. To do so, use,
preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=false. This achieves the same result of preserving the
time instant.

Warnings

See the warnings above for Solution 2b.

6.6.2 Fractional Seconds

While a java.sql.TIME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because java.sql.TIME is a wrapper around java.util.Date, it
is possible to store fractional seconds in a java.sql.TIME instance. However, when Connector/
J inserted a java.sql.TIME into the server as a MySQL TIME value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,
sendFractionalSecondsForTime, has been introduced in release 8.0.23: when the property is
true (which is the default value), the fractional seconds for java.sql.TIME are sent to the server;
otherwise, the fractional seconds are truncated.

Also, the connection property sendFractionalSeconds has become a global control for
the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFractionalSeconds=false, fractional seconds are not sent irrespective of the value of
sendFractionalSecondsForTime.

6.7 Using Character Sets and Unicode
All strings sent from the JDBC driver to the server are converted automatically from
native Java Unicode form to the client character encoding, including all queries sent using
Statement.execute(), Statement.executeUpdate(), and Statement.executeQuery(),
as well as all PreparedStatement and CallableStatement parameters, excluding parameters
set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream(), and
setBlob().

Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number
of character encodings for data returned by the server to the client in ResultSets.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server
is automatically detected upon connection (provided that the Connector/J connection properties
characterEncoding and connectionCollation are not set). The encoding on the
server is specified using the system variable character_set_server (for more information,
see Server Character Set and Collation), and the driver automatically uses the encoding.
For example, to use the 4-byte UTF-8 character set with Connector/J, configure the MySQL

77

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-server.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html

Custom Character Sets and Collations

server with character_set_server=utf8mb4, and leave characterEncoding and
connectionCollation out of the Connector/J connection string. Connector/J will then autodetect
the UTF-8 setting. To override the automatically detected encoding on the client side, use the
characterEncoding property in the connection URL to the server.

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

• Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

• passwordCharacterEncoding

• connectionCollation

• characterEncoding

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

• Post-Authentication Phase: In this phase, the character encoding between the client and the server
for the rest of the session is determined by the settings of the Connector/J connection properties, in
the following order of priority:

• connectionCollation

• characterEncoding

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the
character set and collation that were established in the pre-authentication phase
only if passwordCharacterEncoding is set, but its setting is different from
that of connectionCollation, or different from that of characterEncoding
(when connectionCollation is not set), or different from utf8mb4 (when both
connectionCollation and characterEncoding are not set).

Custom Character Sets and Collations

For Connector/J 8.0.26 and later only: To support the use of custom character sets and
collations on the server, set the Connector/J connection property detectCustomCollations
to true, and provide the mapping between the custom character sets and the Java
character encodings by supplying the customCharsetMapping connection property
with a comma-delimited list of custom_charset:java_encoding pairs (for example:
customCharsetMapping=charset1:UTF-8,charset2:Cp1252).

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character
set names and their corresponding Java-style names:

Table 6.21 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS or Cp932

cp932 Cp932 or MS932

gb2312 EUC_CN

78

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Using Query Attributes

MySQL Character Set Name Java-Style Character Encoding Name

ujis EUC_JP

euckr EUC_KR

latin1 Cp1252

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

For 8.0.12 and earlier: utf8

For 8.0.13 and later: utf8mb4

UTF-8

ucs2 UnicodeBig

Notes

For Connector/J 8.0.12 and earlier: In order to use the utf8mb4
character set for the connection, the server MUST be configured with
character_set_server=utf8mb4; if that is not the case, when UTF-8
is used for characterEncoding in the connection string, it will map to the
MySQL character set name utf8, which is an alias for utf8mb3.

For Connector/J 8.0.13 and later:

• When UTF-8 is used for characterEncoding in the connection string, it
maps to the MySQL character set name utf8mb4.

• If the connection option connectionCollation is also set alongside
characterEncoding and is incompatible with it, characterEncoding will
be overridden with the encoding corresponding to connectionCollation.

• Because there is no Java-style character set name for utfmb3 that you
can use with the connection option charaterEncoding, the only way
to use utf8mb3 as your connection character set is to use a utf8mb3
collation (for example, utf8_general_ci) for the connection option
connectionCollation, which forces a utf8mb3 character set to be used,
as explained in the last bullet.

Warning

Do not issue the query SET NAMES with Connector/J, as the driver will not
detect that the character set has been changed by the query, and will continue
to use the character set configured when the connection was first set up.

6.8 Using Query Attributes
For Connector/J 8.0.26 and later: Connector/J supports Query Attributes when it has been enabled
on the server by installing the query_attributes component (see Prerequisites for Using Query
Attributes for details).

79

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

Using Query Attributes

Attributes are set for a query by using the setAttribute() method of the JdbcStatement
interface. Here is the method's signature:

JdbcStatement.setAttribute(String name, Object value)

Here is an example of using the query attributes with a JdbcStatement:

Example 6.1 Using Query Attributes with a Plain Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");

Statement stmt = conn.createStatement();

JdbcStatement jdbcStmt = (JdbcStatement) stmt;

jdbcStmt.executeUpdate("CREATE TABLE t11 (c1 CHAR(20), c2 CHAR(20))");

jdbcStmt.setAttribute("attr1", "cat");
jdbcStmt.setAttribute("attr2", "mat");
jdbcStmt.executeUpdate("INSERT INTO t11 (c1, c2) VALUES(\n" +
 " mysql_query_attribute_string('attr1'),\n" +
 " mysql_query_attribute_string('attr2')\n" +
 ");");

ResultSet rs = stmt.executeQuery("SELECT * from t11");

while(rs.next()) {
 String col1 = rs.getString(1);
 String col2 = rs.getString(2);
 System.out.println("The "+col1+" is on the "+col2);
 }

While query attributes are cleared on the server after each query, they are kept on the side
of Connector/J, so they can be resent for the next query. To clear the attributes, use the
clearAttributes() method of the JdbcStatement interface:

JdbcStatement.clearAttributes()

The following example (a continuation of the code in Example 6.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 6.2 Preservation of Query Attributes

/* Continuing from the code in the last example, where query attributes have
already been set and used */

rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");

 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }

 // Prints "It is on the mat"

 jdbcStmt.clearAttributes();
 rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");

 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }

 else {
 System.out.println("No results!");
 }
 // Prints "No results!" as attribute string attr1 is empty

80

Connecting Securely Using SSL

Attributes can also be set for client-side and server-side prepared statements, using the
setAttribute() method:

Example 6.3 Using Query Attributes with a Prepared Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");

PreparedStatement ps = conn.prepareStatement(
 "select ?, c2 from t11 where c1 = mysql_query_attribute_string('attr1')");
ps.setString(1, "It is on a ");

JdbcStatement jdbcPs = (JdbcStatement) ps;
jdbcPs.setAttribute("attr1", "cat");
rs = ps.executeQuery();
if (rs.next()) {
 System.out.println(rs.getString(1)+" "+ rs.getString(2));
}

Not all MySQL data types are supported by the setAttribute() method; only the following MySQL
data types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 6.22 Data Type Mappings for Query Attributes

MySQL Data Type Java Object

MYSQL_TYPE_STRING java.lang.String

MYSQL_TYPE_TINY java.lang.Boolean, java.lang.Byte

MYSQL_TYPE_SHORT java.lang.Short

MYSQL_TYPE_LONG java.lang.Integer

MYSQL_TYPE_LONGLONG java.lang.Long, java.math.BigInteger

MYSQL_TYPE_FLOAT java.lang.Float

MYSQL_TYPE_DOUBLE java.lang.Double, java.math.BigDecimal

MYSQL_TYPE_DATE java.sql.Date, java.time.LocalDate

MYSQL_TYPE_TIME java.sql.Time, java.time.LocalTime,
java.time.OffsetTime,
java.time.Duration

MYSQL_TYPE_DATETIME java.time.LocalDateTime

MYSQL_TYPE_TIMESTAMP java.sql.Timestamp, java.time.Instant,
java.time.OffsetDateTime,
java.time.ZonedDateTime,
java.util.Date, java.util.Calendar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute
is set with a string value that comes from converting the supplied object to a String using the
.toString() method.

6.9 Connecting Securely Using SSL
Connector/J can encrypt all data communicated between the JDBC driver and the server (except for
the initial handshake) using SSL. There is a performance penalty for enabling connection encryption,
the severity of which depends on multiple factors including (but not limited to) the size of the query, the
amount of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for
the server (truststore in the examples below), and another contains the keys and certificate for
the client (keystore in the examples below). All Java keystore files are protected by the password
supplied to the keytool when you created the files. You need the file names and the associated
passwords to create an SSL connection.

For SSL support to work, you must have the following:

81

Connecting Securely Using SSL

• A MySQL server that supports SSL, and compiled and configured to do so. For more information,
see Using Encrypted Connections and Configuring SSL Library Support.

• A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL
servers 5.7 and 8.0, when compiled with OpenSSL, can automatically generate missing SSL files at
startup and configure the SSL connection accordingly.

For 8.0.12 and earlier: As long as the server is correctly configured to use SSL, there is no need
to configure anything on the Connector/J client to use encrypted connections (the exception is
when Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and
earlier, in which case the client must set the connection property useSSL=true in order to use
encrypted connections). The client can demand SSL to be used by setting the connection property
requireSSL=true; the connection then fails if the server is not configured to use SSL. Without
requireSSL=true, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need
to configure anything on the Connector/J client to use encrypted connections. The client can
demand SSL to be used by setting the connection property sslMode=REQUIRED, VERIFY_CA,
or VERIFY_IDENTITY; the connection then fails if the server is not configured to use SSL. With
sslMode=PREFERRED, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL. For X-Protocol connections, the connection property xdevapi.ssl-mode
specifies the SSL Mode setting, just like sslMode does for MySQL-protocol connections (except
that PREFERRED is not supported by X Protocol); if not explicitly set, xdevapi.ssl-mode takes
up the value of sslMode (if xdevapi.ssl-mode is not set and sslMode is set to PREFERRED,
xdevapi.ssl-mode is set to REQUIRED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties
tlsVersions and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-
versions (when xdevapi.tls-versions is not specified, it takes up the value of tlsVersions).
If no such restrictions have been specified, Connector/J attempts to connect to the server with the
TLSv1.2 and TLSv1.3.

Notes

• Since Connector/J 8.0.28, the connection property enabledTLSProtocols
has been renamed to tlsVersions, and enabledSSLCipherSuites has
been renamed to tlsCiphersuites; the original names remain as aliases.

• For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are
considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

• For Connector/J 8.0.18 and earlier when connecting to MySQL
Community Server 5.6 and 5.7 using the JDBC API: Due to
compatibility issues with MySQL Server compiled with yaSSL,
Connector/J does not enable connections with TLSv1.2 and higher
by default. When connecting to servers that restrict connections to
use those higher TLS versions, enable them explicitly by setting the
Connector/J connection property enabledTLSProtocols (e.g., set
enabledTLSProtocols=TLSv1.2,TLSv1.3).

82

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/source-ssl-library-configuration.html

Setting up Server Authentication

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-
restricted by a properties file that can be found at src/main/resources/com/mysql/cj/
TlsSettings.properties inside the src folder on the source tree or in the platform-independent
distribution archive (in .tar.gz or .zip format) for Connector/J. The file contains four sections, listing
in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist
unsafe cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist
patterns in the forth section are redundant; but they are there as an extra safeguard against unwanted
ciphers. The allowlist and blocklist of cipher suites apply to both JDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties
tlsCiphersuites and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-
ciphersuites (when xdevapi.tls-ciphersuites is not specified, it takes up the value of
tlsCiphersuites). If no such restrictions have been specified, Connector/J attempts to establish
SSL connections with any allowlisted cipher suites that the server accepts.

Setting up Server Authentication

For 8.0.12 and earlier: Server authentication via server certificate verification is enabled when the
Connector/J connection properties useSSL AND verifyServerCertificate are both true.
Hostname verification is not supported—host authentication is by certificates only.

For 8.0.13 and later: Server authentication via server certificate verification is enabled when the
Connector/J connection property sslMode is set to VERIFY_CA or VERIFY_IDENTITY. If sslMode
is not set, server authentication via server certificate verification is enabled when the legacy properties
useSSL AND verifyServerCertificate are both true.

Certificates signed by a trusted CA. When server authentication via server certificate verification
is enabled, if no additional configurations are made regarding server authentication, Java verifies the
server certificate using its default trusted CA certificates, usually from $JAVA_HOME/lib/security/
cacerts.

Using self-signed certificates. It is pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by
the MySQL server are based on the latter—that is, the server generates all required keys and a self-
signed CA certificate that is used to sign a server and a client certificate. The server then configures
itself to use the CA certificate and the server certificate. Although the client certificate file is placed in
the same directory, it is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that
is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished
by either importing the certificate (ca.pem or any other certificate) into the Java default truststore
(although tampering the default truststore is not recommended) or by importing it into a custom Java
truststore file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located
in the bin subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -importcert -alias MySQLCACert -file ca.pem \
 -keystore truststore -storepass mypassword

Supply the proper arguments for the command options. If the truststore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Interaction with
keytool looks like this:

Owner: CN=MySQL_Server_5.7.17_Auto_Generated_CA_Certificate
Issuer: CN=MySQL_Server_5.7.17_Auto_Generated_CA_Certificate
Serial number: 1
Valid from: Thu Feb 16 11:42:43 EST 2017 until: Sun Feb 14 11:42:43 EST 2027
Certificate fingerprints:
 MD5: 18:87:97:37:EA:CB:0B:5A:24:AB:27:76:45:A4:78:C1
 SHA1: 2B:0D:D9:69:2C:99:BF:1E:2A:25:4E:8D:2D:38:B8:70:66:47:FA:ED
 SHA256: C3:29:67:1B:E5:37:06:F7:A9:93:DF:C7:B3:27:5E:09:C7:FD:EE:2D:18:86:F4:9C:40:D8:26:CB:DA:95:A0:24

83

Setting up Client Authentication

Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 1
Trust this certificate? [no]: yes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember
the password you have supplied. Also, be mindful that the password will have to be written as plain text
in your Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","mypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_to_truststore_file
trustCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden
by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property
fallbackToSystemTrustStore to false prevents Connector/J from falling back to the system-
wide truststore setup you created using method (1) or (2) when method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to
be SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client
can now safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi.ssl-truststore,
xdevapi.ssl-truststore-type, xdevapi.ssl-truststore-password, and
xdevapi.ssl-fallbackToSystemTrustStore specify the truststore settings,
just like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePasswordamd fallbackToSystemTrustStore do for
MySQL-protocol connections; if not explicitly set, xdevapi.ssl-truststore, xdevapi.ssl-
truststore-type, xdevapi.ssl-truststore-password, and xdevapi.ssl-
fallbackToSystemTrustStore take up the values of trustCertificateKeyStoreUrl,
trustCertificateKeyStoreType, trustCertificateKeyStorePassword, and
fallbackToSystemTrustStore respectively.

Service Identity Verification. For 8.0.13 and later: Beyond server authentication via server
certificate verification, when sslMode is set to VERIFY_IDENTITY, Connector/J also performs host
name identity verification by checking whether the host name that it uses for connecting matches the
Common Name value in the server certificate.

Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,
which it verifies against its known certificate authorities or performs additional checks on the client
identity if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs
to have access to the client certificate, so it can be sent to the server while establishing new database
connections. This is done using the Java keystore files.

84

https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-tls

Setting up Client Authentication

To allow client authentication, the client connecting to the server must have its own set of keys and
an SSL certificate. The client certificate must be signed so that the server can verify it. While you
can have the client certificates signed by official certificate authorities, it is more common to use an
intermediate, private, CA certificate to sign client certificates. Such an intermediate CA certificate may
be self-signed or signed by a trusted root CA. The requirement is that the server knows a CA certificate
that is capable of validating the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication
encryption, including a certificate and a private key (contained in the client-cert.pem and
client-key.pem files), which can be used by any client. This SSL certificate is already signed by the
self-signed CA certificate ca.pem, which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also
generate new ones using the procedures described in Creating SSL and RSA Certificates and Keys.
Notice that, according to the setup of the server, you may have to reuse the already existing CA
certificate the server is configured to work with to sign the new client certificate, instead of creating a
new one.

Once you have the client private key and certificate files you want to use, you need to import them
into a Java keystore so that they can be used by the Java SSL library and Connector/J. The following
instructions explain how to create the keystore file:

• Convert the client key and certificate files to a PKCS #12 archive:

$> openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem \
 -name "mysqlclient" -passout pass:mypassword -out client-keystore.p12

• Import the client key and certificate into a Java keystore:

$> keytool -importkeystore -srckeystore client-keystore.p12 -srcstoretype pkcs12 \
 -srcstorepass mypassword -destkeystore keystore -deststoretype JKS -deststorepass mypassword

Supply the proper arguments for the command options. If the keystore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Output by
keytool looks like this:

Entry for alias mysqlclient successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will
have to be written as plain text in your Connector/J configuration file or application source code.

After the step, you can delete the PKCS #12 archive (client-keystore.p12 in the example).

The next step is to configure Java or Connector/J so that it reads the keystore you just created or
modified. This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","mypassword");

3. Through Connector/J connection properties:

clientCertificateKeyStoreUrl=file:path_to_truststore_file
clientCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,

85

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html

Setting up 2-Way Authentication

while values set using the system-wide values are used for all connections (unless overridden
by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property
fallbackToSystemKeyStore to false prevents Connector/J from falling back to the system-wide
keystore setup you created using method (1) or (2) when method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For Connector/J 8.0.22 and later: For X-Protocol connections, the connection properties
xdevapi.ssl-keystore, xdevapi.ssl-keystore-type, xdevapi.ssl-keystore-
password, and xdevapi.ssl-fallbackToSystemKeyStore specify the keystore
settings, just like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePassword, and fallbackToSystemTKeyStore do for MySQL-
protocol connections; if not explicitly set, xdevapi.ssl-keystore, xdevapi.ssl-keystore-
type, xdevapi.ssl-keystore-password, and xdevapi.ssl-fallbackToSystemKeyStore
take up the values of clientCertificateKeyStoreUrl, clientCertificateKeyStoreType,
clientCertificateKeyStorePassword, and fallbackToSystemKeyStore respectively.

Setting up 2-Way Authentication

Apply the steps outlined in both Setting up Server Authentication and Setting up Client Authentication
to set up a mutual, two-way authentication process in which the server and the client authenticate each
other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported
into the client truststore must be able to validate the server certificate; the two CA certificates used on
the two ends can be distinct.

Debugging an SSL Connection

JSSE provides debugging information to stdout when you set the system property -
Djavax.net.debug=all. Java then tells you what keystores and truststores are being used, as well
as what is going on during the SSL handshake and certificate exchange. That will be helpful when you
are trying to debug a failed SSL connection.

6.10 Connecting Using Unix Domain Sockets
Connector/J does not natively support connections to MySQL Servers with Unix domain sockets.
However, there is provision for using 3rd-party libraries that supply the function via a pluggable socket
factory. Such a custom factory should implement the com.mysql.cj.protocol.SocketFactory
interface or the legacy com.mysql.jdbc.SocketFactory interface of Connector/J. Follow these
requirements when you use such a custom socket factory for Unix sockets :

• The MySQL Server must be configured with the system variable --socket (for native protocol
connections using the JDBC API) or --mysqlx-socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

• The fully-qualified class name of the custom factory should be passed to Connector/J via the
connection property socketFactory. For example, with the junixsocket library, set:

socketFactory=org.newsclub.net.mysql.AFUNIXDatabaseSocketFactory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
junixsocket.file:

junixsocket.file=path_to_socket_file

86

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Named Pipes

• Fore release 8.0.21 and earlier: When using the X Protocol, set the connection property
xdevapi.useAsyncProtocol=false (that is the default setting for Connector/J
8.0.12 and later). Unix socket is not supported for asynchronous socket channels. When
xdevapi.useAsyncProtocol=true, the socketFactory property is ignored (the connection
property xdevapi.useAsyncProtocol has been deprecated since release 8.0.22).

Note

For X Protocol connections, the provision to use custom socket factory for Unix
socket connefctions is only available for Connector/J 8.0.12 and later.

6.11 Connecting Using Named Pipes
Important

For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later, minimal
permissions on named pipes are granted to clients that use them to connect
to the server. Connector/J, however, can only use named pipes when
granted full access on them. As a workaround, the MySQL Server that
Connector/J wants to connect to must be started with the system variable
named_pipe_full_access_group, which specifies a Windows local group
containing the user by which the client application JVM (and thus Connector/J)
is being executed; see the description for named_pipe_full_access_group
for more details.

Note

Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the
NamedPipeSocketFactory as a plugin-sockets factory. If you do not use a namedPipePath
property, the default of '\\.\pipe\MySQL' is used. If you use the NamedPipeSocketFactory,
the host name and port number values in the JDBC URL are ignored. To enable this feature, set the
socketFactory property:

socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory

Set this property, as well as the path of the named pipe, with the following connection URL:

jdbc:mysql:///test?socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory&namedPipePath=\\.\pipe\MySQL80

To create your own socket factories, follow the sample code in
com.mysql.cj.protocol.NamedPipeSocketFactory or
com.mysql.cj.protocol.StandardSocketFactory.

An alternate approach is to use the following two properties in connection URLs for establishing named
pipe connections on Windows platforms:

• (protocol=pipe) for named pipes (default value for the property is tcp).

• (path=path_to_pipe) for path of named pipes. Default value for the path is \\.\pipe\MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [22] for details)
greatly simplifies the URL for a named pipe connection on Windows. For example, to use the default
named pipe of “\\.\pipe\MySQL,” just specify:

jdbc:mysql://address=(protocol=pipe)/test

To use the custom named pipe of “\\.\pipe\MySQL80” :

jdbc:mysql://address=(protocol=pipe)(path=\\.\pipe\MySQL80)/test

With (protocol=pipe), the NamedPipeSocketFactory is automatically selected.

87

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Various Authentication Methods

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster
than the standard TCP/IP access. However, this varies per system, and named pipes are slower than
TCP/IP in many Windows configurations.

6.12 Connecting Using Various Authentication Methods

6.12.1 Connecting Using PAM Authentication

Java applications using Connector/J can connect to MySQL servers that use the pluggable
authentication module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

• A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

• SSL capability, as explained in Section 6.9, “Connecting Securely Using SSL”. Because the PAM
authentication scheme sends the original password to the server, the connection to the server must
be encrypted.

PAM authentication support is enabled by default in Connector/J 8.0, so no extra configuration is
needed.

To disable the PAM authentication feature, specify mysql_clear_password (the method) or
com.mysql.cj.protocol.a.authentication.MysqlClearPasswordPlugin (the class name)
in the comma-separated list of arguments for the disabledAuthenticationPlugins connection
option. See Section 6.3, “Configuration Properties” for details about that connection option.

6.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) since release 8.0.26 .

Support for Kerberos is implemented by Connector/J (release 8.0.26 and later) using the GSS-API,
JAAS API, and JCA API; providers for each of these APIs must be available on the Java Virtual
Machine running your application that uses Kerberos authentication. Using non-default providers can
lead to unexpected results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create
connections without having to specify a user name and password in the connection string.
For that to work, Connector/J must be configured with the connection property setting
defaultAuthenticationPlugin=authentication_kerberos_client and then the MySQL
user name may be extracted from the Kerberos principal associated to the locally cached Ticket-
Granting Ticket (TGT). Notice that a MySQL user name differs from a Kerberos principal in not
containing a realm part; therefore, Connector/J cuts all the characters in the principle after the “@” sign
and uses it as the MySQL user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as
the MySQL user name. A user name specified in the connection string always takes precedence over
names obtained by any other means for the MySQL user.

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

• For users created with the authentication plugin authentication_kerberos, MySQL server
sends the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct

88

https://dev.mysql.com/doc/refman/8.0/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html

Connecting Using Multifactor Authentication

the Kerberos principal that identifies the user on the Kerberos server. One of three things may then
happen:

• The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service
Ticket, and the authentication proceeds.

• The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

• An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

• For users defined with a plugin different from authentication_kerberos, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide
Kerberos configuration, or these local system property settings for the JVM:

• -Djava.security.krb5.kdc=[the KDC host name]

• -Djava.security.krb5.realm=[the default Kerberos realm]

Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

• -Dsun.security.krb5.debug=true

• -Dsun.security.jgss.debug=true

6.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J for release 8.0.28 and later. When
authenticating user accounts that require multiple passwords, up to three passwords can be specified
using the Connector/J connection properties password1, password2, and password3 . This is a
sample connection string that uses the three connection properties for passwords:

jdbc:mysql://localhost/db?user=johndoe&password1=password&passsword2=password&password3=password

The following apply when using the connection properties for passwords:

• password1, password2, and password3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

• If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwordN) is ignored, even if supplied.

• Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

• password and password1 are taken as synonyms except when both are supplied, in which case
password1 overrides password.

89

https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html#multifactor-authentication-getting-started

Using Source/Replica Replication with ReplicationConnection

6.13 Using Source/Replica Replication with
ReplicationConnection

See Section 9.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

6.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections since release 8.0.19. For
information about DNS SRV support in MySQL, see Connecting to the Server Using DNS SRV
Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

• These new schemas in the connection URLs enable DNS SRV record support:

• jdbc:mysql+srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: For load-balancing JDBC connections that make use of DNS
SRV records.

• jdbc:mysql+srv:replication: For replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: For X DevAPI connections that make use of DNS SRV records.

• Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled
or disabled using the two new connection properties, dnsSrv and xdevapi.dns-srv, for JDBC
and X DevAPI connections respectively. For example, this connection URL enables DNS SRV record
support:

mysqlx://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=true

However, using the DNS SRV schema with the DNS SRV connection properties set to false results
in an error; for example:

mysqlx+srv://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=false
The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

• Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS
SRV connection (except for a replication set up, created using jdbc:mysql+srv:replication,
which requires exactly one source and one replica server to be specified).

• Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

• DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if
you attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover. For load-balancing and failover
connections, Connector/J uses the priority field of the DNS SRV records to decide on the priorities
for connection attempts for hosts.

DNS SRV Record Support for Connection Pooling. In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections

90

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

Client Session State Tracker

whose hosts no longer appear in the records, and readmits the connections into the pool when their
hosts reappear in the records.

Looking up DNS SRV Records. It is the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are
examples of valid service host name patterns:

• foo.domain.local

• _mysql._tcp.foo.domain.local

• _mysqlx._tcp.foo.domain.local

• _readonly._tcp.foo.domain.local

• _readwrite._tcp.foo.domain.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

6.15 Client Session State Tracker
For Connection/J 8.0.26 and later: Connector/J can receive information on client session state changes
tracked by the server if the tracking has been enabled on the server. The reception of the information is
enabled by setting the Connector/J connection property trackSessionState to true (default value
is false for the property).

When the function is enabled, information on session state changes received from the
server are stored inside the SessionStateChanges object, accessible through a
ServerSessionStateController and its getSessionStateChanges() method:

ServerSessionStateChanges ssc =
 MysqlConnection.getServerSessionStateController().getSessionStateChanges();

In SessionStateChanges is a list of SessoinStateChange objects, accessible by the
getSessionStateChangesList() method:

List<SessionStateChange> sscList = ssc.getSessionStateChangesList();

Each SessionStateChange has the fields type and values, accessible by the getType() and
getValues() methods. The types and their corresponding values are described below:

Table 6.23 SessionStateChange Type and Values

Type Number of Values in the value
List

Values

SESSION_TRACK_SYSTEM_VARIABLES2 The name of the changed
system variable and its new
value

SESSION_TRACK_SCHEMA 1 The new schema name

SESSION_TRACK_STATE_CHANGE1 "1" or "0"

SESSION_TRACK_GTIDS 1 List of GTIDs as reported by
server

SESSION_TRACK_TRANSACTION_CHARACTERISTICS1 Transaction characteristics
statement

SESSION_TRACK_TRANSACTION_STATE1 Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With
getSessionStateChanges(), some changes returned by the intermediate queries issued
by Connector/J could be missed. However, the session state change information can also
be received using a SessionStateChangesListener, which has to be registered with a
ServerSessionStateController using the addSessionStateChangesListener() method.

91

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

The following example implements SessionStateChangesListener in a class, which also provides
a method to print the change information:

class SSCListener implements SessionStateChangesListener {
 ServerSessionStateChanges changes = null;

 public void handleSessionStateChanges(ServerSessionStateChanges ch) {
 this.changes = ch;
 for (SessionStateChange change : ch.getSessionStateChangesList()) {
 printChange(change);
 }
 }

 private void printChange(SessionStateChange change) {
 System.out.print(change.getType() + " == > ");
 int pos = 0;
 if (change.getType() == ServerSessionStateController.SESSION_TRACK_SYSTEM_VARIABLES) {
 // There are two values with this change type, the system variable name and its new value
 System.out.print(change.getValues().get(pos++) + "=");
 }
 System.out.println(change.getValues().get(pos));
 }
 }
SessionStateChangesListener listener = new SSCListener();
MysqlConnection.getServerSessionStateController().addSessionStateChangesListener(listener);

With a registered SessionStateChangesListener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is
invoked immediately after the OK packet is consumed by Connector/J, before the ResultSet is
constructed.

6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes
The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.

Table 6.24 Mapping of MySQL Error Numbers to SQLStates

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1022 ER_DUP_KEY 23000

1037 ER_OUTOFMEMORY HY001

1038 ER_OUT_OF_SORTMEMORY HY001

1040 ER_CON_COUNT_ERROR 08004

1042 ER_BAD_HOST_ERROR 08S01

1043 ER_HANDSHAKE_ERROR 08S01

1044 ER_DBACCESS_DENIED_ERROR 42000

1045 ER_ACCESS_DENIED_ERROR 28000

1046 ER_NO_DB_ERROR 3D000

1047 ER_UNKNOWN_COM_ERROR 08S01

1048 ER_BAD_NULL_ERROR 23000

1049 ER_BAD_DB_ERROR 42000

1050 ER_TABLE_EXISTS_ERROR 42S01

1051 ER_BAD_TABLE_ERROR 42S02

1052 ER_NON_UNIQ_ERROR 23000

1053 ER_SERVER_SHUTDOWN 08S01

1054 ER_BAD_FIELD_ERROR 42S22

92

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1055 ER_WRONG_FIELD_WITH_GROUP 42000

1056 ER_WRONG_GROUP_FIELD 42000

1057 ER_WRONG_SUM_SELECT 42000

1058 ER_WRONG_VALUE_COUNT 21S01

1059 ER_TOO_LONG_IDENT 42000

1060 ER_DUP_FIELDNAME 42S21

1061 ER_DUP_KEYNAME 42000

1062 ER_DUP_ENTRY 23000

1063 ER_WRONG_FIELD_SPEC 42000

1064 ER_PARSE_ERROR 42000

1065 ER_EMPTY_QUERY 42000

1066 ER_NONUNIQ_TABLE 42000

1067 ER_INVALID_DEFAULT 42000

1068 ER_MULTIPLE_PRI_KEY 42000

1069 ER_TOO_MANY_KEYS 42000

1070 ER_TOO_MANY_KEY_PARTS 42000

1071 ER_TOO_LONG_KEY 42000

1072 ER_KEY_COLUMN_DOES_NOT_EXITS 42000

1073 ER_BLOB_USED_AS_KEY 42000

1074 ER_TOO_BIG_FIELDLENGTH 42000

1075 ER_WRONG_AUTO_KEY 42000

1080 ER_FORCING_CLOSE 08S01

1081 ER_IPSOCK_ERROR 08S01

1082 ER_NO_SUCH_INDEX 42S12

1083 ER_WRONG_FIELD_TERMINATORS 42000

1084 ER_BLOBS_AND_NO_TERMINATED 42000

1090 ER_CANT_REMOVE_ALL_FIELDS 42000

1091 ER_CANT_DROP_FIELD_OR_KEY 42000

1101 ER_BLOB_CANT_HAVE_DEFAULT 42000

1102 ER_WRONG_DB_NAME 42000

1103 ER_WRONG_TABLE_NAME 42000

1104 ER_TOO_BIG_SELECT 42000

1106 ER_UNKNOWN_PROCEDURE 42000

1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000

1109 ER_UNKNOWN_TABLE 42S02

1110 ER_FIELD_SPECIFIED_TWICE 42000

1112 ER_UNSUPPORTED_EXTENSION 42000

1113 ER_TABLE_MUST_HAVE_COLUMNS 42000

1115 ER_UNKNOWN_CHARACTER_SET 42000

93

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1118 ER_TOO_BIG_ROWSIZE 42000

1120 ER_WRONG_OUTER_JOIN 42000

1121 ER_NULL_COLUMN_IN_INDEX 42000

1131 ER_PASSWORD_ANONYMOUS_USER 42000

1132 ER_PASSWORD_NOT_ALLOWED 42000

1133 ER_PASSWORD_NO_MATCH 42000

1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01

1138 ER_INVALID_USE_OF_NULL 22004

1139 ER_REGEXP_ERROR 42000

1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS 42000

1141 ER_NONEXISTING_GRANT 42000

1142 ER_TABLEACCESS_DENIED_ERROR 42000

1143 ER_COLUMNACCESS_DENIED_ERROR 42000

1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000

1145 ER_GRANT_WRONG_HOST_OR_USER 42000

1146 ER_NO_SUCH_TABLE 42S02

1147 ER_NONEXISTING_TABLE_GRANT 42000

1148 ER_NOT_ALLOWED_COMMAND 42000

1149 ER_SYNTAX_ERROR 42000

1152 ER_ABORTING_CONNECTION 08S01

1153 ER_NET_PACKET_TOO_LARGE 08S01

1154 ER_NET_READ_ERROR_FROM_PIPE 08S01

1155 ER_NET_FCNTL_ERROR 08S01

1156 ER_NET_PACKETS_OUT_OF_ORDER 08S01

1157 ER_NET_UNCOMPRESS_ERROR 08S01

1158 ER_NET_READ_ERROR 08S01

1159 ER_NET_READ_INTERRUPTED 08S01

1160 ER_NET_ERROR_ON_WRITE 08S01

1161 ER_NET_WRITE_INTERRUPTED 08S01

1162 ER_TOO_LONG_STRING 42000

1163 ER_TABLE_CANT_HANDLE_BLOB 42000

1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000

1166 ER_WRONG_COLUMN_NAME 42000

1167 ER_WRONG_KEY_COLUMN 42000

1169 ER_DUP_UNIQUE 23000

1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000

1171 ER_PRIMARY_CANT_HAVE_NULL 42000

1172 ER_TOO_MANY_ROWS 42000

1173 ER_REQUIRES_PRIMARY_KEY 42000

94

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1176 ER_KEY_DOES_NOT_EXITS 42000

1177 ER_CHECK_NO_SUCH_TABLE 42000

1178 ER_CHECK_NOT_IMPLEMENTED 42000

1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000

1184 ER_NEW_ABORTING_CONNECTION 08S01

1189 ER_SOURCE_NET_READ 08S01

1190 ER_SOURCE_NET_WRITE 08S01

1203 ER_TOO_MANY_USER_CONNECTIONS 42000

1205 ER_LOCK_WAIT_TIMEOUT 40001

1207 ER_READ_ONLY_TRANSACTION 25000

1211 ER_NO_PERMISSION_TO_CREATE_USER 42000

1213 ER_LOCK_DEADLOCK 40001

1216 ER_NO_REFERENCED_ROW 23000

1217 ER_ROW_IS_REFERENCED 23000

1218 ER_CONNECT_TO_SOURCE 08S01

1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 21000

1226 ER_USER_LIMIT_REACHED 42000

1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000

1230 ER_NO_DEFAULT 42000

1231 ER_WRONG_VALUE_FOR_VAR 42000

1232 ER_WRONG_TYPE_FOR_VAR 42000

1234 ER_CANT_USE_OPTION_HERE 42000

1235 ER_NOT_SUPPORTED_YET 42000

1239 ER_WRONG_FK_DEF 42000

1241 ER_OPERAND_COLUMNS 21000

1242 ER_SUBQUERY_NO_1_ROW 21000

1247 ER_ILLEGAL_REFERENCE 42S22

1248 ER_DERIVED_MUST_HAVE_ALIAS 42000

1249 ER_SELECT_REDUCED 01000

1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000

1251 ER_NOT_SUPPORTED_AUTH_MODE 08004

1252 ER_SPATIAL_CANT_HAVE_NULL 42000

1253 ER_COLLATION_CHARSET_MISMATCH 42000

1261 ER_WARN_TOO_FEW_RECORDS 01000

1262 ER_WARN_TOO_MANY_RECORDS 01000

1263 ER_WARN_NULL_TO_NOTNULL 22004

1264 ER_WARN_DATA_OUT_OF_RANGE 22003

1265 ER_WARN_DATA_TRUNCATED 01000

1280 ER_WRONG_NAME_FOR_INDEX 42000

95

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1281 ER_WRONG_NAME_FOR_CATALOG 42000

1286 ER_UNKNOWN_STORAGE_ENGINE 42000

1292 ER_TRUNCATED_WRONG_VALUE 22007

1303 ER_SP_NO_RECURSIVE_CREATE 2F003

1304 ER_SP_ALREADY_EXISTS 42000

1305 ER_SP_DOES_NOT_EXIST 42000

1308 ER_SP_LILABEL_MISMATCH 42000

1309 ER_SP_LABEL_REDEFINE 42000

1310 ER_SP_LABEL_MISMATCH 42000

1311 ER_SP_UNINIT_VAR 01000

1312 ER_SP_BADSELECT 0A000

1313 ER_SP_BADRETURN 42000

1314 ER_SP_BADSTATEMENT 0A000

1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000

1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000

1317 ER_QUERY_INTERRUPTED 70100

1318 ER_SP_WRONG_NO_OF_ARGS 42000

1319 ER_SP_COND_MISMATCH 42000

1320 ER_SP_NORETURN 42000

1321 ER_SP_NORETURNEND 2F005

1322 ER_SP_BAD_CURSOR_QUERY 42000

1323 ER_SP_BAD_CURSOR_SELECT 42000

1324 ER_SP_CURSOR_MISMATCH 42000

1325 ER_SP_CURSOR_ALREADY_OPEN 24000

1326 ER_SP_CURSOR_NOT_OPEN 24000

1327 ER_SP_UNDECLARED_VAR 42000

1329 ER_SP_FETCH_NO_DATA 02000

1330 ER_SP_DUP_PARAM 42000

1331 ER_SP_DUP_VAR 42000

1332 ER_SP_DUP_COND 42000

1333 ER_SP_DUP_CURS 42000

1335 ER_SP_SUBSELECT_NYI 0A000

1336 ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG 0A000

1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000

1338 ER_SP_CURSOR_AFTER_HANDLER 42000

1339 ER_SP_CASE_NOT_FOUND 20000

1365 ER_DIVISION_BY_ZERO 22012

1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007

1370 ER_PROCACCESS_DENIED_ERROR 42000

96

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1397 ER_XAER_NOTA XAE04

1398 ER_XAER_INVAL XAE05

1399 ER_XAER_RMFAIL XAE07

1400 ER_XAER_OUTSIDE XAE09

1401 ER_XA_RMERR XAE03

1402 ER_XA_RBROLLBACK XA100

1403 ER_NONEXISTING_PROC_GRANT 42000

1406 ER_DATA_TOO_LONG 22001

1407 ER_SP_BAD_SQLSTATE 42000

1410 ER_CANT_CREATE_USER_WITH_GRANT 42000

1413 ER_SP_DUP_HANDLER 42000

1414 ER_SP_NOT_VAR_ARG 42000

1415 ER_SP_NO_RETSET 0A000

1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003

1425 ER_TOO_BIG_SCALE 42000

1426 ER_TOO_BIG_PRECISION 42000

1427 ER_M_BIGGER_THAN_D 42000

1437 ER_TOO_LONG_BODY 42000

1439 ER_TOO_BIG_DISPLAYWIDTH 42000

1440 ER_XAER_DUPID XAE08

1441 ER_DATETIME_FUNCTION_OVERFLOW 22008

1451 ER_ROW_IS_REFERENCED_2 23000

1452 ER_NO_REFERENCED_ROW_2 23000

1453 ER_SP_BAD_VAR_SHADOW 42000

1458 ER_SP_WRONG_NAME 42000

1460 ER_SP_NO_AGGREGATE 42000

1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000

1463 ER_NON_GROUPING_FIELD_USED 42000

1557 ER_FOREIGN_DUPLICATE_KEY 23000

1568 ER_CANT_CHANGE_TX_ISOLATION 25001

1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000

1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000

1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000

1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000

1613 ER_XA_RBTIMEOUT XA106

1614 ER_XA_RBDEADLOCK XA102

1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000

1641 ER_DUP_SIGNAL_SET 42000

1642 ER_SIGNAL_WARN 01000

97

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1643 ER_SIGNAL_NOT_FOUND 02000

1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER 0K000

1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000

1690 ER_DATA_OUT_OF_RANGE 22003

1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000

1701 ER_TRUNCATE_ILLEGAL_FK 42000

1758 ER_DA_INVALID_CONDITION_NUMBER 35000

1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000

1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000

1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006

1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000

1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000

1859 ER_DUP_UNKNOWN_IN_INDEX 23000

1873 ER_ACCESS_DENIED_CHANGE_USER_ERROR 28000

1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0Z002

1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

98

Chapter 7 JDBC Concepts

Table of Contents
7.1 Connecting to MySQL Using the JDBC DriverManager Interface .. 99
7.2 Using JDBC Statement Objects to Execute SQL .. 100
7.3 Using JDBC CallableStatements to Execute Stored Procedures 101
7.4 Retrieving AUTO_INCREMENT Column Values through JDBC ... 104

This section provides some general JDBC background.

7.1 Connecting to MySQL Using the JDBC DriverManager
Interface

When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of connections.

Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way
to do this is to use Class.forName() on the class that implements the java.sql.Driver interface.
With MySQL Connector/J, the name of this class is com.mysql.cj.jdbc.Driver. With this method,
you could use an external configuration file to supply the driver class name and driver parameters to
use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the
main() method of your application. If testing this code, first read the installation section at Chapter 4,
Connector/J Installation, to make sure you have connector installed correctly and the CLASSPATH set
up. Also, ensure that MySQL is configured to accept external TCP/IP connections.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.cj.jdbc.*
// or you will have problems!

public class LoadDriver {
 public static void main(String[] args) {
 try {
 // The newInstance() call is a work around for some
 // broken Java implementations

 Class.forName("com.mysql.cj.jdbc.Driver").newInstance();
 } catch (Exception ex) {
 // handle the error
 }
 }
}

After the driver has been registered with the DriverManager, you can obtain a Connection instance
that is connected to a particular database by calling DriverManager.getConnection():

Example 7.1 Connector/J: Obtaining a connection from the DriverManager

If you have not already done so, please review the portion of Section 7.1, “Connecting to MySQL Using
the JDBC DriverManager Interface” above before working with the example below.

This example shows how you can obtain a Connection instance from the DriverManager. There
are a few different signatures for the getConnection() method. Consult the API documentation that
comes with your JDK for more specific information on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

99

Using JDBC Statement Objects to Execute SQL

Connection conn = null;
...
try {
 conn =
 DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=minty&password=greatsqldb");

 // Do something with the Connection

 ...
} catch (SQLException ex) {
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}

Once a Connection is established, it can be used to create Statement and PreparedStatement
objects, as well as retrieve metadata about the database. This is explained in the following sections.

For Connector/J 8.0.24 and later: When the user for the connection is unspecified, Connector/J's
implementations of the authentication plugins use by default the name of the OS user who runs the
application for authentication with the MySQL server (except when the Kerberos authentication plugin
is being used; see Section 6.12.2, “Connecting Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are
all met:

1. The method DriverManager.getConnection(String url, String
user, String password) is not used.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
in jdbc:mysql://localhost:3306/test, or jdbc:mysql://
@localhost:3306/test.

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

7.2 Using JDBC Statement Objects to Execute SQL
Statement objects allow you to execute basic SQL queries and retrieve the results through the
ResultSet class, which is described later.

To create a Statement instance, you call the createStatement() method on the
Connection object you have retrieved using one of the DriverManager.getConnection() or
DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the
executeQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method
returns the number of rows matched by the update statement, not the number of rows that were
modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement

100

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Using JDBC CallableStatements to Execute Stored Procedures

was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 7.2 Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;

// assume that conn is an already created JDBC connection (see previous examples)

Statement stmt = null;
ResultSet rs = null;

try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT foo FROM bar");

 // or alternatively, if you don't know ahead of time that
 // the query will be a SELECT...

 if (stmt.execute("SELECT foo FROM bar")) {
 rs = stmt.getResultSet();
 }

 // Now do something with the ResultSet
}
catch (SQLException ex){
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}
finally {
 // it is a good idea to release
 // resources in a finally{} block
 // in reverse-order of their creation
 // if they are no-longer needed

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) { } // ignore

 rs = null;
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) { } // ignore

 stmt = null;
 }
}

7.3 Using JDBC CallableStatements to Execute Stored
Procedures

Connector/J fully implements the java.sql.CallableStatement interface.

For more information on MySQL stored procedures, please refer to Using Stored Routines.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

The following example shows a stored procedure that returns the value of inOutParam incremented
by 1, and the string passed in using inputParam as a ResultSet:

101

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Using JDBC CallableStatements to Execute Stored Procedures

Example 7.3 Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
 INOUT inOutParam INT)
BEGIN
 DECLARE z INT;
 SET z = inOutParam + 1;
 SET inOutParam = z;

 SELECT inputParam;

 SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the
parameter placeholders are not optional:

Example 7.4 Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;

...

 //
 // Prepare a call to the stored procedure 'demoSp'
 // with two parameters
 //
 // Notice the use of JDBC-escape syntax ({call ...})
 //

 CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

 cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to
the metadata retrieval that the driver performs to support output
parameters. For performance reasons, minimize unnecessary calls to
Connection.prepareCall() by reusing CallableStatement
instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you
created the stored procedure), JDBC requires that they be specified before statement execution
using the various registerOutputParameter() methods in the CallableStatement
interface:

Example 7.5 Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use

102

Using JDBC CallableStatements to Execute Stored Procedures

// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Example 7.6 Connector/J: Setting CallableStatement input parameters

...

 //
 // Set a parameter by index
 //

 cStmt.setString(1, "abcdefg");

 //
 // Alternatively, set a parameter using
 // the parameter name
 //

 cStmt.setString("inputParam", "abcdefg");

 //
 // Set the 'in/out' parameter using an index
 //

 cStmt.setInt(2, 1);

 //
 // Alternatively, set the 'in/out' parameter
 // by name
 //

 cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods
(executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 7.7 Connector/J: Retrieving results and output parameter values

...

 boolean hadResults = cStmt.execute();
103

Retrieving AUTO_INCREMENT Column Values through JDBC

 //
 // Process all returned result sets
 //

 while (hadResults) {
 ResultSet rs = cStmt.getResultSet();

 // process result set
 ...

 hadResults = cStmt.getMoreResults();
 }

 //
 // Retrieve output parameters
 //
 // Connector/J supports both index-based and
 // name-based retrieval
 //

 int outputValue = cStmt.getInt(2); // index-based

 outputValue = cStmt.getInt("inOutParam"); // name-based

...

7.4 Retrieving AUTO_INCREMENT Column Values through JDBC
getGeneratedKeys() is the preferred method to use if you need to retrieve AUTO_INCREMENT
keys and through JDBC; this is illustrated in the first example below. The second example shows how
you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final
example shows how updatable result sets can retrieve the AUTO_INCREMENT value when using the
insertRow() method.

Example 7.8 Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets assuming you have a
 // Connection 'conn' to a MySQL database already
 // available

 stmt = conn.createStatement();

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //

 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')",
 Statement.RETURN_GENERATED_KEYS);

104

Retrieving AUTO_INCREMENT Column Values through JDBC

 //
 // Example of using Statement.getGeneratedKeys()
 // to retrieve the value of an auto-increment
 // value
 //

 int autoIncKeyFromApi = -1;

 rs = stmt.getGeneratedKeys();

 if (rs.next()) {
 autoIncKeyFromApi = rs.getInt(1);
 } else {

 // throw an exception from here
 }

 System.out.println("Key returned from getGeneratedKeys():"
 + autoIncKeyFromApi);
} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Example 7.9 Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets.

 stmt = conn.createStatement();

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //

 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')");

105

Retrieving AUTO_INCREMENT Column Values through JDBC

 //
 // Use the MySQL LAST_INSERT_ID()
 // function to do the same thing as getGeneratedKeys()
 //

 int autoIncKeyFromFunc = -1;
 rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

 if (rs.next()) {
 autoIncKeyFromFunc = rs.getInt(1);
 } else {
 // throw an exception from here
 }

 System.out.println("Key returned from " +
 "'SELECT LAST_INSERT_ID()': " +
 autoIncKeyFromFunc);

} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Example 7.10 Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets as well as an 'updatable'
 // one, assuming you have a Connection 'conn' to
 // a MySQL database already available
 //

 stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_UPDATABLE);

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Example of retrieving an AUTO INCREMENT key
 // from an updatable result set
 //

 rs = stmt.executeQuery("SELECT priKey, dataField "
 + "FROM autoIncTutorial");

106

Retrieving AUTO_INCREMENT Column Values through JDBC

 rs.moveToInsertRow();

 rs.updateString("dataField", "AUTO INCREMENT here?");
 rs.insertRow();

 //
 // the driver adds rows at the end
 //

 rs.last();

 //
 // We should now be on the row we just inserted
 //

 int autoIncKeyFromRS = rs.getInt("priKey");

 System.out.println("Key returned for inserted row: "
 + autoIncKeyFromRS);

} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Running the preceding example code should produce the following output:

Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 1

At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value
is scoped to a connection. So, if some other query happens on the same connection, the value is
overwritten. On the other hand, the getGeneratedKeys() method is scoped by the Statement
instance, so it can be used even if other queries happen on the same connection, but not on the same
Statement instance.

107

108

Chapter 8 Connection Pooling with Connector/J
Connection pooling is a technique of creating and managing a pool of connections that are ready for
use by any thread that needs them. Connection pooling can greatly increase the performance of your
Java application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by
some other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests
a connection from the pool. When the thread is finished using the connection, it returns it to the pool, so
that it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that
requested it. From a programming point of view, it is the same as if your thread called
DriverManager.getConnection() every time it needed a JDBC connection. With connection
pooling, your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:

• Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead
that will be avoided if connections are recycled.

• Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own
JDBC connection, allowing you to use straightforward JDBC programming techniques.

• Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for
your application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use
a connection pool from an application deployed in a J2EE application server:

Example 8.1 Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.InitialContext;
import javax.sql.DataSource;

109

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

public class MyServletJspOrEjb {

 public void doSomething() throws Exception {
 /*
 * Create a JNDI Initial context to be able to
 * lookup the DataSource
 *
 * In production-level code, this should be cached as
 * an instance or static variable, as it can
 * be quite expensive to create a JNDI context.
 *
 * Note: This code only works when you are using servlets
 * or EJBs in a J2EE application server. If you are
 * using connection pooling in standalone Java code, you
 * will have to create/configure datasources using whatever
 * mechanisms your particular connection pooling library
 * provides.
 */

 InitialContext ctx = new InitialContext();

 /*
 * Lookup the DataSource, which will be backed by a pool
 * that the application server provides. DataSource instances
 * are also a good candidate for caching as an instance
 * variable, as JNDI lookups can be expensive as well.
 */

 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

 /*
 * The following code is what would actually be in your
 * Servlet, JSP or EJB 'service' method...where you need
 * to work with a JDBC connection.
 */

 Connection conn = null;
 Statement stmt = null;

 try {
 conn = ds.getConnection();

 /*
 * Now, use normal JDBC programming to work with
 * MySQL, making sure to close each resource when you're
 * finished with it, which permits the connection pool
 * resources to be recovered as quickly as possible
 */

 stmt = conn.createStatement();
 stmt.execute("SOME SQL QUERY");

 stmt.close();
 stmt = null;

 conn.close();
 conn = null;
 } finally {
 /*
 * close any jdbc instances here that weren't
 * explicitly closed during normal code path, so
 * that we don't 'leak' resources...
 */

 if (stmt != null) {
 try {
 stmt.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }

110

Sizing the Connection Pool

 stmt = null;
 }

 if (conn != null) {
 try {
 conn.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }

 conn = null;
 }
 }
 }
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the
DataSource, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them
(such as statements or result sets) are closed. This rule applies no matter what happens in your
code (exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used;
otherwise, they will be stranded, which means that the MySQL server resources they represent (such
as buffers, locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both
the client and server side. Every connection limits how many resources there are available to your
application as well as the MySQL server. Many of these resources will be used whether or not the
connection is actually doing any useful work! Connection pools can be tuned to maximize performance,
while keeping resource utilization below the point where your application will start to fail rather than just
run slower.

The optimal size for the connection pool depends on anticipated load and average database
transaction time. In practice, the optimal connection pool size can be smaller than you might expect.
If you take Oracle's Java Petstore blueprint application for example, a connection pool of 15-20
connections can serve a relatively moderate load (600 concurrent users) using MySQL and Tomcat
with acceptable response times.

To correctly size a connection pool for your application, create load test scripts with tools such as
Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number
of connections to be unbounded, run a load test, and measure the largest amount of concurrently
used connections. You can then work backward from there to determine what values of minimum and
maximum pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In
the case of load-balanced connections, this is performed against all active pooled internal connections
that are retained. This is beneficial to Java applications using connection pools, as the pool can
use this feature to validate connections. Depending on your connection pool and configuration, this
validation can be carried out at different times:

1. Before the pool returns a connection to the application.

2. When the application returns a connection to the pool.

3. During periodic checks of idle connections.

111

Validating Connections

To use this feature, specify a validation query in your connection pool that starts with /* ping
*/. Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a ReplicationConnection or
LoadBalancedConnection, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of
efficiency, as this test is done for every statement that is executed:

protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...

None of the following snippets will work, because the ping syntax is sensitive to whitespace,
capitalization, and placement:

sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against
one connection in the internal pool, rather than validating each underlying physical connection. This
results in the non-active physical connections assuming a stale state, and they may die. If Connector/
J then re-balances, it might select a dead connection, resulting in an exception being passed to the
application. To help prevent this, you can use loadBalanceValidateConnectionOnSwapServer
to validate the connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query,
take advantage of it, but ensure that the query starts exactly with /* ping */. This is particularly
important if you are using the load-balancing or replication-aware features of Connector/J, as it will help
keep alive connections which otherwise will go stale and die, causing problems later.

112

Chapter 9 Multi-Host Connections

Table of Contents
9.1 Configuring Server Failover for Connections Using JDBC .. 113
9.2 Configuring Server Failover for Connections Using X DevAPI .. 116
9.3 Configuring Load Balancing with Connector/J ... 116
9.4 Configuring Source/Replica Replication with Connector/J .. 119
9.5 Advanced Load-balancing and Failover Configuration ... 122

The following sections discuss a number of topics that involve multi-host connections, namely, server
load-balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

• Each multi-host connection is a wrapper of the underlying physical connections.

• Each of the underlying physical connections has its own session. Sessions cannot be tracked,
shared, or copied, given the MySQL architecture.

• Every switch between physical connections means a switch between sessions.

• Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart
the last transaction in case of an exception, or it should re-prepare session
data for each new transaction if it does not want to deal with exception
handling.

9.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur
for an underlying, active connection. The connection errors are, by default, propagated to the client,
which has to handle them by, for example, recreating the working objects (Statement, ResultSet,
etc.) and restarting the processes. Sometimes, the driver might eventually fall back to the original host
automatically before the client application continues to run, in which case the host switch is transparent
and the client application will not even notice it.

A connection using failover support works just like a standard connection: the client does not
experience any disruptions in the failover process. This means the client can rely on the same
connection instance even if two successive statements might be executed on two different physical
hosts. However, this does not mean the client does not have to deal with the exception that triggered
the server switch.

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

jdbc:mysql://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»

113

Configuring Connection Access Mode

[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary.
When starting a new connection, the driver always tries to connect to the primary host first and, if
required, fails over to the secondary hosts on the list sequentially when communication problems are
experienced. Even if the initial connection to the primary host fails and the driver gets connected to a
secondary host, the primary host never loses its special status: for example, it can be configured with
an access mode distinct from those of the secondary hosts, and it can be put on a higher priority when
a host is to be picked during a failover process.

The failover support is configured by the following connection properties (their functions are explained
in the paragraphs below):

• failOverReadOnly

• secondsBeforeRetrySource

• queriesBeforeRetrySource

• retriesAllDown

• autoReconnect

• autoReconnectForPools

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode.
However, if the driver fails to establish the initial connection to the primary host and it automatically
switches to the next host on the list, the access mode now depends on the value of the property
failOverReadOnly, which is “true” by default. The same happens if the driver is initially connected
to the primary host and, because of some connection failure, it fails over to a secondary host. Every
time the connection falls back to the primary host, its access mode will be read/write, irrespective of
whether or not the primary host has been connected to before. The connection access mode can be
changed any time at runtime by calling the method Connection.setReadOnly(boolean), which
partially overrides the property failOverReadOnly. When failOverReadOnly=false and the
access mode is explicitly set to either true or false, it becomes the mode for every connection after
a host switch, no matter what host type are being connected to; but, if failOverReadOnly=true,
changing the access mode to read/write is only possible if the driver is connecting to the primary host;
however, even if the access mode cannot be changed for the current connection, the driver remembers
the client's last intention and, when falling back to the primary host, that is the mode that will be used.
For an illustration, see the following successions of events with a two-host connection.

• Sequence A, with failOverReadOnly=true:

1. Connects to primary host in read/write mode

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

4. Sets Connection.setReadOnly(false); secondary host remains in read-only mode

5. Falls back to primary host; connection now in read/write mode

• Sequence B, with failOverReadOnly=false

1. Connects to primary host in read/write mode

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

114

Configuring Fallback to Primary Host

4. Set Connection.setReadOnly(false); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when
falling back to the primary host, which would be read-only otherwise; but in sequence B, the access
mode for the secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the
host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBeforeRetrySource
and queriesBeforeRetrySource, determine when the driver is ready to retry a reconnection to the
primary host (the Source in the property names stands for the primary host of our connection URL,
which is not necessarily a source host in a replication setup):

• secondsBeforeRetrySource determines how much time the driver waits before trying to fall back
to the primary host

• queriesBeforeRetrySource determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to
a Statement.execute*() method increments the query execution counter; therefore,
when calls are made to Statement.executeBatch() or if allowMultiQueries
or rewriteBatchStatements are enabled, the driver may not have an accurate
count of the actual number of queries executed on the server. Also, the driver calls the
Statement.execute*() methods internally in several occasions. All these mean you can only use
queriesBeforeRetrySource only as a coarse specification for when to fall back to the primary
host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions
specified by the two properties is met, and the attempt always takes place at transaction
boundaries. However, if auto-commit is turned off, the check happens only when the method
Connection.commit() or Connection.rollback() is called. The automatic fallback to the
primary host can be turned off by setting simultaneously secondsBeforeRetrySource and
queriesBeforeRetrySource to “0”. Setting only one of the properties to “0” only disables one part
of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it
restarts all over again from the beginning of the list; however, the primary host is skipped over, if (a)
NOT all the secondary hosts have already been tested at least once, AND (b) the fallback conditions
defined by secondsBeforeRetrySource and queriesBeforeRetrySource are not yet fulfilled.
Each run-through of the whole host list, (which is not necessarily completed at the end of the host list)
counts as a single connection attempt. The driver tries as many connection attempts as specified by
the value of the property retriesAllDown.

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the
active Statement or ResultSet instances by setting either the parameter autoReconnect
or autoReconnectForPools to true. This allows the client to continue using the same object
instances after a failover event, without taking any exceptional measures. This, however, may lead to
unexpected results: for example, if the driver is connected to the primary host with read/write access

115

Configuring Server Failover Using JDBC with DNS SRV

mode and it fails-over to a secondary host in read-only mode, further attempts to issue data-changing
queries will result in errors, and the client will not be aware of that. This limitation is particularly relevant
when using data streaming: after the failover, the ResultSet looks to be alright, but the underlying
connection may have changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a
Session. If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a
listed host, it tries to connect to another one. This is a sample X DevAPI URL for configuring client-side
failover:

mysqlx://sandy:mypassword@[host1:33060,host2:33061]/test

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

• For connections with the priority property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0
to 100, with a larger number indicating a higher priority for connection. For example:

mysqlx://sandy:mypassword@[(address=host1:33060,priority=2),(address=host2:33061,priority=1)]/test

In this example, host1 is always attempted before host2 when new sessions are created.

Priorities should either be set for all or no hosts.

• For connections with the priority property NOT set for each host in the connection URL:

• For release 8.0.19 and later, hosts are attempted one after another in a random order.

• for release 8.0.18 and earlier, hosts are attempted one after another in the order they appear in the
connection URL—a host appearing earlier in the list will be attempted before a host appearing later
in the list.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying
to establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPI. When using connection pooling with X DevAPI,
Connector/J keeps track of any host it failed to connect to and, for a short waiting period after
the failure, avoids connecting to it during the creation or retrieval of a Session. However, if
all other hosts have already been tried, those excluded hosts will be retried without waiting.
Once all hosts have been tried and no connections can be established, Connector/J throws a
com.mysql.cj.exceptions.CJCommunicationsException and returns the message Unable
to connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure

116

Configuring Load Balancing with Connector/J

load-balanced connections, with no service outage. In-process transactions are not lost, and no
application exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc:mysql:loadbalance://[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

There are two configuration properties associated with this functionality:

• loadBalanceConnectionGroup – This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any
combination you choose. If they use the same configuration, and you want to manage them as a
logical single group, give them the same name. This is the key property for management: if you
do not define a name (string) for loadBalanceConnectionGroup, you cannot manage the
connections. All load-balanced connections sharing the same loadBalanceConnectionGroup
value, regardless of how the application creates them, will be managed together.

• ha.enableJMX – The ability to manage the connections is exposed when you define a
loadBalanceConnectionGroup; but if you want to manage this externally, enable JMX by
setting this property to true. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform
operations using a JMX client such as jconsole.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

• Current active host count.

• Current active physical connection count.

• Current active logical connection count.

• Total logical connections created.

• Total transaction count.

The following management operations can also be performed:

• Add host.

• Remove host.

The JMX interface, com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean,
has the following methods:

• int getActiveHostCount(String group);

• int getTotalHostCount(String group);

• long getTotalLogicalConnectionCount(String group);

• long getActiveLogicalConnectionCount(String group);

• long getActivePhysicalConnectionCount(String group);

• long getTotalPhysicalConnectionCount(String group);

• long getTotalTransactionCount(String group);

117

Configuring Load Balancing with Connector/J

• void removeHost(String group, String host) throws SQLException;

• void stopNewConnectionsToHost(String group, String host) throws
SQLException;

• void addHost(String group, String host, boolean forExisting);

• String getActiveHostsList(String group);

• String getRegisteredConnectionGroups();

The getRegisteredConnectionGroups() method returns the names of all connection groups
defined in that class loader.

You can test this setup with the following code:

public class Test {

 private static String URL = "jdbc:mysql:loadbalance://" +
 "localhost:3306,localhost:3310/test?" +
 "loadBalanceConnectionGroup=first&ha.enableJMX=true";

 public static void main(String[] args) throws Exception {
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 }

 static Connection getNewConnection() throws SQLException, ClassNotFoundException {
 Class.forName("com.mysql.cj.jdbc.Driver");
 return DriverManager.getConnection(URL, "root", "");
 }

 static void executeSimpleTransaction(Connection c, int conn, int trans){
 try {
 c.setAutoCommit(false);
 Statement s = c.createStatement();
 s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
 c.commit();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static class Repeater implements Runnable {
 public void run() {
 for(int i=0; i < 100; i++){
 try {
 Connection c = getNewConnection();
 for(int j=0; j < 10; j++){
 executeSimpleTransaction(c, i, j);
 Thread.sleep(Math.round(100 * Math.random()));
 }
 c.close();
 Thread.sleep(100);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

After compiling, the application can be started with the -Dcom.sun.management.jmxremote
flag, to enable remote management. jconsole can then be started. The Test main class
will be listed by jconsole. Select this and click Connect. You can then navigate to the
com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can
click on various operations and examine the returned result.

118

Configuring Load Balancing with DNS SRV

If you now had an additional instance of MySQL running on port 3309, you could ensure that
Connector/J starts using it by using the addHost(), which is exposed in jconsole. Note that these
operations can be performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Section 9.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.4 Configuring Source/Replica Replication with Connector/J
This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc:mysql:replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

Users may specify the property allowSourceDownConnections=true to allow Connection
objects to be created even though no source hosts are reachable. Such Connection objects
report they are read-only, and isSourceConnection() returns false for them. The Connection
tests for available source hosts when Connection.setReadOnly(false) is called, throwing an
SQLException if it cannot establish a connection to a source, or switching to a source connection if the
host is available.

Users may specify the property allowReplicasDownConnections=true to allow Connection
objects to be created even though no replica hosts are reachable. A Connection then, at runtime,
tests for available replica hosts when Connection.setReadOnly(true) is called (see explanation
for the method below), throwing an SQLException if it cannot establish a connection to a replica, unless
the property readFromSourceWhenNoReplicas is set to be “true” (see below for a description of the
property).

Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connection.getReadOnly().

An application signals that it wants a transaction to be read-only by calling
Connection.setReadOnly(true). The replication-aware connection will use one of
the replica connections, which are load-balanced per replica host using a round-robin
scheme. A given connection is sticky to a replica until a transaction boundary command
(a commit or rollback) is issued, or until the replica is removed from service. After calling
Connection.setReadOnly(true), if you want to allow connection to a source when no replicas
are available, set the property readFromSourceWhenNoReplicas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting
readFromSourceWhenNoReplicas=true might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember,
replication in MySQL is asynchronous), set the connection to be not read-only, by calling
Connection.setReadOnly(false) and the driver will ensure that further calls are sent to the
source MySQL server. The driver takes care of propagating the current state of autocommit, isolation
level, and catalog between all of the connections that it uses to accomplish this load balancing
functionality.

To enable this functionality, use the specialized replication scheme (
jdbc:mysql:replication://) when connecting to the server.

119

Support for Multiple-Source Replication Topographies

Here is a short example of how a replication-aware connection might be used in a standalone
application:

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import java.sql.DriverManager;

public class ReplicationDemo {

 public static void main(String[] args) throws Exception {

 Properties props = new Properties();

 // We want this for failover on the replicas
 props.put("autoReconnect", "true");

 // We want to load balance between the replicas
 props.put("roundRobinLoadBalance", "true");

 props.put("user", "foo");
 props.put("password", "password");

 //
 // Looks like a normal MySQL JDBC url, with a
 // comma-separated list of hosts, the first
 // being the 'source', the rest being any number
 // of replicas that the driver will load balance against
 //

 Connection conn =
 DriverManager.getConnection("jdbc:mysql:replication://source,replica1,replica2,replica3/test",
 props);

 //
 // Perform read/write work on the source
 // by setting the read-only flag to "false"
 //

 conn.setReadOnly(false);
 conn.setAutoCommit(false);
 conn.createStatement().executeUpdate("UPDATE some_table");
 conn.commit();

 //
 // Now, do a query from a replica, the driver automatically picks one
 // from the list
 //

 conn.setReadOnly(true);

 ResultSet rs =
 conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

 }
}

Consider using the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system
failures and uneven load distribution. For more information, see Load Balancing JDBC Driver for
MySQL (mysql-lbpool).

Support for Multiple-Source Replication Topographies

Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of
jdbc:mysql:replication://source,replica1,replica2,replica3/test) assumes that

120

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

Live Reconfiguration of Replication Topography

the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals" URL syntax for multiple host connection discussed
in Section 6.2, “Connection URL Syntax”, with the property type=[source|replica]; for example:

jdbc:mysql:replication://address=(type=source)(host=source1host),address=(type=source)(host=source2host),address=(type=replica)(host=replica1host)/database

Connector/J uses a load-balanced connection internally for management of the source connections,
which means that ReplicationConnection, when configured to use multiple sources, exposes
the same options to balance load across source hosts as described in Section 9.3, “Configuring Load
Balancing with Connector/J”.

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies.
This enables users to promote replicas for Java applications without requiring an application restart.

The replication hosts are most effectively managed in the context of a replication connection
group. A ReplicationConnectionGroup class represents a logical grouping of connections which
can be managed together. There may be one or more such replication connection groups in a
given Java class loader (there can be an application with two different JDBC resources needing
to be managed independently). This key class exposes host management methods for replication
connections, and ReplicationConnection objects register themselves with the appropriate
ReplicationConnectionGroup if a value for the new replicationConnectionGroup property
is specified. The ReplicationConnectionGroup object tracks these connections until they are
closed, and it is used to manipulate the hosts associated with these connections.

Some important methods related to host management include:

• getSourceHosts(): Returns a collection of strings representing the hosts configured as source
hosts

• getReplicaHosts(): Returns a collection of strings representing the hosts configured as replica
hosts

• addReplicaHost(String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

• promoteReplicaToSource(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

• removeReplicaHost(String host, boolean closeGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if closeGently is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

• removeSourceHost(String host, boolean closeGently): Same as
removeReplicaHost(), but removes the host from the list of configured source hosts

Some useful management metrics include:

• getConnectionCountWithHostAsReplica(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

• getConnectionCountWithHostAsSource(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

• getNumberOfReplicasAdded(): Returns the number of times a replica host has been
dynamically added to the group pool

• getNumberOfReplicasRemoved(): Returns the number of times a replica host has been
dynamically removed from the group pool

121

ReplicationConnectionGroupManager

• getNumberOfReplicaPromotions(): Returns the number of times a replica host has been
promoted to be a source host

• getTotalConnectionCount(): Returns the number of ReplicationConnection objects which have
been registered with this group

• getActiveConnectionCount(): Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com.mysql.cj.jdbc.ha.ReplicationConnectionGroupManager provides access to the
replication connection groups, together with some utility methods.

• getConnectionGroup(String groupName): Returns the ReplicationConnectionGroup
object matching the groupName provided

The other methods in ReplicationConnectionGroupManager mirror those of
ReplicationConnectionGroup, except that the first argument is a String group name.
These methods will operate on all matching ReplicationConnectionGroups, which are
helpful for removing a server from service and have it decommissioned across all possible
ReplicationConnectionGroups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha.enableJMX=true and a value set for the
property replicationConnectionGroup, a JMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com.mysql.cj.jdbc.jmx.ReplicationGroupManagerMBean, and leverages the
ReplicationConnectionGroupManager static methods:

 public abstract void addReplicaHost(String groupFilter, String host) throws SQLException;
 public abstract void removeReplicaHost(String groupFilter, String host) throws SQLException;
 public abstract void promoteReplicaToSource(String groupFilter, String host) throws SQLException;
 public abstract void removeSourceHost(String groupFilter, String host) throws SQLException;
 public abstract String getSourceHostsList(String group);
 public abstract String getReplicaHostsList(String group);
 public abstract String getRegisteredConnectionGroups();
 public abstract int getActiveSourceHostCount(String group);
 public abstract int getActiveReplicaHostCount(String group);
 public abstract int getReplicaPromotionCount(String group);
 public abstract long getTotalLogicalConnectionCount(String group);
 public abstract long getActiveLogicalConnectionCount(String group);

Configuring Source/Replica Replication with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.5 Advanced Load-balancing and Failover Configuration
Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 9.3, “Configuring Load Balancing with Connector/J” and Support
for Multiple-Source Replication Topographies. This same implementation is used for balancing load
between read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is
safe to swap servers, doing so in the middle of a transaction, for example, could cause problems. It is
important not to lose state information. For this reason, Connector/J will only try to pick a new server
when one of the following happens:

122

Advanced Load-balancing and Failover Configuration

1. At transaction boundaries (transactions are explicitly committed or rolled back).

2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLException matches conditions defined by user, using the extension points defined by
the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or
loadBalanceExceptionChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExceptions
trigger failover:

• loadBalanceExceptionChecker - The loadBalanceExceptionChecker property
is really the key. This takes a fully-qualified class name which implements the new
com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker interface. This interface is very
simple, and you only need to implement the following method:

public boolean shouldExceptionTriggerFailover(SQLException ex)

A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false
does not.

You can use this to implement your own custom logic. An example where this might be useful is
when dealing with transient errors when using MySQL Cluster, where certain buffers may become
overloaded. The following code snippet illustrates this:

public class NdbLoadBalanceExceptionChecker
 extends StandardLoadBalanceExceptionChecker {

 public boolean shouldExceptionTriggerFailover(SQLException ex) {
 return super.shouldExceptionTriggerFailover(ex)
 || checkNdbException(ex);
 }

 private boolean checkNdbException(SQLException ex){
 // Have to parse the message since most NDB errors
 // are mapped to the same DEMC.
 return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
 (ex.getMessage().startsWith("Got temporary error")
 && ex.getMessage().endsWith("from NDB")));
 }
}

The code above extends
com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker, which is the
default implementation. There are a few convenient shortcuts built into this, for those who
want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: loadBalanceSQLStateFailover and
loadBalanceSQLExceptionSubclassFailover.

• loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState
code prefixes, against which a SQLException is compared. If the prefix matches, failover is
triggered. So, for example, the following would trigger a failover if a given SQLException starts with
"00", or is "12345":

loadBalanceSQLStateFailover=00,12345

• loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with
loadBalanceSQLStateFailover or on its own. If you want certain subclasses of SQLException
to trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names
to check against. For example, if you want all SQLTransientConnectionExceptions to trigger
failover, you would specify:

loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException

123

Configuring Load Balancing and Failover with DNS SRV

While the three failover conditions enumerated earlier suit most situations, if autocommit is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements
are executed, when autocommit is enabled. This functionality is dependent upon the following
properties:

• loadBalanceAutoCommitStatementThreshold – defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0,
retains the behavior that connections with autocommit enabled are never balanced.

• loadBalanceAutoCommitStatementRegex – the regular expression against which statements
must match. The default value, blank, matches all statements. So, for example, using the following
properties will cause Connector/J to re-balance after every third statement that contains the string
“test”:

loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*

loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state,
where letting the driver arbitrarily swap physical connections before processing is complete could
cause data loss or other problems. This allows you to identify a trigger statement that is only
executed when it is safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

124

Chapter 10 Using the X DevAPI with Connector/J: Special
Topics

Table of Contents
10.1 Connection Compression Using X DevAPI .. 125
10.2 Schema Validation .. 126

Connector/J 8.0 supports the X DevAPI, through which native support by MySQL 8.0 for JSON,
NoSQL, document collection, and other features are provided to Java applications. See Using MySQL
as a Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual.
This chapter explores some special topics that are not covered elsewhere.

10.1 Connection Compression Using X DevAPI

Staring form release 8.0.20, Connector/J supports data compression for X DevAPI connections
when working with MySQL Server 8.0.19 and later. General details about this feature can be found
in Connection Compression with X Plugin. For details on how to configure connection compression
for Connector/J, see the descriptions for the connection properties xdevapi.compression,
xdevapi.compression-algorithms, and xdevapi.compression-extensions in Section 6.3,
“Configuration Properties”. The following is a summary of the feature:

For Connector/J 8.0.22 and later: The compression algorithms to be negotiated with the server and
the priority of negotiation can be specified using the connection property xdevapi.compression-
algorithms. It accepts a list of [algorithm-name]_[operation-mode], separated by commas
(,). If the property is not set, the default value of “zstd_stream,lz4_message,deflate_stream”
is used. The priority for negotiation follows the order the algorithms appear in the list. Setting an empty
string explicitly for the property means compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi.compression-
algorithms, the aliases zstd, lz4, and deflate can be used in place of
zstd_stream, lz4_message, and deflate_stream, respectively.

For Connector/J 8.0.21 and earlier: Connector/J negotiates a compression algorithm following the
priority recommended by X DevAPI: trying zstd first, then LZ4, and finally Deflate.

Out of all the compression algorithms now supported by MySQL 8.0 for X DevAPI connections,
Connector/J provides out-of-the-box support for Deflate only; this is because none of the other
compression algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To
support those algorithms, the client application must provide implementations for the corresponding
deflate and inflate operations in the form of an OutputStream and an InputStream object,
respectively. The easiest way to accomplish this is by using a third-party library such as the
Apache Commons Compress library, which supports LZ4 and zstd. The connection option
xdevapi.compression-extensions allows users to configure Connector/J to use any
compression algorithm that is supported by MySQL Server, as long as there is a Java implementation
for that algorithm. The option takes a list of triplets separated by commas (,), and each triplet in turn
contains the following elements, separated by colons (:):

• The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

125

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html

Schema Validation

• A fully-qualified name of a class implementing the interface java.io.InputStream that will be
used to inflate data compressed with the named algorithm.

• A fully-qualified name of a class implementing the interface java.io.OutputStream that will be
used to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms lz4_message and zstd_stream using
the Apache Commons Compress library:

String connStr = "jdbc:mysql://johndoe:secret@localhost:33060/mydb?"
 + "xdevapi.compression-extensions="
 + "lz4_message"+":" // LZ4 triplet
 + FramedLZ4CompressorInputStream.class.getName() + ":"
 + FramedLZ4CompressorOutputStream.class.getName() + ","
 + "zstd_stream"+":" // zstd triplet
 + ZstdCompressorInputStream.class.getName() + ":"
 + ZstdCompressorOutputStream.class.getName();
SessionFactory sessFact = new SessionFactory();
Session sess = sessFact.getSession(connStr);
Collection col = sess.getDefaultSchema().getCollection("myCollection");
// (...)
sess.close();

Note

For Connector/J 8.0.21 and earlier: The connection property
xdevapi.compression-extensions described above is named
xdevapi.compression-algorithm for Connector/J 8.0.21 and earlier,
and the elements in each triplet should be separated by commas (,) instead of
colons (:).

Negotiation for a compression algorithm is attempted by default
(xdevapi.compression=Preferred by default), unless the connection property
xdevapi.compression is set to DISABLED. The final choice of compression algorithm depends
on what algorithms are enabled on the server. By default, because compression is not required, if the
negotiation fails, the connection will not be compressed, but the client will still be able to communicate
with the server; however, if the connection property xdevapi.compression is set to REQUIRED, the
connection attempt fails with an error if no algorithm can be negotiated for successfully.

10.2 Schema Validation

For Connector/J 8.0.21 and later, when working with MySQL Server 8.0.19 and later: Schema
validation can be configured for a Collection, so that documents in the Collection are validated
against a schema before they can be inserted or updated. This is done by specifying a JSON Schema
during Collection creation or modification; schema validation is then performed by the server at a
document creation or update, and an error is returned if the document does not validate against the
assigned schema. For more information on JSON schema validation in MySQL, see JSON Schema
Validation Functions. This section describes how to configure schema validation for a Collection
with Connector/J.

To configure schema validation during the creation of a Collection, pass to the
createCollection() method a CreateCollectionOptions object, which has these fields:

• reuse: a boolean set by the setReuseExisting method. If it is true, when the Collection
to be created already exists within the Schema that is to contain it, Connector/J returns success
(without any attempt to apply JSON schema to the existing Collection); in the same case,
Connector/J returns an error if the parameter is set to false. If reuse is not set, it is taken to be
false.

• validation: a Validation object set by the setValidation() method. A Validation object
in turns contains these fields:

126

http://json-schema.org
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html

Schema Validation

• level: a enumeration of the class ValidationLevel, set by the setLevel() method; it can be
one of the following two values:

• STRICT: Strict validation. Attempting to insert or modify a document that violates the validation
schema results in a server error being raised.

• OFF: No validation. Schema validation is turned off.

If level is not set, it is taken as OFF for MySQL Server 8.0.19, and STRICT for 8.0.20 and later.

• schema: A string representing a JSON Schema to be used to validate a Document in the
Collection; set by the setSchema() method.

If schema is not provided but level is set to STRICT, the Collection is validated against the
default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Collection:

Collection coll = this.schema.createCollection(collName,
 new CreateCollectionOptions()
 .setReuseExisting(false)
 .setValidation(new Validation()
 .setLevel(ValidationLevel.STRICT)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"A geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""
 + " }"
 + " },"
 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

The set fields are accessible by the corresponding getter methods.

To modify the schema validation configuration for a Collection, use the modifyCollection()
method and pass to it a ModifyCollectionOptions object, which has the same fields as
the CreateCollectionOptions object except for the reuse field, which does not exist for a
ModifyCollectionOptions object. For the Validation object of a ModifyCollectionOptions
object, users can set either its level or schema, or both. Here is an example of using the
modifyCollection() to change the schema validation configuration:

schema.modifyCollection(collName,
 new ModifyCollectionOptions()
 .setValidation(new Validation()
 .setLevel(ValidationLevel.OFF)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"NEW geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""
 + " }"
 + " },"

127

http://json-schema.org

Schema Validation

 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

If the Collection contains documents that do not validate against the new JSON schema supplied
through ModifyCollectionOptions, the server will reject the schema modification with the error
ERROR 5180 (HY000) Document is not valid according to the schema assigned to
collection.

Note

createCollection() and modifyCollection() are overloaded: they can
be called without passing to them the CreateCollectionOptions or the
ModifyCollectionOptions, respectively, in which case schema validation
will not be applied to the Collection.

128

Chapter 11 Using the Connector/J Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify
some aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the
interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

The connection properties that control the interceptors are explained in Section 6.3, “Configuration
Properties”:

• connectionLifecycleInterceptors, where you specify the fully qualified names of classes
that implement the
com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor interface.
In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to setAutoCommit().

• exceptionInterceptors, where you specify the fully qualified names of classes that implement
the com.mysql.cj.exceptions.ExceptionInterceptor interface. In these kinds of
interceptor classes, you might add extra diagnostic information to exceptions that can have multiple
causes or indicate a problem with server settings. exceptionInterceptors classes are called
when handling an Exception thrown from Connector/J code.

• queryInterceptors, where you specify the fully qualified names of classes that implement the
com.mysql.cj.interceptors.QueryInterceptor interface. In these kinds of interceptor
classes, you might change or augment the processing done by certain kinds of statements, such
as automatically checking for queried data in a memcached server, rewriting slow queries, logging
information about statement execution, or route requests to remote servers.

129

130

Chapter 12 Using Logging Frameworks with SLF4J
Besides its default logger com.mysql.cj.log.StandardLogger, which logs to stderr, Connector/
J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug
in logging frameworks of their own choices at deployment time. Popular logging frameworks such as
java.util.logging, logback, and log4j are supported by SLF4J. Follow these requirements to
use a logging framework with SLF4J and Connector/J:

• In the development environment:

• Install on your system slf4j-api-x.y.z.jar (available at https://www.slf4j.org/download.html)
and add it to the Java classpath.

• In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
MysqlConnection Session, and then use the Log instance for your logging.

• On the deployment system:

• Install on your system slf4j-api-x.y.z.jar and add it to the Java classpath

• Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch
from one logging framework to another by removing a binding and adding a
new one to the classpath.

• Install the logging framework of your choice on your system and add it to the Java classpath.

• Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation
for details.

• When connecting the application to the MySQL Server, set the Connector/J connection property
logger to Slf4JLogger.

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for
more details about using SLF4J, including discussions on Maven dependency and bindings. Here is a
sample code for using SLF4J with Connector/J:

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import com.mysql.cj.jdbc.JdbcConnection;
import com.mysql.cj.log.Log;

public class JDBCDemo {

 public static void main(String[] args) {

 Connection conn = null;
 Statement statement = null;
 ResultSet resultSet = null;
 Log logger = null;

 try {
 // Database parameters
 String url = "jdbc:mysql://myexample.com:3306/pets?logger=Slf4JLogger&explainSlowQueries=true";
 String user = "user";

131

https://www.slf4j.org/download.html
https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

 String password = "password";
 // create a connection to the database
 conn = DriverManager.getConnection(url, user, password);
 logger = ((JdbcConnection)conn).getSession().getLog();
 }
 catch (SQLException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 try {
 statement = conn.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM pets.dogs");
 while(resultSet.next()){
 System.out.printf("%d\t%s\t%s\t %4$ty.%4$tm.%4$td \n",
 resultSet.getInt(1),
 resultSet.getString(2),
 resultSet.getString(3),
 resultSet.getDate(4));
 }
 }
 catch(SQLException e) {
 logger.logWarn("Warning: Select failed!");
 }

}

}

If you want to use, for example, Log4j 1.2.17 as your logging framework when running this
program, use its binding to SLF4J: put slf4j-api-1.7.28.jar (SLF4J API module), slf4j-
log4j12-1.7.28.jar (SLF4J's binding for Log4J 1.2), and log4j-1.2.17.jar (Log4J library) in
your Java classpath.

Here is output of the program when the SELECT statement failed:

[2019-09-05 12:06:19,624] WARN 0[main] - WARN MySQL - Warning: Select failed!

132

Chapter 13 Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time
this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/
server.xml in the context that defines your web application:

 <Context>

 ...

 <Resource name="jdbc/MySQLDB"
 auth="Container"
 type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/MySQLDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>

 <parameter>
 <name>maxActive</name>
 <value>10</value>
 </parameter>

 <parameter>
 <name>maxIdle</name>
 <value>5</value>
 </parameter>

 <parameter>
 <name>validationQuery</name>
 <value>SELECT 1</value>
 </parameter>

 <parameter>
 <name>testOnBorrow</name>
 <value>true</value>
 </parameter>

 <parameter>
 <name>testWhileIdle</name>
 <value>true</value>
 </parameter>

 <parameter>
 <name>timeBetweenEvictionRunsMillis</name>
 <value>10000</value>
 </parameter>

 <parameter>
 <name>minEvictableIdleTimeMillis</name>
 <value>60000</value>
 </parameter>

 <parameter>
 <name>username</name>
 <value>someuser</value>
 </parameter>

 <parameter>
 <name>password</name>
 <value>somepass</value>
 </parameter>

133

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.cj.jdbc.Driver</value>
 </parameter>

 <parameter>
 <name>url</name>
 <value>jdbc:mysql://localhost:3306/test</value>
 </parameter>

 </ResourceParams>
</Context>

Connector/J introduces a facility whereby, rather than use a validationQuery value of SELECT 1,
it is possible to use validationQuery with a value set to /* ping */. This sends a ping to the
server which then returns a fake result set. This is a lighter weight solution. It also has the advantage
that if using ReplicationConnection or LoadBalancedConnection type connections, the ping
will be sent across all active connections. The following XML snippet illustrates how to select this
option:

<parameter>
 <name>validationQuery</name>
 <value>/* ping */</value>
</parameter>

Note that /* ping */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your
XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver
class in JDBC 4.0 and later causes an improper undeployment of the Connector/J driver in
Tomcat on Windows. Namely, the Connector/J jar remains locked. This is an initialization
problem that is not related to the driver. The possible workarounds, if viable, are as follows: use
"antiResourceLocking=true" as a Tomcat Context attribute, or remove the META-INF/ directory.

134

Chapter 14 Using Connector/J with Spring

Table of Contents
14.1 Using JdbcTemplate ... 136
14.2 Transactional JDBC Access ... 137
14.3 Connection Pooling with Spring ... 139

The Spring Framework is a Java-based application framework designed for assisting in application
design by providing a way to configure components. The technique used by Spring is a well known
design pattern called Dependency Injection (see Inversion of Control Containers and the Dependency
Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to
set up a MySQL data source through Spring. Components within Spring use the “bean” terminology.
For example, to configure a connection to a MySQL server supporting the world sample database, you
might use:

<util:map id="dbProps">
 <entry key="db.driver" value="com.mysql.cj.jdbc.Driver"/>
 <entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
 <entry key="db.username" value="myuser"/>
 <entry key="db.password" value="mypass"/>
</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For
the datasource configuration:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
</bean>

The placeholders are used to provide values for properties of this bean. This means that we can
specify all the properties of the configuration in one place instead of entering the values for each
property on each bean. We do, however, need one more bean to pull this all together. The last bean is
responsible for actually replacing the placeholders with the property values.

<bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to
access it. The example below will retrieve three random cities and their corresponding country using
the data source we configured with Spring.

135

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Using JdbcTemplate

// Create a new application context. this processes the Spring config
ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context
 DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {
 // retrieve a list of three random cities
 PreparedStatement ps = c.prepareStatement(
 "select City.Name as 'City', Country.Name as 'Country' " +
 "from City inner join Country on City.CountryCode = Country.Code " +
 "order by rand() limit 3");
 ResultSet rs = ps.executeQuery();
 while(rs.next()) {
 String city = rs.getString("City");
 String country = rs.getString("Country");
 System.out.printf("The city %s is in %s%n", city, country);
 }
} catch (SQLException ex) {
 // something has failed and we print a stack trace to analyse the error
 ex.printStackTrace();
 // ignore failure closing connection
 try { c.close(); } catch (SQLException e) { }
} finally {
 // properly release our connection
 DataSourceUtils.releaseConnection(c, ds);
}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When
a connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized
with a transaction. This makes it possible to treat different parts of your application as transactional
instead of passing around a database connection.

14.1 Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method
Pattern). Our immediate focus will be on the JdbcTemplate and related classes, specifically
NamedParameterJdbcTemplate. The template classes handle obtaining and releasing a connection
for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
 /**
 * Data source reference which will be provided by Spring.
 */
 private DataSource dataSource;

 /**
 * Our query to find a random city given a country code. Notice
 * the ":country" parameter toward the end. This is called a
 * named parameter.
 */
 private String queryString = "select Name from City " +
 "where CountryCode = :country order by rand() limit 1";

 /**
 * Retrieve a random city using Spring JDBC access classes.
 */
 public String getRandomCityByCountryCode(String cntryCode) {
 // A template that permits using queries with named parameters
 NamedParameterJdbcTemplate template =

136

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

 new NamedParameterJdbcTemplate(dataSource);
 // A java.util.Map is used to provide values for the parameters
 Map params = new HashMap();
 params.put("country", cntryCode);
 // We query for an Object and specify what class we are expecting
 return (String)template.queryForObject(queryString, params, String.class);
 }

 /**
 * A JavaBean setter-style method to allow Spring to inject the data source.
 * @param dataSource
 */
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a
country code and use the NamedParameterJdbcTemplate to query for a city. The country code is
placed in a Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
 <property name="dataSource" ref="dataSource"/>
</bean>

At this point, we can just grab a reference to the DAO from Spring and call
getRandomCityByCountryCode().

 // Create the application context
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex2appContext.xml");
 // Obtain a reference to our DAO
 Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");

 String countryCode = "USA";

 // Find a few random cities in the US
 for(int i = 0; i < 4; ++i)
 System.out.printf("A random city in %s is %s%n", countryCode,
 dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of
traditional JDBC classes including Connection and PreparedStatement.

14.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC
classes. For that purpose, Spring provides a transaction management package that not only replaces
JDBC transaction management, but also enables declarative transaction management (configuration
instead of code).

To use transactional database access, we will need to change the storage engine of the tables in
the world database. The downloaded script explicitly creates MyISAM tables, which do not support
transactional semantics. The InnoDB storage engine does support transactions and this is what we will
be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations.
What this means is that we can create a Java interface and only use the operations on this interface

137

Transactional JDBC Access

without any internal knowledge of what the actual implementation is. We will let Spring manage the
implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
 Integer createCity(String name, String countryCode,
 String district, Integer population);
}

This interface contains one method that will create a new city record in the database and return the id
of the new record. Next you need to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
 protected DataSource dataSource;
 protected SqlUpdate updateQuery;
 protected SqlFunction idQuery;

 public Integer createCity(String name, String countryCode,
 String district, Integer population) {
 updateQuery.update(new Object[] { name, countryCode,
 district, population });
 return getLastId();
 }

 protected Integer getLastId() {
 return idQuery.run();
 }
}

You can see that we only operate on abstract query objects here and do not deal directly with the
JDBC API. Also, this is the complete implementation. All of our transaction management will be dealt
with in the configuration. To get the configuration started, we need to create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="updateQuery">...</property>
 <property name="idQuery">...</property>
</bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for
the dao methods.

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

<tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source
provided to it. The txAdvice uses this transaction manager and the attributes specify to create a
transaction for all methods. Finally we need to apply this advice with an AOP pointcut.

<aop:config>
 <aop:pointcut id="daoMethods"
 expression="execution(* code.Ex3Dao.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>
</aop:config>

138

Connection Pooling with Spring

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on
the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is
all configured with Spring. This is a very powerful notion and regarded as one of the most beneficial
features of Spring.

14.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database
transactions. When this is the case, it usually makes sense to create a pool of database connections
available for web requests as needed. Although MySQL does not spawn an extra process when a
connection is made, there is still a small amount of overhead to create and set up the connection.
Pooling of connections also alleviates problems such as collecting large amounts of sockets in the
TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
 <property name="initialSize" value="3"/>
</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections
to the database instead of creating a new connection every time one is requested. We have also set
a parameter here called initialSize. This tells DBCP that we want three connections in the pool
when it is created.

139

http://jakarta.apache.org/commons/dbcp/

140

Chapter 15 Troubleshooting Connector/J Applications
This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

• 15.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 15.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 15.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar
to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 15.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 15.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

• 15.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

• 15.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want to
insert using JDBC is safely below the max_allowed_packet size.

• 15.8: What should I do if I receive error messages similar to the following: “Communications link
failure – Last packet sent to the server was X ms ago”?

• 15.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though I use the autoReconnect
connection string option?

• 15.10: How can I use 3-byte UTF8 with Connector/J?

• 15.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

• 15.12: Using useServerPrepStmts=false and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

Questions and Answers

15.1: When I try to connect to the database with MySQL Connector/J, I get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting
Using Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). The
security manager on the MySQL server uses its grant tables to determine whether a TCP/IP connection

141

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

is permitted. You must therefore add the necessary security credentials to the MySQL server for the
connection by issuing a GRANT statement to your MySQL Server. See GRANT Statement, for more
information.

Warning

Changing privileges and permissions improperly on MySQL can potentially
cause your server installation to have non-optimal security properties.

Note

Testing your connectivity with the mysql command-line client will not work
unless you add the --host flag, and use something other than localhost
for the host. The mysql command-line client will try to use Unix domain
sockets if you use the special host name localhost. If you are testing TCP/IP
connectivity to localhost, use 127.0.0.1 as the host name instead.

15.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Chapter 4, Connector/J Installation.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the
location of the Connector/J driver.

15.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the skip_networking
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served
the .class files for the applet. This means that MySQL must run on the same machine (or you must
have some sort of port re-direction) for this to work. This also means that you will not be able to test
applets from your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting Using
Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). TCP/IP
communication with MySQL can be affected by the skip_networking system variable or the server
firewall. If MySQL has been started with skip_networking enabled, you need to comment it out
in the file /etc/mysql/my.cnf or /etc/my.cnf for TCP/IP connections to work. (Note that your
server configuration file might also exist in the data directory of your MySQL server, or somewhere
else, depending on how MySQL was compiled; binaries created by Oracle always look for /etc/
my.cnf and datadir/my.cnf; see Using Option Files for details.) If your MySQL server has been
firewalled, you will need to have the firewall configured to allow TCP/IP connections from the host
where your Java code is running to the MySQL server on the port that MySQL is listening to (by
default, 3306).

15.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the autoReconnect parameter (see Section 6.3, “Configuration
Properties”).

142

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Also, catch SQLExceptions in your application and deal with them, rather than propagating them all
the way until your application exits. This is just good programming practice. MySQL Connector/J will
set the SQLState (see java.sql.SQLException.getSQLState() in your API docs) to 08S01
when it encounters network-connectivity issues during the processing of a query. Attempt to reconnect
to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 15.1 Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;

 //
 // How many times do you want to retry the transaction
 // (or at least _getting_ a connection)?
 //
 int retryCount = 5;

 boolean transactionCompleted = false;

 do {
 try {
 conn = getConnection(); // assume getting this from a
 // javax.sql.DataSource, or the
 // java.sql.DriverManager

 conn.setAutoCommit(false);

 //
 // Okay, at this point, the 'retry-ability' of the
 // transaction really depends on your application logic,
 // whether or not you're using autocommit (in this case
 // not), and whether you're using transactional storage
 // engines
 //
 // For this example, we'll assume that it's _not_ safe
 // to retry the entire transaction, so we set retry
 // count to 0 at this point
 //
 // If you were using exclusively transaction-safe tables,
 // or your application could recover from a connection going
 // bad in the middle of an operation, then you would not
 // touch 'retryCount' here, and just let the loop repeat
 // until retryCount == 0.
 //
 retryCount = 0;

 stmt = conn.createStatement();

 String query = "SELECT foo FROM bar ORDER BY baz";

 rs = stmt.executeQuery(query);

 while (rs.next()) {
 }

 rs.close();
 rs = null;

 stmt.close();
 stmt = null;

 conn.commit();
 conn.close();
 conn = null;

 transactionCompleted = true;
 } catch (SQLException sqlEx) {

143

 //
 // The two SQL states that are 'retry-able' are 08S01
 // for a communications error, and 40001 for deadlock.
 //
 // Only retry if the error was due to a stale connection,
 // communications problem or deadlock
 //

 String sqlState = sqlEx.getSQLState();

 if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
 retryCount -= 1;
 } else {
 retryCount = 0;
 }
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this...
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this as well...
 }
 }

 if (conn != null) {
 try {
 //
 // If we got here, and conn is not null, the
 // transaction should be rolled back, as not
 // all work has been done

 try {
 conn.rollback();
 } finally {
 conn.close();
 }
 } catch (SQLException sqlEx) {
 //
 // If we got an exception here, something
 // pretty serious is going on, so we better
 // pass it up the stack, rather than just
 // logging it...

 throw sqlEx;
 }
 }
 }
 } while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is
no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information. Instead, use
a connection pool, which will enable your application to connect to the MySQL
server using an available connection from the pool. The autoReconnect
facility is deprecated, and may be removed in a future release.

15.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

144

Make sure that the skip_networking system variable has not been enabled on your server.
Connector/J must be able to communicate with your server over TCP/IP; named sockets are not
supported. Also ensure that you are not filtering connections through a firewall or other network
security system. For more information, see Can't connect to [local] MySQL server.

15.6: Updating a table that contains a primary key that is either FLOAT or compound primary
key that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the
primary key. If there is no match, then Connector/J considers this a failure condition and raises an
exception.

The problem is that rounding differences between supplied values and the values stored in the
database may mean that the values never match, and hence the update fails. The issue will affect all
queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECIMAL types in place of FLOAT.

15.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want
to insert using JDBC is safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in
com.mysql.cj.AbstractPreparedQuery.streamToBytes() may almost double the size of
your data.

15.8: What should I do if I receive error messages similar to the following: “Communications
link failure – Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be
several root causes:

• Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

• The MySQL Server may be closing idle connections that exceed the wait_timeout or
interactive_timeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

• Ensure connections are valid when used from the connection pool. Use a query that starts with /*
ping */ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be
exactly as specified here.

• Minimize the duration a connection object is left idle while other application logic is executed.

• Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

• Ensure that wait_timeout and interactive_timeout are set sufficiently high.

• Ensure that tcpKeepalive is enabled.

• Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being
lying idle for a period. If a connection is to be reused after being idle for any
length of time, ensure that you explicitly test it before reusing it.

145

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

15.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though I use the autoReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual
states that “there is no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information”. Consider the following series of
statements for example:

conn.createStatement().execute(
 "UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");
conn.createStatement().execute(
 "UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");
conn.commit();

Consider the case where the connection to the server fails after the UPDATE to checking_account.
If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savings_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the
second transaction, as the commit only applies to the changes made in the new connection. Rather
than a transfer taking place, a deposit was made in this example.

Note that running with autocommit enabled does not solve this problem. When Connector/J
encounters a communication problem, there is no means to determine whether the server processed
the currently executing statement or not. The following theoretical states are equally possible:

• The server never received the statement, and therefore no related processing occurred on the
server.

• The server received the statement, executed it in full, but the response was not received by the
client.

If you are running with autocommit enabled, it is not possible to guarantee the state of data on
the server when a communication exception is encountered. The statement may have reached the
server, or it may not. All you know is that communication failed at some point, before the client received
confirmation (or data) from the server. This does not only affect autocommit statements though. If
the communication problem occurred during Connection.commit(), the question arises of whether
the transaction was committed on the server before the communication failed, or whether the server
received the commit request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

• Temporary tables.

• User-defined variables.

• Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without
generating an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to
simply ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the
application developer to decide how to proceed in the event of connection errors and failures.

15.10: How can I use 3-byte UTF8 with Connector/J?

For 8.0.12 and earlier: To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set
useUnicode=true in the connection string.

146

For 8.0.13 and later: Because there is no Java-style character set name for utfmb3 that you can use
with the connection option charaterEncoding, the only way to use utf8mb3 as your connection
character set is to use a utf8mb3 collation (for example, utf8_general_ci) for the connection
option connectionCollation, which forces a utf8mb3 character set to be used. See Section 6.7,
“Using Character Sets and Unicode” for details.

15.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with
character_set_server=utf8mb4. Connector/J will then use that setting, if characterEncoding
and connectionCollation have not been set in the connection string. This is equivalent to
autodetection of the character set. See Section 6.7, “Using Character Sets and Unicode” for
details. For 8.0.13 and later: You can use characterEncoding=UTF-8 to use utf8mb4, even if
character_set_server on the server has been set to something else.

15.12: Using useServerPrepStmts=false and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB
data contains characters that can be interpreted as control characters, for example, backslash, '\'. This
can lead to corrupted data when inserting BLOBs into the database. There are two things that need to
be done to avoid this:

1. Set the connection string option useServerPrepStmts to true.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

147

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server

148

Chapter 16 Known Issues and Limitations
The following are some known issues and limitations for MySQL Connector/J:

• When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
getTimeStamp() method on the result set, some of the returned values might be wrong. The errors
can be avoided by using the following connection options when connecting to a database:

 serverTimezone=UTC

• The functionality of the property elideSetAutoCommits has been disabled due to Bug# 66884.
Any value given for the property is ignored by Connector/J.

• MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
java.sql.Date, which is non-proleptic. Therefore, when setting and retrieving dates that were
before the Julian-Gregorian cutover (October 15, 1582) using the PreparedStatement methods,
always supply explicitly a proleptic Gregorian calendar to the setDate() and getDate() methods,
in order to avoid possible errors with dates stored to and calculated by the server.

• For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later: To use Windows named pipes
for connections, the MySQL Server that Connector/J wants to connect to must be started with the
system variable named_pipe_full_access_group; see Section 6.11, “Connecting Using Named
Pipes” for details.

149

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

150

Chapter 17 Connector/J Support

Table of Contents
17.1 Connector/J Community Support .. 151
17.2 How to Report Connector/J Bugs or Problems .. 151

17.1 Connector/J Community Support
You can join the #connectors channel in the MySQL Community Slack workspace, where you can
get help directly from MySQL developers and other users.

17.2 How to Report Connector/J Bugs or Problems
The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things
that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/.
Any bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but
not to one containing too little. People often omit facts because they think they know the cause of a
problem and assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must
ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/
J or MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including
the JVM version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested
was not implemented in that MySQL version, or that a bug described in a report has already been fixed
in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.cj.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this

151

https://mysqlcommunity.slack.com/messages/connectors
http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

class, create your own class that inherits from com.mysql.cj.jdbc.util.BaseBugReport and
override the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data
needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you
created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, use one of the variants of the getConnection() method to create
a JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a
connection already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is,
there is more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given
URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl()
as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage,
boolean expression) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you
are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run
method:

public static void main(String[] args) throws Exception {
 new MyBugReport().run();
 }

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

152

http://bugs.mysql.com/

Index

A
allowLoadLocalInfile connection property, 41
allowLoadLocalInfileInPath connection property, 41
allowMultiQueries connection property, 41
allowNanAndInf connection property, 43
allowPublicKeyRetrieval connection property, 39
allowReplicaDownConnections connection property, 52
allowSourceDownConnections connection property, 52
allowUrlInLocalInfile connection property, 42
alwaysSendSetIsolation connection property, 56
Authentication Methods

Kerberos, 88
PAM, 88

authenticationPlugins connection property, 32
autoClosePStmtStreams connection property, 43
autoDeserialize connection property, 47
autoGenerateTestcaseScript connection property, 62
autoReconnect connection property, 50
autoReconnectForPools connection property, 51
autoSlowLog connection property, 60

B
blobsAreStrings connection property, 47
blobSendChunkSize connection property, 47

C
cacheCallableStmts connection property, 57
cacheDefaultTimeZone connection property, 42
cachePrepStmts connection property, 57
cacheResultSetMetadata connection property, 57
cacheServerConfiguration connection property, 57
callableStmtCacheSize connection property, 55
character sets

with Connector/J, 77
characterEncoding connection property, 35
characterSetResults connection property, 36
client-side failover, 116
clientCertificateKeyStorePassword connection
property, 41
clientCertificateKeyStoreType connection property, 40
clientCertificateKeyStoreUrl connection property, 40
clientInfoProvider connection property, 34
clobberStreamingResults connection property, 44
clobCharacterEncoding connection property, 47
compatibility information, 3
compensateOnDuplicateKeyUpdateCounts connection
property, 43
connecting

through JDBC and Connector/J, 21
with Unix domain socket, 86
with Windows named pipes, 87, 149

connection pooling, 109, 139
connection properties, 25
connection URL, 21
connectionAttributes connection property, 33

connectionCollation connection property, 36
connectionLifecycleInterceptors connection property,
33
connectionTimeZone connection property, 48, 72
Connector/J

known issues, 149
limitations, 149
reporting problems, 151
troubleshooting, 141

connectTimeout connection property, 37
continueBatchOnError connection property, 42
createDatabaseIfNotExist connection property, 34
customCharsetMapping connection property, 36

D
databaseTerm connection property, 34
defaultAuthenticationPlugin connection property, 33
defaultFetchSize connection property, 57
detectCustomCollations connection property, 34
disabledAuthenticationPlugins connection property, 32
disconnectOnExpiredPasswords connection property,
34
DNS SRV records, 21, 90
dnsSrv connection property, 37
dontCheckOnDuplicateKeyUpdateInSQL connection
property, 58
dontTrackOpenResources connection property, 43
dumpQueriesOnException connection property, 62

E
elideSetAutoCommits connection property, 58
emptyStringsConvertToZero connection property, 44
emulateLocators connection property, 48
emulateUnsupportedPstmts connection property, 44
enableEscapeProcessing connection property, 58
enablePacketDebug connection property, 61
enableQueryTimeouts connection property, 58
error codes, 92
ER_ABORTING_CONNECTION, 92
ER_ACCESS_DENIED_ERROR, 92
ER_BAD_FIELD_ERROR, 92
ER_BAD_HOST_ERROR, 92
ER_BAD_TABLE_ERROR, 92
ER_BLOBS_AND_NO_TERMINATED, 92
ER_BLOB_CANT_HAVE_DEFAULT, 92
ER_BLOB_KEY_WITHOUT_LENGTH, 92
ER_BLOB_USED_AS_KEY, 92
ER_CANT_DO_THIS_DURING_AN_TRANSACTION,
92
ER_CANT_DROP_FIELD_OR_KEY, 92
ER_CANT_REMOVE_ALL_FIELDS, 92
ER_CANT_USE_OPTION_HERE, 92
ER_CHECK_NOT_IMPLEMENTED, 92
ER_CHECK_NO_SUCH_TABLE, 92
ER_COLLATION_CHARSET_MISMATCH, 92
ER_COLUMNACCESS_DENIED_ERROR, 92
ER_CONNECT_TO_SOURCE, 92

153

ER_CON_COUNT_ERROR, 92
ER_DBACCESS_DENIED_ERROR, 92
ER_DERIVED_MUST_HAVE_ALIAS, 92
ER_DUP_ENTRY, 92
ER_DUP_FIELDNAME, 92
ER_DUP_KEY, 92
ER_DUP_KEYNAME, 92
ER_DUP_UNIQUE, 92
ER_EMPTY_QUERY, 92
ER_FIELD_SPECIFIED_TWICE, 92
ER_FORCING_CLOSE, 92
ER_GRANT_WRONG_HOST_OR_USER, 92
ER_HANDSHAKE_ERROR, 92
ER_HOST_IS_BLOCKED, 92
ER_HOST_NOT_PRIVILEGED, 92
ER_ILLEGAL_GRANT_FOR_TABLE, 92
ER_ILLEGAL_REFERENCE, 92
ER_INVALID_DEFAULT, 92
ER_INVALID_USE_OF_NULL, 92
ER_IPSOCK_ERROR, 92
ER_KEY_COLUMN_DOES_NOT_EXITS, 92
ER_LOCK_DEADLOCK, 92
ER_LOCK_WAIT_TIMEOUT, 92
ER_MIX_OF_GROUP_FUNC_AND_FIELDS, 92
ER_MULTIPLE_PRI_KEY, 92
ER_NET_ERROR_ON_WRITE, 92
ER_NET_FCNTL_ERROR, 92
ER_NET_PACKETS_OUT_OF_ORDER, 92
ER_NET_PACKET_TOO_LARGE, 92
ER_NET_READ_ERROR, 92
ER_NET_READ_ERROR_FROM_PIPE, 92
ER_NET_READ_INTERRUPTED, 92
ER_NET_UNCOMPRESS_ERROR, 92
ER_NET_WRITE_INTERRUPTED, 92
ER_NEW_ABORTING_CONNECTION, 92
ER_NONEXISTING_GRANT, 92
ER_NONEXISTING_TABLE_GRANT, 92
ER_NONUNIQ_TABLE, 92
ER_NON_UNIQ_ERROR, 92
ER_NOT_ALLOWED_COMMAND, 92
ER_NOT_SUPPORTED_AUTH_MODE, 92
ER_NOT_SUPPORTED_YET, 92
ER_NO_DEFAULT, 92
ER_NO_PERMISSION_TO_CREATE_USER, 92
ER_NO_REFERENCED_ROW, 92
ER_NO_SUCH_INDEX, 92
ER_NO_SUCH_TABLE, 92
ER_NULL_COLUMN_IN_INDEX, 92
ER_OPERAND_COLUMNS, 92
ER_OUTOFMEMORY, 92
ER_OUT_OF_SORTMEMORY, 92
ER_PARSE_ERROR, 92
ER_PASSWORD_ANONYMOUS_USER, 92
ER_PASSWORD_NOT_ALLOWED, 92
ER_PASSWORD_NO_MATCH, 92
ER_PRIMARY_CANT_HAVE_NULL, 92
ER_READ_ONLY_TRANSACTION, 92
ER_REGEXP_ERROR, 92

ER_REQUIRES_PRIMARY_KEY, 92
ER_ROW_IS_REFERENCED, 92
ER_SELECT_REDUCED, 92
ER_SERVER_SHUTDOWN, 92
ER_SOURCE_NET_READ, 92
ER_SOURCE_NET_WRITE, 92
ER_SPATIAL_CANT_HAVE_NULL, 92
ER_SUBQUERY_NO_1_ROW, 92
ER_SYNTAX_ERROR, 92
ER_TABLEACCESS_DENIED_ERROR, 92
ER_TABLENAME_NOT_ALLOWED_HERE, 92
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, 92
ER_TABLE_CANT_HANDLE_BLOB, 92
ER_TABLE_EXISTS_ERROR, 92
ER_TABLE_MUST_HAVE_COLUMNS, 92
ER_TOO_BIG_FIELDLENGTH, 92
ER_TOO_BIG_ROWSIZE, 92
ER_TOO_BIG_SELECT, 92
ER_TOO_LONG_IDENT, 92
ER_TOO_LONG_KEY, 92
ER_TOO_LONG_STRING, 92
ER_TOO_MANY_KEYS, 92
ER_TOO_MANY_KEY_PARTS, 92
ER_TOO_MANY_ROWS, 92
ER_TOO_MANY_USER_CONNECTIONS, 92
ER_UNKNOWN_CHARACTER_SET, 92
ER_UNKNOWN_COM_ERROR, 92
ER_UNKNOWN_PROCEDURE, 92
ER_UNKNOWN_STORAGE_ENGINE, 92
ER_UNKNOWN_TABLE, 92
ER_UNSUPPORTED_EXTENSION, 92
ER_USER_LIMIT_REACHED, 92
ER_WARN_DATA_OUT_OF_RANGE, 92
ER_WARN_DATA_TRUNCATED, 92
ER_WARN_NULL_TO_NOTNULL, 92
ER_WARN_TOO_FEW_RECORDS, 92
ER_WARN_TOO_MANY_RECORDS, 92
ER_WRONG_AUTO_KEY, 92
ER_WRONG_COLUMN_NAME, 92
ER_WRONG_DB_NAME, 92
ER_WRONG_FIELD_SPEC, 92
ER_WRONG_FIELD_TERMINATORS, 92
ER_WRONG_FIELD_WITH_GROUP, 92
ER_WRONG_FK_DEF, 92
ER_WRONG_GROUP_FIELD, 92
ER_WRONG_KEY_COLUMN, 92
ER_WRONG_NAME_FOR_CATALOG, 92
ER_WRONG_NAME_FOR_INDEX, 92
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
92
ER_WRONG_OUTER_JOIN, 92
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, 92
ER_WRONG_SUM_SELECT, 92
ER_WRONG_TABLE_NAME, 92
ER_WRONG_TYPE_FOR_VAR, 92
ER_WRONG_VALUE_COUNT, 92
ER_WRONG_VALUE_COUNT_ON_ROW, 92
ER_WRONG_VALUE_FOR_VAR, 92

154

exceptionInterceptors connection property, 62
explainSlowQueries connection property, 60

F
failover

Java clients, 113
failOverReadOnly connection property, 51
fallbackToSystemKeyStore connection property, 41
fallbackToSystemTrustStore connection property, 40
forceConnectionTimeZoneToSession connection
property, 49, 72
fractional seconds connection property, 77
functionsNeverReturnBlobs connection property, 48

G
gatherPerfMetrics connection property, 60
generateSimpleParameterMetadata connection
property, 44
getProceduresReturnsFunctions connection property,
46

H
ha.enableJMX connection property, 52
ha.loadBalanceStrategy connection property, 53
holdResultsOpenOverStatementClose connection
property, 45

I
ignoreNonTxTables connection property, 62
includeInnodbStatusInDeadlockExceptions connection
property, 62
includeThreadDumpInDeadlockExceptions connection
property, 62
includeThreadNamesAsStatementComment
connection property, 63
initialTimeout connection property, 51
Installing Connector/J

With binary distribution, 7
With Maven dependencies, 8

interactiveClient connection property, 35

J
J2EE

connection pooling, 109
load balancing, 116

JDBC
and MySQL data types, 70
background information for Connector/J, 99
character sets, 77
CLASSPATH, 8
code examples, 19
compatibility, 67
configuration properties, 25
driver for MySQL, 1
SQLState codes, 92
troubleshooting, 141, 149

versions supported, 3
jdbcCompliantTruncation connection property, 45
JSON

scheme validation, 126

K
Kerberos authentication

with Connector/J, 88
known issues

Connector/J, 149

L
largeRowSizeThreshold connection property, 58
ldapServerHostname connection property, 33
limitations

Connector/J, 149
load balancing

with Connector/J, 116, 119
loadBalanceAutoCommitStatementRegex connection
property, 53
loadBalanceAutoCommitStatementThreshold
connection property, 54
loadBalanceBlocklistTimeout connection property, 54
loadBalanceConnectionGroup connection property, 54
loadBalanceExceptionChecker connection property, 54
loadBalanceHostRemovalGracePeriod connection
property, 52
loadBalancePingTimeout connection property, 54
loadBalanceSQLExceptionSubclassFailover connection
property, 54
loadBalanceSQLStateFailover connection property, 54
loadBalanceValidateConnectionOnSwapServer
connection property, 55
localSocketAddress connection property, 37
locatorFetchBufferSize connection property, 48
logger connection property, 59
loggers, 131
logging, 131
logSlowQueries connection property, 60
logXaCommands connection property, 61

M
maintainTimeStats connection property, 57
maxAllowedPacket connection property, 37
maxQuerySizeToLog connection property, 60
maxReconnects connection property, 51
maxRows connection property, 45
metadataCacheSize connection property, 55
multi-host connections

with Connector/J, 113
multifactor authentication (MFA), 89

N
named pipes, 87, 149
netTimeoutForStreamingResults connection property,
45
noAccessToProcedureBodies connection property, 46

155

noDatetimeStringSync connection property, 49
nullDatabaseMeansCurrent connection property, 47

O
ociConfigFile connection property, 32
overrideSupportsIntegrityEnhancementFacility
connection property, 63

P
packetDebugBufferSize connection property, 61
padCharsWithSpace connection property, 45
PAM authentication, 88
paranoid connection property, 38
parseInfoCacheFactory connection property, 56
password connection property, 32
password1 connection property, 32
password2 connection property, 32
password3 connection property, 32
passwordCharacterEncoding connection property, 35
passwords, 89
pedantic connection property, 63
pinGlobalTxToPhysicalConnection connection property,
55
populateInsertRowWithDefaultValues connection
property, 45
prepStmtCacheSize connection property, 56
prepStmtCacheSqlLimit connection property, 56
preserveInstant connection property, 72
preserveInstants connection property, 49
processEscapeCodesForPrepStmts connection
property, 44
profilerEventHandler connection property, 59
profileSQL connection property, 60
proleptic Gregorian calendar, 149
propertiesTransform connection property, 35

Q
queriesBeforeRetrySource connection property, 51
query attributes, 79
queryInterceptors connection property, 43
queryTimeoutKillsConnection connection property, 43

R
readFromSourceWhenNoReplicas connection property,
53
readOnlyPropagatesToServer connection property, 58
reconnectAtTxEnd connection property, 51
replication

with Connector/J, 119
replicationConnectionGroup connection property, 55
reportMetricsIntervalMillis connection property, 61
requireSSL connection property, 42
resourceId connection property, 55
resultSetSizeThreshold connection property, 62
retriesAllDown connection property, 51
rewriteBatchedStatements connection property, 59
rollbackOnPooledClose connection property, 35

S
scrollTolerantForwardOnly connection property, 45
secondsBeforeRetrySource connection property, 52
selfDestructOnPingMaxOperations connection
property, 53
selfDestructOnPingSecondsLifetime connection
property, 53
sendFractionalSeconds connection property, 50
sendFractionalSecondsForTime connection property,
50, 77
serverAffinityOrder connection property, 55
serverConfigCacheFactory connection property, 56
serverRSAPublicKeyFile connection property, 39
session state tracker, 91
sessionVariables connection property, 35
SLF4J, 131
slowQueryThresholdMillis connection property, 60
slowQueryThresholdNanos connection property, 60
socketFactory connection property, 37
socketTimeout connection property, 37
socksProxyHost connection property, 36
socksProxyPort connection property, 36
Spring framework, 135
SQLState error codes, 92
SSL, 81
sslMode connection property, 39
strictUpdates connection property, 46

T
tcpKeepAlive connection property, 38
tcpNoDelay connection property, 38
tcpRcvBuf connection property, 38
tcpSndBuf connection property, 38
tcpTrafficClass connection property, 38
time zone conversion, 72
tinyInt1isBit connection property, 46
tlsCiphersuites connection property, 41
tlsVersions connection property, 41
Tomcat application server, 133
traceProtocol connection property, 61
trackSessionState connection property, 36
transformedBitIsBoolean connection property, 46
treatUtilDateAsTimestamp connection property, 50
troubleshooting

Connector/J, 141
JDBC SQLState codes, 92

trustCertificateKeyStorePassword connection property,
40
trustCertificateKeyStoreType connection property, 40
trustCertificateKeyStoreUrl connection property, 40

U
ultraDevHack connection property, 63
Unicode

with Connector/J, 77
Unix doman socket, 86
useAffectedRows connection property, 35

156

useColumnNamesInFindColumn connection property,
63
useCompression connection property, 38
useConfigs connection property, 33
useCursorFetch connection property, 57
useHostsInPrivileges connection property, 47
useInformationSchema connection property, 47
useLocalSessionState connection property, 56
useLocalTransactionState connection property, 56
useNanosForElapsedTime connection property, 59
useOldAliasMetadataBehavior connection property, 64
useOnlyServerErrorMessages connection property, 63
user connection property, 32
useReadAheadInput connection property, 59
useServerPrepStmts connection property, 44
useSSL connection property, 42
useStreamLengthsInPrepStmts connection property, 44
useUnbufferedInput connection property, 38
useUsageAdvisor connection property, 61

V
validation

for JSON schemas, 126
verifyServerCertificate connection property, 42

X
X DevAPI

client-side failover, 116
xdevapi.auth connection property, 64
xdevapi.compression connection property, 64
xdevapi.compression-algorithms connection property,
64
xdevapi.compression-extensions connection property,
65
xdevapi.connect-timeout connection property, 65
xdevapi.connection-attributes connection property, 65
xdevapi.dns-srv connection property, 66
xdevapi.fallback-to-system-keystore connection
property, 66
xdevapi.fallback-to-system-truststore connection
property, 66
xdevapi.ssl-keystore connection property, 66
xdevapi.ssl-keystore-password connection property, 66
xdevapi.ssl-keystore-type connection property, 66
xdevapi.ssl-mode connection property, 66
xdevapi.ssl-truststore connection property, 67
xdevapi.ssl-truststore-password connection property,
67
xdevapi.ssl-truststore-type connection property, 67
xdevapi.tls-ciphersuites connection property, 67
xdevapi.tls-versions connection property, 67

Y
yearIsDateType connection property, 50

Z
zeroDateTimeBehavior connection property, 50

157

158

	MySQL Connector/J 8.0 Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Connector/J
	Chapter 2 Compatibility with MySQL and Java Versions
	Chapter 3 What's New in Connector/J 8.0?
	Chapter 4 Connector/J Installation
	4.1 Installing Connector/J from a Binary Distribution
	4.2 Installing Connector/J Using Maven
	4.3 Installing from Source
	4.4 Upgrading from an Older Version
	4.4.1 Upgrading to MySQL Connector/J 8.0
	4.4.1.1 Running on the Java 8 Platform
	4.4.1.2 Changes in Connection Properties
	4.4.1.3 Changes in the Connector/J API
	4.4.1.4 Changes for Build Properties
	4.4.1.5 Change for Test Properties
	4.4.1.6 Changes for Exceptions
	4.4.1.7 Other Changes

	4.5 Testing Connector/J

	Chapter 5 Connector/J Examples
	Chapter 6 Connector/J Reference
	6.1 Driver/Datasource Class Name
	6.2 Connection URL Syntax
	6.3 Configuration Properties
	6.3.1 Authentication
	6.3.2 Connection
	6.3.3 Session
	6.3.4 Networking
	6.3.5 Security
	6.3.6 Statements
	6.3.7 Prepared Statements
	6.3.8 Result Sets
	6.3.9 Metadata
	6.3.10 BLOB/CLOB processing
	6.3.11 Datetime types processing
	6.3.12 High Availability and Clustering
	6.3.13 Performance Extensions
	6.3.14 Debugging/Profiling
	6.3.15 Exceptions/Warnings
	6.3.16 Tunes for integration with other products
	6.3.17 JDBC compliance
	6.3.18 X Protocol and X DevAPI

	6.4 JDBC API Implementation Notes
	6.5 Java, JDBC, and MySQL Types
	6.6 Handling of Date-Time Values
	6.6.1 Preserving Time Instants
	6.6.2 Fractional Seconds

	6.7 Using Character Sets and Unicode
	6.8 Using Query Attributes
	6.9 Connecting Securely Using SSL
	6.10 Connecting Using Unix Domain Sockets
	6.11 Connecting Using Named Pipes
	6.12 Connecting Using Various Authentication Methods
	6.12.1 Connecting Using PAM Authentication
	6.12.2 Connecting Using Kerberos
	6.12.3 Connecting Using Multifactor Authentication

	6.13 Using Source/Replica Replication with ReplicationConnection
	6.14 Support for DNS SRV Records
	6.15 Client Session State Tracker
	6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 7 JDBC Concepts
	7.1 Connecting to MySQL Using the JDBC DriverManager Interface
	7.2 Using JDBC Statement Objects to Execute SQL
	7.3 Using JDBC CallableStatements to Execute Stored Procedures
	7.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 8 Connection Pooling with Connector/J
	Chapter 9 Multi-Host Connections
	9.1 Configuring Server Failover for Connections Using JDBC
	9.2 Configuring Server Failover for Connections Using X DevAPI
	9.3 Configuring Load Balancing with Connector/J
	9.4 Configuring Source/Replica Replication with Connector/J
	9.5 Advanced Load-balancing and Failover Configuration

	Chapter 10 Using the X DevAPI with Connector/J: Special Topics
	10.1 Connection Compression Using X DevAPI
	10.2 Schema Validation

	Chapter 11 Using the Connector/J Interceptor Classes
	Chapter 12 Using Logging Frameworks with SLF4J
	Chapter 13 Using Connector/J with Tomcat
	Chapter 14 Using Connector/J with Spring
	14.1 Using JdbcTemplate
	14.2 Transactional JDBC Access
	14.3 Connection Pooling with Spring

	Chapter 15 Troubleshooting Connector/J Applications
	Chapter 16 Known Issues and Limitations
	Chapter 17 Connector/J Support
	17.1 Connector/J Community Support
	17.2 How to Report Connector/J Bugs or Problems

	Index

