
How people build software!

GitHub's online schema
migrations for MySQL
Jonah Berquist, Engineering Manager
@github/database-infrastructure

 1

!
Illustrated with ghosts (and product placement)

How people build software! 2

!

• The world’s largest Octocat T-shirt and stickers store
• And hubot figurines
• And hoodies
• And development platform

GitHub

How people build software! 3

!

• gh-ost is GitHub’s MySQL schema migration tool
• GitHub Online Schema Transmogrifier/Transfigurator/Transfer/Thingy
• Developed by @github/database-infrastructure
• Used in production daily
• Open source, github.com/github/gh-ost

But, what is this all about?

gh-ost

https://github.com/github/gh-ost

How people build software! 4

!

• GitHub stores repositories in git, and uses MySQL as the backend database
for all related metadata:

• Repository metadata, users, issues, pull requests, comments etc.
• Our MySQL servers must be available, responsive and in good state:

• Write throughput expected to be high
• Write latency expected to be low
• Replica lag expected to be low

MySQL

How people build software! 5

!

• MySQL schema migration is a known problem
• Addressed by schema migration tools since 2009. Most common are:

• pt-online-schema-change by Percona
• fb-osc by Facebook

• GitHub develops rapidly. Engineers require changes to MySQL tables daily,
and these changes should take place quickly

• Migrations must not block development
• Migrations must not impact availability

Migrations

How people build software! 6

!

• We used pt-online-schema-change for years
• As we grew in volume and traffic, we hit more and more problems

• Some migrations caused such high load that writes were stalled and GitHub
performance degraded

• Others would cause consistent replication lags
• Some tables could only be migrated off-peak
• Some tables could only be migrated during weekend
• We would attend to running migrations
• Some tables could not be migrated
• In 2016, we suffered outages due to migrations on our busiest tables
• We had a list of “risky” migrations

GitHub migration pains

How people build software! 7

Previous tools

How people build software!

!
Synchronous triggers based migration

 8

!

" "
original table ghost table

#
insert

delete

update

replace

delete

replace

pt-online-schema-change
oak-online-alter-table
LHM

How people build software!

!
 9

!

" "
original table ghost table

#
insert

delete

update

inserts

"
changelog table

Asynchronous triggers based migration

fb-osc

How people build software! 10

!

• Stored routines
• Interpreted, not compiled. Latency to each transaction

• Locks
• Transaction space competes for multiple, uncoordinated locks
• Metadata locks

• Unsuspendible
• Even as throttling is required, triggers must continue to work

• Concurrent migrations
• Trust issues

• No reliable testing
• Either cannot test in production, or test does not get actual write workload

What’s wrong with triggers?

How people build software! 11

Time to gh-ost

How people build software! 12

!

• gh-ost connects as replica and pulls binary log entries (RBR format)
• Interprets related DML (INSERT, UPDATE, DELETE) entries and transforms them

to meet refactored table structure
• Applies on ghost table

• gh-ost connects to master and iterates rows
• One chunk after the other, copies rows from the original table to the ghost table
• Much like existing tools, but more on this later

• maintains a “changelog” table for internal lightweight bookkeeping

Binlog based design

How people build software!

!
 13

!

" "
original table ghost table

#
insert

delete

update
no triggers

$
binary log

Triggerless, binlog based migration

How people build software!

!

 14

!

" "#

$

!
" "

master

replica

Binlog based migration, utilize replica

How people build software! 15

!

• Binary logs can be read from anywhere
• gh-ost prefers connecting to a replica, offloading work from master

• gh-ost controls the entire data flow
• It can truly throttle, suspending all writes on the migrated server

• gh-ost writes are decoupled from the master workload
• Write concurrency on master turns irrelevant

• gh-ost’s design is to issue all writes sequentially
• Completely avoiding locking contention
• Migrated server only sees a single connection issuing writes
• Migration algorithm simplified

Binlog based design implications

How people build software! 16

!

!
!
$

" "

master

replica

binary log

original
table

ghost
table

gh-ost migration:
- creates ghost table on migrated server
- alters ghost table
- hooks up as a MySQL replica, streams binary log events
- interchangeably:

- applies events on ghost table
- copies rows from original table onto ghost table

- cut-over

Preferred setup:
- connects to replica
- inspects table structure, table dimensions on replica
- hooks as replica onto replica
- apply all changes on master
- writes internal & heartbeat events onto master,  

expects them on replica

" "

gh-ost design

How people build software! 17

!

!
$

!
$
!
$

!
$

!
$
!
$

$

!
!
$
!
$

a. connect to replica b. connect to master c. migrate/test on replica

gh-ost operation modes

How people build software!

Trust

 18

How people build software!

Operations

 19

How people build software! 20

!

• There are no triggers. gh-ost can completely throttle the operation when it
chooses to.

• Throttling based on multiple criteria:
• Master metrics thresholds (e.g. Threads_running)
• Replication lag
• Arbitrary query
• HTTP endpoint
• Flag file
• Use command

• Trust: you could choose, at any time and effective immediately, to throttle
gh-ost’s operation and resume normal master workload.

• And you may resume operation once satisfied

Throttling

How people build software! 21

!

• The final migration step: replacing the original table with the ghost table,
incurs a brief table lock

• This metadata-locks-involved step is a critical point for the migration
• During brief lock time, number of connections may escalate

• People tend to stick around during this phase.
• People actually plan ahead migration start time based on the estimated

completion time, so they can guarantee to be around
• gh-ost offers postponed cut-over (optional, configurable)

• As cut-over is ready, gh-ost just keeps synching the tables via binlog events
• Requires an explicit command/hint to cut-over

• Trust: I can safely go to bed

Cut-over

How people build software! 22

!

• gh-ost monitors replication lag in subsecond-resolution
• At GitHub replication lag is normally kept subsecond

• We don’t like it when we see 5 second lag
• We really don’t like it when we see 10 second lag
• 20 second lag often leads to investigation

• We are able to migrate our busiest tables, during rush hour, and keep
replication lag below 1s

• Trust: migrations will do whatever it takes to keep replicas up-to-date

Subsecond replication lag

How people build software!

throttling in production

 23

!

no migration
migration updated 
max-lag-millis=200

migration begins  
max-lag-millis=500

Our production replication lag, before and during migration on one of our
busiest tables 
CEST tz

How people build software! 24

!

• With existing tools, you run your migration tool based on some
configuration.

• If configuration does not match your workload, you kill the migration and
start a new one with more relaxed/aggressive config

• gh-ost listens on Unix socket file and/or TCP
• You can connect to a running migration and ask:

• status
• max-lag-millis=500
• throttle
• cut-over

• Trust: you can always get a reliable status or reconfigure as you see fit

Dynamic visibility & control

How people build software! 25

!

• gh-ost will invoke your hooks at points of interest
• If you like, do your own cleanup, collecting, auditing, chatting.

• Hooks available for:
• startup, validated, row-copy about to begin, routinely status, about to cut-over,

stop-replication, success, failure
• gh-ost will populate environment variables for your process
• https://github.com/github/gh-ost/blob/master/doc/hooks.md
• Trust: integrate with your infrastructure

Hooks

https://github.com/github/gh-ost/blob/master/doc/hooks.md

How people build software! 26

!

• We work from/with ChatOps
• Are integrate gh-ost into our flow and ChatOps
• We control migrations via chat:

• .migration sup
• .migration max-lag-millis 300
• .migration cut-over <table>

• Migrations ping us in chat to let us know their status; or if they’re ready to
cut-over

• Migrations are accessible to everyone, not just DBAs

gh-ost @ GitHub

How people build software!

gh-ost chatops @ GitHub

 27

!

• We control gh-ost via chatops
• And gh-ost chats to us

• The chat is a changelog visible to all. It tells us what happened when,
and who did what.

How people build software!

Testing

 28

How people build software! 29

!

• gh-ost works perfectly well on our data
• Tested, re-tested, and tested again
• Full coverage of production tables
• Dedicated servers that run continuous tests

Testing

How people build software!

gh-ost dedicated test servers

 30

!

• Trivial ENGINE=INNODB migration
• Stop replication
• Cut-over, cut-back
• Checksum both tables, compare
• Checksum failure: stop the world, alert
• Success/failure: event
• Drop ghost table
• Catch up
• Next table

How people build software! 31

!

!

!

!
$

Testing in production

!
$

!
$

! !

!

production replicas

testing replicas

master

How people build software!

Open source

 32

How people build software! 33

!

• gh-ost is released under the MIT license
• We encourage collaboration

• Issues
• Bugs
• Questions
• Feature requests
• Sharing experience

• Pull requests
• Code
• Documentation

• https://github.com/github/gh-ost

Open source

How people build software! 34

Thank you!

