
Software Commoditization and Open Source Strategies p. 1/25

 Software Commoditization and Open Source Strategies

WORKING DRAFT

Cedric Thomas
OW2 Consortium

July 2010

The opinions expressed in this paper are those of the author

and do not necessarily reflect the views of OW2 Consortium.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 2/25

Software Commoditization and Open Source Strategies

Introduction

This paper looks at the background of open source and the tectonic drift that has positioned it center
stage in the enterprise software industry. After essays on business ecosystems and platforms, I now
explore commoditization, another key concept in the open source business environment.

In this paper1, I contend that open source is one of three forms of software commoditization. I show
that commoditization mechanisms provide the main explanation for the growth of open source in the
enterprise software industry and point to two other commoditization forms: offshore outsourcing and,
emerging today, cloud computing.

The scope of the paper is the enterprise software segment; however, I believe that most of the concepts
developed here are applicable, with some adjustment, to other segments such as embedded software,
telecommunications, gaming, high performance computing, etc. The analysis focuses on the relation
between open source and commoditization and what it means for business strategies.

In this attempt to better understand open source's underlying business drivers, I have drawn extensively
upon the work of many scholars to whom I am indebted. The paper also benefits from working daily
with the dozens of organizations who are members of the OW2 Consortium; I hope it will help us all in
charting our courses.

The paper has four parts. First, I briefly examine the foundation of the open source momentum, from
the early days of the Free Software Foundation to the aspirations of today's open source software
vendors on mainstream software markets. Then, I define what a commodity is and summarize different
analytical frameworks describing the commoditization process. In the third part, I apply the
commoditization framework to the software industry to determine the nature of open source. Fourth
and last, I highlight several strategic options available to governments, software vendors, developers,
customers and systems integrators.

 A. The emergence and evolution of open source software

 1. Definition and Origin

It all started with Richard Stallman's e-mail on September 17, 19832. He announced his intention to
develop a free operating system to be compatible with UNIX, the operating system, developed by
AT&T, which was at the time popular with universities before becoming, a few years later, a de facto
industry standard. He named it GNU, which stood for GNU's Not Unix. The key point in his message

1 This paper is an extended version of a presentation I gave about a year ago at the Exaptation 2009 International
Workshop, http://users.unimi.it/exaptation2009/presentation.html .

2 Source: http://www.gnu.org/gnu/gnu-history.html

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://users.unimi.it/exaptation2009/presentation.html

Software Commoditization and Open Source Strategies p. 3/25

was that he said he would "give it away free to everyone who can use it." He then went on to add
something that would prove to be equally important: "Contribution of time, money, programs and
equipment are greatly needed."

Two years later, in October 1985, Richard Stallman established the Free Software Foundation (FSF)
with the initial aim of raising funds to help develop GNU. Through the FSF, he proposed the rules that
would define the free software movement. These rules are, in fact, four freedoms: a) the freedom to run
the software for any purpose, b) the freedom to study how the software works and to adapt it, c) the
freedom to redistribute copies of the software, and d) the freedom to improve the software and
distribute the improvements. The FSF defined a license embodying these freedoms, the GNU Public
License, now also known as GPL.

These freedoms, use the software without constraint, look at the code, change it and redistribute an
improved version, are not allowed with proprietary software. These simple rules have had the power to
change the very structure of the software industry. Today, the FSF promotes the universal freedom to
distribute and modify computer software.

The GNU project's initial goal was to create a free operating system. By 1990, all the major
components of an operating system were available except the kernel.

The next defining moment took place six years later, on August 25, 19913: Linus Torvald sent an e-
mail, quite comparable to Richard Stallman's, saying: "Hello everybody out there (...) I'm doing a (free)
operating system (...)". Linus Torvald immediately adds "just a hobby, won't be big and professional
like Gnu". By the end of the year, nearly 100 people had joined the newsgroup4 and that same year
Linux, the core, or kernel, of a free operating system was released. In 1992, Linus Torvald adopted the
GNU GPL license which permitted the combination of GNU and Linux software thereby resulting in a
full operating system now known as Linux but which really should be called GNU/Linux.

Another defining moment occurred in 19945 when Brian Behlendorf and some of the web’s early
system administrators, created a mailing list to coordinate and track the changes and improvements
each of them were making to their http servers. On March 18, Rob McCool released Apache 0.2 based
on NCSA httpd 1.3, and few years later, in 1998, the Apache developers decided to create the Apache
Software Foundation. The rest is history.

 2. Achievements

What started as a way to share the burden of code development quickly became a force in the software
industry.

Apache has been the leader in web server platforms for years. For the last ten years, its market share

3 Source: http://en.wikipedia.org/wiki/History_of_Linux
4 Steven Weber, The Success of Open Source, Harvard University Press, Calbridge, Massachusetts and London, England,

2004, p. 55
5 Source: Text: http://www.unc.edu/~mohrmana/apache.pdf, http://www.linux.com/archive/feature/42466?theme=print

and http://www.mail-archive.com/apache-docs@apache.org/msg01612.html

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://www.linux.com/archive/feature/42466?theme=print
http://www.unc.edu/~mohrmana/apache.pdf

Software Commoditization and Open Source Strategies p. 4/25

has been either consistently close to or well above 50%6. The world wide web would not be what it is
today without the Apache server.

Adoption of standalone open-source software is accelerating. According to independent market
research7, the total market will be worth US$5.8 billion in vendor revenues in 2011, an annual growth
of 26% over the 2006-2011 period. However, given that the code is usually distributed free of charge, it
has been estimated that open source software successfully replacing acquisition of proprietary
applications would save users more than US$60 billion annually8.

Open source is more and more synonym with real money: companies "allocated up to 24 percent of
their budgets to open-source software in 2008, up from 10 percent in 2007"9. No wonder investors have
identified open source as a valuable investment opportunity. Between 1997 and 2009, since the first
venture investment in an open source start-up, US$3.2 billion has been raised by 163 open source
vendors through 378 separate funding deals10.

On July 17, 200911, Red Hat was chosen by Standard and Poor’s for inclusion in their stock index.
Along with the Dow Jones Industrial Average, the S&P 500 is a benchmark stock index of major
publicly-held American companies. It is also viewed as a reference for the American economy. The
inclusion of Red Hat in the S&P 500 is a true recognition, first of the company's achievement and
second, of the significance of open source in the economy.

 3. Commercial open source

What started with Richard Stallman and the FSF as "a legal construct for cooperation and trade in
intellectual property"12 blossomed to become method for collective technology development with the
Apache Foundation and, through start-ups and investors, evolved into both a market entry and
competition strategy and an investment opportunity.

Just a quick point on definitions: there are important ethical differences between "free software" and
"open source". The former refers to the four freedoms as defined by Richard Stallman and the FSF.
Many software projects can still be considered free software, i.e. strictly abiding by these freedoms.
The latter points toward a more business-friendly alternative which was gradually extended,
complemented or wrapped into commercial software where "open" takes a different meaning than
"free"13.

6 Source: http://www.chotocheeta.com/2009/03/06/apache-vs-litespeed-time-to-switch/
7 Source: IDC, http://www.cio.com/article/116201/IDC_Open_Source_Market_to_Be_Worth_._B_by_
8 Source: Standish Group, Trends in Open Source, Study, April 2008, quoted in: http://www.zdnetasia.com/proprietary-

vendors-lose-us-60b-to-open-source-62040484.htm
9 Source: http://news.cnet.com/8300-1001_3-92-1.html?keyword=IDC&tag=mncol
10 Source: Source: The 541 Group, 2008, http://blogs.the451group.com/opensource/2009/04/08/the-past-present-and-

future-of-vc-investment-in-open-source/
11 See: http://press.redhat.com/2009/07/27/red-hat-included-in-sampp-500-index/
12 Van Lindberg, Intellectual Property and Open Source, A Practical Guide to Protecting Code, 2008, O'Reilly, Sebastopol,

p.155
13 A difference clearly outlined in this comment: "I hate to keep asking this but are we talking here about Open Source

Software (like in you can look but don't touch) or about Free and Open Source Software (like in our software will not
enslave you) ?" Anonymous comment on

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 5/25

Although it can be argued that free software has always had a commercial dimension, the term
commercial open source software (COS) would be better suited to specifically describe the offerings of
those companies who are competing against conventional proprietary vendors and thus contributing to
changing the structure of the software industry by taking market share away from them.

The difference between "free software" and "open source" is not really relevant in this paper, and I
could use the technocratic "FLOSS" – Free/Libre Open Source Software – acronym which was crafted
indeed precisely to be inclusive. However I will use all terms almost indifferently but certainly more
often the widely accepted "open source" as the generic term for "software that can be modified and
redistributed by everyone, sometimes—but not always—with the requirement that derivative works be
freely redistributable under the same terms "14

 4. Intrinsic advantages and challenges

Before trying to understand the industry dynamics that fuel the success of open source, it is important
to acknowledge that the popularity of the open source way of developing software grew initially on the
basis of its intrinsic advantages.

First of all, free software makes sense. Of course there is a lot of profit to be made from selling
software but, from the perspective of an IT project, software itself represents only a fraction of the
cost. Independant market analysts15 show that software represented only 4.6% of the cost of an IT
project from the point of view of the end-user or systems integrators. A very low percentage, it is well
within the negotiation margin. Removing the cost of software altogether is a way to both surprise a
customer and start working on what really brings value.

We could argue that open source is efficient in a number of ways: economically, technically,
strategically and socially. Open source is economically efficient because the value of the software code
given away is balanced by the value of the contribution to the project made by outsiders in terms of
free code, free expertise and experience. Moreover, freely accessible downloads help build both
awareness of the software and market share. From the technical point of view, a long-time argument in
favor of open source is its technical efficiency. The open source collaborative development model
provides quality to the code through peer reviews and extensive testing, and it ensures that the code is
state of the art because it relies on both global knowledge sharing and frequent debugging. Open source
is socially efficient: access to the source code empowers local communities, it helps grow local
expertise, promotes value creation by local software and service companies and generally reduces
technology lock-ins. Last but not least, open source is strategically efficient: it enables vendors to
improve their time to market and leverage open source business ecosystems, and it gives end-users
control over their code base by allowing them to modify the software as they see fit and helping them
avoid vendor lock-in.

http://blogs.computerworld.com/15167/is_open_source_dead_as_a_business_model
14 Karl Fogel, Producing Open Source Software: How to Run a Successful Free Software Project, O'Reilly Media, Inc.,

2006, p. 233 Available on-line at: http://producingoss.com/en/legal.html
15 IDC (REF???)

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 6/25

To sum up, the promise of open source is to achieve more by leveraging resources from the developers'
community, better building on others' ideas and experience and faster thanks to quick responses from
the community.

The potential benefits and efficiencies of open source are not, however, always achieved, indeed, far
from it. Publishing code is not enough to develop a community of developers and only a minority of
open source projects actually make it to stardom. This is certainly why open source remains a challenge
for many IT professionals who still prefer to see the downside of open source. Arguments against
include quality that is not guaranteed because the code is provided "as is" (in fact, this is not much
different to most proprietary code which a provided with comprehensive disclaimers); the perception of
a latent legal risk because many open source licenses are unproven (not that legal battles in the
proprietary world are easier to fight); the lack of responsibility because the code is collective and there
is no-one to sue; the investment risk because open source solutions are often supported by small
companies; the lack of stability because of frequent releases; the lack of long-term visibility and a
roadmap as there is no strategic owner of the software; and, lastly, the lack of internal competency
because self-training is not usually recognized by mainstream end-users.

 B. The commoditization process

In the first part, I have tried to show that the growth of open source is fueled by its own momentum and
by its own characteristics. However, open source as an industry phenomenon must be analyzed also
from outside, from the point of view of advanced business concepts such as network effects,
competition, business ecosystems and commoditization. In this part, I look at different evolution
mechanisms which help to understand how commoditization occurs.

I contend that commoditization trends in the software industry provide an external explanation to the
success of open source.

 1. Defining a commodity

First of all, what exactly is a commodity? Why are some goods called commodities? Does the term
apply only to products or is it also valid for services? The term commodity is generally taken for
granted16 and good definitions are almost non-existent. A workable approach to defining a commodity
is as follows: "The word commodity is used today to represent fodder for industrial processes: things or
substances that are found to be valuable as basic building blocks for many different purposes. Because
of their very general value, they are typically used in large quantities and in many different ways.
Commodities are always sourced by more than one producer, and consumers may substitute one
producer's product for another's with impunity. Because commodities are fungible in this way, they are
defined by uniform quality standards to which they must conform. These quality standards help to
avoid adulteration, and also facilitate quick and easy valuation, which in turn fosters productivity
gains."17

16 For instance, Andrew Holmes, in Commoditization and the Strategic Response, 2008, Gower Publishing, 2008, does not
offer a definition of a commodity.

17 David Stutz, http://www.synthesist.net/writing/commodity_software.html.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://www.synthesist.net/writing/commodity_software.html

Software Commoditization and Open Source Strategies p. 7/25

Using this approach as a springboard, I would like to offer a formal definition of commodities through
four key characteristics.

Common specifications: standards and high substituability
Commodities are "objects of utility" for which there is a general consensus among users, customers,
experts, etc. on their physical and functional characteristics. They are expected to meet standards of
quality which are shared by all products available on the market without any significant variations.
Because of these de facto standards, goods present a high degree of substituability and competitors
have only marginal opportunities for product differentiation. Professional organizations and standard
bodies, in many sectors such as agriculture, mining and chemical, government agencies, outline
expected standards of quality based on measurable attributes describing the value and utility of a
commodity18 in order to further facilitate comparison, substituability and commerce. A fundamental
consequence: price becomes the only criteria for selecting between two competing offerings.

Not process specific: economies of scope
The second key characteristic of commodities is that they are fodder for a great variety of usages. The
opposite of niche products, commodities are generic goods or services which themselves are inputs
into many different end-products or services. This grants commodities the greatest level of economies
of scope among all products or services, i.e. the cost for using a generic commodity across different
usages is less than the cost of using a specifically designed and produced good or service for each
specific usage. A direct consequence -and benefit - is that incorporating a commodity into a product or
service minimizes the addition to the end-user cost and provides greater flexibility for creating value
(or building margin into the selling price) downstream in the value chain.

Mature products: minor innovations and multiple alternative providers
From the stand point of their production, commodities are mature goods (or services) which have
already been through several cycles of technical adjustment and optimization. The general perception is
that there will be no significant improvements in the production process or in terms of functionality.
Only minor innovations are being made and no major breakthrough is expected in the different
technical combinations available to implement the production process, at least within an accessible
time frame. The process is stabilized and is shared knowledge. Thus replicable, there are multiple
alternative providers.

Volume trading: economies of scale
Because of high substituability between competing products, variations in the selling price of a
commodity are contained within a limited range: when the price is above this range, the offering is not
competitive and when it is below, the activity is not profitable. In conventional commodities industry-
wide price leveling is often determined by specialized market places. Since they are subjected to
external price and quality conditions (see standards above), companies in commodity markets are left
with leveraging economies of scale in order to maximize their profit. Additional margin can only be
derived from additional volume and this is why commodity value chains are characterized by
significant economies of scale in production, transaction, transportation and storage costs.

18 See, for example, the United States Department of Agriculture (USDA) Quality Standards at
http://www.ams.usda.gov/AMSv1.0/standards

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 8/25

These four characteristics: high substituability, economies of scope, technical maturity and economies
of scale all define a commodity. And it is important to highlight that, combined, they provide a
structural framework allowing permanent downward pressure on the selling price of commodities
which explains why commodities are often associated with low prices.

 2. The commoditization process: life cycle approach

Goods (and services) are not born as commodities: coffee, chocolate, tobacco, for instance, were well
sought-after luxury goods before becoming commodities: oil was polution for agriculture before
becoming a commodity. Having defined what a commodity is, we must now understand how
commodities appear on the market. Commodities are the result of a process. The analysis of the
commoditization19 process falls within the broader theme of industry evolution. The underlying logic is
that products and industries go through the different stages of a maturation process and, as this process
unfolds, the conditions for conducting business also change. Here is a quick overview of three
analytical tools available to describe the changes that take place during this maturation process: product
life cycle, the technology adoption life cycle, and the buying hierarchy life cycle.

Product life cycle
The product life cycle and product life cycle management approach provide a broad framework for
optimizing marketing strategies20 and for analyzing industry evolution.21 It is a simple conceptual
framework often used to describe indifferently the evolution of a product, a market or an industry and
relevant business growth strategies.

The basic theory postulates that sales grow along an S-shape curve in four different stages.
– In the first stage, or introduction stage, sales are slow, customer inertia has to be overcome and

the strategic priority is to develop the market.
– The second stage, or growth stage, is characterized by the emergence of a mass demand, sales

grow fast as the market penetration rate increases; competition also increases and vendors'
strategic priorities are to grow market share through product and channel extension.

– This is followed by the maturity stage and sales growth slow-down: in this stage ,the target
market becomes saturated and sales are determined by the need for replacement and the
demographic growth of the target market.

– Lastly, in the decline stage, sales and profit decrease as market demands shift to new products.

The product life cycle describes how a product is launched on a market as an innovation and evolves

19 A brief but important note on the concepts used in this paper: although they often seem to be interchangable,
commoditization should not be confused with commodification. The latter is the process by which "objects of utility
become commodities", see Karl Marx, Capital, Volume 1, Penguin Books, 1976, Harmondsworth, Middlesex, England,
page 163, or, in other words, acquire the Marxist commodity-form and become exchangeable whereas the former is the
process by which an already exchangeable good becomes available with the four characteristics of a (generic)
commodity. Dave Stutz, ibid, for example, immediately after providing a pertinent definition of a commodity, chooses to
refer to Marx and makes the confusion.

20 Theodore Levitt, Exploit the product life cycle, Harvard Business Review, 1965, November, page, 81-94
21 Michael E. Porter, Competitive strategy: techniques for analyzing industries and competitors, Free Press, 1980, page

157.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 9/25

until it becomes mature with certain commodity-like attributes such as frozen features and low
profitability. Despite its popularity, the product life cycle approach has been the object of much
criticism, for instance, for being ill-defined, not validated by actual industry data and narrowly product
oriented.

Technology adoption life cycle
While the product life cycle approach suggests a sequence of stages in the evolution of market demand
and the appropriate strategies, the technology adoption life cycle approach identifies segments of users
characterized by their attitude toward risk. The model describes "the market penetration of any new
technology in terms of a progression in the types of consumers it attracts throughout its useful life."22 It
offers a bell-shaped sales curve and five customer segments:

– A new technology first attracts Innovators: this segment includes technology enthusiasts who
would have been able to develop the technology themselves had it been necessary.

– Then it attracts Early Adopters: these are the visionaries who adopt the new technology in order
to build a competitive advantage.

– The next segment is that of the Early Majority; these are the pragmatists who follow the
example of the Early Adopters but at this point their benefit is uniquely in terms of productivity.

– Then come the Late Majority, or conservative users, who adopt the technology only to maintain
the status quo and the Laggards, or skeptics, who would only adopt the technology under
duress.

The technology adoption cycle is the basis for an improved version called the High-Tech Marketing
Model. This broadly identifies two very different markets for every new technology, one the early
market - with technology enthusiasts and visionaries - the other the mainstream market with the
statistically dominant risk-averse customer. The behaviors of both markets are so different that success
in the early market is no guaranty of success in the mainstream market. The gap between them is
described as a chasm into which many high-tech companies have disappeared for lack of financial
resources and expertise.

One of the main reasons for falling into the chasm is failure to recognize that early and mainstream
markets buy different products: the mainstream market does not want to experiment, it requires proven
and recognized standard solutions that tend toward commodities "fusing together in an integrated
whole what the market has already come to endorse as the standard set of component parts"23.

Buying Hierarchy life cycle
While the Disruptive Innovation framework describes how vendors' decisions change the structure of
an industry, the Buying Hierarchy model explores the point of view of the customer and analyzes how
changes in the supply-side of an industry are reflected by changes in the demand-side24. As an industry
matures and meets customers' expectations for specific attributes that are the determinant selection

22 Geoffrey A. Moore, Crossing the chasm: marketing and selling high-tech products to mainstream customers,
HarperBusiness Essentials, 1995, page 11

23 Geoffrey A. Moore, Inside the tornado: marketing strategies from Silicon Valley's cutting edge, HarperBusiness, 1995,
page 87

24 In fact the Buying Hierarchy model was developed by a consulting firm, Windermere Associates of San
Francisco, California, and popularized by Clayton M. Christensen, The innovator's dilemma, ibid, see page 216-219

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 10/25

criteria, customers move to new selection criteria in their buying behaviors.

The Buying Hierarchy life cycle model identifies four main decision criteria corresponding to four
sequential stages: functionality, reliability, convenience, and price:

– In the first stage (new product) of a market, the main differentiating factor between products is
functionality; in a market where all competing offerings are unequal in terms of functionality,
customers are prepared to pay more for functionality.

– When the features and functionality are comparable across all offerings25 and meet, or even
exceed market demands, they are no longer a differentiating factor and customers shift to
evaluating the reliability of a vendor and his product as their key selection criteria;

– Then, when market expectations in terms of functionality and reliability are saturated,
customers shift to a new selection criteria: convenience (ease of acquisition, ease of use);

– Lastly, when all market needs are addressed and products are comparable in terms of
functionality, reliability and convenience, then price becomes the main selection criteria.

At the end of this maturation cycle, the offerings are differentiated neither by their features nor by their
reliability or convenience. And when offerings are highly substituable, the single differentiating factor
is the price at which they are sold. They have become commoditized.

 3. Commoditization process: disruptive innovation approach

The Disruptive Innovation framework
The Disruptive Innovation approach26 provides a good framework to understand the structural changes
in the software industry and the growth of open source software. The starting point of the analysis is
the misalignment between the ability of consumers, or users in general, to absorb new technology and
the rate at which established vendors launch innovations on the market. This creates an opportunity gap
for new entrants with new offerings. At this point the theory identifies two broad families of
innovations: innovations by established vendors who compete for market share are called sustaining
innovations while innovations by new entrants who take advantage of the opportunity gap disruptive
innovations.

The disruptive innovation framework works as follows27:
– New technologies always start with products and solutions offering a level of performance that

does not satisfy the average user: initially, cars were noisy, unreliable and spilled oil, LCD
screens were too small, etc.

– Some new technologies will fail and some will find niche users who will allow them to become
profitable and improve until they reach a performance level good enough to satisfy the
mainstream market.

25 "By 1998, Ray Lane, then the president of Oracle, was confessing that "customers can't find percent difference among
SAP, PeopleSoft and us", quoted by Nicholas G. Carr, Does IT Matter: Information Technology and the Corrosion of
Competitive Advantage, Harvard Business School Press, 2004, page 47

26 Clayton M. Christensen, The innovator's dilemma: when new technologies cause great firms to fail, HarperBusiness,
2000, New York

27 For a quick summary of the Disruptive Innovation framework, see: Clayton M. Christensen, Michael E. Raynor, The
innovator's solution: creating and sustaining successful growth, Harvard Business School Press, 2003, page 32-35.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 11/25

– They then become established technologies. Established vendors do not want to sacrifice their
profits by competing on price; instead they compete by incorporating functionality and
innovations into their products and solutions.

– As users become more sophisticated and better acquainted with new technologies, they are
capable of absorbing higher levels of performance.

– Motivations being different, the rate at which vendors incorporate improvements into their
offering is faster than the growth of the user's absorption capacity: at some point, offerings
exceed the average user's needs.

– Meanwhile, as the functionality scope of the product category stabilizes, technology standards
appear to enable the constitution of business ecosystems where some companies concentrate on
developing modules or sub-parts of end-user solutions which are integrated and marketed by
other companies.

– This gap creates an opportunity for a new wave of competitors entering the market with
disruptive innovations, typically "simpler, more convenient and less expensive (...) that appeal
to new or less-demanding customers"28.

At this stage it is important to understand and to highlight that "disruptive innovations usually do not
entail technological breakthroughs. Rather they package available technologies in a disruptive business
model."29 In other words "a key characteristic of a disruptive (innovation) is that it heralds a change in
the basis of competition".30

Disruptive innovation and open architectures
A technology industry that is well advanced in its maturation process is one where leading, established
vendors offer products and services with attributes in terms of functionality, reliability and convenience
overshooting market expectations. In such an industry, established vendors have developed their
positions by investing in proprietary innovations and integrated architectures.

The relationship between standards and innovation is ambivalent: "On the one hand, innovation and
technical change challenge the existing stock of standards. On the other hand, standards may restrain
innovation activities by freezing the technical state of the art."31

Moreover, while established vendors who dominate their markets with proprietary technologies set
their prices at premium levels, new entrants following disruptive innovation strategies, based on open
standards not owned by anyone, are able to bring éthe price as low as the marginal cost.32

Entrants leveraging open standards and business ecosystems are able to compete favorably against
incumbent integrated vendors and their proprietary architectures: "Modularity enables the dis-
integration of the industry. A population of non-integrated firms can now outcompete the integrated
firms that had dominated the industry. Whereas integration at one point was a competitive necessity, it

28 Clayton M. Christensen, Michael E. Raynor, ibid, page 34
29 Clayton M. Christensen, Michael E. Raynor, ibid, page 143, note 5.
30 Clayton M. Christensen, ibid, page 219. The wording has evolved, the authors now prefer the term innovation which is

broader than technology.
31 Knut Blind, The economics of standards: theory, evidence, policy , Edward Elgar Publishing, 2004, page
32 Suzanne Scotchmer, Innovation and Incentives, MIT Press, 2004, page 294

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 12/25

later becomes a competitive disadvantage."33

Figure 1: The Disruptive Innovation Model: Product Architecture and Innovation 34

 C. The nature of open source software

 1. Commoditization of software

I define software commoditization as a process of transformation in the way software is developed,
marketed and consumed under the influence of changing industry conditions. These changes include:
slowing pace (asymptoting?) of technology innovation, increasing availability of production expertise,
reduced uncertainty (i.e., increasing stability, convergence, growing atavism) in user needs.

The main indicators of commoditization in the software industry are, first, a lower rate of market
growth and vendor consolidation due to maturation; second, the increasing significance of open
standards in determining technologies and third, the emergence of disruptive alternatives to
conventional offerings.

Signs of industry maturation illustrate life-cycle theories
Despite the software industry's ability to reinvent and revitalize itself on a regular basis, the growing
trend in vendor consolidation and a slow-down in overall market growth35 illustrate the life cycle

33 Clayton M. Christensen, Michael E. Raynor, ibid, page 134
34 Clayton M. Christensen, Michael E. Raynor, ibid, page 125
35 For example see: S. Sadagopan, 2005, at http://www.sandhill.com/opinion/daily_blog.php?id=6&post=20 and Jim

Holinscek, 2009, at http://blogs.gartner.com/jim_holincheck/2009/12/23/predictions-business-applications-with-a-focus-

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://www.sandhill.com/opinion/daily_blog.php?id=6&post=20

Software Commoditization and Open Source Strategies p. 13/25

analysis and reflect a "maturation of the software industry just as it has been seen with “heavy”
industries in the past century."36 Enterprise application software, once the largest segment in the
software market, is approaching maturity at least with large companies and early adopters, the key
market sectors which usually help sustain growth in innovative applications37.

What happened? Information Technology is now so widely used that few company can claim to use it
to gain a strategic advantage. Most companies use the same standard software packages with little room
for differentiation. Users do not have the choice, they are involved in a supply-side rationale where "the
rise of packaged, generic programs supplied by vendors and shared by many companies"38 is explained
by the maximization of economies of scale in a capital intensive network industry. To some extent, IT
has made the transition from strategic asset to standard, interchangeable commodity input which does
not provide competitive advantage or differentiation – in the same way that the steam engine, railroads,
electricity and highways all did before it. IT vendors are no longer able to control their customers and
command premium prices that generate above-average margins. As a consequence, in many segments
of the software industry "the traditional business model of enterprise software companies has matured.
There will be very little further growth in perpetual license sales of proprietary software products."39

Rise of open standards
The software industry is a technology business fundamentally driven by innovation. Innovation, by
nature, is not "standard" and most strategic innovations occur in areas where standards are not yet
defined. More precisely, the software industry being essentially a network industry, strategic
innovations are made of non-standard proprietary technologies leveraging existing standards in order to
realize the necessary positive network effects. 40

Established vendors in software market segments develop and defend their market share with
proprietary technologies and architectures and intellectual property strategies based on the promotion
of de facto proprietary standards. In this situation proprietary innovators in a given product category are
able to set their prices at a level that maximizes the return on their R&D investments.

Despite the attractiveness of such product categories, innovation and IP-control represent significant
barriers to entry, but only to the point when the industry matures: the functional profile of a given
product category then stabilizes and de facto proprietary standards are in competition with open
standards implemented by multiple vendors. These open standards focus "less on individual firm
competitive advantage and more on defining rules for interoperability for a common architecture"41 and
"enable a modular subdivision of labor and thus a decentralized production of innovation."42

on-hcm-in-2020/
36 Report: "Towards a European Software Strategy", Working Group #2, page 22
37 Source: IDC, 2007, quoted by http://justinche.wordpress.com/2007/10/19/worldwide-software-market-drivers-

2007%C2%962011/
38 Nicholas G. Carr, ibid, page 50
39 Source: http://www.sandhill.com/opinion/editorial.php?id=74
40 Ibid. An example: Adobe's "AIR" technology is a proprietary innovation leveraging the standards of the Internet.
41 Henry William Chesbrough, Wim Vanhaverbeke, Joel West, Open innovation: researching a new paradigm, Oxford

University Press, 2006, page 122
42 Ibid.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 14/25

OSS rivals in all product categories illustrate the disruptive innovation theory
Empirical observation tells us that commoditization and modularization are a permanent phenomenon
within the IT industry. Hardware entered the commoditization cycle in the early 80s with the personal
computer; from the mainframe to the PC, it is not the best product that dominates the market but simply
the most standard one. And today, from desktop to mainframe, we have the ubiquitous Intel
architecture.

Software entered the commoditization cycle in 1969 when Ken Thompson and Dennis Ritchie wrote a
new file system called UNICS (Uniplexed Information and Computing Service) which went on to
become UNIX, the main rival of proprietary operating systems. AT&T first chose to use the product for
internal purposes, and then distributed it to computer research institutions such as Universities,
ultimately leading to GNU-Linux.

The spread of free and open source software has been such over the last ten years that there is now no
software product category, particularly in the enterprise computing area, where proprietary offerings
are not challenged by open source offerings. Application servers, Business Intelligence, Enterprise
Resource Planning (ERP), Portals, Enterprise Service Bus, Workflow, etc., open source market share is
growing in every product category.

Open source is becoming the leading offering in several segments to such an extent that conventional
proprietary vendors are disappearing. In the Content Management Systems segment, for instance,
innovators Vignette and Documentum who created the product category and were highly regarded
industry leaders, have both been acquired and in the Business Intelligence segment, leader Business
Object has also been acquired.

 2. OSS, one of three forms of software commoditization

The maturation course in the software industry leads to at least three forms of commoditization:
offshore, open-source and cloud computing.

I define the commoditization process as the evolution by which an already exchangeable good (or
service) becomes available to the market with the four characteristics of a generic commodity43. In the
software industry, this process reveals itself in at least three ways: offshore, open-source and cloud
computing. These are the three dominant forms of software commoditization.

Offshore outsourcing as the first form of software commoditization
The growth of offshore outsourcing is a direct outcome of commoditization trends in the software
industry. Until the mid-80s, offshore firms had specialized in migration contracts, converting users’
applications to new operating systems and hardware, mainly IBM’s as a result of its ever growing
market share. However, in the mid-80s, with the market shift from proprietary computing environments
to open systems these offshore firms could develop into all other IT sectors. What happened is that the
growing popularity of standard software development tools and the availability of sophisticated
workstations for developers, meant that "the skills required by the market become less specialized and

43 See note 16, above

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 15/25

hence undifferentiated"44

As a result, many tasks, usually well-defined and non critical, such as data migration, software
maintenance, application conversion (think of Y2K), documentation, etc., could all be outsourced
offshore. The trends continue since "organizations no longer perceive IT to be adding strategic
advantage and therefore are unwilling to pay such high fees or salaries for the services IT experts
provide."45

Interestingly, offshore outsourcing is going through its own commoditization process. For several years
India was virtually the only supplier of IT outsourcing services and Indian companies charged
relatively high prices. Now, more than thirty countries compete for a piece of the offshore outsourcing
pie.46

The continuing improvement of remote software development management practices and
methodologies such as CMMI ensure that despite lower costs, the quality and reliability of offshore
software is state-of-the-art. Offshore sourcing is today a standard input in any complex software
system.

Open source as the current form of software commoditization
Enterprise computing segments in which open source is successful were first established some ten or
twenty years ago. In these categories, leading open source software has the characteristics of
commoditized software.

First, they thrive on established standards, particularly open standards, on substituability with
incumbent proprietary software or with other open source software. Second, they are mainly available
as components and platforms used to build end-user solutions: open source is to be found in
infrastructure software (including middleware and generic applications) and in development tools.
Third, few, if any, incorporate real innovations (the Apache web server is an exception although it itself
started "as a fork of the NCSA httpd, a Web server created by Rob McCool at the National Center for
Supercomputing Applications"47). Generally, they are open source interpretations, some highly creative,
of existing offerings or functionality sets offered by established proprietary solutions. Fourth, being
freely available for download and their value being proportional to volume just like any other
commodity, their selling price is low. Indeed, the price can be as low as zero, an extreme position as far
as low prices are concerned, when vendors do not monetize the software itself but the the size of its
users' and developers' communities.

Moreover, open source software is a typical disruptive innovation in the software industry. The open
source offerings that compete against proprietary offerings were typically introduced as "simpler, more
convenient, and less expensive products that appeal to new or less-demanding customers"48 including
either those who could simply not afford the high cost of proprietary licenses or those who were willing

44 Andrew Holmes, ibid, page 35
45 ibid
46 Source: Gartner, http://www.gartner.com/it/page.jsp?id=565107
47 The Apache Software Foundation, Apache HTTP Server 2.2 Official Documentation - Volume I. Server Administration,

Fultus Corporation, 2010, p. 14
48 Clayton M. Christensen, Michael E. Raynor, ibid, page 34

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 16/25

to support training, product integration and maintenance.

As illustrated by the following quotes from their annual analysis of operations, many incumbent
companies find open source disruptive: "If the open source community expands into enterprise
application and supply chain software, our license fee revenues may decline."49 "Open source vendors'
actions could also materially adversely affect our ability to generate revenue and maintain acceptable
profit margins."50 "As the use of open source software becomes more widespread, certain open source
technology could become competitive with our proprietary technology, which could cause sales of our
products to decline or force us to reduce the fees we charge for our products(...)".51

Open source software now is essentially the result of the conjunction of two elements: the first, "Free
software", as established by Richard Stallman who had the revelation that software should be shared
and formalized the rules (or freedoms as he calls them), the second, the leverage of the
commoditization process in action within the software industry by opportunistic entrepreneurs who use
the free software approach to establish a foothold in the market. This is the nature of the open source
software market as we know it.

Cloud computing is the newest form of commodity provisioning
Cloud computing52 is the newest form by which the software commoditization process reveals itself.
Compared to conventional ways of deploying software, cloud computing's main innovation is that "the
IT infrastructure no longer lies with the user, meaning that even inexperienced users can access these
services. (...) Using clouds is more efficient and more flexible than the maintenance of internal IT
departments."53

Cloud computing has become the generic term for a model where IT capabilities are provided as a
service by specialized organizations to external customers using Internet technologies. It serves as a
generic term for today's state-of-the-art paradigme for the provisioning of commoditized IT resources.
These are usually described in three categories (or "layers"): commoditized computing resources,
including storage, processing power and networks are provided as Infrastructure-as-a-Service (IaaS),
commoditized software architecture and development environments as Platform-as-a-Service (PaaS)
and commoditized applications as Software-as-a-Service (SaaS). Although significant innovation is
still required for the implementation of a complete cloud service delivery architecture, it remains that
cloud computing is a model of IT commodity provisioning.

The cloud computing model is well adapted to commodity software: it helps minimize the cost of both
acquiring and running highly standard and substituable software, it allocates resources to fit many

49 Form 10-K for American Software, Inc, 07/14/2008
50 Form 10-K for DoubleTake Software, Inc, 03/13/2009
51 Form 10-K for BMC Software, Inc, 5/18/2009
52 In its definition, Cloud computing is directly related to concepts formerly developed in the iT industry such as Utility

computing, On-Demand computing, etc. As for the origin of the term, opinions vary wildly, see, for instance the Wall
Street Journal, March 26, 2009 at: http://online.wsj.com/article/SB123802623665542725.html I think it is to be found
most probably in the fact that, for over ten years, a simple drawing of a cloud has been used to represent the Internet in
millions of graphics and business presentations.

53 EU DG Information Society and Media - Directorate for Converged Networks and Service (2009), Report: "Towards a
European Software Strategy", Working Group #2, page 7

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 17/25

different users thus maximizing economies of scope, it mitigates the risk in defining which
functionality perimeter to provide by the maturity of the software provided and it allows global market
reach to -potentially- maximize providers' margins in a context of minimized price.

Cloud computing customers are typical commodity buyers: they know what they want, they subscribe
to a simple, good-enough application, they use the provider's APIs and underlying data models and
constructs as inputs in developing their own solutions and they look for convenience and cost
(applications are faster to get started, cost less), etc.

 3. Commoditized open source software in today's context

The topic is far from being exhausted and further analysis is required today to understand what is going
to happen to open source software over the next five to ten years. There are in particular three issues
worth exploring: open source and innovation, open source and cloud computing, and the differences
between planned and market economies.

Open source and innovation
Having established the nature of open source software in relation to growing commoditization in the
software industry, one should not underestimate the relationship between open source and research and
development; this would deserve a study in its own right. There is no question that there is a significant
similarity between the way academic researchers share knowledge and the open source paradigm;
however, the situation become a little bit more complex with regard to private corporate R&D.

A useful structural analytical framework54 considers two broad innovation systems: one financed by
agile venture capital looking for an exit by selling assets embodied in drastic patented innovations, the
other, by bank loans and public subsidies where innovations are incremental, standard-based and
knowledge is essentially open. Although open source seems to fit naturally with the open knowledge
model, empirical evidences show that, at any given time, firms usually stand somewhere between both
models, thus making the case for open source less intuitive. Moreover, current shrinkage of R&D
public financing across western economies tends to push the cursor toward the first model.

Although many analysis have highlighted the positive relationship between public investment in higher
education or public R&D and economic growth55 (publicly financed open source development would
result in positive externalities to the private sector in the form of knowledge spillovers), the current
trend is for public funding to go more and more to the private sector R&D where its impact is
debatable56 and where the incentives to open source the results are lesser.

54 Benjamin Coriat, Olivier Weisntein,Coriat, B. & Weinstein, O. (2004) “National institutional frameworks, institutional
complementarities and sectoral systems of innovation” in F. Malerba (ed.) Sectoral systems of innovation: Concepts,
Issues and analyses of six major sectors in Europe Cambridge University Press, Cambridge

55 See for example, the often-quoted paper by D. Guellec, D. and B. Van Pottelsberge de la Potterie: R&D and Productivity
Growth: Panel Data Analysis of 16 OECD Countries, 2001, OECD Economic Studies, 33, p. 103-126 and more
recently: Jonathan Haskel, Gavin Wallis, Public Support for Innovation, Intangible Investment and Productivity Growth
in the UK Market Sector, Imperial College London Business School, Discussion paper 2010/01, February 2010

56 See N. Serrano-Velarde, La Structure de Financement de la R&D des Entreprises? Une Analyse en Régression
Discontinue, Séminaire REPERES, Paris, 21 Mars 2008

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 18/25

The fact that many publicly funded software R&D projects make available some of their results as open
source57 seems to be more the consequence of the de facto open innovation situation in which project
consortiums find themselves rather than the outcome of carefully crafted strategies. The timely
emergence of cloud computing provides an interesting environment to observe the relationship between
open source and innovation.

Open source and cloud computing
Indeed, the relationship between cloud computing and open source will be complex.

First, of all, cloud computing and open source will compete as two different disruptive innovations
providing solutions for the commoditization of software. An end-user who needs an application which
happens to be commoditized will increasingly have the choice between an open source offering and a
SaaS (or cloud-based) application. As both solutions will be economically substituable, users will
choose on the basis of qualitative criteria such as security, exit barriers, etc. With regard to using
commoditized applications, it is most likely that users will combine both open source and cloud
computing solutions.

Second, cloud computing requires new software and will spur a wave of innovations; in fact it is more
likely that there will be two waves. The first one, within the next two years, will be characterized by
incremental innovations for centralized cloud services. Proprietary offerings already exist for
centralized cloud architectures; publicly-funded projects are being set up to provide alternatives, and
some of the results will be made available as open source. The second, will appear in three to five
years, with rather drastic innovations addressing the requirements of decentralized cloud architectures.
Many technologies for decentralized cloud computing are still in research stage and some years away.

It is not certain what role open source, and the open innovation business practices associated with it,
will play in the development of decentralized cloud technologies. We can safely predict that many
cloud architectures, whether open or closed, will be built upon open source components but we do not
know to what extend the components which still need to be created will be developed in an open source
way. In any case, open source and cloud computing will most likely interact as both complementers and
rivals.

Lastly, it is most probable that cloud computing will have an impact on the very foundation of open
source. Providing free usage of the software to users and developers alike is the way open source
contributes to IT freedom. With cloud computing what customers get is a service, not software.
Whereas IT freedom was broadly defined in terms of software accessibility, it must now be defined in
terms of service accessibility. It is a paradigm shift which might make open source claims irrelevant.

Market economies vs planned economies
The commoditization mechanisms described above essentially reflect the evolution of the vendor/buyer
relationship as we see them in market economies where free competition leads to a Darwinian selection
process among vendors. In planned economies, however, the shift toward commoditized offerings
might occur differently.

57 Source: European Commission, DG INFSO, unpublished mails, 2010

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 19/25

First of all, the evolution toward commoditizaton may be slower because of a combination of two
factors: one is the inherent staying power of incumbent vendors whose business with buyers are
protected by long-term organizational relationships and the other is the legacy of a business culture
emphasizing efficiency and economies of scale over innovation-based entrepreneurship58.

Another characteristic of planned economies is that the commoditization process tends to result from
two movements, one top down, driven by government long-term planning, the other bottom up,
determined by concomitant tactical moves of companies open to global industry trends. As a result the
commoditization process in planned economies, or formerly planned economies in transition, is
certainly not as fluid as in market economies and may hinder the adaptive ability of the national
industry to be state-of-the-art. In our experience, it would be interesting to apply this analysis to the
open source market in China.

 D. Strategies for leveraging open source

 1. Use the past to act in the present and change the future

Two drivers of the open source movement are, first, the aspiration for free software based on values
inspired by the academic world and, second, the software commoditization process which creates
opportunities for open source-based market entry strategies.

Despite evidence of imperfections and ongoing questioning59, academic knowledge-sharing and peer
review, or the process of exposing research, results or ideas to the scrutiny of experts for approval,
criticism and elaboration, are key references for free software and open source. Free software
originated as the adaptation to software of this academic process and, to some extent, it is not
transferable to the average user. The way Richard Stallman explains and actually lives the free software
ideal borders on sectarianism and utopia for all those without in-depth knowledge of computer
technology.

Open source blossomed in another realm, the business world. It evolved out of the free software idea as
companies adapted free software to the world of business in order to leverage opportunities offered by
the software commoditization process. Over a period of ten to fifteen years, market leadership in entire
software product segments shifted from proprietary to open source offerings. In this perspective, the
success of open source is explained by the industry conditions: software commoditization is the driver
of open source.

Inevitably, these two "moments" in the development of free software and open source are bound to
combine into a third “moment” where open source, instead of being the result of external industry
conditions, becomes, in its own right, a change driver of the industry. Open source supporting

58 See I. Grilo and A.R. Thurik, Entrepreneurship in the Old and New Europe, p. 83 in Enrico Santarelli (Ed.), International
studies in entrepreneurship, Volume 12: Entrepreneurship, growth, and innovation: the dynamics of firms and industries,
Springer, 2006

59 See for example: Arturo Casadevall Ferric C. Fang, Is Peer Review Censorship?, Infection and Immunity, April 2009, p.
1273-1274, Vol. 77, No. 4, Published ahead of print on 17 February 2009,
(http://iai.asm.org/cgi/content/full/77/4/1273#FN1)

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 20/25

innovation and recognized as a channel toward market exposure for publicly funded R&D projects may
even contribute to altering the structure of the software industry.

Recognizing this new pattern, industry stakeholders such as private companies, governments, software
developers and customers may develop appropriate strategies. These include open source innovation,
i.e. using open source modus operandi to promote (impose?) the result of R&D efforts, and strategic
commoditization, i.e. voluntarily using open source to accelerate the commoditization of product
categories.

 2. Governments: strategic commoditization policies

Assuming the perspective that one of the ultimate goals of governments is to maximize social welfare,
then public policy makers should adopt open source as one of their strategic levers for several reasons.

First of all, governments being among the largest consumers of information technologies, we can
reasonably expect them to optimize the use of tax-payers' money by making a rule to avoid the traps of
vendor lock-in strategies and choosing instead to leverage open standards and interoperability in order
to keep costs under control60.

Second, since a large part of research and development investment in information technology is funded
by government money, it seems natural to expect that the results of these efforts be refunded to the
community in the form of freely accessible open source software.

Third, as governments of most countries are the primary provider of resources to their education
systems, a good strategy would be to require that all resources used in education be open source so as
to guaranty shared and free access to state-of-the art technologies to all.

By systematically fostering situations where the advantages of software commoditization can be
disseminated throughout society, policy makers have the possibility to anticipate and accelerate the
software commoditization trends in a given economy: that is what I call strategic commoditization.
What kind of Internet would we have today if, in the early eighties, TCP/IP, developed by DARPA,
hadn't been freely disseminated along with BSD Unix to universities61? Examples close to OW2
include Trustie62, the nationwide software development environement promoted by the Chinese
goverment and the Brasilia Protocol63 adopted by Brazil's public sector.

 3. Software vendors: de-commoditization strategies

The raison d'être of all companies is to maximize profit and of course commoditization with its
consequences is not good news for software entrepreneurs. Who would deliberately enter a market

60 See, for instance: Vivek Kundra: Federal CIO in His Own Words, http://radar.oreilly.com/2009/03/vivek-kundra-federal-
cio-in-hi.html, or Kundra advocates open source, http://fcw.com/articles/2009/06/08/feature-open-source.aspx

61 See DARPA and the Internet Revolution: "Since TCP/IP was in the public domain – having been developed at taxpayer
expense – other networks were beginning to use it as well, and to link with one another in an expanding Internet." at
http://www.darpa.mil/Docs/Internet_Development_200807180909255.pdf

62 http://www.trustie.net
63 http://www.softwarelivre.gov.br/protocolo-brasilia-1

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://fcw.com/articles/2009/06/08/feature-open-source.aspx
http://radar.oreilly.com/2009/03/vivek-kundra-federal-cio-in-hi.html
http://radar.oreilly.com/2009/03/vivek-kundra-federal-cio-in-hi.html

Software Commoditization and Open Source Strategies p. 21/25

where vanishing differentiation, alternative producers proliferation and raging price competition are the
rules of the game? Who would finance such ventures unless they see ways to do what all profitable
companies seek to do i.e. maximize profit and share-holder value? And how can they achieve this
without fighting off competition and developing sales?

I see three key de-commoditization strategies accessible to the open source software entrepreneur: they
all aim at turning the tide and building defensible market positions and growing customer revenue.
These strategies are not exclusive from one another.

The first de-commoditization strategy is to create uniqueness by extending a free product with a strong
brand and specialist services. What is important here is not to decide if software is a product or a
service64 but to understand that when code is freely available for download and replication, the only
way to make it financially viable is to add value through differentiation. The principle here is to
consider that the base product can be given away because it represents only one part of the value
brought to customers. Offerings that add value and differentiation include selling product-oriented
services such as support subscriptions, premium training and integration or business process-oriented
services such as product customization that enhance the usefulness of the base product. Among OW2
members, companies such as Ingres, JasperSoft and Red Hat represent this approach.

The second de-commoditization strategy for open source software vendors consists in introducing
displacing innovations65. In other words, they can ride the commoditization process to their advantage
by aggressively investing in open source innovation on sub-systems. As we have seen, the
commoditization process generates modularization with standard interfaces and within standard
architectures and, as modularization goes on, demand for greater performance shifts from the whole
product to the modules. As a consequence, what happened with hardware also happens with software:
competition shifts toward sub-systems components which must meet stringent requirements for product
quality. "While higher level systems (...) become more modular, lower-level subsystems become
increasingly integral. (...) Within each module internal interdependencies become more complex than
ever." 66 At OW2, this approach is exemplified by companies such as ActivEon, Eteration, Orbeon,
PetalsLink, Requea and Scalagent.

Then there is the broadly called, and these days much debated67, "open core" strategy; which consists in
marketing products, services and add-ons with customer (or partner) lock-in tactics in ways that create
proprietary assets and, indirectly, reproprietarize the software. A borderline model between open
source and proprietary software, it seems to be the strategy favored by venture capital investors. For
reasons that are technically arguable, certain software modules and extensions and certain services,

64 See for instance: Eric S. Raymond The cathedral and the bazaar: musings on Linux and open source by an accidental
revolutionary. First edition. Sebastopol, CA: O'Reilly, 1999, p. 145: "In other words, software is largely a service
industry operating under the persistent but unfounded delusion that it is a manufacturing industry."

65 Clayton M. Christensen, Scott D. Anthnony, Erik A. Rorth, Seeing what's next: using the theories of innovation to
predict industry change, Harvard Business School Presss, Boston, Massachusetts, 2004, p.14

66 Cornelius Herstatt, Hugo Tschirky, Christoph Stockstrom, Management of technology and innovation in Japan,
Birkhäuser, 2006, p. 67

67 A good entry point into the "open core debate" is: http://blogs.the451group.com/opensource/2010/06/30/while-lies-
beyond-the-open-core-debate/

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 22/25

such as engineer certifications or subscriptions (bug fixes, functionality and security updates68), for
instance, can be contractually linked to software code and specifically packaged (often with add-ons)
by or for the service vendor. Just as with proprietary software, tampering with the code might cancel
the right to vital software support. This is the strategy implemented by growth start-ups such as
BonitaSoft, Exoplatform and Talend.

In any event, the initial software product, whether a whole product or a sub-system, is made available
to the public for free. This is a classic market-development strategy where, on the one hand, "free" is
used to generate leads and, on the other, "the object is to get lifetime and multiple value from customers
without allowing short-term recovery of cost to get in the way."69 All open source software vendors
share this quite important characteristic along with a genuine interest for cooperative strategies.
Personally, I think the only straightforward open source strategy is to make honest money with quality
service however, in order to be attractive to investors, many of them tend to end up operating just like
conventional proprietary ISVs and develop their own IP-based assets.

 4. Customers and Systems Integrators: non-alignment and best-of-breed strategies

Because commoditized software is available from several different providers, a best of breed approach
is.the most efficient technology investment strategy for systems integrators and end-usres. Best of
breed procurement consists in selecting the best offering for each need. The advantages of this method
are well known: software selection is optimized because the investment is not tied to a single vendor
and user utility can be maximized in each project. While vendors' roadmaps for products and features
introductions aim at maximizing their own profits, best of breed strategies allow instead independent
and timely decisions that maximize end-user benefit. Open source blends well with best of breed
strategies - specially when considering commoditized software - and contributes greatly in enhancing
their advantages. It helps minimize cost in most mature product categories with state-of-the-art open
source offerings.

In this context, customers and systems integrators can be perceived to be in the same position vis-à-vis
open source software to the extent that both categories of stakeholders have the same fundamental
objective: they use technology to improve business processes and increase end-user competitiveness
rather than technology vendors' profits. End-users make choices that will affect their competitiveness
and systems integrators work for them and make recommendations that will impact their customers'
competitiveness.

Best-of-breed procurement strategies ensure customers remain in control "Customer ownership" is a
key concept in marketing70 but which customer wants to be "owned", what could be the long-term
consequences of such ownership over an enterprise ability to make its own decisions? Single vendor
procurement, however comfortable this might be hands over some control to the vendor. At some level,

68 See for instance: Savio Rodrigues, Blog post, Proprietary Open Source
http://saviorodrigues.wordpress.com/2008/01/30/proprietary-open-source/

69 Sandra Vandermerwe, Customer capitalism: increasing returns in new market spaces, Nicholas Breadley Publishing,
London, 1999, p. 197

70 See for example: Howard W. Oden, Transforming the organization: a social-technical approach, Greenwood Publishing
Group, 1999, p. 52: "In market terms, the company with the most intimate knowledge of its customer's problems and
desires will own the customer relationship and the company which owns the customer relationship wins."

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

http://saviorodrigues.wordpress.com/2008/01/30/proprietary-open-source/

Software Commoditization and Open Source Strategies p. 23/25

the well-known expression "No one ever got fired for choosing IBM." reflects the "difficulty that
insiders once faced when trying to make a non-IBM" product selection71." Most companies already
contend with multi-vendor information systems, because of structural changes or inherited legacy
software. Moreover, it is probable that most organizations are already using open source software either
as a "lower-cost good enough alternative to expensive proprietary software" or because "an open source
software product may have reached a level of technical superiority that pushed along its adoption."72
The most advanced customers actively contribute to open source projects they use. OW2 members
representative of this approach include France-Telecom and the French Ministry of Interior.

Trustworthy systems integrators have the most to gain by providing assistance in the selection,
integration, implementation and management of open source software in enterprise information
systems. Thanks to open source, customers do not have to pay simply for the right to use a software
product, instead they pay systems integrators for their services and the value they bring to their
business processes. OW2 members such as Edifixio, Konsultex and Serli are examples of this
positioning.

Open source represents a tremendous opportunity for systems integrators. There is a balancing act
between them and end-users; while the former position themselves as trusted advisors to their
customers, the latter need to develop their own technology knowledge so as not to become "owned".

 5. Developers: community strategies

In commoditized product categories, possibilities for technology differentiation are limited and
competitive advantage allowing for profit maximization usually not sustainable. Developers who work
on such product categories seek other kind of returns such as maximizing their efficiencies and are
driven by other motivations such as peer recognition, technical interest, etc. In this context, they derive
maximum satisfaction by pursuing a community strategy.

Communities are voluntary groups of people sharing resources, values and working together to achieve
a shared goal. Developers pursuing community strategies aim at developing a collaborative
development model and at creating a virtuous circle for continuous improvement of the code. As
testified by the experience of the Apache Foundation, community cooperation has proven to be a
productive way to develop quality software.

Since "code written for sale is only the tip of the programming iceberg"73 open source developers do
not only work for software vendors, but come from all categories including end-users, systems
integrators, universities, public and private research centers, etc. By sharing the code, an open source
developer meeting a problem will hope that somebody else has probably encountered and solved it, or
at least a similar problem and will provide valuable input. Or put another way: "Given a large enough
beta-tester and co-developer base, almost every problem will be characterized quickly and the fix

71 John Katsaros, Peter Christy, Getting it right the first time: how innovative companies anticipate demand, Greenwood
Publishing Group, 2005, p. 108

72 Maria Winslow, The practical Manager's Guuide to Open Source, Open source Migrations, 2004, p.16
73 Eric S. Raymond, The Cathedral and the Bazaar, Musing on Linux and Open Source by an Accidental Revolutionary,

1999, O'Reilly, Sebastopol, p.142. The developer's point of view is the real subject of this book.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 24/25

obvious to someone74."

Another significant incentive for programmers to share their code is to increase their apparent
productivity. Despite considerable advances in software engineering, actual programming is like
performing a symphony or giving a haircut; productivity does not change over time75. Fortunately,
reuse of third-party code is made possible by the open architecture of commoditized software and
modern programming methods based on standard frameworks, platforms and libraries. Standards and
software modularization provide the right context for mutual sharing between programmers. Playing
the community game allows programmers to significantly increase their productivity by re-using stable
code provided by others.

Possibly counter-intuitive for outsiders, but developers have a great incentive to play the community
game. Joining a community may not only provide them with the opportunity to share code repository
and development tools but it is also the only way to leverage the intelligence of others and grow third-
party contributions: "instead of everybody writing his own version of the same program, the best
version would be available to everyone, and everyone would be free to delve into the code and improve
on that."76

The community game is most often played by developers working for end-user organizations or
systems integrators who have either developed software not available on the market or are contributing
developments to third-party software they use for their own needs. In any event they are not in the
business of selling software. The Apache Foundation provides archetypal examples of community
strategies. The submission to the OW2 code base of in-house developments by members such as Bull,
EADS, INRIA, Sogeti, etc. and by CHOReOS, a project funded by the European Commission, are also
examples of community strategies.

Conclusion

Established from the onset as an unconventional means to share code among developers, open source
has evolved into a major structuring factor in the software industry.

This paper explores the nature of open source software as a business phenomenon. The open source
model for developing code has its own intrinsic advantages – technical, economic, strategic and social.
However, these alone do not explain why open source has become such a force – at least in the
enterprise software market. The argument of this paper is that open source software, as we know it
today, is essentially the result of the alignment of the long-term commoditization trend in the software
industry with the vision delineated in 1984 by Richard Stallman. The emergence of open source in the
context of the software commoditization process may be described suitably by refering to the disruptive
innovation theory developed by Professor Christensen of Harvard University.

74 Ibid, p. 41
75 This is an extremely debatable topic but the number of debugged lines of code programmers are able to deliver seems to

be stable at 10-20 lines per day. While modern software engineering increases the functionality delivered, the actual
number of lines of code delivered by a programmer in a day remains stable.

76 Steven Levy, Hackers, Heroes of the computer revolution, Dell Publishing Co., New York, 1985, p. 41

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

Software Commoditization and Open Source Strategies p. 25/25

The definition of a commodity is key to this paper. Applying this definition to the software industry, I
contend there is a long-term commoditization movement which reveals itself through at least three
business configurations: the first one is offshore outsourcing, the second open source and the third,
emerging now, is cloud computing.

Open source, however, should not be reduced to an expression of software commoditization; it plays a
key role in open innovation practices and its interaction with the wave of innovation required by cloud
computing provides a new interesting field of anaysis.

The software industry is a system with strong feedback and in constant renewal. A correct
understanding of the mechanisms underpinning the growth of open source and its relationship with
software commoditization provides a conceptual and strategic framework for governements, software
vendors, systems integrators, customers and developers. Hopefully this paper helps stakeholders
develop a clear vision of the dynamics of open source in order to pro-actively leverage its benefits in
their own strategies.

(cc) Cedric Thomas, July 2010. This working paper is distributed for purposes of comments and discussion only.

