
DevOps – an
unsuspecting
target for the
world’s most
sophisticated
cybercriminals

Learn more on kaspersky.com
#bringonthefuture

http://kaspersky.com

1

DevOps
DevOps stands for Development Operations.
It is an approach to software development
that focuses on Continuous Integration (CI)
and Continuous Delivery (CD) – automated
pipelines that help organizations improve
business-impacting KPIs like time-to-market,
product development speed, agility and so on.

Supply chain attack
A cyberattack where the attackers access
a software or development environment
component, directly or indirectly, and use
it to deliver their payload into the target’s
infrastructure.

A dynamic approach that changes
the world one build at a time.
Automatically.
There are organizations around that, thanks to DevOps, have switched from annual
or semi-annual to daily or even hourly software releases. DevOps techniques like
‘everything is code’ mean that source code written and committed by a developer
before lunch can actually be available in production by the end of the same day.

Not just the product, but the development and testing environments, are often built
on the fly from components sourced from internal and external repositories and
orchestrated by automation servers. DevOps write instructions as code and, when
executed, this code guides the assembly of development pipelines and entity sourcing,
and the build, test and release of the final product into production.

Inevitably, the automated building of software that’s then distributed by software
vendors straight into major corporates worldwide creates the sort of attack vector
that cybercriminals dream about. And the fact that so many components of both the
product and the software development environments are fetched from the internet on
the fly means that developers too become low hanging fruit. The result – a proliferation
of supply chain attacks.

Supply chain attacks
There’s no shortage of news about the latest supply chain attacks. It can be extremely
difficult, even for us security professionals, to be one hundred percent certain about
what’s happened in most attacks of this type. But we can make some pretty good
guesses, learn a great deal, and apply this knowledge in addressing the corporate risk
posed by criminal infiltration of the software supply chain.

Here are a handful of interesting examples of supply chain attacks, in no particular order:

•	 In August 2017, some APT actors outfitted software created by NetSarang with
malicious modules. According to investigators, the attackers may have compromised
the software build servers.

•	 In 2018, cybercriminals infected the Piriform application build server, after which
CCleaner program builds with clean source code were weaponized during compilation.

•	 In 2019, our experts discovered the ShadowHammer APT campaign, during which
malefactors embedded a backdoor into software products from several companies.
According to the results of the investigation, the attackers either had access to the
source code or introduced malicious code at the compilation stage.

•	 In April 2020, IT news websites reported that RubyGems, the official channel for
distributing libraries for the Ruby programming language, had been poisoned.
An attacker, used the tactic known as ‘typosquatting’, uploaded fake packages
containing a malicious script, so that all programmers using the code in their
projects unwittingly infected users’ computers with malware that changed their
cryptocurrency wallet addresses.

•	 Typosquatting, generally considered the most common tactic for cyberpoisoning,
has also been deployed in attacks through the Python Package Index and in
uploading fake images to Docker Hub.

•	 In the Copay cryptocurrency wallet incident, the attackers used a library whose
repository was hosted on GitHub. Its creator had lost interest and given away the
administrator rights, compromising the popular library, which many developers used
in their products.

•	 Sometimes, cybercriminals are able to use the account of a legitimate developer
without the latter’s knowledge, and substitute real packages for fake ones. That
happened in the case of ESLint, whose libraries were hosted in the NPM (Node
Package Manager) online database.

The question that I believe we should all keep asking ourselves is – what if my organization
becomes another target? Would I be able to mitigate this risk?

https://securelist.com/shadowpad-in-corporate-networks/81432/
https://www.kaspersky.com/blog/ccleaner-supply-chain/21785/
https://www.kaspersky.com/blog/details-shadow-hammer/26597/
https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-apps-snuck-into-ruby-repository/
https://www.bleepingcomputer.com/news/security/malicious-python-package-available-in-pypi-repo-for-a-year/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.kaspersky.com/blog/copay-supply-chain-attack/24786/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

2

No easy answers
Many such attacks can be prevented by the deployment of security to development
infrastructure servers, the routine security vetting of containers and anti-malware
testing of the production artifacts.

But here’s the problem. Traditional security products tend to lack integration interfaces –
so their deployment creates bottlenecks in the automation process. The result is a lot
of time-wasting manual intervention due to fragmented automation, overcomplicated
processes, and limited visibility – none of which goes down well in DevOps environments.

“Divide and conquer” – the attackers’
mantra
So there are fundamental differences between the operational goals of the
parties involved in maintaining and operating in the development environment –
IT, infrastructure, InfoSec and DevOps. And these differences, and the security
stalemates that can result, play into the hands of attackers.

If you’re a DevOps Engineer, you may well have spent time coming up with good reasons why
you don’t want a particular security product deployed onto your systems. You may even
have found yourself complaining to business units hungry for your output that an InfoSec
guy is setting out to ‘Negatively Impact Your Time-to-Market’. Or if you’re an InfoSec guy
reeling from your first brush with DevOps, you probably know about having to swallow
your pride, crawl back to your office and lick your wounds after finding yourself labelled
‘A Negative Impact On The Business’. The corporate battle-lines have been drawn.

But if history teaches us anything, it’s that ‘United we stand and divided we fall’. And
unity can be achieved if everyone stays locked onto a single strategic goal – delivering
a safe product to partners and customers in time. Working together, DevOps and
InfoSec can ensure that software productivity continues forging ahead exponentially,
while running rings around invading cybercriminals.

Any structure is only as good as its
foundations
Let’s start with this agreed premise - that some form of security foundation is essential.

It’s imperative that you deploy run-time protection to each and every server and
workstation. If it has an operating system and it’s connected to a network, it needs
protection. Developers’ workstations, build servers, containerization hosts – the lot.

So now we need to think about performance. There’s a whole set of technologies that
are very respectful to performance but which can make a huge difference in terms
of systems security. There’s memory protection, exploit prevention, vulnerability
assessment, network threat protection and so on and so forth.

These are just a few examples. The point is – no single technology is a silver bullet, but
the right combination can be used to deliver the right DevOps security/performance
balance. A multi-layered approach will take us closest to where we want to be.

There’s also significant potential for security systems automation. A solution with a
reasonable level of integration with other platforms will leverage that integration for
workload discovery, status check and closing security gaps – all fully automated and
on the fly. This level of automation can be super-crucial in cloud infrastructure auto-
scaling, where the fast dynamics of the environment impair visibility and hinder control,
for example, or with non-persistent or semi-persistent virtual machines, where new
instances are spun on demand. Remember – if you can’t see it, you can’t protect it.

‘Don’t dis the basics’
Don’t just dismiss a performance-friendly
technology because it sounds ‘old school’.
Take signature-based protection – a
technique barely recognizable in 2020 from
what it was 25 years ago. Back then, we
talked about things like MD5 hashes of files:
today’s signatures are capable of detecting
groups of threats, finding similarities in
polymorphic malware samples and spotting
injected malicious code in benign files. The
technology is so advanced and optimized
that it easily handles known variants of
malware with a very little overhead. If you
don’t like thinking about something as basic
as “known malware” protection, think how
embarrassing it would be to build the most
advanced cyber-defenses, only to find
you’ve left the main gates wide open for any
10-year old malware to waltz in.

3

Automated pipelines need security, too
First and foremost, your Endpoint Protection solution needs to be fully effective in
pre-filtering incidents, before EDR comes into play. The earlier in the attack kill chain
the vast majority of threats can be identified and countered automatically, the less
the overall impact on resources. Most security incidents can be seen off right away
by a good EPP solution, leaving your EDR solution and your security staff free to
focus on the more advanced, and therefore the more dangerous, threats. We know
we keep saying this, but – make sure your EPP solution is pulling its weight.

Let’s look now at the building blocks we can use to build security into automated
pipelines. What are the requirements? It’s pretty simple – we need a service that will
perform the necessary function and which can be accessed through some kind of
interface. We need to understand how that interface works, how to interact with it, and
what it can tell us. In other words, this interface needs to be well documented. For easy
integration into our pipeline, we need to be able to access the service through scripts,
so we can define what we need using code. We want to approach the security step just
as we approach all other steps - creating an environment, creating a project, building it,
testing it and ultimately deploying it.

The aim is to shift, or rather extend, the focus of security far beyond source code
analysis and unit testing. These of course are a foundation – if your product is software,
I’m pretty sure you’ll want your product to be safe and not prone to breaking (i.e.
not vulnerable). If your product is any more complex than ‘Hello World!’ and relies on
third party code, you want to establish operational security as well – management of
configurations and patching, users and privileges, monitoring events and collecting and
analyzing logs. But if you’re striving to achieve a continuous development flow through
integration, hopefully delivery and ideally deployment, you’ll have to adopt principles and
processes like ‘Everything Secure’, ‘JIT security’, ‘Fail Often Fail Fast’ and ‘Automated
Security Testing’ – all kinds of AST! And also of course security testing orchestration.

•	 Everything Secure means that whatever you pull or build needs to be sanitized – we’re
all very familiar with this concept right now! Think of it as like grocery shopping – now
you need to wash your fruit and vegetables before you consume them.

•	 Just-In-Time security – in a dynamic environment you have to have a security
service that you can throw stuff at whenever needed and get a near-instant
response. If it doesn’t support scripting – sorry, you’re out of luck – this is not the
security solution for you.

•	 Fail Often Fail Fast is the Agile practice that aims to minimize the impact of a
security incident. The sooner a vulnerability is discovered, the easier it is to fix and
the lower the cost of the incident. Our goal is to drive this to zero. This is especially
beneficial when you integrate commits several times a day.

•	 Different kinds of Automated Security Testing – static, dynamic, behavioral,
interactive. Testing of source code, compiler setting verification, binary testing – that
all, with minimal impact, help fail fast so you can detect a problem early, correct it and
continue with the release, minimizing the cost of the incident.

•	 Of course, with so many moving parts, orchestration proves critical, offering visibility,
control and streamlining of the overall process. This cries out for a Centralized Security
Management Console.

You can have your cake and eat it
What if DevOps can have their ‘Security as Code’ service to sanitize, patch, verify, test
and so on, while InfoSec can have their policies, reports and dashboards?

Plot twist – what if DevOps want those reports and dashboards, too?

There are DevOps benefits to be had from a centralized security management console.
Remember, your security solution can see a threat whether you’ve scripted a certain
security check or not, because having a solid foundation in place means that ALL
servers are protected no matter where – in your own datacenter or in one or more
public clouds Your solution should also be able to see that threat in a larger context –
that of your entire infrastructure. It will see exploit attempts, fileless attacks, memory
attacks, network exploits and so on. And you can leverage that information to script
back into your pipeline, in order to take action. You can define what events will fire that
script up and how you integrate this safety element into your process.
It’s a win-win for everybody. Except cybercriminals.

Security is an integral part of
development
To ensure the security of the development environment and of the product itself,
security needs to be incorporated into development operations. That means that
security services need to be available whenever needed (on demand, or Just-in-Time)
and they need to be automatable (to provide automation interfaces). This way, DevOps
engineers will be able to weave security into their instruction code and the automation
server will be able to perform those steps exactly when needed.

Or even better – don’t think of security as “steps”. It’s a really more of a mindset. Those
who wield it, prosper. Those who don’t yet – will have to play a catch up game.

PLAN

BUILD
CONTINUOUS

IN
TEGRATION AND DEPLOYMENT

CONTINUOUS FEEDBACK

OPERATE

M
O

N
IT

O
R

SECURITY

www.kaspersky.com

©
 2

0
20

 A
O

 K
A

S
P

E
R

S
K

Y
 L

A
B

Kaspersky Hybrid Cloud Security: kaspersky.com/hybrid
Security for DevOps: kaspersky.com/devops
Security for AWS: kaspersky.com/aws

www.kaspersky.com
http://kaspersky.com/hybrid
http://kaspersky.com/devops
http://kaspersky.com/aws

