

 ROBOT OOP

Learning the basics of
Object Oriented Programming  

using robots from popular culture

GOOD SOFTWARE

• Highly cohesive

• Loosely coupled

IN THE BEGINNING
• Before OOP there was Procedural

• A procedure is series of steps - like a recipe

• We use functions to organize our code

• functions are used by many languages

WHY OOP
• It’s a major part of modern programming

• Not knowing it will hurt your career

• Every CMS And Framework uses it

• It enables you to write better code

OVERVIEW
The Basics of Objects

WHAT IS AN OBJECT

• an object is an instance of a class

• an instance is a single occurrence of something

WHAT IS A CLASS

• A class specifies the object’s internal data and
representation and defines the operations the
object can perform

WTF
While those definitions are technically correct,

they’re not very helpful

A Class is a blueprint.
It defines what the

object is and what it can do

An Object is a class made real.
It’s a bundle data and behavior

INSTANTIATION

• The act of creating an
instance of an class

<?php

include “class.robot.php”;

$first = new Robot();
$second = new Robot();

POPULAR WORDPRESS CLASSES

• WP_Query

• WP_Rewrite

• WP_Error

• WP_Widget

4 PRINCIPLES OF OOP

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

ABSTRACTION
separation from details

INTERFACES

• Details aren’t important to the User

• Desktop is an interface

• USB is an interface

FUNCTIONS

• name

• parameters

• return values

• provide scope for variables

CLASS

• It’s the basis for OOP in PHP

• Scope for data members and methods

• Abstraction from main program

• Can be used between programs and projects

• member variables (data members)

• instance variables

• class (static) variables

• methods

• instance methods

• static methods

INSIDE THE CLASS

SNEAK PREVIEW
• Encapsulation

• Inheritance

• Polymorphism

• Composition

• Type Hinting

• Interfaces

ENCAPSULATION
Hiding the details

BASICS

• Sometimes called Information Hiding

• Scope

• Visibility in classes

METHODS

• They’re just functions

• clear names

• function scope provides protection

• limited activity

VISIBILITY

• You set visibility to prevent unauthorized changes

• Public - everyone can access

• Protected - you and your relatives

• Private - Just for you

SHOW US THE CODE

class Person {
 private $firstname = null;

 public function get_name(){
 return $this->firstname;
 }

 // ... Lots of other stuff would go here

}

INHERITANCE

SIX
Intelligent, Cunning, and Alluring … also a Cylon

WHAT IS A
CYLON?

Cybernetic Lifeform Node

class Cylon
{
 public function __construct()
 {
 $this->created = new DateTime();
 }

 public function __destruct()
 {
 error_log(’Died at ' . new DateTime());

$this->download();
 }

 /** @todo Add some cool artificial intelligence */
}

EXTENDING CLASSES

• uses the extends keyword

• gets everything from it’s parent

• then adds it’s own data members and methods

class Six extends Cylon {

// add methods here

}

WHY INHERITANCE

• It allows you to easily re-use code

• It’s a way to organize related classes

• Write less code

TYPE HINTING

• Used when defining functions or methods

• Specify what class a parameter must be

• public function get_name(Cylon $cylon)

ABSTRACT CLASSES

• Still provides core functionality for child classes

• Not directly instantiated

• Allow your descendants chance to change

abstract class Cylon
{
 public function __construct()
 {
 $this->created = new DateTime();
 }

 public function __destruct()
 {
 echo 'Died at ' . new DateTime() . "\n" ;

$this->download();
 }

 /** @todo Add some cool artificial intelligence */
}

CONTROL IT

• It creates a tight relationship between classes

• Not too deep - limit to 2 levels

• Can make it hard to move class to new project

COMPOSITION
Let’s form Voltron

COMPOSITION

• One object is a part of another

• Uses the public interface

• Preferred over inheritance

• Modular and loosely coupled

class Person {
 private $firstname = null;
 private $dateOfBirth = null;

 public function __construct(){
 $this->dateOfBirth = new DateTime();
 }

 public function getName(){
 return $this->firstname;
 }

 public function getDateOfBirth(){
 return $this->dateOfBirth->format(‘c’);
 }
}

class Lion {
private $color = '';

public function __construct($color) {
$this->color = $color ;

}

public function form() {
printf("%s Lion!\n”, $this->color);

 }
}

class Voltron {

public function __construct($black_lion) {
$this->head_torso = $black_lion;

}

public function form(){
$this->left_leg->form();
$this->right_leg->form();

$this->left_arm->form();
$this->right_arm->form();

$this->head_torso->form();
}

}

POLYMORPHISM
from the Greek, meaning “many forms”

TYPE OF POLYMORPHISM

• Sub-Type polymorphism aka inheritance

• function overriding - redefined by subclass

• function overloading - not supported by PHP

FUNCTION OVERLOADING

• two methods w/same name but different
signatures

• Java does this. Not supported by PHP.

class Person{

public function setName($first, $last){
$this->firstName = $first;
$this->lastName = $last;

}

public function setName($fullname){
list($first, $last) = explode(‘ ‘, $fullname);
$this->firstName = $first;
$this->lastName = $last;

}

}

INTERFACES

• use implements not extends

• Have no functionality - just names and parameters

• Useful across unrelated classes.

interface iOpenClose
{
 public function open();
 public function close();
}

class File implements iOpenClose {

}

class Door implements iOpenClose {

}

interface iDestroyHumanity
{
 public function destroy();
}

class Cybermen implements iDestroyHumanity {

}

class Dalek implements iDestroyHumanity {

}

WRAPPING UP

4 PRINCIPLES OF OOP

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

FURTHER STUDY
• Design Patterns

• Principles of S.O.L.I.D.

• Collections

• Iterators

• Exceptions

S.O.L.I.D. PRINCIPLES
• Single Responsibility Principle

• Open Closed Principle

• Lisksov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

HOMEWORK

• Create a WordPress Widget for a sidebar

• Create a class to parse an RSS feed

• Create a WordPress Plugin using OOP

FUN STUFF

• Form Voltron https://www.youtube.com/watch?
v=tZZv5Z2Iz_s

• Battlestar Galactica

• Doctor Who, S01 E06 - “Dalek”

• Doctor Who, S02 E05 - “Rise of the Cybermen”

https://www.youtube.com/watch?v=tZZv5Z2Iz_s

THANK YOU

• Andrew Woods

• @awoods on Twitter

• http://andrewwoods.net

http://andrewwoods.net

