Security in MySQL

Abstract
This is the MySQL Security Guide extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2021-10-22 (revision: 71169)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
ST U PP PP 1
2 GeNneral SECUNLY ISSUES .. .euiiieiiit ettt e e et e e et e e e e s 3
2.1 SECUItY GUIARINES ... ittt e et e e e et e e eeaaaeeees 3

2.2 Keeping PasSSWOITUS SECUIEcccuuuuiiiiiiieteti ettt ettt ettt ettt e et e e e et e e e eneas 4
2.2.1 End-User Guidelines for Password SECUILYcccuuuiieiiriiiieiiiiieeiie e 4

2.2.2 Administrator Guidelines for Password SECUILYccc.uivveiiiiinieiiiiineeee e 6

2.2.3 PasSSWOIdS and LOGGINGceeuuuueeertietitiieeteii ettt e et e et e e et e e e e e eana s 6

2.3 Making MySQL Secure Against ATACKEISuiiiiiiiiiie e 7

2.4 Security-Related mysqgld Options and Variables ..o, 9

2.5 How to Run MySQL as & NOIMAI USEIcoiiiiiiiiiiiiieecei e 9

2.6 Security Considerations for LOAD DATA LOCALccoiiiiiiiiiiii e 10

2.7 Client Programming Security GUIJEINEScouuiiiiiiiiiiii e 13

3 Postinstallation Setup and TESHNGuieiiiiiieiiii e e e 17
3.1 Initializing the Data DIr€CIOIYiiiiiiiieeieii ettt et e e eeaans 17

3.2 SHAIMING ThE SEIVEL ...ttt ettt ettt e e e e et e e e era e eeees 22
3.2.1 Troubleshooting Problems Starting the MySQL Servercccccovevviviiieiiiiinnenennnnn. 23

3.3 TESHNG ThE SEIVET ..ot ettt e et e e 25

3.4 Securing the Initial MYSQL ACCOUNTcoutuiieiiitie e 27

3.5 Starting and Stopping MySQL AutomMatiCallycccuuiiiiiiiiiiiiiii e 29

4 Access Control and Account ManNAgEIMENTiiiiiiiieiiii et e e e e e e eees 31
4.1 Account User Names and PaSSWOITSuieiruuunieiiiiieieiiiae et e et eeei e eenni e eeeens 32

4.2 Privileges Provided DY MYSQL ...ttt 34

4.3 Grant TaDIES ... 51

4.4 Specifying ACCOUNT NAIMESciiiiii ittt e et e e e e et et e e ena e eeees 61

4.5 SpecCifying ROIE NAIMES ... e 63

4.6 Access Control, Stage 1: Connection Verificationcooeuiiiiiiiiiiiiiiiieci e 63

4.7 Access Control, Stage 2: Request VerifiCationcccooiieiiiiiiiiiiiiece e 67

4.8 Adding Accounts, Assigning Privileges, and Dropping ACCOUNEScccuuuiveiiiiiieeeeiinnneenns 69

4.9 RESEIVEA ACCOUNTSiiiiii ettt ettt ettt ettt et et e e et e ettt e e et e e e e e e e ena s 72
4.10 USING ROIES ...ttt et 72
o R AN oot 10 | G OF= (=T o] £ 1= SR 79

4.12 Privilege Restriction Using Partial REVOKESccooiiiiiiiiiiiiciiiece e 82
4.13 When Privilege Changes Take EffeCtcoouuiiiiiiii e 88
4.14 AsSIgNINg ACCOUNT PASSWOITSc.uuiiiiiiiiiieiiiii ettt 89

4.15 PassWOrd Man@QEMIENTcoeuuuieieii ettt ettt e e e nb e e e na e eeeaas 90
4.16 Server Handling of EXpired PasSWOITSciiiiiuiiiiiiiiieeiei e 101
4.17 Pluggable AUtNENTICALIONoiieiii e e 103
4.18 Multifactor AUtNENTICALIONuiiiiii e e e 108

4,19 PrOXY USEIS ...iiiiiiiiiieiii ettt ettt ettt et ettt e 112
4.20 ACCOUNT LOCKING ..tueteitit ettt ettt et e et e e b 119
4.21 Setting AcCOUNt RESOUICE LIMILScoivtiiiiiiiiee ittt 120
4.22 Troubleshooting Problems Connecting to MySQLcoouuiiiiiiiiiiiiiiiii e 122

4.23 SQL-Based Account ACtiVity AUCITINGccuuuieiiiiiieiiiiie e 126

5 Using ENCrypted CONNECHIONSuiiiiiieieii ettt ettt ettt e e et e e e e ena s 129
5.1 Configuring MySQL to Use Encrypted CONNECLIONSoveviiiiiieiiiiiieeeiiiie e 130

5.2 Encrypted Connection TLS Protocols and Ciphersooviiiiiiieiiiiinie e 136

5.3 Creating SSL and RSA Certificates and KeYSccouuiiiiiiiiiiiiiiiieeeei e 144
5.3.1 Creating SSL and RSA Certificates and Keys using MySQLccccooiveiiiinnenes 144

5.3.2 Creating SSL Certificates and Keys UsSing 0pensslccoooveiiiiiiiiiieiiiiineneennn, 146

5.3.3 Creating RSA Keys USING OPENSSIciiiiiieiiiii e 151

5.4 Connecting to MySQL Remotely from Windows with SSHccccooiiiiiiiiiii, 152

6 Security Components and PIUGINScooouuiiiiiiiieiiii et et e et e et eeeene e 153
6.1 Authentication PIUGQINSoiunii e e e e e e eean e aees 154
6.1.1 Native Pluggable AuthentiCationoooiuiiiiiiii e e 154

Security in MySQL

6.1.2 Caching SHA-2 Pluggable Authenticationcccoooviiiiiiiiii e, 155
6.1.3 SHA-256 Pluggable AuthentiCationccocouieiiiiiiiii e e 160
6.1.4 Client-Side Cleartext Pluggable Authenticationcccooeviiiiiiiiiii i, 164
6.1.5 PAM Pluggable AUthentiCationcoeiuiioiiii e e 165
6.1.6 Windows Pluggable AuthentiCationcccouieiiiiiiiiiei e, 176
6.1.7 LDAP Pluggable AUthentiCationcoiiiiiiiiii i e 180
6.1.8 Kerberos Pluggable AuthentiCationcocouiieiiiiiiiii e, 200
6.1.9 No-Login Pluggable AuthentiCationcocouieiiiiiiiii i e, 210
6.1.10 Socket Peer-Credential Pluggable Authenticationccccociiveiiiiiiiineeneen, 213
6.1.11 FIDO Pluggable AUthentiCationc.couiiiiiiiiiii e e 215
6.1.12 Test Pluggable AUthentiCationcc.oeeiiiiiiiiii i e e 220
6.1.13 Pluggable Authentication System Variablescccooiiiiiiiiiin i 222
6.2 The Connection-Control PIUQINScouuiiiiiiiiie e e e e e e e e e 240
6.2.1 Connection-Control Plugin Installationcccoiiiiiiiiii e, 240
6.2.2 Connection-Control System and Status Variablescccoooiviiiiiinies 244
6.3 The Password Validation COMPONENTiiiiiiiiiieir e e e e e 246
6.3.1 Password Validation Component Installation and Uninstallation 248
6.3.2 Password Validation Options and Variablesccccocoiiiiiiiiiii e 249
6.3.3 Transitioning to the Password Validation Componentc.cccoveviiieviinieeieeeinnnns 257
6.4 The MYSQL KEYIING .uuuiiiiiiiiiiei et e e e e e e e e e et e e et e e et e e e eeaens 258
6.4.1 Keyring Components Versus Keyring PIUGINScccoveiiiiiiiiiiii e, 259
6.4.2 Keyring Component INStallationcoovvuiiiiiiiiii e 260
6.4.3 Keyring Plugin INStallationcooiiiiiiii e e e e 262
6.4.4 Using the component_keyring_file File-Based Keyring Component 264
6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring
L000] 0] oTo] 1= o | NPT 266
6.4.6 Using the keyring_file File-Based Keyring Pluginccoooviiiiiiiiiiinecin e, 268
6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin 269
6.4.8 Using the keyring_okv KMIP PIUGINcoiiiiiiiiiii e 270
6.4.9 Using the keyring_aws Amazon Web Services Keyring Pluginccoooee. 275
6.4.10 Using the HashiCorp Vault Keyring PIugincooooiiiiiiiii e, 278
6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Pluginc..ccoeeeenns 285
6.4.12 Supported Keyring Key Types and Lengthscccccooiviiiiiiiiiiiien e, 287
6.4.13 Migrating Keys Between Keyring KeYStOrescoocvuvveiiiieiiiieeiineeiiieeiieeeieeennn 289
6.4.14 General-Purpose Keyring Key-Management FUNCLIONSccooevvveviiiieeinnennnnn. 295
6.4.15 Plugin-Specific Keyring Key-Management FUNCtionsccccccoevviiiieiiineeinnens 302
6.4.16 Keyring MEtAOAtacccuuiiiiiiiiie i e et e e e e e e e e e e e 303
6.4.17 Keyring Command OPLiONSveiuuieiiiieiiiiie e e e e e e e s e e e e eeaneeee 304
6.4.18 Keyring System Variablesooiiiiiiiiiiii e 306
6.5 MySQL ENterpris@ AUILuiiiiiiiiii e e e e e e e e e e eeaens 321
6.5.1 Elements of MySQL Enterprise AUditcoovuiiiiiiiiiiieie e 321
6.5.2 Installing or Uninstalling MySQL Enterprise Auditc.coiviiiiiiiiiiiiiiceeeiis 322
6.5.3 MySQL Enterprise Audit Security Considerationsccoeevuiveeiiieviiiieeiieeeieennn, 324
6.5.4 Audit Log File FOrMAatSccoouiiiiiii e e 324
6.5.5 Configuring Audit Logging CharacteriStiCsc.oviviiiiiiiieiii e 344
6.5.6 Reading Audit LOg FilESoiiiiii e 352
6.5.7 Audit LOg FIlEIINGuniieiii e e e 356
6.5.8 Writing Audit Log Filter Definitionscooiiiiiiiii e 360
6.5.9 Legacy Mode Audit LOg FIltEING ...ccouevunieiiii e 378
6.5.10 Audit LOG REFEIENCEuuiiiiiice e 380
6.5.11 Audit LOG RESIICHONScivviiiii i e e e e e e e e e e eaaes 400
6.6 The Audit Message COMPONENTuiiiii i e e e e e e e e et e e e eaes 400
6.7 MySQL ENnterprise FIreWallooiiiiiiiiii e e e 403
6.7.1 Elements of MySQL Enterprise Firewallcccooiiiiiiiiiiiiiiie e 404
6.7.2 Installing or Uninstalling MySQL Enterprise Firewallcccoooiiiiiiiiiiniinnnn, 405
6.7.3 Using MySQL Enterprise Firewallcccooiiiiiiiiiiii e 408
6.7.4 MySQL Enterprise Firewall REfErencec.coveiviiiiiiiiiiii e, 421

A MYSQL 8.0 FAQ: SECUMLY «..vveveveeeeeeeeeeeeseeeeeeeeeees e e e eet et s e e et et e e ee e ettt e e e et es e eeenenon 433

Preface and Legal Notices

This is the MySQL Security Guide extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual

for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation™ pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Vi

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 Security

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Chapter 2, General Security Issues.

Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Chapter 3, Postinstallation Setup and Testing.

Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Chapter 4, Access Control and Account Management.

The features offered by security-related plugins. See Chapter 6, Security Components and Plugins.

Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Backup and Recovery.

Note

Several topics in this chapter are also addressed in the Secure Deployment
Guide, which provides procedures for deploying a generic binary distribution
of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

https://dev.mysql.com/doc/refman/8.0/en/backup-and-recovery.html
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

Chapter 2 General Security Issues

Table of Contents

2.1 SECUINLY GUIAEINES ...uuiiii it e e e e e et e e e e et e e et e e et e e st e eaaeeannaees 3
2.2 Keeping PasSWOIUS SECUIEcccuuiiiiiiiiiii et e e e e e e e e e e e e e e et e e et e e e et e e et e eeanaeenes 4

2.2.1 End-User Guidelines for Password SECUILYccccuiiiiiiiiiiiiiiii e e e 4

2.2.2 Administrator Guidelines for Password SECUIILYcccuiiiiiiiiiiieiiie e e e 6

2.2.3 PassSWOrds and LOGQING ...ccuueiiuiiiiiiiii e e e e e e e e e e e e e e e e e et e e st e e et eaanes 6
2.3 Making MySQL Secure Against AHACKEISoiiiiiiiii e 7
2.4 Security-Related mysqld Options and Variablescccooiiiiiiiiiii e, 9
2.5 How to Run MySQL as @ NOIMal USETcouuiiiiiiiiiii e e e e e e e e e et eeaaeeees 9
2.6 Security Considerations for LOAD DATA LOCALuoiiiiiii it 10
2.7 Client Programming Security GUIAEINESc.uiiiiiiiiiii e e 13

This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Chapter 3, Postinstallation Setup and Testing.

For answers to some questions that are often asked about MySQL Server security issues, see
Appendix A, MySQL 8.0 FAQ: Security.

2.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

» Do not ever give anyone (except MySQL r oot accounts) access to the user tablein the
nysql system database! This is critical.

» Learn how the MySQL access privilege system works (see Chapter 4, Access Control and Account
Management). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant
more privileges than necessary. Never grant privileges to all hosts.

Checklist:

e Trynmysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL r oot user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a r oot password. See Section 3.4, “Securing the Initial MySQL Account”.

* Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

» Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2() or some other one-
way hashing function and store the hash value.

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_sha2

Keeping Passwords Secure

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

» Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word
“fish” but typed one key to the left on a standard QWERTY keyboard. Another method is to use
a password that is taken from the first characters of each word in a sentence (for example, “Four
score and seven years ago” results in a password of “Fsasya”). The password is easy to remember
and type, but difficult to guess for someone who does not know the sentence. In this case, you can
additionally substitute digits for the number words to obtain the phrase “4 score and 7 years ago”,
yielding the password “4sa7ya” which is even more difficult to guess.

 Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

e Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check
whether your MySQL port is open, try the following command from some remote machine, where
server _host is the host name or IP address of the host on which your MySQL server runs:

$> tel net server_host 3306

If t el net hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

» Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 2.7, “Client Programming Security
Guidelines”.

» Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

» Learn to use the t cpdunp and st ri ngs utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

$> tcpdump -1 -i ethO -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.
Warning
If you do not see cleartext data, this does not always mean that the

information actually is encrypted. If you need high security, consult with a
security expert.

2.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. In
addition, the val i dat e_passwor d plugin can be used to enforce a policy on acceptable password.
See Section 6.3, “The Password Validation Component”.

2.2.1 End-User Guidelines for Password Security

End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

Use the nysql _confi g_edi t or utility, which enables you to store authentication credentials
in an encrypted login path file named . nyl ogi n. cnf . The file can be read later by MySQL
client programs to obtain authentication credentials for connecting to MySQL Server. See
mysql_config_editor — MySQL Configuration Utility.

Use a - - passwor d=passwor d or - ppasswor d option on the command line. For example:

$> nysqgl -u francis -pfrank db_nanme
Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by

other users to display command lines. MySQL clients typically overwrite

the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is
visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others
are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

Use the - - passwor d or - p option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

$> nysql -u francis -p db_nane
Ent er passmrd: * ok kK kK kK

The * characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the. ny. cnf file in your home directory:

[client]
passwor d=passwor d

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

$> chnod 600 . my. cnf

To name from the command line a specific option file containing the password, use the - -
defaul ts-file=file_namne option, where fi | e_nane is the full path name to the file. For
example:

$> nysql --defaul ts-file=/hone/francis/nysql-opts

https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file

Administrator Guidelines for Password Security

Using Option Files, discusses option files in more detail.

On Unix, the mysql client writes a record of executed statements to a history file (see mysqgl Client
Logging). By default, this file is named . mysql _hi st ory and is created in your home directory.
Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER
USER, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the . ny. cnf file.

If your command interpreter maintains a history, any file in which the commands are saved contains
MySQL passwords entered on the command line. For example, bash uses ~/ . bash_hi st ory. Any
such file should have a restrictive access mode.

2.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the nysql . user system table. Access to this table
should never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 4.15, “Password
Management”, and Section 4.16, “Server Handling of Expired Passwords”.

The val i dat e_passwor d plugin can be used to enforce a policy on acceptable password. See
Section 6.3, “The Password Validation Component”.

A user who has access to modify the plugin directory (the value of the pl ugi n_di r system variable)
or the my. cnf file that specifies the plugin directory location can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 2.2.3,
“Passwords and Logging”.

2.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT and SET
PASSWORD. If such statements are logged by the MySQL server as written, passwords in them become
visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... |DENTIFIED BY ...

ALTER USER ... |DENTIFIED BY ...

SET PASSVORD . . .

START SLAVE ... PASSWORD = ...

START REPLICA ... PASSWORD = ...

CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWRD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the
general query log, slow query log, and binary log. Rewriting does not apply to other statements.

In particular, | NSERT or UPDATE statements for the mysql . user system table that refer to literal
passwords are logged as is, so you should avoid such statements. (Direct modification of grant tables
is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the
- - 1 og- r aw option. For security reasons, this option is not recommended for production use. For
diagnostic purposes, it may be useful to see the exact text of statements as received by the server.

By default, contents of audit log files produced by the audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, audit log files

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-logging.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-logging.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw

Making MySQL Secure Against Attackers

should be written to a directory accessible only to the MySQL server and to users with a legitimate
reason to view the log. See Section 6.5.3, “MySQL Enterprise Audit Security Considerations”.

Statements received by the server may be rewritten if a query rewrite plugin is installed (see Query
Rewrite Plugins). In this case, the - - | og- r aw option affects statement logging as follows:

» Without - - | og- r aw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

* With - - | og- r aw, the server logs the original statement as received.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the - -

| og- r aw option, bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax
that expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously
for such syntax, the password is logged as given, without rewriting.

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access
to those tables only to the database administrator.

Replicas store the password for the replication source server in their connection metadata repository,
which by default is a table in the mnysql database named sl ave nast er i nf 0. The use of a file

in the data directory for the connection metadata repository is now deprecated, but still possible (see
Relay Log and Replication Metadata Repositories). Ensure that the connection metadata repository
can be accessed only by the database administrator. An alternative to storing the password in the
connection metadata repository is to use the START REPLI CA (or before MySQL 8.0.22, START
SLAVE) or START GROUP_REPLI CATI ON statement to specify credentials for connecting to the
source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

2.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection.

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network,
and you are concerned about this, you can use the compressed protocol to make traffic much more
difficult to decipher. You can also use MySQL's internal SSL support to make the connection even
more secure. See Chapter 5, Using Encrypted Connections. Alternatively, use SSH to get an encrypted
TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH
client at http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients
at http://en.wikipedia.org/wiki/Comparison_of_SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

» Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the nmysql program
to connect as any other person simply by invoking it as nysql -u ot her _user db_nane if
ot her _user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 4.14, “Assigning Account
Passwords”.

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/replica-logs.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Making MySQL Secure Against Attackers

» Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running nysql d.

» Never run the MySQL server as the Unix r oot user. This is extremely dangerous, because any
user with the FI LE privilege is able to cause the server to create files as r oot (for example,
~root /. bashr c). To prevent this, nysql d refuses to run as r oot unless that is specified explicitly
using the - - user =r oot option.

nysql d can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named nysql to make everything even more secure. Use this account only
for administering MySQL. To start nysql d as a different Unix user, add a user option that specifies
the user name in the [nysql d] group of the my. cnf option file where you specify server options.
For example:

[nysal d]
user =nysql

This causes the server to start as the designated user whether you start it manually or by using
nysql d_saf e or nysql . server . For more details, see Section 2.5, “How to Run MySQL as a
Normal User”.

Running nysql d as a Unix user other than r oot does not mean that you need to change the r oot
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

» Do not grant the FI LE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the nysql d daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FI LE-
privilege operations a bit safer, files generated with SELECT ... | NTO OUTFI LE do not overwrite
existing files and are writable by everyone.

The FI LE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATAto load / et ¢/ passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure fil e priv systemtoa
specific directory. See Server System Variables.

» Encrypt binary log files and relay log files. Encryption helps to protect these files and the
potentially sensitive data contained in them from being misused by outside attackers, and also
from unauthorized viewing by users of the operating system where they are stored. You enable
encryption on a MySQL server by setting the bi nl og_encr ypti on system variable to ON. For more
information, see Encrypting Binary Log Files and Relay Log Files.

» Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
nysql adm n processli st and SHON PROCESSLI ST shows the text of any statements currently
being executed, so any user who is permitted to see the server process list might be able to see
statements issued by other users.

nysql d reserves an extra connection for users who have the CONNECTI ON_ADM N or SUPER
privilege, so that a MySQL r oot user can log in and check server activity even if all normal
connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

» Do not permit the use of symlinks to tables. (This capability can be disabled with the - - ski p-
symnbol i c- | i nks option.) This is especially important if you run nysql d as r oot , because anyone
that has write access to the server's data directory then could delete any file in the system! See
Using Symbolic Links for Myl[SAM Tables on Unix.

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/8.0/en/symbolic-links-to-tables.html

Security-Related mysgld Options and Variables

 Stored programs and views should be written using the security guidelines discussed in Stored
Object Access Control.

« If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

« If you want to restrict the number of connections permitted to a single account, you can do so by
setting the max_user _connect i ons variable in mnysql d. The CREATE USER and ALTER USER
statements also support resource control options for limiting the extent of server use permitted to an
account. See CREATE USER Statement, and ALTER USER Statement.

* If the plugin directory is writable by the server, it may be possible for a user to write executable
code to a file in the directory using SELECT ... | NTO DUMPFI LE. This can be prevented by
making pl ugi n_di r read only to the server or by setting secure_fil e _pri v to a directory where
SELECT writes can be made safely.

2.4 Security-Related mysqld Options and Variables

The following table shows mysql d options and system variables that affect security. For descriptions of
each of these, see Server Command Options, and Server System Variables.

Table 2.1 Security Option and Variable Summary

Name Cmd-Line Option File |System Var |Status Var |Var Scope |Dynamic
allow- Yes Yes

suspicious-

udfs

automatic_sp | vegleges Yes Yes Global Yes
chroot Yes Yes

local_infile Yes Yes Yes Global Yes
safe-user- Yes Yes

create

secure_file_priYes Yes Yes Global No
skip-grant- Yes Yes

tables

skip_name_restbse Yes Yes Global No
skip_networkinges Yes Yes Global No
skip_show_dat#base Yes Yes Global No

2.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Linux, for installations performed using a MySQL repository or RPM packages, the MySQL server
mysql d should be started by the local mysql operating system user. Starting by another operating
system user is not supported by the init scripts that are included as part of the MySQL repositories.

On Unix (or Linux for installations performed using t ar . gz packages) , the MySQL server nysql d can
be started and run by any user. However, you should avoid running the server as the Unix r oot user
for security reasons. To change nysql d to run as a normal unprivileged Unix user user _nane, you
must do the following:

1. Stop the server if it is running (use nysql adn n shut down).

2. Change the database directories and files so that user nane has privileges to read and write files
in them (you might need to do this as the Unix r oot user):

https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_automatic_sp_privileges
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_chroot
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-show-database

Security Considerations for LOAD DATA LOCAL

$> chown -R user_nane /path/to/ mysqgl/datadir
If you do not do this, the server cannot access databases or tables when it runs as user _nane.

If directories or files within the MySQL data directory are symbolic links, chown - R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user _namne. Another alternative is to start nysql d as the Unix r oot user
and use the - - user =user _nane option. nysql d starts, then switches to run as the Unix user
user _namne before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysql d] group of the / et ¢/ ny. cnf option file or the ny. cnf
option file in the server's data directory. For example:

[nysql d]
user =user _name

If your Unix machine itself is not secured, you should assign passwords to the MySQL r oot account
in the grant tables. Otherwise, any user with a login account on that machine can run the nysql client
with a - - user =r oot option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 3.4, “Securing the Initial MySQL Account”.

2.6 Security Considerations for LOAD DATA LOCAL

The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

» Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer
of the file from the client host to the server host is initiated by the MySQL server, which tells the
client the file named in the statement. In theory, a patched server could tell the client program to
transfer a file of the server's choosing rather than the file named in the statement. Such a server
could access any file on the client host to which the client user has read access. (A patched server
could in fact reply with a file-transfer request to any statement, not just LOAD DATA LOCAL, so a
more fundamental issue is that clients should not connect to untrusted servers.)

» In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to
the Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the
server identity by connecting using the - - ssl - node=VERI FY_| DENTI TY option and the appropriate
CA certificate.

To avoid LOAD DATA issues, clients should avoid using LOCAL unless proper client-side precautions
have been taken.

For control over local data loading, MySQL permits the capability to be enabled or disabled. In addition,
as of MySQL 8.0.21, MySQL enables clients to restrict local data loading operations to files located in a
designated directory.

» Enabling or Disabling Local Data Loading Capability

» Restricting Files Permitted for Local Data Loading

10

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Enabling or Disabling Local Data Loading Capability

e MySQL Shell and Local Data Loading

Enabling or Disabling Local Data Loading Capability

Adminstrators and applications can configure whether to permit local data loading as follows:

* On the server side:

The | ocal _i nfil e system variable controls server-side LOCAL capability. Depending on the
| ocal i nfil e setting, the server refuses or permits local data loading by clients that request
local data loading.

By default, | ocal _i nfil e is disabled. (This is a change from previous versions of MySQL.)
To cause the server to refuse or permit LOAD DATA LOCAL statements explicitly (regardless
of how client programs and libraries are configured at build time or runtime), start mysqgl d with
| ocal _infile disabled or enabled. | ocal i nfil e can also be set at runtime.

¢ On the client side:

The ENABLED LOCAL | NFI LE CVake option controls the compiled-in default LOCAL capability
for the MySQL client library (see MySQL Source-Configuration Options). Clients that make no
explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED LOCAL | NFI LE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with

ENABLED LOCAL | NFI LE disabled. If you compile MySQL from source, configure it with
ENABLED LOCAL | NFI LE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled.

For client programs that use the C API, local data loading capability is determined by the

default compiled into the MySQL client library. To enable or disable it explicitly, invoke the

mysqgl _options() C API function to disable or enable the MYSQL_OPT_LOCAL_| NFI LE option.
See mysql_options().

For the nysql client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the - -1 ocal -i nfil e=0 or--1 ocal -
i nfile[=1] option.

For the nysql i nport client, local data loading is not used by default. To disable or enable it
explicitly, use the - - | ocal =0 or - - | ocal [=1] option.

If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [cl i ent] group
from option files, you can add a | ocal -i nfi | e option setting to that group. To prevent problems
for programs that do not understand this option, specify it using the | cose- prefix:

[client]
| oose-1ocal -infil e=0

or:

[client]
| oose-local -infile=1

In all cases, successful use of a LOCAL load operation by a client also requires that the server
permits local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 3950 (42000): Loading |local data is disabled; this nust be
enabl ed on both the client and server side

11

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_local
https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_local
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/option-modifiers.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Restricting Files Permitted for Local Data Loading

Restricting Files Permitted for Local Data Loading

As of MySQL 8.0.21, the MySQL client library enables client applications to restrict local data loading
operations to files located in a designated directory. Certain MySQL client programs take advantage of
this capability.

Client programs that use the C API can control which files to permit for load data loading using
the MYSQL_OPT_LOCAL_| NFI LE and MYSQL_COPT_LOAD_DATA LOCAL_DI R options of the
nysgl _options() C API function (see mysql_options()).

The effect of MYSQL_OPT_LOAD DATA LOCAL DI R depends on whether LOCAL data loading is
enabled or disabled:

» If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly enabling
MYSQL_OPT_LOCAL_I NFI LE, the MYSQL_OPT_LQOAD_DATA LOCAL_DI R option has no effect.

 If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYySQL_OPT_LOCAL_| NFI LE, the \vySQL_OPT_LOAD DATA LOCAL DI R option
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD_DATA _LOCAL_DI Rvalue is as follows:

« If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

« If the value is a directory path name, LOCAL data loading is permitted but restricted to files located
in the named directory. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system.

MySQL client programs use the preceding nysql _opti ons() options as follows:

» The nysqgl clienthas a- -1 oad-data-| ocal -dir option that takes a directory path or an empty
string. mysql uses the option value to set the MYSQL_OPT_LOAD DATA LOCAL_DI R option (with an
empty string setting the value to the null pointer). The effect of - - | oad- dat a- | ocal - di r depends
on whether LOCAL data loading is enabled:

» If LOCAL data loading is enabled, either by default in the MySQL client library or by specifying - -
local -infile[=1],the--| oad-data-I| ocal -dir option is ignored.

e If LOCAL data loading is disabled, either by default in the MySQL client library or by specifying - -
| ocal -infile=0,the--I|oad-data-Iocal -dir option applies.

When - - | oad- dat a- | ocal - di r applies, the option value designates the directory in which local
data files must be located. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system. If the option
value is the empty string, it names no directory, with the result that no files are permitted for local
data loading.

e nysqlinport sets MYSQL_OPT_LOAD DATA LOCAL_DI Rfor each file that it processes so that the
directory containing the file is the permitted local loading directory.

» For data loading operations corresponding to LOAD DATA statements, nysql bi nl og extracts the
files from the binary log events, writes them as temporary files to the local file system, and writes
LOAD DATA LOCAL statements to cause the files to be loaded. By default, mysqgl bi nl og writes
these temporary files to an operating system-specific directory. The - - | ocal - | oad option can be
used to explicitly specify the directory where nmysql bi nl og should prepare local temporary files.

Because other processes can write files to the default system-specific directory, it is advisable to
specify the - - | ocal - | oad option to nysql bi nl og to designate a different directory for data files,
and then designate that same directory by specifying the - - | oad- dat a- | ocal - di r option to
mysql when processing the output from nmysql bi nl og.

12

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_local-load
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_local-load
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir

MySQL Shell and Local Data Loading

MySQL Shell and Local Data Loading

MySQL Shell provides a number of utilities to dump tables, schemas, or server instances and load
them into other instances. When you use these utilities to handle the data, MySQL Shell provides
additional functions such as input preprocessing, multithreaded parallel loading, file compression and
decompression, and handling access to Oracle Cloud Infrastructure Object Storage buckets. To get
the best functionality, always use the most recent version available of MySQL Shell's dump and dump

loading utilities.

MySQL Shell's data upload utilities use LOAD DATA LOCAL | NFI LE statements to upload data, so
thel ocal i nfil e system variable must be set to ON on the target server instance. You can do this
before uploading the data, and remove it again afterwards. The utilities handle the file transfer requests
safely to deal with the security considerations discussed in this topic.

MySQL Shell includes these dump and dump loading utilities:

Table export utility
util.exportTabl e()

Parallel table import utility
util.inport Tabl e()

Instance dump utility
util.dunpl nstance(),
schema dump utility
util.dunpSchenmas(),
and table dump utility
util.dunpTabl es()

Dump loading utility
util .l oadDunmp()

Exports a MySQL relational table into a data file, which can be
uploaded to a MySQL server instance using MySQL Shell's parallel
table import utility, imported to a different application, or used as

a logical backup. The utility has preset options and customization
options to produce different output formats.

Inports a data file to a MySQL relational table. The data file can

be the output from MySQL Shell's table export utility or another
format supported by the utility's preset and customization options.
The utility can carry out input preprocessing before adding the data
to the table. It can accept multiple data files to merge into a single
relational table, and automatically decompresses compressed files.

Export an instance, schema, or table to a set of dump files, which
can then be uploaded to a MySQL instance using MySQL Shell's
dump loading utility. The utilities provide Oracle Cloud Infrastructure
Object Storage streaming, MySQL Database Service compatibility
checks and madifications, and the ability to carry out a dry run to
identify issues before proceeding with the dump.

Import dump files created using MySQL Shell's instance, schema,
or table dump utility into a MySQL Database Service DB System or
a MySQL Server instance. The utility manages the upload process
and provides data streaming from remote storage, parallel loading
of tables or table chunks, progress state tracking, resume and reset
capability, and the option of concurrent loading while the dump is
still taking place. MySQL Shell's parallel table import utility can be
used in combination with the dump loading utility to modify data
before uploading it to the target MySQL instance.

For details of the utilities, see MySQL Shell Utilities.

2.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

» Handle External Data Properly

» Handle MySQL Error Messages

Handle External Data Properly

Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLS, or whatever application

13

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html

Handle External Data Properly

you have built. Be sure that your application remains secure if a user tries to perform SQL injection

by entering something like ; DROP DATABASE nysql ; into a form. This is an extreme example, but
large security leaks and data loss might occur as a result of hackers using similar techniques, if you do
not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM t abl e WHERE | D=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM t abl e WHERE | D=234 OR 1=1. As a result, the server retrieves every row
in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM t abl e WHERE | D=' 234" . If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

» Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Server SQL Modes.

» Try to enter single and double quotation marks (and ") in all of your Web forms. If you get any kind
of MySQL error, investigate the problem right away.

* Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

» Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

« Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

» Check the size of data before passing it to MySQL.

» Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

* MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Prepared Statements.

 MySQL C API: Use the nysql real escape_string_quote() APIcall. Alternatively, use the C
API prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

* MySQL++: Use the escape and quot e modifiers for query streams.

» PHP: Use either the mysql i or pdo_mysql extensions, and not the older ext / mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also Choosing an API.

If the older ext / nysql extension must be used, then for escaping use the
nysql real escape_string quote() function and not nysql escape_string() or

14

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/apis-php-mysqlinfo.api.choosing.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-escape-string.html

Handle MySQL Error Messages Properly

addsl ashes() because only nysql real escape_string_quote() is character set-aware;
the other functions can be “bypassed” when using (invalid) multibyte character sets.

» Perl DBI: Use placeholders or the quot e() method.
* Ruby DBI: Use placeholders or the quot e() method.
» Java JDBC: Use a Pr epar edSt at enent object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

It is the application's responsibility to intercept errors that occur as a result of executing SQL
statements with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in
debugging MySQL using applications. It would be nearly impossible, for example, to debug a common
10-way join SELECT statement without providing information regarding which databases, tables, and
other objects are involved with problems. Thus, MySQL errors must sometimes necessarily contain
references to the names of those objects.

A simple but insecure approach for an application when it receives such an error from MySQL is
to intercept it and display it verbatim to the client. However, revealing error information is a known
application vulnerability type (CWE-209) and the application developer must ensure the application
does not have this vulnerability.

For example, an application that displays a message such as this exposes both a database name and
a table name to clients, which is information a client might attempt to exploit:

ERROR 1146 (42S02): Tabl e 'nydb. nytabl e’ doesn't exist

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to
trusted personnel. The application can return something more generic such as “Internal Error” to the
user.

15

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
http://cwe.mitre.org/data/definitions/209.html

16

Chapter 3 Postinstallation Setup and Testing

Table of Contents

3.1 Initializing the Data DIFECIOIYiieiiiiiiie ettt e e et e e e eaa e eees 17
3.2 StArtiNg the SEIVET ... ettt et e e e e e 22

3.2.1 Troubleshooting Problems Starting the MySQL Serverccooeveiiiiiiiiiiniiieiieeeies 23
3.3 TESHNG the SEIVEN ...t et et e e et e e e e et e e e e eaaaaees 25
3.4 Securing the Initial MySQL ACCOUNT ...ttt e e e e e eanas 27
3.5 Starting and Stopping MySQL AutomatiCallycoouiiiiiiii e 29

This section discusses tasks that you should perform after installing MySQL:

« If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

« Windows installation operations performed by MySQL Installer.
« Installation on Linux using a server RPM or Debian distribution from Oracle.

« Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

« Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These
include installation from generic binary and source distributions on Unix and Unix-like system, and
installation from a ZIP Archive package on Windows. For instructions, see Section 3.1, “Initializing
the Data Directory”.

 Start the server and make sure that it can be accessed. For instructions, see Section 3.2, “Starting
the Server”, and Section 3.3, “Testing the Server”.

» Assign passwords to the initial r oot account in the grant tables, if that was not already done during
data directory initialization. Passwords prevent unauthorized access to the MySQL server. For
instructions, see Section 3.4, “Securing the Initial MySQL Account”.

» Optionally, arrange for the server to start and stop automatically when your system starts and stops.
For instructions, see Section 3.5, “Starting and Stopping MySQL Automatically”.

» Optionally, populate time zone tables to enable recognition of named time zones. For instructions,
see MySQL Server Time Zone Support.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Chapter 4, Access Control and Account Management.

3.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the nysql
system schema:

» For some MySQL installation methods, data directory initialization is automatic, as described in
Chapter 3, Postinstallation Setup and Testing.

» For other installation methods, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like systems, and
installation from a ZIP Archive package on Windows.

17

https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html

Data Directory Initialization Overview

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 3.3, “Testing the Server”.

Note

In MySQL 8.0, the default authentication plugin has changed from

nmysql _native_ passwordtocachi ng_sha2 password,

and the ' root' @I ocal host' administrative account uses

cachi ng_sha2_passwor d by default. If you prefer that the r oot account use
the previous default authentication plugin (mysql _nati ve_passwor d), see
caching_sha2_password and the root Administrative Account.

Data Directory Initialization Overview
Data Directory Initialization Procedure
Server Actions During Data Directory Initialization

Post-Initialization root Password Assignment

Data Directory Initialization Overview

In the examples shown here, the server is intended to run under the user ID of the mysql login
account. Either create the account if it does not exist (see Create a mysqgl User and Group), or
substitute the name of a different existing login account that you plan to use for running the server.

1.

Change location to the top-level directory of your MySQL installation, which is typically / usr/
| ocal / mysql (adjust the path name for your system as necessary):

cd /usr/local /mysq

Within this directory you can find several files and subdirectories, including the bi n subdirectory
that contains the server, as well as client and utility programs.

The secure_file_priv system variable limits import and export operations to a specific
directory. Create a directory whose location can be specified as the value of that variable:

mkdir nysql-files

Grant directory user and group ownership to the nysql user and nysql group, and set the
directory permissions appropriately:

chown nysql: nmysqgl nysqgl-files
chnmod 750 nysql -files

Use the server to initialize the data directory, including the mysql schema containing the initial
MySQL grant tables that determine how users are permitted to connect to the server. For example:

bin/nysqgld --initialize --user=nysql

For important information about the command, especially regarding command options you might
use, see Data Directory Initialization Procedure. For details about how the server performs
initialization, see Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades
to an existing installation, perform the upgrade procedure instead; see Upgrading MySQL.)
However, the command that initializes the data directory does not overwrite any existing mysql
schema tables, so it is safe to run in any circumstances.

If you want to deploy the server with automatic support for secure connections, use the
nysql _ssl _rsa_set up utility to create default SSL and RSA files:

18

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-root-account
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-createsysuser
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Data Directory Initialization Procedure

bi n/ nysqgl _ssl _rsa_setup
For more information, see mysql_ssl_rsa_setup — Create SSL/RSA Files.

5. In the absence of any option files, the server starts with its default settings. (See Server
Configuration Defaults.) To explicitly specify options that the MySQL server should use at startup,
put them in an option file such as/ et c/ ny. cnf or/ et c/ mysql / my. cnf. (See Using Option
Files.) For example, you can use an option file to set the secure_fil e_pri v system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Section 3.5,
“Starting and Stopping MySQL Automatically”.

7. Data directory initialization creates time zone tables in the mysgl schema but does not populate
them. To do so, use the instructions in MySQL Server Time Zone Support.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically / usr /| ocal /
nmysql (adjust the path name for your system as necessary):

cd /usr/local / nmysql

To initialize the data directory, invoke nysql d withthe--initializeor--initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
"root' @I ocal host' account, or to create that account with no password:

e Use--initialize for“secure by default” installation (that is, including generation of a random
initial r oot password). In this case, the password is marked as expired and you must choose a new
one.

« With--initialize-insecure,noroot password is generated. This is insecure; it is assumed
that you intend to assign a password to the account in a timely fashion before putting the server into
production use.

For instructions on assigning anew ' r oot ' @ | ocal host' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard

error output. This may be redirected to the error log, so look there if you do not

see the messages on your screen. For information about the error log, including
where it is located, see The Error Log.

On Windows, use the - - consol e option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by
the mysql login account so that the server has read and write access to them when you run it later.
To ensure this, start mysql d from the system r oot account and include the - - user option as shown
here:

bin/nysqgld --initialize --user=nysql
bin/nysqgld --initialize-insecure --user=nysql

Alternatively, execute nysql d while logged in as nysql , in which case you can omit the - - user
option from the command.

On Windows, use one of these commands:

bin\nysqgld --initialize --console
bin\nysqgld --initialize-insecure --console

19

https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user

Server Actions During Data Directory Initialization

Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bi n/nysql d: error while |oading shared |libraries:
I'i bnuma. so. 1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your
system's package manager. Then retry the data directory initialization
command.

It might be necessary to specify other options such as - - basedi r or - - dat adi r if mysql d cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/nysqgld --initialize --user=nysql
--basedi r=/opt/ nmysql / mysql
--datadi r=/opt/nysql / nysql / dat a

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysql d.
For Unix and Unix-like systems, suppose that the option file name is / opt / nysql / nysql / et c/

ny. cnf . Put these lines in the file:

[nysql d]

basedi r =/ opt / mysql / mysql

dat adi r =/ opt / mysql / mysql / dat a

Then invoke nysql d as follows (enter the command on a single line with the - - def aul ts-fil e
option first):

bin/nysqgl d --defaul ts-file=/opt/nysql/nysql/etc/ nmy.cnf
--initialize --user=nysql

On Windows, suppose that C: \ my. i ni contains these lines:
[nysql d]

basedi r=C:\\ Program Fi | es\\ M\ySQ.\\ M\ySQL Server 8.0
dat adi r =D: \ \ M\ySQLdat a

Then invoke nysql d as follows (enter the command on a single line with the - - def aul ts-fil e
option first):

bi n\nysqgl d --defaults-file=C.\ny.ini
--initialize --console

Server Actions During Data Directory Initialization

Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by mysql secure_i nstal |l ati on and
nysqgl _ssl _rsa_set up. See mysql_secure_installation — Improve MySQL
Installation Security, and mysqgl_ssl_rsa_setup — Create SSL/RSA Files.

When invoked withthe --initializeor--initialize-insecure option, nysql d performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:
 If no data directory exists, the server creates it.

« If the data directory exists but is not empty (that is, it contains files or subdirectories), the server
exits after producing an error message:

20

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure

Server Actions During Data Directory Initialization

[ERROR] --initialize specified but the data directory exists. Aborting.
In this case, remove or rename the data directory and try again.

An existing data directory is permitted to be nonempty if every entry has a name that begins with
a period (.).

2. Within the data directory, the server creates the nysql system schema and its tables, including the
data dictionary tables, grant tables, time zone tables, and server-side help tables. See The mysq|
System Schema.

3. The server initializes the system tablespace and related data structures needed to manage | nnoDB
tables.

Note

After mysqgl d sets up the | nnoDB system tablespace, certain

changes to tablespace characteristics require setting up a whole

new instance. Qualifying changes include the file name of the first

file in the system tablespace and the number of undo logs. If you

do not want to use the default values, make sure that the settings
forthe i nnodb_data_file_pathandinnodb_|l og_file_size
configuration parameters are in place in the MySQL configuration file
before running nysql d. Also make sure to specify as necessary other
parameters that affect the creation and location of | nnoDB files, such as
i nnodb_dat a_hone_di r and i nnodb_I| og_group_hone_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the - -
defaul ts-extra-fil e option when you run mysql d.

4. The server createsa' root' @I ocal host' superuser account and other reserved accounts (see
Section 4.9, “Reserved Accounts”). Some reserved accounts are locked and cannot be used by
clients, but' root' @1 ocal host' is intended for administrative use and you should assign it a
password.

Server actions with respect to a password for the ' root' @1 ocal host' account depend on how
you invoke it:

e With--initializebutnot--initialize-insecure, the server generates a random
password, marks it as expired, and writes a message displaying the password:

[Warning] A tenporary password is generated for root @ ocal host:
i Tag* Af r H5ej

e With--initialize-insecure, (either with or without--i niti al i ze because - -
initialize-insecureimplies--initialize),the server does not generate a password or
mark it expired, and writes a warning message:

[War ni ng] root @ocal host is created with an enpty password ! Pl ease
consider switching off the --initialize-insecure option.

For instructions on assigninganew ' r oot ' @ | ocal host' password, see Post-Initialization root
Password Assignment.

5. The server populates the server-side help tables used for the HELP statement (see HELP
Statement). The server does not populate the time zone tables. To do so manually, see MySQL
Server Time Zone Support.

6. Iftheinit_fil e system variable was given to name a file of SQL statements, the server executes
the statements in the file. This option enables you to perform custom bootstrapping sequences.

21

https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_instance
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_configuration_file
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file

Post-Initialization root Password Assignment

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such
as CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the server with--initializeor--initialize-
i nsecur e, start the server normally (that is, without either of those options) and assign the
"root' @I ocal host' account a new password:

1. Start the server. For instructions, see Section 3.2, “Starting the Server”.
2. Connect to the server:

e Ifyouused--initializebutnot--initialize-insecure toinitialize the data directory,
connect to the server as r oot :

nysqgl -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Ent er password: (enter the random root password here)
Look in the server error log if you do not know this password.

e Ifyouused--initialize-insecure toinitialize the data directory, connect to the server as
r oot without a password:

nmysgl -u root --skip-password

3. After connecting, use an ALTER USER statement to assign a new r oot password:

ALTER USER 'root' @I ocal host' | DENTI FI ED BY ' root - password' ;
See also Section 3.4, “Securing the Initial MySQL Account”.
Note

Attempts to connect to the host 127. 0. 0. 1 normally resolve to the | ocal host
account. However, this fails if the server is run with ski p_nane_resol ve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as r oot using - -

host =127.0. 0. 1 or - - host =: : 1, create these accounts:

CREATE USER 'root' @127.0.0.1" |DENTIFIED BY 'root-password';
CREATE USER 'root' @::1' | DENTIFIED BY 'root-password';

It is possible to put those statements in a file to be executed using the
init_file system variable, as discussed in Server Actions During Data
Directory Initialization.

3.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see Starting
the Server for the First Time.) For some suggested commands that you can use to test whether the
server is accessible and working properly, see Section 3.3, “Testing the Server”.

Start the MySQL server like this if your installation includes nysql d_saf e:

$> bin/nysql d_safe --user=nysqgl &

22

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/windows-server-first-start.html
https://dev.mysql.com/doc/refman/8.0/en/windows-server-first-start.html

Troubleshooting Problems Starting the MySQL Server

Note

For Linux systems on which MySQL is installed using RPM packages, server
startup and shutdown is managed using systemd rather than nysql d_saf e,
and nysql d_saf e is not installed. See Managing MySQL Server with systemd.

Start the server like this if your installation includes systemd support:

$> systenttl start nysqld

Substitute the appropriate service name if it differs from nysql d (for example, mysgl on SLES
systems).

It is important that the MySQL server be run using an unprivileged (non-r oot) login account. To ensure
this, run mysql d_saf e as r oot and include the - - user option as shown. Otherwise, you should
execute the program while logged in as nysql , in which case you can omit the - - user option from the
command.

For further instructions for running MySQL as an unprivileged user, see Section 2.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysql d ended, look for information in the error log (which
by default is the host _nane. err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the nysq|
schema, it writes a message to its error log. Such problems can occur if you neglected to create the
grant tables by initializing the data directory before proceeding to this step, or if you ran the command
that initializes the data directory without the - - user option. Remove the dat a directory and run the
command with the - - user option.

If you have other problems starting the server, see Section 3.2.1, “Troubleshooting Problems Starting
the MySQL Server”. For more information about nysql d_saf e, see mysqgld_safe — MySQL Server
Startup Script. For more information about systemd support, see Managing MySQL Server with
systemd.

3.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Troubleshooting a Microsoft Windows MySQL Server
Installation.

If you have problems starting the server, here are some things to try:

» Check the error log to see why the server does not start. Log files are located in the data directory
(typically C. \ Program Fi | es\ MySQL\ MySQL Server 8.0\ dataon Windows, /usr/ | ocal/
nysql / dat a for a Unix/Linux binary distribution, and / usr/ | ocal / var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host _nane. err and
host nane. | og, where host _nane is the name of your server host. Then examine the last few
lines of these files. Use t ai | to display them:

$> tail host_nane.err
$> tail host_nane. | og

» Specify any special options needed by the storage engines you are using. You can create a nvy. cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (I nnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using | nnoDB tables, see InnoDB Configuration
for guidelines and InnoDB Startup Options and System Variables for option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

23

https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_user
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_user
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/windows-troubleshooting.html
https://dev.mysql.com/doc/refman/8.0/en/windows-troubleshooting.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_error_log
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html

Troubleshooting Problems Starting the MySQL Server

» Make sure that the server knows where to find the data directory. The nysql d server uses this

directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what

the default path settings are, invoke nysql d with the - - ver bose and - - hel p options. If the data
directory is located somewhere else on your system, specify that location with the - - dat adi r option
tonysql d or nysql d_saf e, on the command line or in an option file. Otherwise, the server does
not work properly. As an alternative to the - - dat adi r option, you can specify mysqgl d the location
of the base directory under which MySQL is installed with the - - basedi r, and nysql d looks for the
dat a directory there.

To check the effect of specifying path options, invoke nysql d with those options followed by the - -
ver bose and - - hel p options. For example, if you change location to the directory where nysql d
is installed and then run the following command, it shows the effect of starting the server with a base
directory of / usr/ | ocal :

$> ./nysqld --basedir=/usr/local --verbose --help

You can specify other options such as - - dat adi r as well, but - - ver bose and - - hel p must be
the last options.

Once you determine the path settings you want, start the server without - - ver bose and - - hel p.

If mysql d is currently running, you can find out what path settings it is using by executing this
command:

$> nysql admi n vari abl es

Or:

$> nysqgl admin -h host_nane vari abl es

host nane is the name of the MySQL server host.

Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Er r code 13 (which means Per m ssi on deni ed) when starting mysql d, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as r oot , but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents
to make sure the server has access. For example, if the data directory is / usr/ | ocal / nysql / var,
use this command:

$> Is -la /usr/local/nmysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named nysql , use
these commands:

$> chown -R nysqgl /usr/local /mysql/var
$> chgrp -R nysqgl /usr/local /mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable nysql d to access the directories it uses during normal operation.

24

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory

Testing the Server

 Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another nysql d
server) is using the TCP/IP port or Unix socket file that mysql d is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another nysql d server running. If so, shut down the server
before starting mysql d again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Running Multiple MySQL Instances on One
Machine.)

If no other server is running, execute the command t el net your host nane

tcp_i p_port_nunber. (The default MySQL port number is 3306.) Then press Enter a couple

of times. If you do not get an error message liket el net: Unable to connect to renote
host: Connection refused, some other program is using the TCP/IP port that nysql d is trying
to use. Track down what program this is and disable it, or tell mysqgl d to listen to a different port with
the - - port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in/ et ¢/ host s
that looks like this:

127.0.0.1 | ocal host

« If you cannot get nysql d to start, try to make a trace file to find the problem by using the - - debug
option. See The DBUG Package.

3.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to
make sure that it works satisfactorily. This section assumes that your current location is the MySQL
installation directory and that it has a bi n subdirectory containing the MySQL programs used here. If
that is not true, adjust the command path names accordingly.

Alternatively, add the bi n directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Setting Environment Variables.

Use nysql admi n to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bi n/ nmysqgl admi n versi on
$> bi n/nysqgl admi n vari abl es

If you cannot connect to the server, specify a - u r oot option to connect as r oot . If you have
assigned a password for the r oot account already, you'll also need to specify - p on the command line
and enter the password when prompted. For example:

$> bin/nysqladmin -u root -p version
Enter password: (enter root password here)

The output from nmysql adm n ver si on varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

$> bi n/ nysql adnmi n versi on
nysqladm n Ver 14.12 Distrib 8.0.27, for pc-linux-gnu on i 686

Server version 8.0.27

25

https://dev.mysql.com/doc/refman/8.0/en/multiple-servers.html
https://dev.mysql.com/doc/refman/8.0/en/multiple-servers.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_port
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/setting-environment-variables.html

Testing the Server

Prot ocol version 10

Connect i on Local host via UN X socket
UNI X socket /var/lib/mysql /nysql . sock
Upt i ne: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queri es per second avg: 0.000

To see what else you can do with nysql admi n, invoke it with the - - hel p option.

Verify that you can shut down the server (include a - p option if the r oot account has a password
already):

$> bin/nysqgl adm n -u root shutdown

Verify that you can start the server again. Do this by using nysql d_saf e or by invoking nysql d
directly. For example:

$> bin/nysql d_safe --user=nysql &
If nysql d_saf e fails, see Section 3.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use nysql showto see what databases exist:

$> bi n/ nmysql show

| informati on_schenma
| nysql I
| performance_schenma
| sys I

The list of installed databases may vary, but always includes at least nysqgl and
i nformati on_schena.

If you specify a database name, nysql showdisplays a list of the tables within the database:

$> bi n/ mysqgl show nysq
Dat abase: mnysq

A +
| Tabl es |
A +

col ums_pri v

conponent

db

default _rol es

engi ne_cost

func

general _| og

gl obal _grants

gti d_execut ed

hel p_cat egory

hel p_keywor d

hel p_rel ation

hel p_t opi c

i nnodb_i ndex_stats
innodb_table _stats
ndb_bi nl og_i ndex
passwor d_hi story
pl ugin

procs_priv
proxies_priv

rol e_edges

server _cost
servers

26

https://dev.mysql.com/doc/refman/8.0/en/mysqladmin.html#option_mysqladmin_help

Securing the Initial MySQL Account

sl ave_mast er _i nfo
slave_relay_l og_info
sl ave_wor ker _i nfo

sl ow_| og

tables_priv

ti me_zone

ti me_zone_| eap_second
ti me_zone_nane
time_zone_transition
time_zone_transition_type
user

Use the nysql program to select information from a table in the mysql schema:

$> bin/nysqgl -e "SELECT User, Host, plugin FROM nmysql.user" nysql

oooo=o rocoooo=—ooo foceooc--cco-c--ccooo--o +
| User | Host | plugin |
oooo=o rocoooo=—ooo foceooc--cco-c--ccooo--o +
| root | local host | caching_sha2_password |
oooo=o rocoooo=—ooo foceooc--cco-c--ccooo--o +

At this point, your server is running and you can access it. To tighten security if you have not yet
assigned a password to the initial account, follow the instructions in Section 3.4, “Securing the Initial
MySQL Account”.

For more information about mysql , mysql admi n, and nysql show, see mysql — The MySQL
Command-Line Client, mysgladmin — A MySQL Server Administration Program, and mysglshow —
Display Database, Table, and Column Information.

3.4 Securing the Initial MySQL Account

The MySQL installation process involves initializing the data directory, including the grant tables in the
nysql system schema that define MySQL accounts. For details, see Section 3.1, “Initializing the Data
Directory”.

This section describes how to assign a password to the initial r oot account created during the MySQL
installation procedure, if you have not already done so.

Note
Alternative means for performing the process described in this section:

¢ On Windows, you can perform the process during installation with MySQL
Installer (see MySQL Installer for Windows).

¢ On all platforms, the MySQL distribution includes
nysql _secure_instal | ati on, acommand-line utility that automates
much of the process of securing a MySQL installation.

¢ On all platforms, MySQL Workbench is available and offers the ability to
manage user accounts (see MySQL Workbench).

A password may already be assigned to the initial account under these circumstances:

» On Windows, installations performed using MySQL Installer give you the option of assigning a
password.

« Installation using the macOS installer generates an initial random password, which the installer
displays to the user in a dialog box.

* Installation using RPM packages generates an initial random password, which is written to the server
error log.

« Installations using Debian packages give you the option of assigning a password.

27

https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysqladmin.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlshow.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlshow.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/workbench.html

Securing the Initial MySQL Account

» For data directory initialization performed manually using nysql d --initialize,nysqld
generates an initial random password, marks it expired, and writes it to the server error log. See
Section 3.1, “Initializing the Data Directory”.

The nysql . user grant table defines the initial MySQL user account and its access privileges.
Installation of MySQL creates onlya' root' @ ocal host' superuser account that has all privileges
and can do anything. If the r oot account has an empty password, your MySQL installation is
unprotected: Anyone can connect to the MySQL server as r oot without a password and be granted all
privileges.

The ' root' @1 ocal host' account also has a row in the mysqgl . pr oxi es_pri v table that enables
granting the PROXY privilege for' ' @' , that is, for all users and all hosts. This enables r oot to set

up proxy users, as well as to delegate to other accounts the authority to set up proxy users. See
Section 4.19, “Proxy Users”.

To assign a password for the initial MySQL r oot account, use the following procedure. Replace
r oot - passwor d in the examples with the password that you want to use.

Start the server if it is not running. For instructions, see Section 3.2, “Starting the Server”.

The initial r oot account may or may not have a password. Choose whichever of the following
procedures applies:

 If the r oot account exists with an initial random password that has been expired, connect to the
server as r oot using that password, then choose a new password. This is the case if the data
directory was initialized using mysqgl d --initial i ze, either manually or using an installer that
does not give you the option of specifying a password during the install operation. Because the
password exists, you must use it to connect to the server. But because the password is expired, you
cannot use the account for any purpose other than to choose a new password, until you do choose
one.

1. If you do not know the initial random password, look in the server error log.

2. Connect to the server as r oot using the password:

$> nysgl -u root -p
Ent er password: (enter the random root password here)

3. Choose a new password to replace the random password:

nysqgl > ALTER USER 'root' @I ocal host' | DENTI FI ED BY ' r oot - passwor d'

 If the r oot account exists but has no password, connect to the server as r oot using no password,
then assign a password. This is the case if you initialized the data directory using nysql d - -
initialize-insecure.

1. Connect to the server as r oot using no password:
$> nysqgl -u root --skip-password
2. Assign a password:

mysql > ALTER USER 'root' @1 ocal host' | DENTI FI ED BY ' r oot - password'

After assigning the r oot account a password, you must supply that password whenever you connect
to the server using the account. For example, to connect to the server using the mysql client, use this
command:

$> nysql -u root -p
Enter password: (enter root password here)

To shut down the server with mysql adni n, use this command:

$> nysqgladmin -u root -p shutdown

28

Starting and Stopping MySQL Automatically

Enter password: (enter root password here)
Note

For additional information about setting passwords, see Section 4.14,
“Assigning Account Passwords”. If you forget your r oot password after setting
it, see How to Reset the Root Password.

To set up additional accounts, see Section 4.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

3.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.
Generally, you start the mysql d server in one of these ways:
» Invoke nmysql d directly. This works on any platform.

* On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Starting MySQL as a Windows Service.

» On Unix and Unix-like systems, you can invoke nysql d_saf e, which tries to determine the proper
options for mysqgl d and then runs it with those options. See mysqld_safe — MySQL Server Startup
Script.

» On Linux systems that support systemd, you can use it to control the server. See Managing MySQL
Server with systemd.

» On systems that use System V-style run directories (that is, / et ¢/ i ni t . d and run-level specific
directories), invoke nysql . ser ver . This script is used primarily at system startup and shutdown. It
usually is installed under the name nmysql . The mysql . ser ver script starts the server by invoking
nysql d_saf e. See mysql.server — MySQL Server Startup Script.

» On macOSs, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking nmysql d_saf e. For details, see Installing and Using the
MySQL Launch Daemon. A MySQL Preference Pane also provides control for starting and stopping
MySQL through the System Preferences. See Installing and Using the MySQL Preference Pane.

» On Solaris, use the service management framework (SMF) system to initiate and control MySQL
startup.

systemd, the nysql d_saf e and nysql . server scripts, Solaris SMF, and the macOS Startup Item
(or MySQL Preference Pane) can be used to start the server manually, or automatically at system
startup time. systemd, nysql . ser ver, and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 3.1 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups
mysql d [mysql d], [server],
[mysqgl d- maj or _versi on]
mysql d_safe [mysqgl d],[server],[nysql d_saf e]
mysql . server [mysqgl d], [nmysql . server],[server]

[mysqgl d- maj or _ver si on] means that groups with names like [mysql d-5. 7] and
[mysqgl d- 8. 0] are read by servers having versions 5.7.x, 8.0.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

29

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/windows-start-service.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-server.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-prefpane.html

Starting and Stopping MySQL Automatically

For backward compatibility, nysql . server also reads the [nysql _server] group and
nysgl d_saf e also reads the [saf e_nmysql d] group. To be current, you should update your option
files to use the [nysql . server] and [nysql d_saf e] groups instead.

For more information on MySQL configuration files and their structure and contents, see Using Option
Files.

30

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Chapter 4 Access Control and Account Management

Table of Contents

4.1 Account User Names and PaSSWOITSuiiiuitiiiiii ettt e e e e e e eeeanns 32
4.2 Privileges Provided DY MYSQL ... 34
4.3 Grant TaDIES ... et 51
4.4 Specifying ACCOUNT NAIMES ... ittt e et e e e et e e enae e eeees 61
4.5 SPecCifying ROIE NAIMES ... et 63
4.6 Access Control, Stage 1: Connection Verificationcooviiiiiiiiiiii e 63
4.7 Access Control, Stage 2: Request VerifiCationoiiiiiiiiiiiiiiiieii e 67
4.8 Adding Accounts, Assigning Privileges, and Dropping ACCOUNEScoveviiinieiiiiinieieiineeeenenn, 69
4.9 RESEIVEA ACCOUNLSieiiii ettt et e ettt et et e ettt e ettt e e e et e et et e e e e et e e e e e b e e eeban s 72
4,10 USING ROIES ...ttt et e e e et e 72
4,11 ACCOUNE CABUOIES ...eeeiieeeiti ettt ettt ettt ettt et e ettt e e et b e e et e e e e bb e e e e ae e 79
4.12 Privilege Restriction Using Partial REVOKEScoouuuiiiiiiiiieiii e 82
4.13 When Privilege Changes Take EffECTcooiuiiiiiii e 88
4.14 ASSIgNING ACCOUNT PASSWOITSuuuiiiiiiieiiiiii ettt e e e e e 89
4.15 PasSSWOId MaNGOEMIENTiiieiiieieiii et ettt ettt ettt et et e e e eb et e et e e eaaa e eennans 90
4.16 Server Handling of EXpired PasSWOITSccouuiuiiiiiiiiiiiii e 101
4.17 Pluggable AUNENTICALIONiiiiie et e e 103
4.18 Multifactor AUtNENTICALIONuu ittt e e e enaas 108
4,19 PrOXY USEIS ..ottt ettt ettt ettt e e e et et 112
4.20 ACCOUNT LOCKING ..teeeetiie ettt ettt e et e e et e e et et e e e e et e e e e aaa s 119
4.21 Setting AcCOUNt RESOUICE LIMILSciiitiiiiiiiiiee et ees 120
4.22 Troubleshooting Problems Connecting to MYSQLcoouuiiiiiiiiiieiii e 122
4.23 SQL-Based Account ACLIVIty AUITINGuuiiiiiiiieiiii e 126

MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, | NSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges
for administrative operations.

To control which users can connect, each account can be assigned authentication credentials such
as a password. The user interface to MySQL accounts consists of SQL statements such as CREATE
USER, GRANT, and REVOKE. See Account Management Statements.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason

to assume that a given user name belongs to the same person on all hosts. For example, the user

j oe who connects from of fi ce. exanpl e. comneed not be the same person as the user j oe who
connects from hone. exanpl e. com MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by j oe from of f i ce. exanpl e. com and a different set of privileges for connections by j oe from
hone. exanpl e. com To see what privileges a given account has, use the SHON GRANTS statement.
For example:

SHOW GRANTS FOR 'joe' @office. exanpl e. con ;
SHOW GRANTS FOR ' j oe' @ hone. exanpl e. con ;

Internally, the server stores privilege information in the grant tables of the nmysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

31

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Account User Names and Passwords

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 4.6, “Access Control,
Stage 1: Connection Verification”, and Section 4.7, “Access Control, Stage 2: Request Verification”.
For help in diagnosing privilege-related problems, see Section 4.22, “Troubleshooting Problems
Connecting to MySQL".

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 4.13, “When Privilege
Changes Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

» You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

* You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

» A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

4.1 Account User Names and Passwords

MySQL stores accounts in the user table of the nysqgl system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. For
information about account representation in the user table, see Section 4.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 4.17, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
your operating system:

» User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a - u or - - user option. This means that anyone can attempt to connect to the server using any
user name, so you cannot make a database secure in any way unless all MySQL accounts have
passwords. Anyone who specifies a user name for an account that has no password can connect
successfully to the server.

» MySQL user names are up to 32 characters long. Operating system user names may have a
different maximum length.

Warning

The MySQL user name length limit is hardcoded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in
the nysql database does not work.

32

Account User Names and Passwords

You should never alter the structure of tables in the nysql database in any
manner whatsoever except by means of the procedure that is described in
Upgrading MySQL. Attempting to redefine MySQL's system tables in any
other fashion results in undefined and unsupported behavior. The server is
free to ignore rows that become malformed as a result of such modifications.

» To authenticate client connections for accounts that use built-in authentication methods, the server
uses passwords stored in the user table. These passwords are distinct from passwords for logging
in to your operating system. There is no necessary connection between the “external” password you
use to log in to a Windows or Unix machine and the password you use to access the MySQL server
on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that
an external password is also used to authenticate to the MySQL server.

» Passwords stored in the user table are encrypted using plugin-specific algorithms.

« If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password
contain non-ASCII characters, client applications should call the nysql _opti ons() C API function
with the MYSQL_SET CHARSET _NANE option and appropriate character set name as arguments.
This causes authentication to take place using the specified character set. Otherwise, authentication
fails unless the server default character set is the same as the encoding in the authentication
defaults.

Standard MySQL client programs support a - - def aul t - char act er - set option that causes
nysql _options() to be called as just described. In addition, character set autodetection

is supported as described in Connection Character Sets and Collations. For programs that
use a connector that is not based on the C API, the connector may provide an equivalent to
mysql _options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, ut f 16, and ut f 32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial r oot account, as described
in Section 3.4, “Securing the Initial MySQL Account”, which also discusses how to assign a password
to it. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such
as CREATE USER, DROP USER, GRANT, and REVCKE. See Section 4.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”, and Account Management Statements.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

$> nysql --user=finley --password db_nane
If you prefer short options, the command looks like this:
$> nysql -u finley -p db_nane

If you omit the password value following the - - passwor d or - p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

$> nysql --user=finley --password=password db_nane
$> nysql -u finley -ppassword db_name

If you use the - p option, there must be no space between - p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 2.2.1,
“End-User Guidelines for Password Security”. To avoid giving the password on the command line,
use an option file or a login path file. See Using Option Files, and mysql_config_editor — MySQL
Configuration Utility.

33

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html

Privileges Provided by MySQL

For additional information about specifying user names, passwords, and other connection parameters,
see Connecting to the MySQL Server Using Command Options.

4.2 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform.
MySQL privileges differ in the contexts in which they apply and at different levels of operation:

» Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

» Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

 Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases.

Privileges also differ in terms of whether they are static (built in to the server) or dynamic (defined at
runtime). Whether a privilege is static or dynamic affects its availability to be granted to user accounts
and roles. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Information about account privileges is stored in the grant tables in the mysql system database. For a
description of the structure and contents of these tables, see Section 4.3, “Grant Tables”. The MySQL
server reads the contents of the grant tables into memory when it starts, and reloads them under the
circumstances indicated in Section 4.13, “When Privilege Changes Take Effect”. The server bases
access-control decisions on the in-memaory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new
privileges or features. To make sure that you can take advantage of any new
capabilities, update your grant tables to the current structure whenever you
upgrade MySQL. See Upgrading MySQL.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

» Summary of Available Privileges
* Static Privilege Descriptions

» Dynamic Privilege Descriptions

* Privilege-Granting Guidelines
 Static Versus Dynamic Privileges

» Migrating Accounts from SUPER to Dynamic Privileges

Summary of Available Privileges

The following table shows the static privilege names used in GRANT and REVOKE statements, along
with the column name associated with each privilege in the grant tables and the context in which the
privilege applies.

Table 4.1 Permissible Static Privileges for GRANT and REVOKE

Privilege Grant Table Column Context
ALL [PRI VI LEGES] Synonym for “all privileges” Server administration
ALTER Alter priv Tables

34

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Summary of Available Privileges

Privilege Grant Table Column Context

ALTER ROUTI NE Alter _routine_priv Stored routines

CREATE Create _priv Databases, tables, or indexes
CREATE ROLE Create_ role priv Server administration

CREATE ROUTI NE

Create_routine_priv

Stored routines

CREATE TABLESPACE

Create_tabl espace_priv

Server administration

CREATE TEMPORARY TABLES

Create tnp_table priv

Tables

CREATE USER Create_user _priv Server administration

CREATE VI EW Create_view priv Views

DELETE Delete_priv Tables

DROP Drop _priv Databases, tables, or views

DROP ROLE Drop role priv Server administration

EVENT Event priv Databases

EXECUTE Execute _priv Stored routines

FI LE File_priv File access on server host

GRANT OPTI ON Gant _priv Databases, tables, or stored
routines

| NDEX I ndex_priv Tables

| NSERT I nsert_priv Tables or columns

LOCK TABLES Lock tables priv Databases

PROCESS Process_priv Server administration

PROXY See proxi es_priv table Server administration

REFERENCES Ref erences_priv Databases or tables

RELOAD Rel oad_priv Server administration

REPLI CATI ON CLI ENT

Repl _client_priv

Server administration

REPLI CATI ON SLAVE

Repl _sl ave _priv

Server administration

SELECT Sel ect _priv Tables or columns
SHOW DATABASES Show _db_priv Server administration
SHOW VI EW Show vi ew priv Views

SHUTDOWN Shut down_pri v Server administration
SUPER Super _priv Server administration
TRI GGER Trigger _priv Tables

UPDATE Update priv Tables or columns
USAGE Synonym for “no privileges” Server administration

The following table shows the dynamic privilege names used in GRANT and REVOKE statements, along
with the context in which the privilege applies.

Table 4.2 Permissible Dynamic Privileges for GRANT and REVOKE

Privilege Context
APPLI| CATI ON_PASSWORD ADM N Dual password administration
AUDI T_ADM N Audit log administration

AUTHENTI CATI ON_POLI CY_ADM N

Authentication administration

BACKUP_ADM N

Backup administration

35

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Static Privilege Descriptions

Privilege Context

Bl NLOG_ADM N Backup and Replication administration

Bl NLOG_ENCRYPTI ON_ADM N Backup and Replication administration

CLONE_ADM N Clone administration

CONNECTI ON_ADM N Server administration

ENCRYPTI ON_KEY_ADM N Server administration

FI REWALL_ADM N Firewall administration

FI REWALL _EXEMPT Firewall administration

FI REWALL _USER Firewall administration

FLUSH OPTI M ZER_COSTS Server administration

FLUSH_STATUS Server administration

FLUSH TABLES Server administration

FLUSH USER RESOURCES Server administration

GROUP_REPLI CATI ON_ADM N Replication administration

GROUP_REPLI CATI ON_STREAM Replication administration

I NNODB_REDO LOG _ARCHI VE Redo log archiving administration

NDB_STORED USER NDB Cluster

PASSWORDLESS USER_ADM N Authentication administration

PERSI ST_RO _VARI ABLES_ADM N Server administration

REPLI CATI ON_APPLI ER PRI VI LEGE_CHECKS USER for a replication
channel

REPLI CATI ON_SLAVE_ADM N Replication administration

RESOURCE_GROUP_ADM N Resource group administration

RESOURCE_GROUP_USER Resource group administration

ROLE_ADM N Server administration

SESSI ON_VARI ABLES ADM N Server administration

SET_USER I D Server administration

SHOW ROUTI NE Server administration

SYSTEM USER Server administration

SYSTEM VARI ABLES ADM N Server administration

TABLE _ENCRYPTI ON_ADM N Server administration

VERSI ON_TOKEN_ADM N Server administration

XA RECOVER ADM N Server administration

Static Privilege Descriptions

Static privileges are built in to the server, in contrast to dynamic privileges, which are defined at
runtime. The following list describes each static privilege available in MySQL.

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

* ALL,ALL PRI VI LEGES

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTI ON). For example, granting ALL at the global or table level grants all global privileges or
all table-level privileges, respectively.

36

Static Privilege Descriptions

ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and | NSERT privileges. Renaming a table requires ALTER and DROP on the old
table, CREATE, and | NSERT on the new table.

ALTER ROUTI NE

Enables use of statements that alter or drop stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFI NER, also enables access to routine properties other than the routine
definition.

CREATE
Enables use of statements that create new databases and tables.
CREATE ROLE

Enables use of the CREATE ROLE statement. (The CREATE USER privilege also enables use of the
CREATE ROLE statement.) See Section 4.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

CREATE ROUTI NE

Enables use of statements that create stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFI NER, also enables access to routine properties other than the routine
definition.

CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.
CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, | NSERT,
UPDATE, or SELECT. For more information, sese CREATE TEMPORARY TABLE Statement.

CREATE USER

Enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP ROLE, DROP USER,
RENAVE USER, and REVOKE ALL PRI VI LEGES statements.

CREATE VI EW

Enables use of the CREATE VI EWstatement.
DELETE

Enables rows to be deleted from tables in a database.
DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP
privilege is required to use the ALTER TABLE ... DROP PARTI Tl ON statement on a partitioned
table. The DROP privilege is also required for TRUNCATE TABLE.

37

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/create-view.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Static Privilege Descriptions

DROP RCLE

Enables use of the DROP ROLE statement. (The CREATE USER privilege also enables use of the
DROP ROLE statement.) See Section 4.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

EVENT
Enables use of statements that create, alter, drop, or display events for the Event Scheduler.
EXECUTE

Enables use of statements that execute stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFI NER, also enables access to routine properties other than the routine
definition.

FI LE
Affects the following operations and server behaviors:

< Enables reading and writing files on the server host using the LOAD DATA and SELECT . ..
| NTO QUTFI LE statements and the LOAD FI LE() function. A user who has the FI LE privilege
can read any file on the server host that is either world-readable or readable by the MySQL server.
(This implies the user can read any file in any database directory, because the server can access
any of those files.)

« Enables creating new files in any directory where the MySQL server has write access. This
includes the server's data directory containing the files that implement the privilege tables.

* Enables use of the DATA DI RECTORY or | NDEX DI RECTCRY table option for the CREATE TABLE
statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure_fil e_pri v system
variable to a specific directory. See Server System Variables.

GRANT OPTI ON
Enables you to grant to or revoke from other users those privileges that you yourself possess.
| NDEX

Enables use of statements that create or drop (remove) indexes. | NDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

| NSERT

Enables rows to be inserted into tables in a database. | NSERT is also required for the ANALYZE
TABLE, OPTI M ZE TABLE, and REPAI R TABLE table-maintenance statements.

LCCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked
table.

PROCESS

38

https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html

Static Privilege Descriptions

The PROCESS privilege controls access to information about threads executing within the server

(that is, information about statements being executed by sessions). Thread information available
using the SHOW PROCESSLI ST statement, the nysql adm n processl i st command, the

| NFORVATI ON_SCHENA. PROCESSLI ST table, and the Performance Schema pr ocessl i st table is
accessible as follows:

» With the PROCESS privilege, a user has access to information about all threads, even those
belonging to other users.

« Without the PROCESS privilege, nonanonymous users have access to information about their
own threads but not threads for other users, and anonymous users have no access to thread
information.

Note

The Performance Schema t hr eads table also provides thread information,
but table access uses a different privilege model. See The threads Table.

The PROCESS privilege also enables use of the SHOWN ENG NE statement, access to the
| NFORVATI ON_SCHENMA | nnoDB tables (tables with names that begin with | NNCDB), and (as of
MySQL 8.0.21) access to the | NFORVATI ON_SCHENA FI LES table.

PROXY

Enables one user to impersonate or become known as another user. See Section 4.19, “Proxy
Users”.

REFERENCES
Creation of a foreign key constraint requires the REFERENCES privilege for the parent table.

RELOAD

The RELOAD enables the following operations:
» Use of the FLUSH statement.

e Use of nysql adm n commands that are equivalent to FLUSH operations: f | ush- host s, f | ush-
| ogs, flush-privileges,flush-status,flush-tables,flush-threads,refresh,and
r el oad.

The r el oad command tells the server to reload the grant tables into memory. f | ush-

privil eges is a synonym for r el oad. The r ef r esh command closes and reopens the log files
and flushes all tables. The other f | ush- xxx commands perform functions similar to r ef r esh, but
are more specific and may be preferable in some instances. For example, if you want to flush just
the log files, f | ush- | ogs is a better choice than r ef r esh.

* Use of nysql dunp options that perform various FLUSH operations: - - f | ush-1 ogs and - -
mast er - dat a.

* Use of the RESET MASTERand RESET REPLI CA (or before MySQL 8.0.22, RESET SLAVE)
statements.

REPLI CATI ON CLI ENT

Enables use of the SHON MASTER STATUS, SHOW REPLI CA STATUS, and SHOW Bl NARY LOGS
statements.

39

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_flush-logs
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-binary-logs.html

Static Privilege Descriptions

* REPLI CATI ON SLAVE

Enables the account to request updates that have been made to databases on the replication
source server, using the SHON REPLI CAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS), SHOW
RELAYLOG EVENTS, and SHOW BI NLOG EVENTS statements. This privilege is also required to
use the nysqgl bi nl og options - -r ead-fromrenot e-server (-R),--read-fromrenote-
source, and - -read- from r enot e- mast er . Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server.

SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT
privilege only if they actually access tables. Some SELECT statements do not access tables and can
be executed without permission for any database. For example, you can use SELECT as a simple
calculator to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI () *2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col _nane=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAI N, including any underlying
tables in view definitions.

SHOW DATABASES

Enables the account to see database names by issuing the SHON DATABASE statement. Accounts
that do not have this privilege see only databases for which they have some privileges, and cannot
use the statement at all if the server was started with the - - ski p- show dat abase option.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHON DATABASES or by examining the SCHENVATA table of

| NFORVATI ON_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

SHOW VI EW

Enables use of the SHOW CREATE VI EWstatement. This privilege is also needed for views used with
EXPLAI N.

SHUTDOWN

Enables use of the SHUTDOWN and RESTART statements, the nysql adm n shut down command,
and the nysql _shut down() C API function.

SUPER

SUPER is a powerful and far-reaching privilege and should not be granted lightly. If an account needs
to perform only a subset of SUPER operations, it may be possible to achieve the desired privilege set
by instead granting one or more dynamic privileges, each of which confers more limited capabilities.

See Dynamic Privilege Descriptions.

Note

SUPER is deprecated, and you should expect it to be removed in a future
version of MySQL. See Migrating Accounts from SUPER to Dynamic
Privileges.

40

https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-source
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-source
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-show-database
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-view.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-shutdown.html

Static Privilege Descriptions

SUPER affects the following operations and server behaviors:
* Enables system variable changes at runtime:

« Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSI ST.

The corresponding dynamic privilege is SYSTEM VARI ABLES ADM N.

« Enables setting restricted session system variables that require a special privilege.
The corresponding dynamic privilege is SESSI ON_VARI ABLES ADM N.
See also System Variable Privileges.
< Enables changes to global transaction characteristics (see SET TRANSACTION Statement).
The corresponding dynamic privilege is SYSTEM VARl ABLES ADM N.

« Enables the account to start and stop replication, including Group Replication.

The corresponding dynamic privilege is REPLI CATI ON_SLAVE_ADM N for regular replication,
GROUP_REPLI CATI ON_ADM N for Group Replication.

« Enables use of the CHANGE REPLI CATI ON SOURCE TOstatement (from MySQL 8.0.23),
CHANGE MASTER TOstatement (before MySQL 8.0.23), and CHANGE REPLI CATI ON FI LTER
statements.

The corresponding dynamic privilege is REPLI CATI ON_SLAVE_ADM N.
« Enables binary log control by means of the PURGE Bl NARY LOGS and Bl NLOG statements.
The corresponding dynamic privilege is Bl NLOG_ADM N.

« Enables setting the effective authorization ID when executing a view or stored program. A user
with this privilege can specify any account in the DEFI NER attribute of a view or stored program.

The corresponding dynamic privilege is SET_USER | D.
* Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.
e Enables use of the mysqgl adm n debug command.
« Enables | nnoDB encryption key rotation.

The corresponding dynamic privilege is ENCRYPTI ON_KEY_ADM N.

* Enables execution of Version Tokens functions.

The corresponding dynamic privilege is VERSI ON_ TOKEN_ADM N.

« Enables granting and revoking roles, use of the W TH ADM N OPTI ON clause of the GRANT
statement, and nonempty <gr aphm > element content in the result from the ROLES GRAPHVL ()
function.

The corresponding dynamic privilege is ROLE_ADM N.
« Enables control over client connections not permitted to non-SUPER accounts:

« Enables use of the KI LL statement or nysql adni n ki | | command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

41

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/create-server.html
https://dev.mysql.com/doc/refman/8.0/en/alter-server.html
https://dev.mysql.com/doc/refman/8.0/en/drop-server.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_roles-graphml
https://dev.mysql.com/doc/refman/8.0/en/kill.html

Dynamic Privilege Descriptions

« The server does not execute i ni t _connect system variable content when SUPER clients
connect.

« The server accepts one connection from a SUPER client even if the connection limit configured
by the nax_connect i ons system variable is reached.

« A server in offline mode (of f | i ne_node enabled) does not terminate SUPER client connections
at the next client request, and accepts new connections from SUPER clients.

« Updates can be performed even when the r ead_onl y system variable is enabled. This applies
to explicit table updates, and to use of account-management statements such as GRANT and
REVOKE that update tables implicitly.

The corresponding dynamic privilege for the preceding connection-control operations is
CONNECTI ON_ADM N.

You may also need the SUPER privilege to create or alter stored functions if binary logging is
enabled, as described in Stored Program Binary Logging.

* TRI GGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or
display triggers for that table.

When a trigger is activated (by a user who has privileges to execute | NSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who
defined the trigger still have the TRI GGER privilege for the table.

» UPDATE
Enables rows to be updated in tables in a database.
» USAGE

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to specify
clauses such as W TH GRANT OPTI ON without naming specific account privileges in the privilege
list. SHOW GRANTS displays USAGE to indicate that an account has no privileges at a privilege level.

Dynamic Privilege Descriptions

Dynamic privileges are defined at runtime, in contrast to static privileges, which are built in to the
server. The following list describes each dynamic privilege available in MySQL.

Most dynamic privileges are defined at server startup. Others are defined by a particular component or
plugin, as indicated in the privilege descriptions. In such cases, the privilege is unavailable unless the
component or plugin that defines it is enabled.

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

« APPLI CATI ON_PASSWORD ADM N (added in MySQL 8.0.14)

For dual-password capability, this privilege enables use of the RETAI N CURRENT PASSWORD and

DI SCARD OLD PASSWORD clauses for ALTER USER and SET PASSWORD statements that apply to
your own account. This privilege is required to manipulate your own secondary password because

most users require only one password.

If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLI CATI ON_PASSWORD ADM N.

For more information about use of dual passwords, see Section 4.15, “Password Management”.

42

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html

Dynamic Privilege Descriptions

* AUDI T_ADM N

Enables audit log configuration. This privilege is defined by the audi t _| og plugin; see Section 6.5,
“MySQL Enterprise Audit”.

BACKUP_ADM N

Enables execution of the LOCK | NSTANCE FOR BACKUP statement and access to the Performance
Schema | og_st at us table.

Note

Besides BACKUP_ADM N, the SELECT privilege on the | og_st at us table is
also needed for its access.

The BACKUP_ADM N privilege is automatically granted to users with the RELOQAD privilege when
performing an in-place upgrade to MySQL 8.0 from an earlier version.

AUTHENTI CATI ON_PCLI CY_ADM N (added in MySQL 8.0.27)

The aut hent i cati on_pol i cy system variable places certain constraints on how the
authentication-related clauses of CREATE USER and ALTER USER statements may be used. A user
who has the AUTHENTI CATI ON_POLI CY_ADM N privilege is not subject to these constraints. (A
warning does occur for statements that otherwise would not be permitted.)

For details about the constraints imposed by aut hent i cati on_pol i cy, see the description of that
variable.

Bl NLOG_ADM N

Enables binary log control by means of the PURGE Bl NARY LOGS and Bl NLOG statements.

BI NLOG_ENCRYPTI ON_ADM N

Enables setting the system variable bi nl og_encr ypt i on, which activates or deactivates
encryption for binary log files and relay log files. This ability is not provided by the Bl NLOG_ADM N,
SYSTEM VARI ABLES ADM N, or SESSI ON_VARI ABLES ADM N privileges. The related system
variable bi nl og rotate_encryption_master key at start up, which rotates the binary log
master key automatically when the server is restarted, does not require this privilege.

CLONE_ADM N

Enables execution of the CLONE statements. Includes BACKUP_ADM N and SHUTDOWN privileges.

43

https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-log-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-log-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_rotate_encryption_master_key_at_startup

Dynamic Privilege Descriptions

CONNECTI ON_ADM N

Enables use of the Kl LL statement or nysql adm n ki | | command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

Enables setting system variables related to client connections, or circumventing restrictions related to
client connections. CONNECTI ON_ADM N applies to the effects of these system variables:

e init_connect: The server does not execute i ni t _connect system variable content when
CONNECTI ON_ADM N clients connect.

e max_connecti ons: The server accepts one connection from a CONNECTI ON_ADM N client even
if the connection limit configured by the nax_connect i ons system variable is reached.

e of fI i ne_node: A server in offline mode (of f | i ne_node enabled) does not terminate
CONNECTI ON_ADM N client connections at the next client request, and accepts new connections
from CONNECTI ON_ADM N clients.

e read_onl y: Updates can be performed even when the r ead_onl y system variable is enabled.
This applies to explicit table updates, and to use of account-management statements such as
GRANT and REVOKE that update tables implicitly.

ENCRYPTI ON_KEY_ADM N
Enables | nnoDB encryption key rotation.
FI REWALL_ADM N

Enables a user to administer firewall rules for any user. This privilege is defined by the
MYSQL_FI REWALL plugin; see Section 6.7, “MySQL Enterprise Firewall”.

FI REWALL EXEMPT (added in MySQL 8.0.27)

A user with this privilege is exempt from firewall restrictions. This privilege is defined by the
MYSQL_FI REWALL plugin; see Section 6.7, “MySQL Enterprise Firewall”.

FI REWALL_USER

Enables users to update their own firewall rules. This privilege is defined by the MYSQL_FI REWALL
plugin; see Section 6.7, “MySQL Enterprise Firewall”.

FLUSH OPTI M ZER COSTS (added in MySQL 8.0.23)
Enables use of the FLUSH OPTI M ZER_COSTS statement.
FLUSH STATUS (added in MySQL 8.0.23)

Enables use of the FLUSH STATUS statement.
FLUSH_TABLES (added in MySQL 8.0.23)

Enables use of the FLUSH TABLES statement.

FLUSH USER_RESOURCES (added in MySQL 8.0.23)
Enables use of the FLUSH USER RESOURCES statement.
GROUP_REPLI CATI ON_ADM N

Enables the account to start and stop Group Replication using the START GROUP
REPLI CATI ONand STOP GROUP REPLI CATI ON statements, to change the
global setting for the gr oup_repl i cati on_consi st ency system variable,
and to use the group_replication_set _wite concurrency() and

44

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-optimizer-costs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-user-resources
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/stop-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_consistency
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-maximum-consensus.html#function_group-replication-set-write-concurrency

Dynamic Privilege Descriptions

group_replication_set comunication_protocol () functions. Grant this privilege to
accounts that are used to administer servers that are members of a replication group.

GROUP_REPLI CATI ON_STREAM

Allows a user account to be used for establishing Group Replication's group communication
connections. It must be granted to a recovery user when the MySQL communication stack is used for
Group Replication (gr oup_repl i cati on_comuni cati on_stack=MySQL).

| NNODB_REDO_LOG_ARCHI VE

Enables the account to activate and deactivate redo log archiving.

| NNODB_REDO_LOG_ENABLE

Enables use of the ALTER | NSTANCE { ENABLE| DI SABLE} | NNODB REDO LOG statement to
enable or disable redo logging. Introduced in MySQL 8.0.21.

See Disabling Redo Logging.

NDB_STORED_USER

Enables the user or role and its privileges to be shared and synchronized between all NDB-enabled
MySQL servers as soon as they join a given NDB Cluster. This privilege is available only if the NDB
storage engine is enabled.

Any changes to or revocations of privileges made for the given user or role are synchronized
immediately with all connected MySQL servers (SQL nodes). You should be aware that there is

no guarantee that multiple statements affecting privileges originating from different SQL nodes are
executed on all SQL nodes in the same order. For this reason, it is highly recommended that all user
administration be done from a single designated SQL node.

NDB STORED USERis a global privilege and must be granted or revoked using ON *. *. Trying

to set any other scope for this privilege results in an error. This privilege can be given to most
application and administrative users, but it cannot be granted to system reserved accounts such as
nysql . sessi on@ ocal host ornysqgl . i nf oschema@ ocal host .

A user that has been granted the NDB_ STORED USER privilege is stored in NDB (and thus shared
by all SQL nodes), as is a role with this privilege. A user that is merely granted a role that has
NDB STORED USERis not stored in NDB; each NDB stored user must be granted the privilege
explicitly.

For more detailed information about how this works in NDB, see Distributed MySQL Privileges with
NDB_STORED_USER.

The NDB_STORED_USER privilege is available beginning with NDB 8.0.18.

PASSWORDLESS _USER_ADM N (added in MySQL 8.0.27)

This privilege applies to passwordless user accounts:

« For account creation, a user who executes CREATE USERto create a passwordless account must
possess the PASSWORDLESS USER ADM N privilege.

« In replication context, the PASSWORDLESS USER_ADM N privilege applies to replication users

and enables replication of ALTER USER ... MODI FY statements for user accounts that are
configured for passwordless authentication.

For information about passwordless authentication, see FIDO Passwordless Authentication.

45

https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-communication-protocol.html#function_group-replication-set-communication-protocol
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_communication_stack
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-disable-redo-logging
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Dynamic Privilege Descriptions

PERSI ST_RO_VARI ABLES_ADM N

For users who also have SYSTEM VARI ABLES ADM N, PERSI ST_RO VARI ABLES ADM N enables
use of SET PERSI ST_ONLY to persist global system variables to the nysql d- aut 0. cnf option

file in the data directory. This statement is similar to SET PERSI ST but does not modify the runtime
global system variable value. This makes SET PERSI ST_ONLY suitable for configuring read-only
system variables that can be set only at server startup.

See also System Variable Privileges.
REPLI CATI ON_APPLI ER

Enables the account to act as the PRI VI LEGECHECKS USER for a replication channel, and to
execute Bl NLOG statements in mysqgl bi nl og output. Grant this privilege to accounts that are
assigned using CHANGE REPLI CATI ON SOURCE TO (from MySQL 8.0.23) or CHANGE MASTER
TO (before MySQL 8.0.23) to provide a security context for replication channels, and to handle
replication errors on those channels. As well as the REPLI CATI ON_APPLI| ER privilege, you must
also give the account the required privileges to execute the transactions received by the replication
channel or contained in the mysql bi nl og output, for example to update the affected tables. For
more information, see Replication Privilege Checks.

REPLI CATI ON_SLAVE_ADM N

Enables the account to connect to the replication source server, start and stop replication using the
START REPLI CAand STOP REPLI CA statements, and use the CHANGE REPL| CATI ON SOURCE
TOstatement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) and
the CHANGE REPLI CATI ON FI LTER statements. Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server. This privilege does not
apply to Group Replication; use GROUP_REPLI CATI ON_ADM N for that.

RESOURCE_CGROUP_ADM N

Enables resource group management, consisting of creating, altering, and dropping resource groups,
and assignment of threads and statements to resource groups. A user with this privilege can perform
any operation relating to resource groups.

RESOURCE_GROUP_USER

Enables assigning threads and statements to resource groups. A user with this privilege can use the
SET RESOURCE GROUP statement and the RESOURCE_GROUP optimizer hint.

ROLE_ADM N

Enables granting and revoking roles, use of the W TH ADM N OPTI ON clause of the GRANT
statement, and nonempty <gr aphm > element content in the result from the ROLES GRAPHM()
function. Required to set the value of the mandat ory_r ol es system variable.

SERVI CE_CONNECTI ON_ADM N

Enables connections to the network interface that permits only administrative connections (see
Connection Interfaces).

SESSI ON_VARI ABLES_ADM N (added in MySQL 8.0.14)

For most system variables, setting the session value requires no special privileges and can be
done by any user to affect the current session. For some system variables, setting the session
value can have effects outside the current session and thus is a restricted operation. For these, the
SESSI ON_VARI ABLES _ADM N privilege enables the user to set the session value.

If a system variable is restricted and requires a special privilege to set the session value, the variable
description indicates that restriction. Examples include bi nl og_f or mat, sql _| og_bi n, and
sql _l og_of f.

46

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/set-resource-group.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-resource-group
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_roles-graphml
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/connection-interfaces.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_log_off

Dynamic Privilege Descriptions

Prior to MySQL 8.0.14 when SESSI ON_VARI ABLES ADM Nwas added, restricted session system
variables can be set only by users who have the SYSTEM VARI ABLES ADM N or SUPER privilege.

The SESSI ON_VARI ABLES_ADM N privilege is a subset of the SYSTEM VARI ABLES ADM Nand
SUPER privileges. A user who has either of those privileges is also permitted to set restricted session
variables and effectively has SESSI ON_VARI ABLES ADM N by implication and need not be granted
SESSI ON_VARI ABLES_ADM N explicitly.

See also System Variable Privileges.

SET_USER I D

Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account as the DEFI NER attribute of a view or stored program.

As of MySQL 8.0.22, SET_USER | D also enables overriding security checks designed to prevent
operations that (perhaps inadvertently) cause stored objects to become orphaned or that cause
adoption of stored objects that are currently orphaned. For details, see Orphan Stored Objects.

SHOW ROUTI NE (added in MySQL 8.0.20)

Enables a user to access definitions and properties of all stored routines (stored procedures and
functions), even those for which the user is not named as the routine DEFI NER. This access
includes:

« The contents of the | NFORVATI ON_SCHEMA. ROUTI NES table.
e The SHOW CREATE FUNCTI ON and SHOW CREATE PROCEDURE statements.
e The SHOW FUNCTI ON CODE and SHOW PROCEDURE CODE statements.

* The SHOW FUNCTI ON STATUS and SHOW PROCEDURE STATUS statements.

Prior to MySQL 8.0.20, for a user to access definitions of routines the user did not define, the user
must have the global SELECT privilege, which is very broad. As of 8.0.20, SHOW ROUTI NE may be
granted instead as a privilege with a more restricted scope that permits access to routine definitions.
(That is, an administrator can rescind global SELECT from users that do not otherwise require it and
grant SHOW ROUTI NE instead.) This enables an account to back up stored routines without requiring
a broad privilege.

SYSTEM USER (added in MySQL 8.0.16)

The SYSTEM _USER privilege distinguishes system users from regular users:
¢ A user with the SYSTEM USER privilege is a system user.

e A user without the SYSTEM USER privilege is a regular user.

The SYSTEM USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

¢ A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession

47

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html#stored-objects-security-orphan-objects
https://dev.mysql.com/doc/refman/8.0/en/information-schema-routines-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-function.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/show-function-code.html
https://dev.mysql.com/doc/refman/8.0/en/show-procedure-code.html
https://dev.mysql.com/doc/refman/8.0/en/show-function-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-procedure-status.html

Dynamic Privilege Descriptions

of SYSTEM USER to also perform the operation on system accounts. A system account can be
modified only by system users with appropriate privileges, not by regular users.

* A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

For more information, see Section 4.11, “Account Categories”.

The protection against modification by regular accounts that is afforded to system accounts by

the SYSTEM USER privilege does not apply to regular accounts that have privileges on the nysql
system schema and thus can directly modify the grant tables in that schema. For full protection, do
not grant mysql schema privileges to regular accounts. See Protecting System Accounts Against
Manipulation by Regular Accounts.

SYSTEM VARI ABLES_ADM N

Affects the following operations and server behaviors:
« Enables system variable changes at runtime:

» Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSI ST.

« Enables server configuration changes to global system variables with SET PERSI ST_ONLY, if
the user also has PERSI ST _RO VARI ABLES ADM N.

« Enables setting restricted session system variables that require a special privilege. In effect,
SYSTEM VARI ABLES_ADM Nimplies SESSI ON_VARI ABLES _ADM N without explicitly granting
SESSI ON_VARI ABLES_ADM N.

See also System Variable Privileges.
» Enables changes to global transaction characteristics (see SET TRANSACTION Statement).

TABLE_ENCRYPTI ON_ADM N (added in MySQL 8.0.16)

Enables a user to override default encryption settings when
tabl e _encryption_privil ege _check is enabled; see Defining an Encryption Default for
Schemas and General Tablespaces.

VERSI ON_TOKEN_ADM N

Enables execution of Version Tokens functions. This privilege is defined by the ver si on_t okens
plugin; see Version Tokens.

XA RECOVER_ADM N
Enables execution of the XA RECOVER statement; see XA Transaction SQL Statements.

Prior to MySQL 8.0, any user could execute the XA RECOVER statement to discover the XID

values for outstanding prepared XA transactions, possibly leading to commit or rollback of an XA
transaction by a user other than the one who started it. In MySQL 8.0, XA RECOVERis permitted
only to users who have the XA RECOVER_ADM N privilege, which is expected to be granted only to
administrative users who have need for it. This might be the case, for example, for administrators of
an XA application if it has crashed and it is necessary to find outstanding transactions started by the
application so they can be rolled back. This privilege requirement prevents users from discovering
the XID values for outstanding prepared XA transactions other than their own. It does not affect
normal commit or rollback of an XA transaction because the user who started it knows its XID.

48

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_table_encryption_privilege_check
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default
https://dev.mysql.com/doc/refman/8.0/en/version-tokens.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html

Privilege-Granting Guidelines

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FI LE and administrative privileges:

* FI LE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table
can then be accessed using SELECT to transfer its contents to the client host.

e GRANT OPTI ON enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTI ON privilege are able to combine privileges.

» ALTER may be used to subvert the privilege system by renaming tables.
» SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

» PROCESS can be used to view the plain text of currently executing statements, including statements
that set or change passwords.

» SUPER can be used to terminate other sessions or change how the server operates.

 Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

» Passwords are stored encrypted, so a malicious user cannot simply read them to know the
plain text password. However, a user with write access to the nysql . user system table
aut henti cation_string column can change an account's password, and then connect to the
MySQL server using that account.

« | NSERT or UPDATE granted for the mysql system database enable a user to add privileges or
modify existing privileges, respectively.

« DROP for the nysql system database enables a user to remote privilege tables, or even the
database itself.

Static Versus Dynamic Privileges
MySQL supports static and dynamic privileges:

« Static privileges are built in to the server. They are always available to be granted to user accounts
and cannot be unregistered.

» Dynamic privileges can be registered and unregistered at runtime. This affects their availability: A
dynamic privilege that has not been registered cannot be granted.

For example, the SELECT and | NSERT privileges are static and always available, whereas a dynamic
privilege becomes available only if the component that implements it has been enabled.

The remainder of this section describes how dynamic privileges work in MySQL. The discussion uses
the term “components” but applies equally to plugins.

Note

Server administrators should be aware of which server components define
dynamic privileges. For MySQL distributions, documentation of components that
define dynamic privileges describes those privileges.

Third-party components may also define dynamic privileges; an administrator
should understand those privileges and not install components that might
conflict or compromise server operation. For example, one component conflicts
with another if both define a privilege with the same name. Component

49

https://dev.mysql.com/doc/refman/8.0/en/select.html

Static Versus Dynamic Privileges

developers can reduce the likelihood of this occurrence by choosing privilege
names having a prefix based on the component name.

The server maintains the set of registered dynamic privileges internally in memory. Unregistration
occurs at server shutdown.

Normally, a component that defines dynamic privileges registers them when it is installed, during its
initialization sequence. When uninstalled, a component does not unregister its registered dynamic
privileges. (This is current practice, not a requirement. That is, components could, but do not,
unregister at any time privileges they register.)

No warning or error occurs for attempts to register an already registered dynamic privilege. Consider
the following sequence of statements:

I NSTALL COVPONENT ' ny_conponent ' ;
UNI NSTALL COVPONENT ' my_conponent ' ;
I NSTALL COVPONENT ' ny_conponent ' ;

The first | NSTALL COVPONENT statement registers any privileges defined by component
my_conponent , but UNI NSTALL COVPONENT does not unregister them. For the second | NSTALL
COVPONENT statement, the component privileges it registers are found to be already registered, but no
warnings or errors occur.

Dynamic privileges apply only at the global level. The server stores information about current
assignments of dynamic privileges to user accounts in the mysql . gl obal _gr ant s system table:

» The server automatically registers privileges named in gl obal _gr ant s during server startup
(unless the - - ski p- grant -t abl es option is given).

e The GRANT and REVOKE statements modify the contents of gl obal grants.

» Dynamic privilege assignments listed in gl obal _gr ant s are persistent. They are not removed at
server shutdown.

Example: The following statement grants to user ul the privileges required to control replication
(including Group Replication) on a replica, and to modify system variables:

GRANT REPLI CATI ON_SLAVE_ADM N, GROUP_REPLI CATI ON_ADM N, BI NLOG_ADM N
ON *.* TO 'ul' @I ocal host "' ;

Granted dynamic privileges appear in the output from the SHOWV GRANTS statement and the
| NFORMATI ON_SCHENA USER_PRI VI LEGES table.

For GRANT and REVOKE at the global level, any named privileges not recognized as static are checked
against the current set of registered dynamic privileges and granted if found. Otherwise, an error
occurs to indicate an unknown privilege identifier.

For GRANT and REVOKE the meaning of ALL [PRI VI LEGES] at the global level includes all static
global privileges, as well as all currently registered dynamic privileges:

* GRANT ALL at the global level grants all static global privileges and all currently registered dynamic
privileges. A dynamic privilege registered subsequent to execution of the GRANT statement is not
granted retroactively to any account.

 REVOKE ALL at the global level revokes all granted static global privileges and all granted dynamic
privileges.

The FLUSH PRI VI LEGES statement reads the gl obal _gr ant s table for dynamic privilege
assignments and registers any unregistered privileges found there.

For descriptions of the dynamic privileges provided by MySQL Server and components included in
MySQL distributions, see Section 4.2, “Privileges Provided by MySQL”".

https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-user-privileges-table.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

Migrating Accounts from SUPER to Dynamic Privileges

Migrating Accounts from SUPER to Dynamic Privileges

In MySQL 8.0, many operations that previously required the SUPER privilege are also associated

with a dynamic privilege of more limited scope. (For descriptions of these privileges, see Section 4.2,
“Privileges Provided by MySQL".) Each such operation can be permitted to an account by granting the
associated dynamic privilege rather than SUPER. This change improves security by enabling DBAs to
avoid granting SUPER and tailor user privileges more closely to the operations permitted. SUPER is how
deprecated; expect it to be removed in a future version of MySQL.

When removal of SUPER occurs, operations that formerly required SUPER fail unless accounts granted
SUPER are migrated to the appropriate dynamic privileges. Use the following instructions to accomplish
that goal so that accounts are ready prior to SUPER removal:

1. Execute this query to identify accounts that are granted SUPER:

SELECT GRANTEE FROM | NFORVATI ON_SCHENMA. USER PRI VI LEGES
VWHERE PRI VI LECE_TYPE = ' SUPER ;

2. For each account identified by the preceding query, determine the operations for which it needs
SUPER. Then grant the dynamic privileges corresponding to those operations, and revoke SUPER.

For example, if' ul' @1 ocal host"' requires SUPER for binary log purging and system variable
modification, these statements make the required changes to the account:

GRANT BI NLOG_ADM N, SYSTEM VARI ABLES ADM N ON *.* TO 'ul' @I ocal host ' ;
REVOKE SUPER ON *.* FROM 'ul' @I ocal host "' ;

After you have modified all applicable accounts, the | NFORVATI ON_SCHEMNA query in the first step
should produce an empty result set.

4.3 Grant Tables

The nysql system database includes several grant tables that contain information about user
accounts and the privileges held by them. This section describes those tables. For information about
other tables in the system database, see The mysqgl System Schema.

The discussion here describes the underlying structure of the grant tables and how the server uses
their contents when interacting with clients. However, normally you do not modify the grant tables
directly. Modifications occur indirectly when you use account-management statements such as CREATE
USER, GRANT, and REVOKE to set up accounts and control the privileges available to each one. See
Account Management Statements. When you use such statements to perform account manipulations,
the server modifies the grant tables on your behalf.

Note

Direct modification of grant tables using statements such as | NSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Upgrading MySQL.

Grant Table Overview

* The user and db Grant Tables

The tables_priv and columns_priv Grant Tables

» The procs_priv Grant Table

51

https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Grant Table Overview

e The proxies_priv Grant Table

e The global_grants Grant Table

e The default_roles Grant Table

» The role_edges Grant Table

» The password_history Grant Table

» Grant Table Scope Column Properties

» Grant Table Privilege Column Properties

» Grant Table Concurrency

Grant Table Overview

These nysql database tables contain grant information:

» user : User accounts, static global privileges, and other nonprivilege columns.
e gl obal _grants: Dynamic global privileges.

« dh: Database-level privileges.

» tabl es_priv: Table-level privileges.

e col ums_pri v: Column-level privileges.

» procs_pri v: Stored procedure and function privileges.
* proxi es_priv:Proxy-user privileges.

» defaul t_rol es: Default user roles.

» rol e_edges: Edges for role subgraphs.

* passwor d_hi st ory: Password change history.

For information about the differences between static and dynamic global privileges, see Static Versus
Dynamic Privileges.)

In MySQL 8.0, grant tables use the | nnoDB storage engine and are transactional. Before MySQL 8.0,
grant tables used the Myl SAMstorage engine and were nontransactional. This change of grant table
storage engine enables an accompanying change to the behavior of account-management statements
such as CREATE USER or GRANT. Previously, an account-management statement that named multiple
users could succeed for some users and fail for others. Now, each statement is transactional and either
succeeds for all named users or rolls back and has no effect if any error occurs.

Each grant table contains scope columns and privilege columns:

e Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of ' hl. exanpl e. net' and
' bob' applies to authenticating connections made to the server from the host h1. exanpl e. net by
a client that specifies a user name of bob. Similarly, a db table row with Host , User , and Db column
values of ' h1l. exanpl e. net',"' bob' and' reports' applies when bob connects from the host
h1l. exanpl e. net to access the r epor t s database. Thet abl es_priv and col ums_priv
tables contain scope columns indicating tables or table/column combinations to which each row
applies. The procs_pri v scope columns indicate the stored routine to which each row applies.

 Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 4.7, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

52

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

The user and db Grant Tables

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

The server uses the grant tables in the following manner:

e The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's static global
privileges. Any privileges granted in this table apply to all databases on the server.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHENVATA table of

| NFORVATI ON_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

e The gl obal _grant s table lists current assignments of dynamic global privileges to user accounts.
For each row, the scope columns determine which user has the privilege named in the privilege
column.

» The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine the permitted operations. A privilege granted at the database level
applies to the database and to all objects in the database, such as tables and stored programs.

« Thetabl es privandcol ums_pri v tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

» The procs_pri v table applies to stored routines (stored procedures and functions). A privilege
granted at the routine level applies only to a single procedure or function.

* The proxi es_pri v table indicates which users can act as proxies for other users and whether a
user can grant the PROXY privilege to other users.

« Thedefault rol esandrol e _edges tables contain information about role relationships.

* The passwor d_hi st ory table retains previously chosen passwords to enable restrictions on
password reuse. See Section 4.15, “Password Management”.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload
the tables by issuing a FLUSH PRI VI LEGES statement or executing a nysql adm n f 1 ush-
privileges ornysgl adm n rel oad command. Changes to the grant tables take effect as indicated
in Section 4.13, “When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHON GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob
and pc84. exanpl e. com use this statement:

SHOW GRANTS FOR ' bob' @ pc84. exanpl e. com ;

To display nonprivilege properties of an account, use SHOWV CREATE USER:

SHOW CREATE USER ' bob' @ pc84. exanpl e. con ;

The user and db Grant Tables

The server uses the user and db tables in the nysql database at both the first and second stages of
access control (see Chapter 4, Access Control and Account Management). The columns in the user
and db tables are shown here.

53

https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html

The user and db Grant Tables

Table 4.3 user and db Table Columns

Table Name user db
Scope columns Host Host
User Db
User

Privilege columns

Sel ect_priv

Sel ect _priv

Insert_priv

Insert_priv

Update priv Update priv
Del ete priv Delete priv
I ndex_priv I ndex_priv
Alter priv Alter _priv
Create _priv Create _priv
Drop_priv Drop_priv

G ant_priv G ant_priv

Create_view priv

Create_view priv

Show view priv

Show view priv

Create routine priv

Create routine priv

Al'ter_routine_priv

Al'ter_routine_priv

Execute_priv

Execute_priv

Trigger _priv

Trigger _priv

Event priv

Event priv

Create tnp_table priv

Create tnp_table priv

Lock _tables_priv

Lock _tables_priv

Ref erences_priv

Ref erences_priv

Rel oad_priv

Shut down_pri v

Process_priv

File priv

Show _db_priv

Super _priv

Repl _sl ave priv

Repl _client _priv

Create_user _priv

Create_tabl espace_priv

Create_role_priv

Drop_role priv

Security columns

ssl _type

ssl _ci pher

x509 i ssuer

x509_subj ect

pl ugin

aut hentication_string

54

The user and db Grant Tables

Table Name user db

password_expired

password_| ast changed

password lifetine

account _| ocked

Password_reuse_history

Password_reuse_tine

Passwor d_require_current

User attributes

Resource control columns mex_questi ons

max_updat es

max_connecti ons

max_user _connect i ons

The user table pl ugi n and aut henti cati on_stri ng columns store authentication plugin and
credential information.

The server uses the plugin named in the pl ugi n column of an account row to authenticate connection
attempts for the account.

The pl ugi n column must be nonempty. At startup, and at runtime when FLUSH PRI VI LEGES is
executed, the server checks user table rows. For any row with an empty pl ugi n column, the server
writes a warning to the error log of this form:

[Warni ng] User entry 'user_nanme' @host_nanme' has an enpty plugin
val ue. The user will be ignored and no one can login with this user
anynor e.

To assign a plugin to an account that is missing one, use the ALTER USER statement.

The passwor d_expi r ed column permits DBAS to expire account passwords and require users to
reset their password. The default passwor d_expi red valueis' N, but can be setto' Y' with the
ALTER USER statement. After an account's password has been expired, all operations performed by
the account in subsequent connections to the server result in an error until the user issues an ALTER
USER statement to establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

password_| ast _changed is a TI MESTAMP column indicating when the password was last
changed. The value is non-NULL only for accounts that use a MySQL built-in authentication plugin
(mysql _native_password, sha256_password, or cachi ng_sha2 passwor d). The value is
NULL for other accounts, such as those authenticated using an external authentication system.

passwor d_| ast _changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_lifeti ne indicates the account password lifetime, in days. If the password is past
its lifetime (assessed using the passwor d_| ast _changed column), the server considers the
password expired when clients connect using the account. A value of N greater than zero means
that the password must be changed every N days. A value of 0 disables automatic password

55

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

The user and db Grant Tables

expiration. If the value is NULL (the default), the global expiration policy applies, as defined by the
default password |ifetine system variable.

account _| ocked indicates whether the account is locked (see Section 4.20, “Account Locking”).

Passwor d_reuse_hi st ory is the value of the PASSWORD HI STORY option for the account, or NULL
for the default history.

Passwor d_reuse_ti e is the value of the PASSWORD REUSE | NTERVAL option for the account, or
NULL for the default interval.

Passwor d_require_current (added in MySQL 8.0.13) corresponds to the value of the PASSWORD
REQUI RE option for the account, as shown by the following table.

Table 4.4 Permitted Password_require_current Values

Password_require_current Value Corresponding PASSWORD REQUIRE Option
Y PASSWORD REQUI RE CURRENT

"N PASSWORD REQUI RE CURRENT OPTI ONAL
NULL PASSWORD REQUI RE CURRENT DEFAULT

User attri butes (addedin MySQL 8.0.14) is a JSON-format column that stores account attributes
not stored in other columns. As of MySQL 8.0.21, the | NFORMATI ON_SCHENA exposes these attributes
through the USER_ATTRI BUTES table.

The User _at t ri but es column may contain these attributes:
» addi ti onal _passwor d: The secondary password, if any. See Dual Password Support.

» Restrictions: Restriction lists, if any. Restrictions are added by partial-revoke operations.
The attribute value is an array of elements that each have Dat abase and Restri cti ons keys
indicating the name of a restricted database and the applicable restrictions on it (see Section 4.12,
“Privilege Restriction Using Partial Revokes”).

» Passwor d_I ocki ng: The conditions for failed-login tracking and temporary account locking,
if any (see Failed-Login Tracking and Temporary Account Locking). The Passwor d_| ocki ng
attribute is updated according to the FAI LED LOG N_ATTEMPTS and PASSWORD LOCK Tl ME
options of the CREATE USER and ALTER USER statements. The attribute value is a hash with
failed | ogin_attenpts and password_| ock _tinme_days keys indicating the value of such
options as have been specified for the account. If a key is missing, its value is implicitly 0. If a key
value is implicitly or explicitly 0, the corresponding capability is disabled. This attribute was added in
MySQL 8.0.19.

e nulti_factor_authentication: Rowsinthe nysql . user system table have a pl ugi n
column that indicates an authentication plugin. For single-factor authentication, that plugin is the only
authentication factor. For two-factor or three-factor forms of multifactor authentication, that plugin
corresponds to the first authentication factor, but additional information must be stored for the second
and third factors. The mul ti _fact or _aut henti cati on attribute holds this information. This
attribute was added in MySQL 8.0.27.

Thenul ti factor _authentication valueis an array, where each array element is a hash that
describes an authentication factor using these attributes:

e pl ugi n: The name of the authentication plugin.
e aut hentication_string: The authentication string value.

« passwor dl ess: A flag that denotes whether the user is meant to be used without a password
(with a security token as the only authentication method).

56

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/information-schema-user-attributes-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

The tables_priv and columns_priv Grant Tables

e requires_registration: aflag that defines whether the user account has registered a security
token.

The first and second array elements describe multifactor authentication factors 2 and 3.
If no attributes apply, User _attri but es is NULL.

Example: An account that has a secondary password and partially revoked database privileges has
addi ti onal password and Restri cti ons attributes in the column value:

nmysqgl > SELECT User _attri butes FROM nysql . User WHERE User = 'u'\G
khkkkhkkhkkhkhkhkhkhkhkdhhkhkhkhkkhkhkhkhkhddkkk 1 I’OW khkkkhkkhkkhkkhkhkhkhkhkhrhhkhhkkhkkhkhkhkhkhhdkkk

User _attributes: {"Restrictions":
[{"Database": "nysqgl", "Privileges": ["SELECT"]}],
"addi ti onal _password": "hashed_credential s"}

To determine which attributes are present, use the JSON_KEYS() function:

SELECT User, Host, JSON KEYS(User_attributes)
FROM nysql . user WHERE User _attri butes IS NOT NULL;

To extract a particular attribute, such as Restri cti ons, do this:

SELECT User, Host, User_attributes->>'$. Restrictions'
FROM nysql . user WHERE User _attri butes->>'$. Restrictions' <> '';

Here is an example of the kind of information stored for nul ti _fact or _aut henti cati on:

"mul ti _factor_authentication": [

{
"plugin": "authentication_| dap_sinple",
"passwordl ess": 0,
"aut hentication_string": "ldap auth string",
"requires_registration": 0

I

{
"plugin": "authentication_fido",
"passwordl ess": 0,
"aut hentication_string": "",
"requires_registration": 1

}

]
}

The tables_priv and columns_priv Grant Tables

During the second stage of access control, the server performs request verification to ensure that

each client has sufficient privileges for each request that it issues. In addition to the user and db grant
tables, the server may also consult the t abl es_pri v and col unms_pri v tables for requests that
involve tables. The latter tables provide finer privilege control at the table and column levels. They have
the columns shown in the following table.

Table 4.5 tables_priv and columns_priv Table Columns

Table Name tables priv colums_priv
Scope columns Host Host
Db Db
User User
Tabl e_nane Tabl e_nane
Col utm_nane
Privilege columns Table priv Col um_priv

57

https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#function_json-keys

The procs_priv Grant Table

Table Name tables_priv colums_priv

Col um_priv

Other columns Ti mest anp Ti mest anp

G ant or

The Ti nest anp and Gr ant or columns are set to the current timestamp and the CURRENT _USER
value, respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the pr ocs_pri v table,
which has the columns shown in the following table.

Table 4.6 procs_priv Table Columns

Table Name procs_priv
Scope columns Host

Db

User

Rout i ne_nane

Rout i ne_type

Privilege columns Proc_priv
Other columns Ti mest anp
G ant or

The Rout i ne_t ype column is an ENUMcolumn with values of ' FUNCTI ON' or ' PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Ti nest anp and G- ant or columns are unused.
The proxies_priv Grant Table

The pr oxi es_pri v table records information about proxy accounts. It has these columns:

» Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

* Proxi ed_host, Proxi ed_user: The proxied account.
e Grantor, Ti nest anp: Unused.
« Wt h_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in

the proxi es_pri v table with Wt h_grant setto 1 and Proxi ed_host and Proxi ed_user

set to indicate the account or accounts for which the privilege can be granted. For example, the
"root' @I ocal host' account created during MySQL installation has a row in the pr oxi es_pri v
table that enables granting the PROXY privilege for' ' @ ', that is, for all users and all hosts. This
enables r oot to set up proxy users, as well as to delegate to other accounts the authority to set up
proxy users. See Section 4.19, “Proxy Users”.

The global _grants Grant Table

The gl obal _gr ant s table lists current assignments of dynamic global privileges to user accounts.
The table has these columns:

58

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/enum.html

The default_roles Grant Table

e USER, HOST: The user name and host name of the account to which the privilege is granted.
* PRI V: The privilege name.

W TH_GRANT_OPTI ON: Whether the account can grant the privilege to other accounts.

The default_roles Grant Table
The def aul t _r ol es table lists default user roles. It has these columns:
» HOST, USER: The account or role to which the default role applies.

o DEFAULT_ROLE_HOST, DEFAULT_ROLE_USER: The default role.

The role_edges Grant Table
The r ol e_edges table lists edges for role subgraphs. It has these columns:
» FROM HOST, FROM USER: The account that is granted a role.
e TO HOST, TO USER: The role that is granted to the account.

« WTH_ADM N_OPTI ON: Whether the account can grant the role to and revoke it from other accounts
by using W TH ADM N OPTI ON.

The password_history Grant Table
The passwor d_hi st ory table contains information about password changes. It has these columns:
* Host, User : The account for which the password change occurred.
e Passwor d_ti nmest anp: The time when the password change occurred.
» Passwor d: The new password hash value.

The passwor d_hi st or y table accumulates a sufficient number of nonempty passwords per account
to enable MySQL to perform checks against both the account password history length and reuse
interval. Automatic pruning of entries that are outside both limits occurs when password-change
attempts occur.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

If an account is renamed, its entries are renamed to match. If an account is dropped or its
authentication plugin is changed, its entries are removed.

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 4.7 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters
Host , Proxi ed_host 255 (60 prior to MySQL 8.0.17)
User, Proxi ed_user 32

Db 64

Tabl e_nane 64

59

Grant Table Privilege Column Properties

Column Name Maximum Permitted Characters
Col utm_nane 64
Rout i ne_nane 64

Host and Pr oxi ed_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User, Proxi ed_user, aut henti cati on_stri ng,
Db, and Tabl e_nane values are case-sensitive. Comparisons of Host , Pr oxi ed_host ,
Col utm_nane, and Rout i ne_nane values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM ' N , ' Y")
DEFAULT ' N . In other words, each privilege can be disabled or enabled, with the default being
disabled.

The tabl es _priv,colums_priv, andprocs_pri v tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 4.8 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables _priv Tabl e _priv Select', 'lInsert’,
"Update', 'Delete',
"Create', 'Drop',
"Grant', 'References',
"Index', "Ater",
"Create View, 'Show
view , 'Trigger'

tables_priv Col um_priv "Select', 'Insert',
"Update', 'References'

colums_priv Col um_priv "Select', '"lInsert',
"Update', 'References'

procs_priv Proc_priv ' Execute', 'Alter
Routine', 'Gant'

Only the user and gl obal _gr ant s tables specify administrative privileges, such as RELOAD,
SHUTDOWN, and SYSTEM VARI ABLES ADM N. Administrative operations are operations on the server
itself and are not database-specific, so there is no reason to list these privileges in the other grant
tables. Consequently, the server need consult only the user and gl obal _gr ant s tables to determine
whether a user can perform an administrative operation.

The FI LE privilege also is specified only in the user table. It is not an administrative privilege as
such, but a user's ability to read or write files on the server host is independent of the database being
accessed.

Grant Table Concurrency

As of MySQL 8.0.22, to permit concurrent DML and DDL operations on MySQL grant tables, read
operations that previously acquired row locks on MySQL grant tables are executed as non-locking
reads. Operations that are performed as non-locking reads on MySQL grant tables include:

» SELECT statements and other read-only statements that read data from grant tables through join lists
and subqueries, including SELECT ... FOR SHARE statements, using any transaction isolation
level.

60

https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html

Specifying Account Names

» DML operations that read data from grant tables (through join lists or subqueries) but do not modify
them, using any transaction isolation level.

Statements that no longer acquire row locks when reading data from grant tables report a warning if
executed while using statement-based replication.

When using -bi nl og_f or mat =m xed, DML operations that read data from grant tables are written to
the binary log as row events to make the operations safe for mixed-mode replication.

SELECT ... FOR SHARE statements that read data from grant tables report a warning. With the FOR
SHARE clause, read locks are not supported on grant tables.

DML operations that read data from grant tables and are executed using the SERI ALI ZABLE isolation
level report a warning. Read locks that would normally be acquired when using the SERI ALI ZABLE
isolation level are not supported on grant tables.

4.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes
the syntax for account names, including special values and wildcard rules.

In most respects, account names are similar to MySQL role names, with some differences described at
Section 4.5, “Specifying Role Names”.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

» Account name syntax is' user _nane' @ host _nane' .

e« The @ host _nane' part is optional. An account name consisting only of a user name is equivalent
to' user _nanme' @ % . For example, ' ne' is equivalentto' ne' @ % .

» The user name and host name need not be quoted if they are legal as unquoted identifiers.
Quotes must be used if a user _nane string contains special characters (such as space or -), or a
host _namne string contains special characters or wildcard characters (such as . or %). For example,
in the account name ' t est - user' @ % coni , both the user name and host name parts require
quotes.

* Quote user names and host names as identifiers or as strings, using either backticks ("), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting
guidelines, see String Literals, and Schema Object Names. In SHONstatement results, user names
and host names are quoted using backticks (").

e The user name and host name parts, if quoted, must be quoted separately. That is,
write' me' @1 ocal host' , not' ne@ ocal host' . The latter is actually equivalent to
"me@ocal host' @ % .

» Areference to the CURRENT USER or CURRENT USER() function is equivalent to specifying the
current client's user name and host name literally.

MySQL stores account names in grant tables in the mysql system database using separate columns
for the user name and host name parts:

» The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

» Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

61

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/identifiers.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Specifying Account Names

» For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables,
such as maximum length, see Grant Table Scope Column Properties.

User names and host names have certain special values or wildcard conventions, as described
following.

The user name part of an account name is either a nonblank value that literally matches the user name
for incoming connection attempts, or a blank value (the empty string) that matches any user name.

An account with a blank user name is an anonymous user. To specify an anonymous user in SQL
statements, use a quoted empty user name part, suchas'' @I ocal host ' .

The host hame part of an account name can take many forms, and wildcards are permitted:

* A host value can be a host name or an IP address (IPv4 or IPv6). The name ' | ocal host'
indicates the local host. The IP address ' 127. 0. 0. 1' indicates the IPv4 loopback interface. The IP
address' : : 1' indicates the IPv6 loopback interface.

» The %and _ wildcard characters are permitted in host name or IP address values. These have the
same meaning as for pattern-matching operations performed with the LI KE operator. For example, a
host value of ' % matches any host name, whereas a value of ' % nysql . comi matches any host
in the mysql . comdomain. ' 198. 51. 100. % matches any host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, ' 198. 51. 100. % to

match every host on a subnet), someone could try to exploit this capability by haming a host

198. 51. 100. sonewher e. com To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1. 2. exanpl e. com its name
never matches the host part of account names. An IP wildcard value can match only IP addresses,
not host names.

» For a host value specified as an IPv4 address, a netmask can be given to indicate how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host _i p/ net mask. For example:

CREATE USER ' davi d' @ 198. 51. 100. 0/ 255. 255. 255. 0' ;

This enables davi d to connect from any client host having an IP address cl i ent _i p for which the
following condition is true:

client _ip & netnmask = host _ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 198.51. 100. 0

IP addresses that satisfy this condition range from 198. 51. 100. 0 to 198. 51. 100. 255.
A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

¢ 198. 0. 0. 0/ 255. 0. 0. 0: Any host on the 198 class A network

198. 51. 0. 0/ 255. 255. 0. 0: Any host on the 198.51 class B network

e 198. 51. 100. 0/ 255. 255. 255. 0: Any host on the 198.51.100 class C network

198. 51. 100. 1: Only the host with this specific IP address

» As of MySQL 8.0.23, a host value specified as an IPv4 address can be written using CIDR notation,
such as 198. 51. 100. 44/ 24.

62

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Specifying Role Names

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify
account host values in the same format used by DNS. Here are examples of problems to watch out for:

» Suppose that a host on the local network has a fully qualified name of host 1. exanpl e. com If DNS
returns name lookups for this host as host 1. exanpl e. com use that name in account host values.
If DNS returns just host 1, use host 1 instead.

 If DNS returns the IP address for a given host as 198. 51. 100. 2, that matches an account host
value of 198. 51. 100. 2 but not 198. 051. 100. 2. Similarly, it matches an account host pattern like
198. 51. 100. %but not 198. 051. 100. %

To avoid problems like these, it is advisable to check the format in which your DNS returns host names
and addresses. Use values in the same format in MySQL account names.

4.5 Specifying Role Names

MySQL role names refer to roles, which are named collections of privileges. For role usage examples,
see Section 4.10, “Using Roles”.

Role names have syntax and semantics similar to account names; see Section 4.4, “Specifying
Account Names”. As stored in the grant tables, they have the same properties as account names,
which are described in Grant Table Scope Column Properties.

Role names differ from account names in these respects:

e The user part of role names cannot be blank. Thus, there is no “anonymous role” analogous to the
concept of “anonymous user.”

» As for an account name, omitting the host part of a role name results in a host part of ' % . But unlike
' % in an account name, a host part of ' % in a role name has no wildcard properties. For example,
foraname' ne' @ % used as a role name, the host part (' %) is just a literal value; it has no “any
host” matching property.

* Netmask notation in the host part of a role name has no significance.
e An account name is permitted to be CURRENT _USER() in several contexts. A role name is not.

It is possible for a row in the mysql . user system table to serve as both an account and a role. In this
case, any special user or host name matching properties do not apply in contexts for which the name
is used as a role name. For example, you cannot execute the following statement with the expectation
that it sets the current session roles using all roles that have a user part of myr ol e and any host name:

SET ROLE 'nyrole @ % ;

Instead, the statement sets the active role for the session to the role with exactly the name
"nyrole @%.

For this reason, role names are often specified using only the user name part and letting the host name
part implicitly be ' % . Specifying a role with a non-' % host part can be useful if you intend to create a
name that works both as a role an as a user account that is permitted to connect from the given host.

4.6 Access Control, Stage 1. Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on these conditions:

» Your identity and whether you can verify it by supplying the proper credentials.

63

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Access Control, Stage 1: Connection Verification

» Whether your account is locked or unlocked.

The server checks credentials first, then account locking state. A failure at either step causes the
server to deny access to you completely. Otherwise, the server accepts the connection, and then
enters Stage 2 and waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

* The client host name and user name match the Host and User columns in some user table row.
For the rules governing permissible Host and User values, see Section 4.4, “Specifying Account
Names”.

» The client supplies the credentials specified in the row (for example, a password), as indicated by
the aut henti cati on_st ri ng column. Credentials are interpreted using the authentication plugin
named in the pl ugi n column.

» The row indicates that the account is unlocked. Locking state is recorded in the account | ocked
column, which must have a value of ' N' . Account locking can be set or changed with the CREATE
USER or ALTER USER statement.

Your identity is based on two pieces of information:
* Your MySQL user name.

e The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly.

If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

The aut henti cati on_st ri ng column can be blank. This is not a wildcard and does not mean
that any password matches. It means that the user must connect without specifying a password. The
authentication method implemented by the plugin that authenticates the client may or may not use
the password in the aut hent i cati on_st ri ng column. In this case, it is possible that an external
password is also used to authenticate to the MySQL server.

Nonblank password values stored in the aut hent i cati on_stri ng column of the user table are
encrypted. MySQL does not store passwords as cleartext for anyone to see. Rather, the password
supplied by a user who is attempting to connect is encrypted (using the password hashing method
implemented by the account authentication plugin). The encrypted password then is used during the
connection process when checking whether the password is correct. This is done without the encrypted
password ever traveling over the connection. See Section 4.1, “Account User Names and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the
nysql system database.

The following table shows how various combinations of User and Host values in the user table apply
to incoming connections.

User Value Host Value Permissible Connections

"fred' " hl. exanpl e. net' f r ed, connecting from
hl. exanpl e. net

" hl. exanpl e. net' Any user, connecting from
hl. exanmpl e. net

64

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Access Control, Stage 1: Connection Verification

User Value Host Value Permissible Connections

"fred "% f r ed, connecting from any host

v "% Any user, connecting from any
host

"fred ' % exanpl e. net"' f r ed, connecting from any host

in the exanpl e. net domain

"fred ' x. exanpl e. % f r ed, connecting from

x. exanpl e. net,

x. exanpl e. com

x. exanpl e. edu, and so on;
this is probably not useful

"fred '198.51.100. 177 f r ed, connecting from
the host with IP address
198.51.100. 177

"fred '198. 51. 100. % f r ed, connecting from any host
inthe 198. 51. 100 class C
subnet

"fred '198. 51. 100. 0/ 255. 255. 255,S8ame as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from h1. exanpl e. net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

» Whenever the server reads the user table into memory, it sorts the rows.

* When a client attempts to connect, the server looks through the rows in sorted order.
» The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first:

« Literal IP addresses and host hames are the most specific.

» Prior to MySQL 8.0.23, the specificity of a literal IP address is not affected by whether it has a
netmask, so 198. 51. 100. 13 and 198. 51. 100. 0/ 255. 255. 255. 0 are considered equally
specific. As of MySQL 8.0.23, accounts with an IP address in the host part have this order of
specificity:

« Accounts that have the host part given as an IP address:

CREATE USER 'user _nane' @127.0.0.1";
CREATE USER 'user nane' @ 198. 51. 100. 44" ;

< Accounts that have the host part given as an IP address using CIDR notation:

CREATE USER 'user nane' @192.0.2.21/8";
CREATE USER ' user _nane' @ 198. 51. 100. 44/ 16" ;

¢ Accounts that have the host part given as an IP address with a subnet mask:

CREATE USER ' user _nane' @ 192. 0. 2. 0/ 255. 255. 255. 0' ;
CREATE USER ' user_nane' @ 198. 51. 0. 0/ 255. 255. 0. 0' ;

» The pattern' % means “any host” and is least specific.

e The empty string ' ' also means “any host” but sorts after ' % .

65

Access Control, Stage 1: Connection Verification

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections
and match a host part of | ocal host if there are any such accounts, or host parts with wildcards that
match | ocal host otherwise (for example, | ocal % | % %).

Rows with the same Host value are ordered with the most-specific User values first. A blank User
value means “any user” and is least specific, so for rows with the same Host value, nonanonymous
users sort before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

Hommmmeeaaaa tomm o a +-
| Host | User |
Hommmmeeaaaa tomm o a +-
%	root
%	jeffrey
local host	root
local host	
Hommmmeeaaaa tomm o a +-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

local host	root
local host	
%	jeffrey
%	root

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from | ocal host by ef f r ey, two of the rows from the table match: the
one with Host and User values of ' | ocal host' and' ', and the one with values of ' % and
"jeffrey'.The'l ocal host' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

%

ooccococccocoooan ooccoooooo +-
| Host | User |
ooccococccocoooan ooccoooooo +-
| hl.exanpl e.net | |
| % | jeffrey |
ooccococccocoooan ooccoooooo +-

The first row matches a connection by any user from h1. exanpl e. net , whereas the second row
matches a connection by j ef f r ey from any host.

Note

It is a common misconception to think that, for a given user name, all rows

that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from h1. exanpl e. net by j ef f r ey is first matched
not by the row containing ' j ef f r ey' as the User column value, but by the row

66

Access Control, Stage 2: Request Verification

with no user name. As aresult, j ef f r ey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably
are being authenticated as some other account. To find out what account the server used to
authenticate you, use the CURRENT _USER() function. (See Information Functions.) It returns a value
inuser _nane@ost _nane format that indicates the User and Host values from the matching user
table row. Suppose that j ef f r ey connects and issues the following query:

nysql > SELECT CURRENT USER()

disccocccoococcoos +
| CURRENT_USER() |
disccocccoococcoos +
| @ ocal host |
disccocccoococcoos +

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating j ef f r ey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

4.7 Access Control, Stage 2: Request Verification

After the server accepts a connection, it enters Stage 2 of access control. For each request that you
issue through the connection, the server determines what operation you want to perform, then checks
whether your privileges are sufficient. This is where the privilege columns in the grant tables come

into play. These privileges can come from any of the user, gl obal _grants, db,tabl es _priv,

col ums_priv,orprocs_priv tables. (You may find it helpful to refer to Section 4.3, “Grant Tables”,
which lists the columns present in each grant table.)

The user and gl obal _gr ant s tables grant global privileges. The rows in these tables for a given
account indicate the account privileges that apply on a global basis no matter what the default
database is. For example, if the user table grants you the DELETE privilege, you can delete rows from
any table in any database on the server host. It is wise to grant privileges in the user table only to
people who need them, such as database administrators. For other users, leave all privileges in the
user table setto' N and grant privileges at more specific levels only (for particular databases, tables,
columns, or routines). It is also possible to grant database privileges globally but use partial revokes to
restrict them from being exercised on specific databases (see Section 4.12, “Privilege Restriction Using
Partial Revokes”).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

» A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

» The wildcard characters %and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LI KE operator. If you want to use
either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character () as part of a database name, specify it as\ _ in the GRANT
statement.

* A' % orblank Host value means “any host.”

« A' % or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table.
The server sorts the db table based on the Host , Db, and User scope columns. As with the user

table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching rows, it uses the first match that it finds.

67

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Access Control, Stage 2: Request Verification

The tabl es _priv,colums_priv, and procs_pri v tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

» The wildcard characters %and _ can be used in the Host column. These have the same meaning as
for pattern-matching operations performed with the LI KE operator.

* A' % or blank Host value means “any host.”

e The Db, Tabl e_nane, Col utm_nane, and Rout i ne_namne columns cannot contain wildcards or be
blank.

The server sorts the t abl es_pri v, col uims_pri v, and procs_pri v tables based on the Host ,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user and

gl obal privil ege tables because those are the only tables that specify administrative privileges.
The server grants access if a row for the account in those tables permits the requested operation and
denies access otherwise. For example, if you want to execute nysql adm n shut down but your
user table row does not grant the SHUTDOWN privilege to you, the server denies access without even
checking the db table. (The latter table contains no Shut down_pri v column, so there is no need to
check it.)

For database-related requests (I NSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row (less any privilege restrictions imposed by partial revokes). If the

row permits the requested operation, access is granted. If the global privileges in the user table are
insufficient, the server determines the user's database-specific privileges from the db table:

* The server looks in the db table for a match on the Host , Db, and User columns.

» The Host and User columns are matched to the connecting user's host name and MySQL user
name.

* The Db column is matched to the database that the user wants to access.
« |f there is no row for the Host and User , access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tabl es_priv and col umms_pri v tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_pri v table
rather thant abl es_pri v and col uims_pri v.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

gl obal privil eges

OR dat abase privil eges
OR tabl e privil eges
OR colum privil eges
OR routine privil eges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The
reason is that a request might require more than one type of privilege. For example, if you execute

an | NSERT | NTO ... SELECT statement, you need both the | NSERT and the SELECT privileges.
Your privileges might be such that the user table row grants one privilege global and the db table row
grants the other specifically for the relevant database. In this case, you have the necessary privileges
to perform the request, but the server cannot tell that from either your global or database privileges
alone. It must make an access-control decision based on the combined privileges.

68

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html

Adding Accounts, Assigning Privileges, and Dropping Accounts

4.8 Adding Accounts, Assigning Privileges, and Dropping
Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:
* CREATE USER and DROP USER create and remove accounts.

* CRANT and REVCKE assign privileges to and revoke privileges from accounts.

» SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 4.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as | NSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Upgrading MySQL.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmi n is one such program.

This section discusses the following topics:

» Creating Accounts and Granting Privileges
» Checking Account Privileges and Properties
* Revoking Account Privileges

» Dropping Accounts

For additional information about the statements discussed here, see Account Management Statements.

Creating Accounts and Granting Privileges

The following examples show how to use the nysql client program to set up new accounts. These
examples assume that the MySQL r oot account has the CREATE USER privilege and all privileges
that it grants to other accounts.

At the command line, connect to the server as the MySQL r oot user, supplying the appropriate
password at the password prompt:

$> nysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see ' passwor d' , substitute an appropriate
password):

CREATE USER 'finley' @I ocal host'
| DENTI FI ED BY ' password';
GRANT ALL
O\l *. *
TO 'finley' @Il ocal host'
W TH GRANT OPTI ON,
CREATE USER 'finl ey' @ % exanpl e. coni

69

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Creating Accounts and Granting Privileges

| DENTI FI ED BY ' password';
GRANT ALL

O\l *. *

TO 'finley' @% exanpl e.com

W TH GRANT OPTI ON,
CREATE USER ' adm n' @1 ocal host*

| DENTI FI ED BY ' password';
GRANT RELQAD, PROCESS

O\l *. *

TO '"adm n' @1 ocal host ' ;
CREATE USER ' dummy' @1 ocal host ' ;

The accounts created by those statements have the following properties:

» Two accounts have a user name of f i nl ey. Both are superuser accounts with full global privileges
to do anything. The ' finl ey' @I ocal host' account can be used only when connecting from the
local host. The' finl ey’ @ % exanpl e. conml account uses the ' % wildcard in the host part, so it
can be used to connect from any host in the exanpl e. comdomain.

The' finley' @Il ocal host' account is necessary if there is an anonymous-user account for

| ocal host . Without the ' fi nl ey’ @ | ocal host' account, that anonymous-user account takes
precedence when f i nl ey connects from the local host and f i nl ey is treated as an anonymous
user. The reason for this is that the anonymous-user account has a more specific Host column
value thanthe ' fi nl ey’ @ % account and thus comes earlier in the user table sort order. (For
information about user table sorting, see Section 4.6, “Access Control, Stage 1: Connection
Verification”.)

 The'adm n' @I ocal host"' account can be used only by adni n to connect from the local host.
It is granted the global RELOAD and PROCESS administrative privileges. These privileges enable
the admi n user to execute the nysql adnmi n rel oad, nysqgl adnmi n refresh, and nysql admi n
f I ush-xxx commands, as well as nysql adm n processli st . No privileges are granted for
accessing any databases. You could add such privileges using GRANT statements.

e The' dummy' @I ocal host"' account has no password (which is insecure and not recommended).
This account can be used only to connect from the local host. No privileges are granted. It is
assumed that you grant specific privileges to the account using GRANT statements.

The previous example grants privileges at the global level. The next example creates three accounts
and grants them access at lower levels; that is, to specific databases or objects within databases. Each
account has a user name of cust om but the host name parts differ:

CREATE USER ' customl @I ocal host'
| DENTI FI ED BY ' password';
GRANT ALL
ON bankaccount . *
TO ' custom @1 ocal host ' ;
CREATE USER ' cust oml @ host 47. exanpl e. conl
| DENTI FI ED BY ' password';
GRANT SELECT, | NSERT, UPDATE, DELETE, CREATE, DROP
ON expenses. *
TO ' cust oml @ host 47. exanpl e. com ;
CREATE USER ' cust oml @ % exanpl e. conl
| DENTI FI ED BY ' password';
GRANT SELECT, | NSERT, UPDATE, DELETE, CREATE, DROP
ON cust oner . addr esses
TO ' cust oml @ % exanpl e. con ;

The three accounts can be used as follows:

 The' custom @I ocal host' account has all database-level privileges to access the
bankaccount database. The account can be used to connect to the server only from the local host.

» The' custom @ host 47. exanpl e. com account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host 47. exanpl e. com

70

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Checking Account Privileges and Properties

e The' custom @ % exanpl e. comi account has specific table-level privileges to access the
addr esses table in the cust oner database, from any host in the exanpl e. comdomain. The
account can be used to connect to the server from all machines in the domain due to use of the %
wildcard character in the host part of the account name.

Checking Account Privileges and Properties

To see the privileges for an account, use SHOWNV GRANTS:

nmysql > SHOW GRANTS FOR ' adnin' @1 ocal host "' ;

e +
| Grants for adm n@ ocal host |
e +
| GRANT RELOAD, PROCESS ON *.* TO "adnmin @I ocal host™ |
e +

To see nonprivilege properties for an account, use SHON CREATE USER:

nmysql > SET print_identified wth_as_hex = ON
nmysql > SHOW CREATE USER ' adm n' @1 ocal host'\ G

kkkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkkk*x 1 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*x

CREATE USER for admi n@ ocal host: CREATE USER "admi n® @I ocal host *

| DENTI FI ED W TH ' cachi ng_sha2_passwor d'

AS 0x24412430303524301D0E17054E2241362B1419313C3E44326F294133734B30792F436E77764270373039612E3244525078
REQUI RE NONE PASSWORD EXPlI RE DEFAULT ACCOUNT UNLOCK

PASSWORD HI STORY DEFAULT

PASSWORD REUSE | NTERVAL DEFAULT

PASSWORD REQUI RE CURRENT DEFAULT

Enabling the print identified with_as hex system variable (available as of MySQL
8.0.17) causes SHOW CREATE USERto display hash values that contain unprintable characters as
hexadecimal strings rather than as regular string literals.

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels,
just as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL

G\l *. *

FROM ' finl ey’ @ % exanpl e. coni ;
REVOKE RELQAD

G\l *. *

FROM ' admi n' @1 ocal host ' ;

Revoke database-level privileges:
REVOKE CREATE, DROP

ON expenses. *
FROM ' cust oml @ host 47. exanpl e. coni ;

Revoke table-level privileges:
REVOKE | NSERT, UPDATE, DELETE

ON cust oner . addr esses
FROM ' cust oml @ % exanpl e. coni ;

To check the effect of privilege revocation, use SHON GRANTS:

nysgl > SHOW GRANTS FOR ' adnin' @I ocal host ' ;

| GRANT PROCESS ON *.* TO "admin” @I ocal host ™ |

71

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_print_identified_with_as_hex
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Dropping Accounts

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts
created previously:

DROP USER 'finley' @l ocal host';
DROP USER ' finl ey’ @ % exanpl e. coni ;
DROP USER ' admin' @I ocal host ' ;

DROP USER ' dummy' @ ocal host ' ;

4.9 Reserved Accounts

One part of the MySQL installation process is data directory initialization (see Section 3.1, “Initializing
the Data Directory”). During data directory initialization, MySQL creates user accounts that should be
considered reserved:

root' @I ocal host : Used for administrative purposes. This account has all privileges, is a
system account, and can perform any operation.

Strictly speaking, this account name is not reserved, in the sense that some installations rename
the r oot account to something else to avoid exposing a highly privileged account with a well-known
name.

"nmysql . sys' @I ocal host' : Used as the DEFI NER for sys schema objects. Use of the
nysql . sys account avoids problems that occur if a DBA renames or removes the r oot account.
This account is locked so that it cannot be used for client connections.

"nmysql . session' @I ocal host' : Used internally by plugins to access the server. This account is
locked so that it cannot be used for client connections. The account is a system account.

"nmysql .infoschema' @I ocal host' : Used as the DEFI NER for | NFORMATI ON_SCHENA views.
Use of the mysql . i nf oschena account avoids problems that occur if a DBA renames or removes
the root account. This account is locked so that it cannot be used for client connections.

4.10 Using Roles

A MySQL role is a named collection of privileges. Like user accounts, roles can have privileges granted
to and revoked from them.

A user account can be granted roles, which grants to the account the privileges associated with each
role. This enables assignment of sets of privileges to accounts and provides a convenient alternative to
granting individual privileges, both for conceptualizing desired privilege assignments and implementing
them.

The following list summarizes role-management capabilities provided by MySQL:

CREATE ROLE and DROP ROLE create and remove roles.

GRANT and REVOKE assign privileges to revoke privileges from user accounts and roles.
SHOW GRANTS displays privilege and role assignments for user accounts and roles.
SET DEFAULT ROLE specifies which account roles are active by default.

SET ROLE changes the active roles within the current session.

The CURRENT_ROLE() function displays the active roles within the current session.

The mandat ory_rol es and activate_all _rol es_on_| ogi n system variables enable defining
mandatory roles and automatic activation of granted roles when users log in to the server.

72

https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/set-default-role.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login

Creating Roles and Granting Privileges to Them

For descriptions of individual role-manipulation statements (including the privileges required to use
them), see Account Management Statements. The following discussion provides examples of role
usage. Unless otherwise specified, SQL statements shown here should be executed using a MySQL
account with sufficient administrative privileges, such as the r oot account.

» Creating Roles and Granting Privileges to Them
» Defining Mandatory Roles

» Checking Role Privileges

 Activating Roles

» Revoking Roles or Role Privileges

» Dropping Roles

» User and Role Interchangeability

Creating Roles and Granting Privileges to Them

Consider this scenario:
* An application uses a database named app_db.

» Associated with the application, there can be accounts for developers who create and maintain the
application, and for users who interact with it.

» Developers need full access to the database. Some users need only read access, others need read/
write access.

To avoid granting privileges individually to possibly many user accounts, create roles as names for the
required privilege sets. This makes it easy to grant the required privileges to user accounts, by granting
the appropriate roles.

To create the roles, use the CREATE ROLE statement:

CREATE ROLE ' app_devel oper', 'app_read', 'app_wite';

Role names are much like user account names and consist of a user part and host part in

"user _name' @ host _nane' format. The host part, if omitted, defaults to ' % . The user and host

parts can be unquoted unless they contain special characters such as - or % Unlike account names,
the user part of role names cannot be blank. For additional information, see Section 4.5, “Specifying
Role Names”.

To assign privileges to the roles, execute GRANT statements using the same syntax as for assigning
privileges to user accounts:

GRANT ALL ON app_db.* TO ' app_devel oper';
GRANT SELECT ON app_db.* TO 'app_read';
GRANT | NSERT, UPDATE, DELETE ON app_db.* TO 'app_wite';

Now suppose that initially you require one developer account, two user accounts that need read-
only access, and one user account that needs read/write access. Use CREATE USER to create the
accounts:

CREATE USER ' devl' @I ocal host' | DENTI FI ED BY ' devlpass';

CREATE USER 'read_user1l' @I ocal host' | DENTI FI ED BY 'read_user 1pass';
CREATE USER 'read_user?2' @I ocal host' | DENTI FI ED BY 'read_user 2pass’;
CREATE USER 'rw_ user1l' @I ocal host' | DENTI FI ED BY 'rw_user 1pass';

To assign each user account its required privileges, you could use GRANT statements of the same
form as just shown, but that requires enumerating individual privileges for each user. Instead, use an
alternative GRANT syntax that permits granting roles rather than privileges:

73

https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Defining Mandatory Roles

GRANT ' app_devel oper' TO 'devl' @I ocal host"' ;
GRANT 'app_read' TO 'read_userl' @Il ocal host', 'read_user2' @Il ocal host";
GRANT 'app_read', 'app_wite' TO 'rw_ userl' @I ocal host';

The GRANT statement for the r w_user 1 account grants the read and write roles, which combine to
provide the required read and write privileges.

The GRANT syntax for granting roles to an account differs from the syntax for granting privileges:
There is an ON clause to assign privileges, whereas there is no ON clause to assign roles. Because
the syntaxes are distinct, you cannot mix assigning privileges and roles in the same statement. (It

is permitted to assign both privileges and roles to an account, but you must use separate GRANT
statements, each with syntax appropriate to what is to be granted.) As of MySQL 8.0.16, roles cannot
be granted to anonymous users.

A role when created is locked, has no password, and is assigned the default authentication plugin.
(These role attributes can be changed later with the ALTER USER statement, by users who have the
global CREATE USER privilege.)

While locked, a role cannot be used to authenticate to the server. If unlocked, a role can be used to
authenticate. This is because roles and users are both authorization identifiers with much in common
and little to distinguish them. See also User and Role Interchangeability.

Defining Mandatory Roles

It is possible to specify roles as mandatory by nhaming them in the value of the mandat ory_rol es
system variable. The server treats a mandatory role as granted to all users, so that it need not be
granted explicitly to any account.

To specify mandatory roles at server startup, define nandat ory_r ol es in your server ny. cnf file;

[nysal d]
mandat ory_rol es='rol el, rol e2@ ocal host, r 3@% exanpl e. conl

To set and persist nandat or y_r ol es at runtime, use a statement like this:

SET PERSI ST mandatory_roles = 'rol el, rol e2@ ocal host, r 3@b6 exanpl e. com ;

SET PERSI ST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSI ST. See SET
Syntax for Variable Assignment.

Setting meandat ory_r ol es requires the ROLE_ADM N privilege, in addition to the
SYSTEM VARI ABLES ADM N privilege (or the deprecated SUPER privilege) normally required to set a
global system variable.

Mandatory roles, like explicitly granted roles, do not take effect until activated (see Activating Roles). At
login time, role activation occurs for all granted roles if the acti vate_al | _rol es_on_| ogi n system
variable is enabled, or for roles that are set as default roles otherwise. At runtime, SET ROLE activates
roles.

Roles named in the value of nandat ory_r ol es cannot be revoked with REVOKE or dropped with
DROP ROLE or DROP USER.

To prevent sessions from being made system sessions by default, a role that has the SYSTEM USER
privilege cannot be listed in the value of the nandat ory_r ol es system variable:

» If mandat ory_r ol es is assigned a role at startup that has the SYSTEM USER privilege, the server
writes a message to the error log and exits.

e If mandat ory_rol es is assigned a role at runtime that has the SYSTEM USER privilege, an error
occurs and the mandat ory_r ol es value remains unchanged.

74

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles

Checking Role Privileges

If a role named in nandat ory_r ol es is not present in the mysql . user system table, the role is not
granted to users. When the server attempts role activation for a user, it does not treat the nonexistent
role as mandatory and writes a warning to the error log. If the role is created later and thus becomes
valid, FLUSH PRI VI LEGES may be necessary to cause the server to treat it as mandatory.

SHOW GRANTS displays mandatory roles according to the rules described in SHOW GRANTS
Statement.

Checking Role Privileges

To verify the privileges assigned to an account, use SHON GRANTS. For example:

mysql > SHOW GRANTS FOR ' devl' @I ocal host ' ;

| GRANT USAGE ON *.* TO "devl @I ocal host " |
| GRANT " app_devel oper @% TO "devl @I ocal host ™ |

However, that shows each granted role without “expanding” it to the privileges the role represents.
To show role privileges as well, add a USI NG clause naming the granted roles for which to display

privileges:

mysql > SHOW GRANTS FOR ' devl' @I ocal host' USI NG ' app_devel oper" ;
S P S +

| Grants for devli@ ocal host |
S P S +

| GRANT USAGE ON *.* TO “devl @I ocal host " |
| GRANT ALL PRI VILEGES ON "app_db'.* TO "devl @I ocal host ™ |
| GRANT " app_devel oper" @% TO "devl @I ocal host " |

Verify each other type of user similarly:

mysql > SHOWN GRANTS FOR 'read_user1' @I ocal host' USI NG ' app_read';

| GRANT USAGE ON *.* TO "read_userl @I ocal host " |
| GRANT SELECT ON "app_db'.* TO ‘read_userl @Il ocal host® |
| GRANT "app_read @% TO "read_userl® @I ocal host " |

o m m o o e e m o oo e oo e e e m e o e e o e mm e mmemmcmememmca—cemoo=aa +
mysql > SHOWN GRANTS FOR 'rw_ userl' @Il ocal host' USING 'app_read', 'app_wite';

o m o o o oo o m oo o m o o o o oo e oo mm oo m oo e oo mm o e mm oo e e oo mmmmmcmmmmmmmemmcemmoemoo=o +
| Grants for rw_user1@ ocal host |
o m o o o oo o m oo o m o o o o oo e oo mm oo m oo e oo mm o e mm oo e e oo mmmmmcmmmmmmmemmcemmoemoo=o +

| GRANT USAGE ON *.* TO "rw_userl @I ocal host " |
| GRANT SELECT, | NSERT, UPDATE, DELETE ON "app_db'.* TO "rw userl @I ocal host ™ |
| GRANT "app_read @% , app_wite @% TO "rw userl @I ocal host" |

SHOW GRANTS displays mandatory roles according to the rules described in SHOW GRANTS
Statement.

Activating Roles

Roles granted to a user account can be active or inactive within account sessions. If a granted role is
active within a session, its privileges apply; otherwise, they do not. To determine which roles are active
within the current session, use the CURRENT _ROLE() function.

By default, granting a role to an account or naming it in the mandat ory_r ol es system variable value
does not automatically cause the role to become active within account sessions. For example, because
thus far in the preceding discussion no r w_user 1 roles have been activated, if you connect to the
server as rw_user 1 and invoke the CURRENT_ROLE() function, the result is NONE (ho active roles):

nysql > SELECT CURRENT ROLE();

75

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role

Activating Roles

fhocooooooooooooos +
| CURRENT_ROLE() |
frocooooooooooooos +
| NONE |
frocooooooooooooos +

To specify which roles should become active each time a user connects to the server and
authenticates, use SET DEFAULT ROLE. To set the default to all assigned roles for each account
created earlier, use this statement:

SET DEFAULT ROLE ALL TO
'devl' @I ocal host ',
‘read_userl' @I ocal host "',
‘read_user2' @Il ocal host ',
‘rw_userl1l' @I ocal host ' ;

Now if you connect as r w_user 1, the initial value of CURRENT_ROLE() reflects the new default role
assignments:

nysql > SELECT CURRENT_ROLE();

om e e e e e emeeeeeeaaaaa +
| CURRENT_ROLE() |
om e e e e e emeeeeeeaaaaa +
| “app_read @%, app_wite @% |
om e e e e e emeeeeeeaaaaa +

To cause all explicitly granted and mandatory roles to be automatically activated when users connect to
the server, enable the activate_al |l _rol es_on_| ogi n system variable. By default, automatic role
activation is disabled.

Within a session, a user can execute SET ROLE to change the set of active roles. For example, for
rw userl:

nysql > SET ROLE NONE; SELECT CURRENT ROLE();

Fomm e mmeeeaaaaaa +
| CURRENT_ROLE() |

Fomm e mmeeeaaaaaa +

| NONE I

Fomm e mmeeeaaaaaa +

nysqgl > SET ROLE ALL EXCEPT 'app_wite'; SELECT CURRENT_ROLE();
Fomm e mmeeeaaaaaa +

| CURRENT_ROLE() |

Fomm e mmeeeaaaaaa +

| “app_read @% |

Fomm e mmeeeaaaaaa +

mysql > SET ROLE DEFAULT; SELECT CURRENT ROLE();

omm e e e e eemeeeeaeaaaaa +

| CURRENT_ROLE() |

omm e e e e eemeeeeaeaaaaa +

| “app_read @%, app_wite @% |

omm e e e e eemeeeeaeaaaaa +

The first SET ROLE statement deactivates all roles. The second makes r w_user 1 effectively read
only. The third restores the default roles.

The effective user for stored program and view objects is subject to the DEFI NER and SQL SECURI TY
attributes, which determine whether execution occurs in invoker or definer context (see Stored Object
Access Control):

» Stored program and view objects that execute in invoker context execute with the roles that are
active within the current session.

» Stored program and view objects that execute in definer context execute with the default roles of
the user named in their DEFI NER attribute. If acti vate_al | _rol es_on_| ogi n is enabled, such
objects execute with all roles granted to the DEFI NER user, including mandatory roles. For stored
programs, if execution should occur with roles different from the default, the program body should
execute SET ROLE to activate the required roles.

76

https://dev.mysql.com/doc/refman/8.0/en/set-default-role.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/set-role.html

Revoking Roles or Role Privileges

Revoking Roles or Role Privileges

Just as roles can be granted to an account, they can be revoked from an account:

REVOKE rol e FROM user ;
Roles named in the mandat ory_r ol es system variable value cannot be revoked.

REVOKE can also be applied to a role to modify the privileges granted to it. This affects not only the
role itself, but any account granted that role. Suppose that you want to temporarily make all application
users read only. To do this, use REVOKE to revoke the modification privileges from the app_write
role:

REVOKE | NSERT, UPDATE, DELETE ON app_db.* FROM 'app_wite':

As it happens, that leaves the role with no privileges at all, as can be seen using SHOWN GRANTS (which
demonstrates that this statement can be used with roles, not just users):

mysql > SHOWN GRANTS FOR 'app_wite';

P S P S S S +
| Gants for app_wite@bo |
P S P S S S +
| GRANT USAGE ON *.* TO "app_wite @% |
P S P S S S +

Because revoking privileges from a role affects the privileges for any user who is assigned the modified
role, r w_user 1 now has no table modification privileges (I NSERT, UPDATE, and DELETE are no longer
present):

nysqgl > SHOW GRANTS FOR 'rw_ user1l' @I ocal host'
USI NG ' app_read', 'app_wite';

| GRANT USAGE ON *.* TO "rw_userl @I ocal host " |
| GRANT SELECT ON "app_db™.* TO "rw userl @I ocal host " |
| GRANT "app_read @% , app_wite @% TO "rw userl @I ocal host™ |

In effect, the r w_user 1 read/write user has become a read-only user. This also occurs for any other
accounts that are granted the app_wr i t e role, illustrating how use of roles makes it unnecessary to
modify privileges for individual accounts.

To restore modification privileges to the role, simply re-grant them:

GRANT | NSERT, UPDATE, DELETE ON app_db.* TO 'app_wite':

Now r w_user 1 again has modification privileges, as do any other accounts granted the app_write
role.

Dropping Roles

To drop roles, use DROP ROLE:

DROP ROLE 'app_read', 'app_wite';
Dropping a role revokes it from every account to which it was granted.

Roles named in the mandat ory_r ol es system variable value cannot be dropped.

User and Role Interchangeability

As has been hinted at earlier for SHOW GRANTS, which displays grants for user accounts or roles,
accounts and roles can be used interchangeably.

77

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

User and Role Interchangeability

One difference between roles and users is that CREATE RCLE creates an authorization identifier that
is locked by default, whereas CREATE USER creates an authorization identifier that is unlocked by
default. However, distinction is not immutable because a user with appropriate privileges can lock or
unlock roles or users after they have been created.

If a database administrator has a preference that a specific authorization identifier must be a role, a
name scheme can be used to communicate this intention. For example, you could use a r _ prefix for
all authorization identifiers that you intend to be roles and nothing else.

Another difference between roles and users lies in the privileges available for administering them:

» The CREATE ROLE and DROP RCLE privileges enable only use of the CREATE RCLE and DROP
RCLE statements, respectively.

e The CREATE USER privilege enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP
ROLE, DROP USER, RENAME USER, and REVOKE ALL PRI VI LECES statements.

Thus, the CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER and may be
granted to users who should only be permitted to create and drop roles, and not perform more general
account manipulation.

With regard to privileges and interchangeability of users and roles, you can treat a user account like a
role and grant that account to another user or a role. The effect is to grant the account's privileges and
roles to the other user or role.

This set of statements demonstrates that you can grant a user to a user, a role to a user, a user to a
role, or a role to a role:

CREATE USER 'ul';

CREATE ROLE 'r1';

GRANT SELECT ON dbl.* TO 'ul';
GRANT SELECT ON db2.* TO 'r1';
CREATE USER 'u2';

CREATE ROLE 'r2';

GRANT "ul', 'r1' TO 'u2';
GRANT "ul', 'r1' TO'r2';

The result in each case is to grant to the grantee object the privileges associated with the granted
object. After executing those statements, each of u2 and r 2 have been granted privileges from a user
(ul) and arole (r 1):

nmysql > SHOW GRANTS FOR 'u2' USING 'ul', 'r1';
| Gants for u2@ |
GRANT USAGE ON *.* TO "u2' @%
GRANT SELECT ON "dbl .* TO "u2' @%

| I
| I
| GRANT SELECT ON "db2'.* TO "u2°@% |
| GRANT "ul'@%, r1"@% TO 'u2 @% |

focccoococoooococoococoooocosoococoooo +
mysql > SHOWN GRANTS FOR 'r2' USING 'ul rl
focccoococoooococoococoooocosoococoooo +
| Gants for r2@ |
focccoococoooococoococoooocosoococoooo +

| GRANT USAGE ON *.* TO 'r2°@% |
| GRANT SELECT ON “dbl'.* TO "r2°@% |
| GRANT SELECT ON "db2".* TO "r2°@% |
| GRANT "ul'@%, r1'@% TO 'r22@% |

The preceding example is illustrative only, but interchangeability of user accounts and roles has
practical application, such as in the following situation: Suppose that a legacy application development
project began before the advent of roles in MySQL, so all user accounts associated with the project are
granted privileges directly (rather than granted privileges by virtue of being granted roles). One of these
accounts is a developer account that was originally granted privileges as follows:

78

https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Account Categories

CREATE USER ' ol d_app_dev' @1 ocal host' | DENTI FI ED BY ' ol d_app_devpass' ;
GRANT ALL ON ol d_app.* TO 'ol d_app_dev' @I ocal host " ;

If this developer leaves the project, it becomes necessary to assign the privileges to another user, or
perhaps multiple users if development activies have expanded. Here are some ways to deal with the
issue:

» Without using roles: Change the account password so the original developer cannot use it, and have
a new developer use the account instead:

ALTER USER ' ol d_app_dev' @I ocal host' | DENTI FI ED BY ' new _password' ;
 Using roles: Lock the account to prevent anyone from using it to connect to the server:

ALTER USER ' ol d_app_dev' @I ocal host' ACCOUNT LOCK;

Then treat the account as a role. For each developer new to the project, create a new account and
grant to it the original developer account:

CREATE USER ' new_app_devl' @I ocal host' | DENTI FI ED BY ' new password';
GRANT ' ol d_app_dev' @Il ocal host' TO ' new_app_devl' @I ocal host "' ;

The effect is to assign the original developer account privileges to the new account.

4.11 Account Categories

As of MySQL 8.0.16, MySQL incorporates the concept of user account categories, based on the
SYSTEM USER privilege.

» System and Regular Accounts
» Operations Affected by the SYSTEM_USER Privilege
» System and Regular Sessions

» Protecting System Accounts Against Manipulation by Regular Accounts

System and Regular Accounts

MySQL incorporates the concept of user account categories, with system and regular users
distinguished according to whether they have the SYSTEM _USER privilege:

* A user with the SYSTEM USER privilege is a system user.

» A user without the SYSTEM USER privilege is a regular user.

The SYSTEM USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

» A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession of
SYSTEM USER to also perform the operation on system accounts. A system account can be modified
only by system users with appropriate privileges, not by regular users.

« A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

If a user has the appropriate privileges to perform a given operation on regular accounts,

SYSTEM USER enables the user to also perform the operation on system accounts. SYSTEM USER
does not imply any other privilege, so the ability to perform a given account operation remains
predicated on possession of any other required privileges. For example, if a user can grant the SELECT

79

Operations Affected by the SYSTEM_USER Privilege

and UPDATE privileges to regular accounts, then with SYSTEM USER the user can also grant SELECT
and UPDATE to system accounts.

The distinction between system and regular accounts enables better control over certain account
administration issues by protecting accounts that have the SYSTEM USER privilege from accounts
that do not have the privilege. For example, the CREATE USER privilege enables not only creation of
new accounts, but modification and removal of existing accounts. Without the system user concept, a
user who has the CREATE USER privilege can modify or drop any existing account, including the r oot
account. The concept of system user enables restricting modifications to the r oot account (itself a
system account) so they can be made only by system users. Regular users with the CREATE USER
privilege can still modify or drop existing accounts, but only regular accounts.

Operations Affected by the SYSTEM_USER Privilege

The SYSTEM USER privilege affects these operations:
» Account manipulation.

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

The SYSTEM USER privilege is required to manipulate system accounts using account-management
statements such as CREATE USER and GRANT. To prevent an account from modifying system
accounts this way, make it a regular account by not granting it the SYSTEM USER privilege.
(However, to fully protect system accounts against regular accounts, you must also withhold
modification privileges for the nysql system schema from regular accounts. See Protecting System
Accounts Against Manipulation by Regular Accounts.)

* Killing current sessions and statements executing within them.

To kill a session or statement that is executing with the SYSTEM_USER privilege, your own
session must have the SYSTEM _USER privilege, in addition to any other required privilege
(CONNECTI ON_ADM N or the deprecated SUPER privilege).

Prior to MySQL 8.0.16, CONNECTI ON_ADM N privilege (or the deprecated SUPER privilege) is
sufficient to kill any session or statement.

» Setting the DEFI NER attribute for stored objects.

To set the DEFI NER attribute for a stored object to an account that has the SYSTEM USER
privilege, you must have the SYSTEM USER privilege, in addition to any other required privilege
(SET_USER | D or the deprecated SUPER privilege).

Prior to MySQL 8.0.16, the SET_USER | D privilege (or the deprecated SUPER privilege) is sufficient
to specify any DEFI NER value for stored objects.

» Specifying mandatory roles.

A role that has the SYSTEM USER privilege cannot be listed in the value of the nandat ory_rol es
system variable.

Prior to MySQL 8.0.16, any role can be listed in nandat ory_r ol es.

System and Regular Sessions

Sessions executing within the server are distinguished as system or regular sessions, similar to the
distinction between system and regular users:

* A session that possesses the SYSTEM _USER privilege is a system session.

80

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles

Protecting System Accounts Against Manipulation by Regular Accounts

» A session that does not possess the SYSTEM USER privilege is a regular session.

A regular session is able to perform only operations permitted to regular users. A system session is
additionally able to perform operations permitted only to system users.

The privileges possessed by a session are those granted directly to its underlying account, plus those
granted to all roles currently active within the session. Thus, a session may be a system session
because its account has been granted the SYSTEM USER privilege directly, or because the session has
activated a role that has the SYSTEM USER privilege. Roles granted to an account that are not active
within the session do not affect session privileges.

Because activating and deactivating roles can change the privileges possessed by sessions, a
session may change from a regular session to a system session or vice versa. If a session activates or
deactivates a role that has the SYSTEM _USER privilege, the appropriate change between regular and
system session takes place immediately, for that session only:

« If aregular session activates a role with the SYSTEM USER privilege, the session becomes a system
session.

* If a system session deactivates a role with the SYSTEM_USER privilege, the session becomes a
regular session, unless some other role with the SYSTEM_USER privilege remains active.

These operations have no effect on existing sessions:

* If the SYSTEM USER privilege is granted to or revoked from an account, existing sessions for the
account do not change between regular and system sessions. The grant or revoke operation affects
only sessions for subsequent connections by the account.

» Statements executed by a stored object invoked within a session execute with the system or regular
status of the parent session, even if the object DEFI NER attribute hames a system account.

Because role activation affects only sessions and not accounts, granting a role that has the

SYSTEM USER privilege to a regular account does not protect that account against regular users.
The role protects only sessions for the account in which the role has been activated, and protects the
session only against being killed by regular sessions.

Protecting System Accounts Against Manipulation by Regular Accounts

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

Account manipulation can be done two ways:

» By using account-management statements such as CREATE USER and GRANT. This is the preferred
method.

» By direct grant-table modification using statements such as | NSERT and UPDATE. This method is
discouraged but possible for users with the appropriate privileges on the mysql system schema that
contains the grant tables.

To fully protect system accounts against modification by a given account, make it a regular account
and do not grant it modification privileges for the nysql schema:

» The SYSTEM USER privilege is required to manipulate system accounts using account-management
statements. To prevent an account from modifying system accounts this way, make it a regular
account by not granting SYSTEM_USER to it. This includes not granting SYSTEM_USERto any roles
granted to the account.

 Privileges for the mysqgl schema enable manipulation of system accounts through direct modification
of the grant tables, even if the modifying account is a regular account. To restrict unauthorized direct
modification of system accounts by a regular account, do not grant modification privileges for the

81

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Privilege Restriction Using Partial Revokes

nysql schema to the account (or any roles granted to the account). If a regular account must have
global privileges that apply to all schemas, nysql schema modifications can be prevented using
privilege restrictions imposed using partial revokes. See Section 4.12, “Privilege Restriction Using
Partial Revokes”.

Note

Unlike withholding the SYSTEM _USER privilege, which prevents an account
from modifying system accounts but not regular accounts, withholding nysq|l
schema privileges prevents an account from modifying system accounts as well
as regular accounts. This should not be an issue because, as mentioned, direct
grant-table modification is discouraged.

Suppose that you want to create a user ul who has all privileges on all schemas, except that
ul should be a regular user without the ability to modify system accounts. Assuming that the
partial revokes system variable is enabled, configure ul as follows:

CREATE USER ul | DENTI FI ED BY ' password';

GRANT ALL ON *.* TO ul W TH GRANT OPTI ON,

-- GRANT ALL includes SYSTEM USER, so at this point
-- ul can nani pul ate system or regul ar accounts
REVOKE SYSTEM USER ON *.* FROM ul;

-- Revoki ng SYSTEM USER nekes ul a regul ar user;
-- now ul can use account-nmanagenent statenents
-- to manipul ate only regul ar accounts

REVOKE ALL ON nysql .* FROM ul;

-- This partial revoke prevents ul fromdirectly
-- nodifying grant tables to nani pul ate accounts

To prevent all nysql system schema access by an account, revoke all its privileges on the mysql
schema, as just shown. It is also possible to permit partial mysql schema access, such as read-only
access. The following example creates an account that has SELECT, | NSERT, UPDATE, and DELETE
privileges globally for all schemas, but only SELECT for the nysql schema:

CREATE USER u2 | DENTI FI ED BY ' password';
GRANT SELECT, | NSERT, UPDATE, DELETE ON *.* TO u2;
REVOKE | NSERT, UPDATE, DELETE ON nysql .* FROM u2;

Another possibility is to revoke all nysql schema privileges but grant access to specific mysql tables
or columns. This can be done even with a partial revoke on mysql . The following statements enable
read-only access to ul within the nysql schema, but only for the db table and the Host and User
columns of the user table:

CREATE USER u3 | DENTI FI ED BY ' password';
GRANT ALL ON *.* TO us3;

REVOKE ALL ON nysql .* FROM us3;

GRANT SELECT ON nysql.db TO u3;

GRANT SELECT(Host, User) ON nysql.user TO u3;

4.12 Privilege Restriction Using Partial Revokes

Prior to MySQL 8.0.16, it is not possible to grant privileges that apply globally except for certain
schemas. As of MySQL 8.0.16, that is possible if the parti al _revokes system variable is enabled.
Specifically, for users who have privileges at the global level, parti al _revokes enables privileges
for specific schemas to be revoked while leaving the privileges in place for other schemas. Privilege
restrictions thus imposed may be useful for administration of accounts that have global privileges but
should not be permitted to access certain schemas. For example, it is possible to permit an account to
modify any table except those in the nysql system schema.

» Using Partial Revokes
» Partial Revokes Versus Explicit Schema Grants

 Disabling Partial Revokes

82

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes

Using Partial Revokes

» Partial Revokes and Replication
Note

For brevity, CREATE USER statements shown here do not include passwords.
For production use, always assign account passwords.

Using Partial Revokes

The partial revokes system variable controls whether privilege restrictions can be placed on
accounts. By default, parti al _revokes is disabled and attempts to partially revoke global privileges
produce an error:

mysql > CREATE USER ul;

nmysql > GRANT SELECT, |NSERT ON *.* TO ul;

nmysql > REVOKE | NSERT ON worl d.* FROM ul;

ERROR 1141 (42000): There is no such grant defined for user 'ul' on host '%

To permit the REVOKE operation, enable parti al _revokes:

SET PERSI ST partial _revokes = ON,

SET PERSI ST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSI ST. See SET
Syntax for Variable Assignment.

With parti al _revokes enabled, the partial revoke succeeds:

nysqgl > REVOKE | NSERT ON wor | d. * FROM ul;
nmysqgl > SHOW GRANTS FOR ul;

| GRANT SELECT, INSERT ON *.* TO "ul'@% |
| REVOKE I NSERT ON “world .* FROM "ul' @% |

SHOW GRANTS lists partial revokes as REVOKE statements in its output. The result indicates that ul
has global SELECT and | NSERT privileges, except that | NSERT cannot be exercised for tables in the
wor | d schema. That is, access by ul to wor | d tables is read only.

The server records privilege restrictions implemented through partial revokes in the nysql . user
system table. If an account has partial revokes, its User _at t ri but es column value has a
Restri cti ons attribute:

nmysqgl > SELECT User, Host, User_attributes->>"$. Restrictions'
FROM nysql . user WHERE User _attri butes->>'$. Restrictions' <> '';
oloioio- oioioio- S S P P P R +

| User | Host | User_attributes->>$. Restrictions' |

oloioio- oioioio- S S P P P R +

| ul | % | [{"Database": "world", "Privileges": ["INSERT"]}] |

oloioio- oioioio- S S P P P R +
Note

Although partial revokes can be imposed for any schema, privilege restrictions
on the nysql system schema in particular are useful as part of a strategy for
preventing regular accounts from modifying system accounts. See Protecting
System Accounts Against Manipulation by Regular Accounts.

Partial revoke operations are subject to these conditions:

« Itis possible to use partial revokes to place restrictions on nonexistent schemas, but only if the
revoked privilege is granted globally. If a privilege is not granted globally, revoking it for a nonexistent
schema produces an error.

83

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Using Partial Revokes

 Partial revokes apply at the schema level only. You cannot use partial revokes for privileges that
apply only globally (such as FI LE or Bl NLOG_ADM N), or for table, column, or routine privileges.

* In privilege assignments, enabling parti al _r evokes causes MySQL to interpret occurrences of
unescaped _ and %SQL wildcard characters in schema names as literal characters, just as if they
had been escaped as\ _and \ % Because this changes how MySQL interprets privileges, it may be
advisable to avoid unescaped wildcard characters in privilege assignments for installations where
partial revokes may be enabled.

As mentioned previously, partial revokes of schema-level privileges appear in SHOWN GRANTS output as
REVOKE statements. This differs from how SHOWN GRANTS represents “plain” schema-level privileges:

» When granted, schema-level privileges are represented by their own GRANT statements in the
output:

nysqgl > CREATE USER ul;

nysgl > GRANT UPDATE ON nysql.* TO ul;
nysqgl > GRANT DELETE ON world.* TO ul;
nysgl > SHOW GRANTS FOR ul;

| GRANT USAGE ON *.* TO “ul @% |
| GRANT UPDATE ON “nysql .* TO ul'@% |
| GRANT DELETE ON “world .* TO ul'@% |

» When revoked, schema-level privileges simply disappear from the output. They do not appear as
REVOKE statements:

nysqgl > REVOKE UPDATE ON nysql .* FROM ul;
nysqgl > REVOKE DELETE ON wor | d.* FROM ul;
nysql > SHOW GRANTS FOR ul;

e m e e e e e e eeemieaaaaaaa +
| Grants for ul@e |
e m e e e e e e eeemieaaaaaaa +
| GRANT USAGE ON *.* TO "ul'@% |
e m e e e e e e eeemieaaaaaaa +

When a user grants a privilege, any restriction the grantor has on the privilege is inherited by the
grantee, unless the grantee already has the privilege without the restriction. Consider the following two
users, one of whom has the global SELECT privilege:

CREATE USER ul, u2;
GRANT SELECT ON *.* TO u2;

Suppose that an administrative user adm n has a global but partially revoked SELECT privilege:

nysqgl > CREATE USER adni n;

nysql > GRANT SELECT ON *.* TO adnmin W TH GRANT OPTI ON,
nysqgl > REVOKE SELECT ON nysqgl.* FROM adni n;

nmysql > SHOW GRANTS FOR adni n;

If admi n grants SELECT globally to ul and u2, the result differs for each user:

» If admi n grants SELECT globally to ul, who has no SELECT privilege to begin with, ul inherits the
adm n privilege restriction:

nysql > GRANT SELECT ON *.* TO ul;
nysql > SHON GRANTS FOR ul;

84

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Using Partial Revokes

| Gants for ul@ [

| GRANT SELECT ON *.* TO ul @% |
| REVOKE SELECT ON “nysql.* FROM ul'@% |

e On the other hand, u2 already holds a global SELECT privilege without restriction. GRANT can only

add to a grantee's existing privileges, not reduce them, so if adm n grants SELECT globally to u2, u2

does not inherit the adm n restriction:

nmysqgl > GRANT SELECT ON *.* TO u2;
nysql > SHOW GRANTS FOR u2;

dimccccccccccoccccocccccococccooccooe +
| Grants for u2@sb [
dimccccccccccoccccocccccococccooccooe +
| GRANT SELECT ON *.* TO "u2° @% |
dimccccccccccoccccocccccococccooccooe +

If a GRANT statement includes an AS user clause, the privilege restrictions applied are those on
the user/role combination specified by the clause, rather than those on the user who executes the
statement. For information about the AS clause, see GRANT Statement.

Restrictions on new privileges granted to an account are added to any existing restrictions for that
account:

nysql > CREATE USER ul;

nysql > GRANT SELECT, | NSERT, UPDATE, DELETE ON *.* TO ul;
nysql > REVOKE | NSERT ON nysql . * FROM ul;

nysql > SHOW GRANTS FOR ul;

| GRANT SELECT, |NSERT, UPDATE, DELETE ON *.* TO ‘ul' @% |
| REVOKE I NSERT ON “nysql*.* FROM “ul @% I

nysql > REVOKE DELETE, UPDATE ON db2.* FROM ul;
nysql > SHOW GRANTS FOR ul;

| GRANT SELECT, |NSERT, UPDATE, DELETE ON *.* TO ‘ul' @% |
| REVOKE UPDATE, DELETE ON “db2'.* FROM ‘ul @ % |
| REVOKE I NSERT ON “nysql*.* FROM ‘ul @% I

Aggregation of privilege restrictions applies both when privileges are partially revoked explicitly (as just

shown) and when restrictions are inherited implicitly from the user who executes the statement or the

user mentioned in an AS user clause.

If an account has a privilege restriction on a schema:

e The account cannot grant to other accounts a privilege on the restricted schema or any object within

It.

» Another account that does not have the restriction can grant privileges to the restricted account
for the restricted schema or objects within it. Suppose that an unrestricted user executes these
statements:

CREATE USER ul;

GRANT SELECT, | NSERT, UPDATE ON *.* TO ul;

REVOKE SELECT, | NSERT, UPDATE ON nysql.* FROM ul;

GRANT SELECT ON nysql . user TO ul; -- grant table privilege
GRANT SELECT(Host, User) ON nysgl.db TO ul; -- grant columm privil eges

The resulting account has these privileges, with the ability to perform limited operations within the
restricted schema:

nysql > SHOW GRANTS FOR ul;

85

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Using Partial Revokes

| Gants for ul@b |
| GRANT SELECT, | NSERT, UPDATE ON *.* TO "ul @% |
| REVOKE SELECT, | NSERT, UPDATE ON “nysql ™ .* FROM "ul'@% |
| GRANT SELECT (" Host™, “User’) ON "nysqgl”. db® TO "ul'@% |
| GRANT SELECT ON “nysql *. user’ TO "ul @% |

If an account has a restriction on a global privilege, the restriction is removed by any of these actions:
» Granting the privilege globally to the account by an account that has no restriction on the privilege.
» Granting the privilege at the schema level.

» Revoking the privilege globally.

Consider a user ul who holds several privileges globally, but with restrictions on | NSERT, UPDATE and
DELETE:

nysqgl > CREATE USER ul;

nysql > GRANT SELECT, | NSERT, UPDATE, DELETE ON *.* TO ul,
nysqgl > REVOKE | NSERT, UPDATE, DELETE ON nysql.* FROM ul;
nysqgl > SHOW GRANTS FOR ul;

| GRANT SELECT, |NSERT, UPDATE, DELETE ON *.* TO 'ul' @% |
| REVOKE | NSERT, UPDATE, DELETE ON “nysgl .* FROM ul @% |

Granting a privilege globally to ul from an account with no restriction removes the privilege restriction.
For example, to remove the | NSERT restriction:

nmysqgl > GRANT | NSERT ON *.* TO ul;
nmysql > SHOW GRANTS FOR ul;

| GRANT SELECT, |NSERT, UPDATE, DELETE ON *.* TO ‘ul @% |
| REVOKE UPDATE, DELETE ON “nysql .* FROM ul @ % |

Granting a privilege at the schema level to ul removes the privilege restriction. For example, to remove
the UPDATE restriction:

mysql > GRANT UPDATE ON nysql .* TO ul;
mysql > SHOW GRANTS FOR ul;

| GRANT SELECT, |NSERT, UPDATE, DELETE ON *.* TO ‘ul @% |
| REVOKE DELETE ON “nysqgl ' .* FROM “ul @ % |

Revoking a global privilege removes the privilege, including any restrictions on it. For example, to
remove the DELETE restriction (at the cost of removing all DELETE access):

nysql > REVOKE DELETE ON *.* FROM ul;
nysql > SHOW GRANTS FOR ul;

foocc-co-occcoococo-ooSccoo-SoccooocooosSoccossoooso +
| Grants for ul@b |
foocc-co-occcoococo-ooSccoo-SoccooocooosSoccossoooso +
| GRANT SELECT, | NSERT, UPDATE ON *.* TO "ul @ % |
foocc-co-occcoococo-ooSccoo-SoccooocooosSoccossoooso +

If an account has a privilege at both the global and schema levels, you must revoke it at the schema
level twice to effect a partial revoke. Suppose that ul has these privileges, where | NSERT is held both
globally and on the wor | d schema:

86

Partial Revokes Versus Explicit Schema Grants

nmysql > CREATE USER uil;

nmysqgl > GRANT SELECT, | NSERT ON *.* TO ul;
mysql > GRANT | NSERT ON worl d.* TO ul;
nmysql > SHOW GRANTS FOR ul;

| GRANT SELECT, INSERT ON *.* TO 'ul' @% |
| GRANT INSERT ON ‘world .* TO 'ul'@% |

Revoking | NSERT on wor | d revokes the schema-level privilege (SHON GRANTS no longer displays the
schema-level GRANT statement):

nysql > REVOKE | NSERT ON wor | d. * FROM uil;
nmysql > SHOW GRANTS FOR ul;

e +
| Gants for ul@so |
e +
| GRANT SELECT, INSERT ON *.* TO "'ul @% |
e +

Revoking | NSERT on wor | d again performs a partial revoke of the global privilege (SHOW GRANTS
now includes a schema-level REVOKE statement):

nmysql > REVOKE | NSERT ON wor | d. * FROM ul;
mysql > SHOW GRANTS FOR ul;

| GRANT SELECT, INSERT ON *.* TO "ul'@% |
| REVOKE INSERT ON "world .* FROM "ul @% |

Partial Revokes Versus Explicit Schema Grants

To provide access to accounts for some schemas but not others, partial revokes provide an alternative
to the approach of explicitly granting schema-level access without granting global privileges. The two
approaches have different advantages and disadvantages.

Granting schema-level privileges and not global privileges:

» Adding a new schema: The schema is inaccessible to existing accounts by default. For any account
to which the schema should be accessible, the DBA must grant schema-level access.

» Adding a new account: The DBA must grant schema-level access for each schema to which the
account should have access.

Granting global privileges in conjunction with partial revokes:

» Adding a new schema: The schema is accessible to existing accounts that have global privileges.
For any such account to which the schema should be inaccessible, the DBA must add a partial
revoke.

« Adding a new account: The DBA must grant the global privileges, plus a partial revoke on each
restricted schema.

The approach that uses explicit schema-level grant is more convenient for accounts for which access is
limited to a few schemas. The approach that uses partial revokes is more convenient for accounts with
broad access to all schemas except a few.

Disabling Partial Revokes

Once enabled, parti al revokes cannot be disabled if any account has privilege restrictions. If any
such account exists, disabling parti al _revokes fails:

87

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes

Partial Revokes and Replication

» For attempts to disable parti al _revokes at startup, the server logs an error message and
enables partial revokes.

» For attempts to disable parti al _revokes at runtime, an error occurs and the parti al _revokes
value remains unchanged.

To disable parti al _revokes when restrictions exist, the restrictions first must be removed:

1. Determine which accounts have partial revokes:

SELECT User, Host, User_attributes->>'$. Restrictions'
FROM nysql . user WHERE User _attri butes->>'$. Restrictions' <> "'

2. For each such account, remove its privilege restrictions. Suppose that the previous step shows
account ul to have these restrictions:

[{"Database": "world", "Privileges": ["|NSERT", "DELETE"]

Restriction removal can be done various ways:

» Grant the privileges globally, without restrictions:
GRANT | NSERT, DELETE ON *.* TO ul;

¢ Grant the privileges at the schema level:
GRANT | NSERT, DELETE ON world.* TO ul;

« Revoke the privileges globally (assuming that they are no longer needed):
REVOKE | NSERT, DELETE ON *.* FROM ul;

* Remove the account itself (assuming that it is no longer needed):

DROP USER ul,

After all privilege restrictions are removed, it is possible to disable partial revokes:

SET PERSI ST partial _revokes = OFF;

Partial Revokes and Replication

In replication scenarios, if parti al _r evokes is enabled on any host, it must be enabled on all hosts.
Otherwise, REVOKE statements to partially revoke a global privilege do not have the same effect for all
hosts on which replication occurs, potentially resulting in replication inconsistencies or errors.

4.13 When Privilege Changes Take Effect

If the mysql d server is started without the - - ski p- gr ant - t abl es option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

If you modify the grant tables indirectly using an account-management statement, the server notices
these changes and loads the grant tables into memory again immediately. Account-management
statements are described in Account Management Statements. Examples include GRANT, REVCKE,
SET PASSWORD, and RENAMVE USER.

If you modify the grant tables directly using statements such as | NSERT, UPDATE, or DELETE (which is
not recommended), the changes have no effect on privilege checking until you either tell the server to
reload the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the
changes have no effect until you restart the server. This may leave you wondering why your changes
seem to make no difference!

88

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Assigning Account Passwords

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRI VI LEGES statement or by executing a nysql adm n fl ush-privil eges or
nysgl adm n rel oad command.

A grant table reload affects privileges for each existing client session as follows:

» Table and column privilege changes take effect with the client's next request.

» Database privilege changes take effect the next time the client executes a USE db_nane statement.
Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database.

» Static global privileges and passwords are unaffected for a connected client. These changes take
effect only in sessions for subsequent connections. Changes to dynamic global privileges apply
immediately. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Changes to the set of active roles within a session take effect immediately, for that session only. The
SET ROLE statement performs session role activation and deactivation (see SET ROLE Statement).

If the server is started with the - - ski p- gr ant - t abl es option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

4.14 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysqgl system database. Operations that assign
or modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively,
privileges for the nysql database (I NSERT privilege to create new accounts, UPDATE privilege to
modify existing accounts). If the r ead_onl y system variable is enabled, use of account-modification
statements such as CREATE USER or ALTER USER additionally requires the CONNECTI ON_ADM N
privilege (or the deprecated SUPER privilege).

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see CREATE USER Statement, ALTER USER Statement,
and SET PASSWORD Statement.

MySQL uses plugins to perform client authentication; see Section 4.17, “Pluggable Authentication”.

In password-assigning statements, the authentication plugin associated with an account performs
any hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords
prior to storing them in the nmysql . user system table. For the statements described here, MySQL
automatically hashes the password specified. There are also syntax for CREATE USER and ALTER
USER that permits hashed values to be specified literally. For details, see the descriptions of those
statements.

To assign a password when you create a new account, use CREATE USER and include an
| DENTI FI ED BY clause:

CREATE USER 'jeffrey' @Il ocal host' | DENTI FI ED BY ' password';

CREATE USER also supports syntax for specifying the account authentication plugin. See CREATE
USER Statement.

To assign or change a password for an existing account, use the ALTER USER statement with an
| DENTI FI ED BY clause:

89

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Management

ALTER USER 'jeffrey' @I ocal host' | DENTIFI ED BY ' password’

If you are not connected as an anonymous user, you can change your own password without naming
your own account literally:

ALTER USER USER() | DENTI FI ED BY ' password'

To change an account password from the command line, use the nysql adnm n command:

nysqgl adm n -u user_nane -h host_nane password "password"

The account for which this command sets the password is the one with a row in the nysql . user
system table that matches user _nane in the User column and the client host from which you connect
in the Host column.

Warning

Setting a password using nmysgl adm n should be considered insecure. On
some systems, your password becomes visible to system status programs such
as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros
during their initialization sequence. However, there is still a brief interval during
which the value is visible. Also, on some systems this overwriting strategy is
ineffective and the password remains visible to ps. (SystemV Unix systems and
perhaps others are subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part
of a CHANGE REPLI CATI ON SCURCE TOstatement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) is effectively limited to 32 characters in length; if the password is
longer, any excess characters are truncated. This is not due to any limit imposed by MySQL Server
generally, but rather is an issue specific to MySQL Replication.

4.15 Password Management

MySQL supports these password-management capabilities:
» Password expiration, to require passwords to be changed periodically.
» Password reuse restrictions, to prevent old passwords from being chosen again.

» Password verification, to require that password changes also specify the current password to be
replaced.

» Dual passwords, to enable clients to connect using either a primary or secondary password.
» Password strength assessment, to require strong passwords.

» Random password generation, as an alternative to requiring explicit administrator-specified literal
passwords.

» Password failure tracking, to enable temporary account locking after too many consecutive incorrect-
password login failures.

The following sections describe these capabilities, except password strength assessment, which
is implemented using the val i dat e_passwor d component and is described in Section 6.3, “The
Password Validation Component”.

* Internal Versus External Credentials Storage
» Password Expiration Policy
» Password Reuse Policy

» Password Verification-Required Policy

90

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Internal Versus External Credentials Storage

» Dual Password Support

* Random Password Generation

» Failed-Login Tracking and Temporary Account Locking
Important

MySQL implements password-management capabilities using tables in the
nysgl system database. If you upgrade MySQL from an earlier version, your
system tables might not be up to date. In that case, the server writes messages
similar to these to the error log during the startup process (the exact numbers
may vary):

[ERROR] Col umm count of nysql.user is wong. Expected
49, found 47. The table is probably corrupted

[Warni ng] ACL table nysql.password_hi story mi ssing.
Sone operations may fail.

To correct the issue, perform the MySQL upgrade procedure. See Upgrading
MySQL. Until this is done, password changes are not possible.

Internal Versus External Credentials Storage

Some authentication plugins store account credentials internally to MySQL, in the nysql . user system
table:

 mysql _native_password
e caching_sha2 password
» sha256_password

Most discussion in this section applies to such authentication plugins because most password-
management capabilities described here are based on internal credentials storage handled by MySQL
itself. Other authentication plugins store account credentials externally to MySQL. For accounts that
use plugins that perform authentication against an external credentials system, password management
must be handled externally against that system as well.

The exception is that the options for failed-login tracking and temporary account locking apply to all
accounts, not just accounts that use internal credentials storage, because MySQL is able to assess
the status of login attempts for any account no matter whether it uses internal or external credentials
storage.

For information about individual authentication plugins, see Section 6.1, “Authentication Plugins”.

Password Expiration Policy

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration. Expiration policy can be established globally, and individual
accounts can be set to either defer to the global policy or override the global policy with specific per-
account behavior.

To expire an account password manually, use the ALTER USER statement:
ALTER USER 'jeffrey' @I ocal host' PASSWORD EXPI RE;
This operation marks the password expired in the corresponding row in the mysql . user system table.

Password expiration according to policy is automatic and is based on password age, which for a given
account is assessed from the date and time of its most recent password change. The nysqgl . user
system table indicates for each account when its password was last changed, and the server

91

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Expiration Policy

automatically treats the password as expired at client connection time if its age is greater than its
permitted lifetime. This works with no explicit manual password expiration.

To establish automatic password-expiration policy globally, use the def aul t _password |ifetine
system variable. Its default value is 0, which disables automatic password expiration. If the value of
default password |ifetineisa positive integer N, it indicates the permitted password lifetime,
such that passwords must be changed every N days.

Examples:

» To establish a global policy that passwords have a lifetime of approximately six months, start the
server with these lines in a server ny. cnf file:

[nysal d]
def aul t _password_|ifetine=180

» To establish a global policy such that passwords never expire, set def aul t _password |ifetine
to O:

[nysal d]
defaul t _password_Iifetine=0

e default password |ifetine can also be set and persisted at runtime:

SET PERSI ST defaul t _password_lifetine

180;
SET PERSI ST defaul t _password_lifetine ;

0;

SET PERSI ST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for
the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSI ST.

The global password-expiration policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD EXPI RE option of the CREATE USER and
ALTER USER statements. See CREATE USER Statement, and ALTER USER Statement.

Example account-specific statements:

» Require the password to be changed every 90 days:

CREATE USER 'jeffrey' @Il ocal host' PASSWORD EXPlI RE | NTERVAL 90 DAY;
ALTER USER 'jeffrey' @I ocal host' PASSWORD EXPI RE | NTERVAL 90 DAY;

This expiration option overrides the global policy for all accounts named by the statement.

» Disable password expiration:

CREATE USER 'jeffrey' @Il ocal host' PASSWORD EXPlI RE NEVER;
ALTER USER 'jeffrey' @I ocal host' PASSWORD EXPI RE NEVER;

This expiration option overrides the global policy for all accounts named by the statement.

» Defer to the global expiration policy for all accounts named by the statement:

CREATE USER 'jeffrey' @I ocal host' PASSWORD EXPl RE DEFAULT;
ALTER USER 'jeffrey' @Il ocal host' PASSWORD EXPlI RE DEFAULT;

When a client successfully connects, the server determines whether the account password has
expired:

» The server checks whether the password has been manually expired.

» Otherwise, the server checks whether the password age is greater than its permitted lifetime
according to the automatic password expiration policy. If so, the server considers the password
expired.

92

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Reuse Policy

If the password is expired (whether manually or automatically), the server either disconnects the client
or restricts the operations permitted to it (see Section 4.16, “Server Handling of Expired Passwords”).
Operations performed by a restricted client result in an error until the user establishes a new account
password:

nysql > SELECT 1;

ERROR 1820 (HYOO00): You nust reset your password using ALTER USER
statement before executing this statenent.

nysqgl > ALTER USER USER() | DENTI FI ED BY ' password';
Query OK, 0 rows affected (0.01 sec)

nysql > SELECT 1;

+---+

| 1]

+---+

| 1]

+---+

1 rowin set (0.00 sec)

After the client resets the password, the server restores normal access for the session, as well as for
subsequent connections that use the account. It is also possible for an administrative user to reset the
account password, but any existing restricted sessions for that account remain restricted. A client using
the account must disconnect and reconnect before statements can be executed successfully.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

Password Reuse Policy

MySQL enables restrictions to be placed on reuse of previous passwords. Reuse restrictions can

be established based on number of password changes, time elapsed, or both. Reuse policy can be
established globally, and individual accounts can be set to either defer to the global policy or override
the global policy with specific per-account behavior.

The password history for an account consists of passwords it has been assigned in the past. MySQL
can restrict new passwords from being chosen from this history:

« If an account is restricted on the basis of number of password changes, a new password cannot be
chosen from a specified number of the most recent passwords. For example, if the minimum number
of password changes is set to 3, a new password cannot be the same as any of the most recent 3
passwords.

« If an account is restricted based on time elapsed, a new password cannot be chosen from
passwords in the history that are newer than a specified number of days. For example, if the
password reuse interval is set to 60, a new password must not be among those previously chosen
within the last 60 days.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

To establish password-reuse policy globally, use the passwor d_hi st ory and
password_reuse_interval system variables.

Examples:

» To prohibit reusing any of the last 6 passwords or passwords newer than 365 days, put these lines in
the server ny. cnf file:

93

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_history
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_reuse_interval

Password Verification-Required Policy

[nysal d]
passwor d_hi st ory=6
passwor d_r euse_i nt er val =365

To set and persist the variables at runtime, use statements like this:

SET PERSI ST password_history = 6;
SET PERSI ST password_reuse_interval = 365;

SET PERSI ST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for
the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSI ST.

The global password-reuse policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD HI STORY and PASSWORD REUSE

| NTERVAL options of the CREATE USER and ALTER USER statements. See CREATE USER
Statement, and ALTER USER Statement.

Example account-specific statements:

Require a minimum of 5 password changes before permitting reuse:

CREATE USER 'jeffrey' @I ocal host' PASSWORD HI STORY 5;
ALTER USER 'jeffrey' @l ocal host' PASSWORD HI STORY 5;

This history-length option overrides the global policy for all accounts hamed by the statement.

Require a minimum of 365 days elapsed before permitting reuse:

CREATE USER 'jeffrey' @Il ocal host' PASSWORD REUSE | NTERVAL 365 DAY;
ALTER USER 'jeffrey' @I ocal host' PASSWORD REUSE | NTERVAL 365 DAY;

This time-elapsed option overrides the global policy for all accounts named by the statement.

To combine both types of reuse restrictions, use PASSWORD HI STORY and PASSWORD REUSE
| NTERVAL together:

CREATE USER 'jeffrey' @I ocal host'
PASSWORD HI STORY 5
PASSWORD REUSE | NTERVAL 365 DAY;
ALTER USER 'jeffrey' @I ocal host'
PASSWORD HI STORY 5
PASSWORD REUSE | NTERVAL 365 DAY;

These options override both global policy reuse restrictions for all accounts named by the statement.

Defer to the global policy for both types of reuse restrictions:

CREATE USER 'jeffrey' @I ocal host'
PASSWORD HI STORY DEFAULT
PASSWORD REUSE | NTERVAL DEFAULT,;

ALTER USER 'jeffrey' @I ocal host'
PASSWORD HI STORY DEFAULT
PASSWORD REUSE | NTERVAL DEFAULT,;

Password Verification-Required Policy

As of MySQL 8.0.13, it is possible to require that attempts to change an account password be verified
by specifying the current password to be replaced. This enables DBAs to prevent users from changing
a password without proving that they know the current password. Such changes could otherwise
occur, for example, if one user walks away from a terminal session temporarily without logging out,
and a malicious user uses the session to change the original user's MySQL password. This can have
unfortunate consequences:

94

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Verification-Required Policy

e The original user becomes unable to access MySQL until the account password is reset by an
administrator.

» Until the password reset occurs, the malicious user can access MySQL with the benign user's
changed credentials.

Password-verification policy can be established globally, and individual accounts can be set to either
defer to the global policy or override the global policy with specific per-account behavior.

For each account, its nysql . user row indicates whether there is an account-specific setting requiring
verification of the current password for password change attempts. The setting is established by the
PASSWORD REQUI RE option of the CREATE USER and ALTER USER statements:

« If the account setting is PASSWORD REQUI RE CURRENT, password changes must specify the current
password.

« If the account setting is PASSWORD REQUI RE CURRENT OPTI ONAL, password changes may but
need not specify the current password.

« If the account setting is PASSWORD REQUI RE CURRENT DEFAULT, the
password_requi re_current system variable determines the verification-required policy for the
account:

e If password_require_current is enabled, password changes must specify the current
password.

e If password_require_current isdisabled, password changes may but need not specify the
current password.

In other words, if the account setting is not PASSWORD REQUI RE CURRENT DEFAULT, the account
setting takes precedence over the global policy established by the password_require_current
system variable. Otherwise, the account defers to the passwor d_requi re_current setting.

By default, password verification is optional: passwor d_requi re_current is disabled and accounts
created with no PASSWORD REQUI RE option default to PASSWORD REQUI RE CURRENT DEFAULT.

The following table shows how per-account settings interact with passwor d_requi re_current
system variable values to determine account password verification-required policy.

Table 4.9 Password-Verification Policy

Per-Account Setting password_require_current Password Changes Require
System Variable Current Password?

PASSWORD REQUI RE CURRENT |OFF Yes

PASSWORD REQUI RE CURRENT |ON Yes

PASSWORD REQUI RE CURRENT |OFF No

OPTI ONAL

PASSWORD REQUI RE CURRENT |ON No

OPTI ONAL

PASSWORD REQUI RE CURRENT |OFF No

DEFAULT

PASSWORD REQUI RE CURRENT |ON Yes

DEFAULT

Note

Privileged users can change any account password without specifying the
current password, regardless of the verification-required policy. A privileged

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current

Password Verification-Required Policy

user is one who has the global CREATE USER privilege or the UPDATE privilege
for the nysql system database.

To establish password-verification policy globally, use the passwor d_r equi re_current system
variable. Its default value is OFF, so it is not required that account password changes specify the
current password.

Examples:

» To establish a global policy that password changes must specify the current password, start the
server with these lines in a server ny. cnf file:

[nysal d]
passwor d_r equi re_current =ON

» To set and persist password_requi re_current at runtime, use a statement such as one of
these:

ON!

SET PERSI ST password_require_current ;
OFF;

SET PERSI ST password_require_current

SET PERSI ST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for
the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSI ST.

The global password verification-required policy applies to all accounts that have not been set to
override it. To establish policy for individual accounts, use the PASSWORD REQUI RE options of the
CREATE USERand ALTER USER statements. See CREATE USER Statement, and ALTER USER
Statement.

Example account-specific statements:

» Require that password changes specify the current password:

CREATE USER 'jeffrey' @I ocal host' PASSWORD REQUI RE CURRENT;
ALTER USER 'jeffrey' @I ocal host' PASSWORD REQUI RE CURRENT;

This verification option overrides the global policy for all accounts named by the statement.

» Do not require that password changes specify the current password (the current password may but
need not be given):

CREATE USER 'jeffrey' @I ocal host' PASSWORD REQUI RE CURRENT OPTI ONAL;
ALTER USER 'jeffrey' @l ocal host' PASSWORD REQUI RE CURRENT OPTI ONAL;

This verification option overrides the global policy for all accounts named by the statement.

» Defer to the global password verification-required policy for all accounts named by the statement:

CREATE USER 'jeffrey' @I ocal host' PASSWORD REQUI RE CURRENT DEFAULT;
ALTER USER 'jeffrey' @Il ocal host' PASSWORD REQUI RE CURRENT DEFAULT;

Verification of the current password comes into play when a user changes a password using the ALTER

USER or SET PASSWORD statement. The examples use ALTER USER, which is preferred over SET
PASSWORD, but the principles described here are the same for both statements.

In password-change statements, a REPLACE clause specifies the current password to be replaced.
Examples:

e Change the current user's password:

ALTER USER USER() | DENTI FI ED BY 'auth_string' REPLACE 'current_auth_string';

» Change a named user's password:

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html

Dual Password Support

ALTER USER 'jeffrey' @I ocal host"'
| DENTI FI ED BY 'auth_string'
REPLACE ' current _auth_string';

« Change a named user's authentication plugin and password:

ALTER USER 'jeffrey' @I ocal host'
| DENTI FI ED W TH cachi ng_sha2_password BY 'auth_string'
REPLACE 'current_auth_string';

The REPLACE clause works like this:

» REPLACE must be given if password changes for the account are required to specify the current
password, as verification that the user attempting to make the change actually knows the current
password.

» REPLACE is optional if password changes for the account may but need not specify the current
password.

 If REPLACE is specified, it must specify the correct current password, or an error occurs. This is true
even if REPLACE is optional.

» REPLACE can be specified only when changing the account password for the current user. (This
means that in the examples just shown, the statements that explicitly name the account for j ef f r ey
fail unless the current user is j ef f r ey.) This is true even if the change is attempted for another user
by a privileged user; however, such a user can change any password without specifying REPLACE.

» REPLACE is omitted from the binary log to avoid writing cleartext passwords to it.

Dual Password Support

As of MySQL 8.0.14, user accounts are permitted to have dual passwords, designated as primary and
secondary passwords. Dual-password capability makes it possible to seamlessly perform credential
changes in scenarios like this:

» A system has a large number of MySQL servers, possibly involving replication.
e Multiple applications connect to different MySQL servers.

» Periodic credential changes must be made to the account or accounts used by the applications to
connect to the servers.

Consider how a credential change must be performed in the preceding type of scenario when an
account is permitted only a single password. In this case, there must be close cooperation in the timing
of when the account password change is made and propagated throughout all servers, and when all
applications that use the account are updated to use the new password. This process may involve
downtime during which servers or applications are unavailable.

With dual passwords, credential changes can be made more easily, in phases, without requiring close
cooperation, and without downtime:

1. For each affected account, establish a new primary password on the servers, retaining the current
password as the secondary password. This enables servers to recognize either the primary or
secondary password for each account, while applications can continue to connect to the servers
using the same password as previously (which is now the secondary password).

2. After the password change has propagated to all servers, modify applications that use any affected
account to connect using the account primary password.

3. After all applications have been migrated from the secondary passwords to the primary passwords,
the secondary passwords are no longer needed and can be discarded. After this change has

97

Dual Password Support

propagated to all servers, only the primary password for each account can be used to connect. The
credential change is now complete.

MySQL implements dual-password capability with syntax that saves and discards secondary
passwords:

The RETAI N CURRENT PASSWORD clause for the ALTER USER and SET PASSWORD statements
saves an account current password as its secondary password when you assign a new primary
password.

The DI SCARD OLD PASSWORD clause for ALTER USER discards an account secondary password,
leaving only the primary password.

Suppose that, for the previously described credential-change scenario, an account named
"appuser1' @ host 1. exanpl e. conl is used by applications to connect to servers, and that the
account password is to be changed from ' password_a' to' password_b'.

To perform this change of credentials, use ALTER USER as follows:

1.

5.

On each server that is not a replica, establish ' password_b' as the new appuser 1 primary
password, retaining the current password as the secondary password:

ALTER USER ' appuser1' @ host 1. exanpl e. com

| DENTI FI ED BY ' password_b'
RETAI N CURRENT PASSWORD;

Wait for the password change to replicate throughout the system to all replicas.

Modify each application that uses the appuser 1 account so that it connects to the servers using a
password of ' passwor d_b' ratherthan' password_a' .

At this point, the secondary password is no longer needed. On each server that is not a replica,
discard the secondary password:

ALTER USER ' appuser1' @ host 1. exanpl e. com
DI SCARD OLD PASSWORD;

After the discard-password change has replicated to all replicas, the credential change is complete.

The RETAI N CURRENT PASSWORD and DI SCARD OLD PASSWORD clauses have the following effects:

RETAI N CURRENT PASSWORD retains an account current password as its secondary password,
replacing any existing secondary password. The new password becomes the primary password, but
clients can use the account to connect to the server using either the primary or secondary password.
(Exception: If the new password specified by the ALTER USER or SET PASSWORD statement is
empty, the secondary password becomes empty as well, even if RETAI N CURRENT PASSWORD is
given.)

If you specify RETAI N CURRENT PASSWORD for an account that has an empty primary password,
the statement fails.

If an account has a secondary password and you change its primary password without specifying
RETAI N CURRENT PASSWORD, the secondary password remains unchanged.

For ALTER USER, if you change the authentication plugin assigned to the account, the secondary
password is discarded. If you change the authentication plugin and also specify RETAI N CURRENT
PASSWORD, the statement fails.

For ALTER USER, DI SCARD OLD PASSWORD discards the secondary password, if one exists. The
account retains only its primary password, and clients can use the account to connect to the server
only with the primary password.

Statements that modify secondary passwords require these privileges:

98

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Random Password Generation

e The APPLI CATI ON_PASSWORD ADM N privilege is required to use the RETAI N CURRENT
PASSWORD or DI SCARD OLD PASSWORD clause for ALTER USER and SET PASSWORD statements
that apply to your own account. The privilege is required to manipulate your own secondary
password because most users require only one password.

 If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLI CATI ON_PASSWORD ADM N.

Random Password Generation

As of MySQL 8.0.18, the CREATE USER, ALTER USER, and SET PASSWORD statements have the
capability of generating random passwords for user accounts, as an alternative to requiring explicit
administrator-specified literal passwords. See the description of each statement for details about the
syntax. This section describes the characteristics common to generated random passwords.

By default, generated random passwords have a length of 20 characters. This length is controlled by
the gener at ed_random passwor d_| engt h system variable, which has a range from 5 to 255.

For each account for which a statement generates a random password, the statement stores the
password in the mysql . user system table, hashed appropriately for the account authentication plugin.
The statement also returns the cleartext password in a row of a result set to make it available to the
user or application executing the statement. The result set columns are named user , host , and
gener at ed passwor d, indicating the user name and host name values that identify the affected row
in the mysql . user system table, and the cleartext generated password.

nysql > CREATE USER
"ul' @Il ocal host' | DENTI FI ED BY RANDOM PASSWORD,
'u2' @ % exanpl e. com | DENTI FI ED BY RANDOM PASSWORD,
'u3' @%org' | DENTIFI ED BY RANDOM PASSWORD;
+

ecomoe e T T L +
| user | host | generated password |
ecomoe R LT LT +
ul	I ocal host	BA; 42VpXgQ@ +y{ &TDFF
u2	% exanpl e.com	YX5>XRAJRP@sn9aznD4
u3	%org	;G D44l,)CPI/6)4TWZ
ecomoe R LT LT +

nysql > ALTER USER
"ul' @l ocal host' | DENTI FI ED BY RANDOM PASSWORD,
' u2' @ % exanpl e. com | DENTI FI ED BY RANDOM PASSWORD;

ecomoe R LT LT +
| user | host | generated password |
ecomoe R LT LT +
| ul | I ocal host | yhXBrBp. ; Y6abB)e UW |
| u2 | % exanpl e.com | >M vnj p9DTY6} hkp, RcC |
ecomoe R LT LT +
nmysqgl > SET PASSWORD FOR 'u3' @ % org' TO RANDOM
ecomoe e mmm oo LT +
| user | host | generated password |
ecomoe e mmm oo LT +
| u3 | %org | o(._oNn)d; FC<vJI DgoM |
ecomoe e mmm oo LT +

A CREATE USER, ALTER USER, or SET PASSWORD statement that generates a random password
for an account is written to the binary log as a CREATE USER or ALTER USER statement with an

| DENTI FI ED W TH aut h_plugin AS "auth_string', clause, where aut h_pl ugi nis the
account authentication plugin and ' aut h_stri ng' is the account hashed password value.

If the val i dat e_passwor d component is installed, the policy that it implements has no effect
on generated passwords. (The purpose of password validation is to help humans create better
passwords.)

Failed-Login Tracking and Temporary Account Locking

As of MySQL 8.0.19, administrators can configure user accounts such that too many consecutive login
failures cause temporary account locking.

99

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_generated_random_password_length
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Failed-Login Tracking and Temporary Account Locking

“Login failure” in this context means failure of the client to provide a correct password during a
connection attempt. It does not include failure to connect for reasons such as unknown user or network
issues. For accounts that have dual passwords (see Dual Password Support), either account password
counts as correct.

The required number of login failures and the lock time are configurable per account, using the
FAI LED LOG N_ATTEMPTS and PASSWORD LOCK Tl ME options of the CREATE USER and ALTER
USER statements. Examples:

CREATE USER 'ul' @I ocal host' | DENTI FI ED BY ' password'
FAI LED LOG N_ATTEMPTS 3 PASSWORD LOCK_TI ME 3;

ALTER USER ' u2' @I ocal host '
FAI LED_LOG N_ATTEMPTS 4 PASSWORD LOCK_TI ME UNBOUNDED,;

When too many consecutive login failures occur, the client receives an error that looks like this:

ERROR 3957 (HY000): Access denied for user user.
Account is blocked for D day(s) (R day(s) remaining)
due to N consecutive failed |ogins.

Use the options as follows:
e FAILED LOG@ N ATTEMPTS N

This option indicates whether to track account login attempts that specify an incorrect password. The
number N specifies how many consecutive incorrect passwords cause temporary account locking.

« PASSWORD LOCK TIME {N | UNBOUNDED}

This option indicates how long to lock the account after too many consecutive login attempts provide
an incorrect password. The value is a number N to specify the number of days the account remains
locked, or UNBOUNDED to specify that when an account enters the temporarily locked state, the
duration of that state is unbounded and does not end until the account is unlocked. The conditions
under which unlocking occurs are described later.

Permitted values of N for each option are in the range from 0 to 32767. A value of O disables the option.
Failed-login tracking and temporary account locking have these characteristics:

 For failed-login tracking and temporary locking to occur for an account, its
FAI LED LOG N_ATTEMPTS and PASSWORD LOCK Tl ME options both must be nonzero.

» For CREATE USER, if FAI LED LOG N_ATTEMPTS or PASSWORD LOCK_TI VE is not specified,
its implicit default value is O for all accounts named by the statement. This means that failed-login
tracking and temporary account locking are disabled. (These implicit defaults also apply to accounts
created prior to the introduction of failed-login tracking.)

e For ALTER USER, if FAI LED LOG N_ATTEMPTS or PASSWORD LOCK_TI ME is not specified, its
value remains unchanged for all accounts named by the statement.

» For temporary account locking to occur, password failures must be consecutive. Any successful
login that occurs prior to reaching the FAI LED_LOG N_ATTEMPTS value for failed logins causes
failure counting to reset. For example, if FAIl LED_LOGd N_ATTEMPTS is 4 and three consecutive
password failures have occurred, one more failure is necessary for locking to begin. But if the next
login succeeds, failed-login counting for the account is reset so that four consecutive failures are
again required for locking.

» Once temporary locking begins, successful login cannot occur even with the correct password until
either the lock duration has passed or the account is unlocked by one of the account-reset methods
listed in the following discussion.

When the server reads the grant tables, it initializes state information for each account regarding
whether failed-login tracking is enabled, whether the account is currently temporarily locked and when

100

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Server Handling of Expired Passwords

locking began if so, and the number of failures before temporary locking occurs if the account is not
locked.

An account's state information can be reset, which means that failed-login counting is reset, and the
account is unlocked if currently temporarily locked. Account resets can be global for all accounts or per
account:

» A global reset of all accounts occurs for any of these conditions:
* A server restart.

» Execution of FLUSH PRI VI LEGES. (Starting the server with - - ski p- gr ant -t abl es causes the
grant tables not to be read, which disables failed-login tracking. In this case, the first execution of
FLUSH PRI VI LEGES causes the server to read the grant tables and enable failed-login tracking,
in addition to resetting all accounts.)

» A per-account reset occurs for any of these conditions:
¢ Sucessful login for the account.

» The lock duration passes. In this case, failed-login counting resets at the time of the next login
attempt.

e Execution of an ALTER USER statement for the account that sets either
FAI LED LOG N_ATTEMPTS or PASSWORD LOCK Tl ME (or both) to any value (including the
current option value), or execution of an ALTER USER ... UNLOCK statement for the account.

Other ALTER USER statements for the account have no effect on its current failed-login count or
its locking state.

Failed-login tracking is tied to the login account that is used to check credentials. If user proxying is
in use, tracking occurs for the proxy user, not the proxied user. That is, tracking is tied to the account
indicated by USER() , not the account indicated by CURRENT USER() . For information about the
distinction between proxy and proxied users, see Section 4.19, “Proxy Users”.

4.16 Server Handling of Expired Passwords

MySQL provides password-expiration capability, which enables database administrators to require
that users reset their password. Passwords can be expired manually, and on the basis of a policy for
automatic expiration (see Section 4.15, “Password Management”).

The ALTER USER statement enables account password expiration. For example:

ALTER USER ' nyuser' @I ocal host' PASSWORD EXPI RE;

For each connection that uses an account with an expired password, the server either disconnects

the client or restricts the client to “sandbox mode,” in which the server permits the client to perform

only those operations necessary to reset the expired password. Which action is taken by the server
depends on both client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST CHANGE PASSWORD LOd N error:

$> nysqgl -u nyuser -p

Password: ******

ERROR 1862 (HY000): Your password has expired. To log in you nust
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client
session:

* The client can reset the account password with ALTER USER or SET PASSWORD. After that has been
done, the server restores normal access for the session, as well as for subsequent connections that
use the account.

101

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html

Server Handling of Expired Passwords

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

» Prior to MySQL 8.0.27, the client can use the SET statement. As of MySQL 8.0.27, this is no longer
permitted.

For any operation not permitted within the session, the server returns an
ER_MUST_CHANGE_PASSWORD error:

nmysqgl > USE perfor mance_schens;

ERROR 1820 (HY000): You nust reset your password using ALTER USER
st at ement before executing this statenent.

nmysql > SELECT 1;

ERROR 1820 (HY000): You nust reset your password using ALTER USER
st at ement before executing this statenent.

That is what normally happens for interactive invocations of the nysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

For noninteractive invocations of the nysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive nysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode),
add the - - connect - expi r ed- passwor d option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it
to sandbox mode depends on a combination of client and server settings. The following discussion
describes the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords.
For clients that use the C client library, there are two ways to do this:

» Pass the MYSQL_OPT_CAN_HANDLE_EXPI RED_PASSWORDS flag to mysql _opti ons() prior to
connecting:

bool arg = 1;

nysql _options(nysql,
MYSQL_OPT_CAN_HANDLE EXPI RED_PASSWORDS,
&arg) ;

This is the technique used within the nysql client, which enables
MYSQL_OPT_CAN HANDLE EXPI RED PASSWORDS if invoked interactively or with the - - connect -
expi r ed- passwor d option.

» Passthe CLI ENT_CAN_HANDLE_ EXPI RED_PASSWORDS flag to nysql _real _connect () at
connect time:

MYSQ nysql ;
nysql _i nit (&ysql);
if (!nysql _real _connect (&nysql,
host, user, password, db,
port, unix_socket,
CLI ENT_CAN_HANDLE_EXPI RED_PASSWORDS))

handl e error ...

102

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

Pluggable Authentication

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox
mode. See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in
sandbox mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
di sconnect _on_expi red_passwor d system variable:

» Ifdi sconnect _on_expired_password is enabled (the default), the server disconnects the client
with an ER_MJST _CHANGE PASSWORD LOG N error.

e Ifdi sconnect _on_expired_password is disabled, the server puts the client in sandbox mode.

4.17 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the nmysqgl . user system table. The server
then authenticates the client, determining from the account row which authentication plugin applies to
the client:

« If the server cannot find the plugin, an error occurs and the connection attempt is rejected.

» Otherwise, the server invokes that plugin to authenticate the user, and the plugin returns a status to
the server indicating whether the user provided the correct password and is permitted to connect.

Pluggable authentication enables these important capabilities:

» Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose
and change the authentication method used for individual MySQL accounts.

» External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the nysql . user system table. For example, plugins can be created to use
external authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

e Proxy users: If auseris permitted to connect, an authentication plugin can return to the server
a user name different from the name of the connecting user, to indicate that the connecting user is
a proxy for another user (the proxied user). While the connection lasts, the proxy user is treated,
for purposes of access control, as having the privileges of the proxied user. In effect, one user
impersonates another. For more information, see Section 4.19, “Proxy Users”.

Note

If you start the server with the - - ski p- gr ant - t abl es option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure, if
the server is started with the - - ski p- gr ant -t abl es option, it also disables
remote connections by enabling ski p_net wor ki ng.

» Available Authentication Plugins

» The Default Authentication Plugin

» Authentication Plugin Usage

» Authentication Plugin Client/Server Compatibility

» Authentication Plugin Connector-Writing Considerations

» Restrictions on Pluggable Authentication

103

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Available Authentication Plugins

Available Authentication Plugins

MySQL 8.0 provides these authentication plugins:

A plugin that performs native authentication; that is, authentication based on the password
hashing method in use from before the introduction of pluggable authentication in MySQL. The
nysql _native_passwor d plugin implements authentication based on this native password
hashing method. See Section 6.1.1, “Native Pluggable Authentication”.

Plugins that perform authentication using SHA-256 password hashing. This is stronger encryption
than that available with native authentication. See Section 6.1.2, “Caching SHA-2 Pluggable
Authentication”, and Section 6.1.3, “SHA-256 Pluggable Authentication”.

A client-side plugin that sends the password to the server without hashing or encryption. This
plugin is used in conjunction with server-side plugins that require access to the password exactly as
provided by the client user. See Section 6.1.4, “Client-Side Cleartext Pluggable Authentication”.

A plugin that performs external authentication using PAM (Pluggable Authentication Modules),
enabling MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users
as well. See Section 6.1.5, “PAM Pluggable Authentication”.

A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment
without specifying an additional password. This plugin supports proxy users as well. See

Section 6.1.6, “Windows Pluggable Authentication”.

Plugins that perform authentication using LDAP (Lightweight Directory Access Protocol) to
authenticate MySQL users by accessing directory services such as X.500. These plugins support
proxy users as well. See Section 6.1.7, “LDAP Pluggable Authentication”.

A plugin that performs authentication using Kerberos to authenticate MySQL users that correspond
to Kerberos principals. See Section 6.1.8, “Kerberos Pluggable Authentication”.

A plugin that prevents all client connections to any account that uses it. Use cases for this plugin
include proxied accounts that should never permit direct login but are accessed only through proxy
accounts and accounts that must be able to execute stored programs and views with elevated
privileges without exposing those privileges to ordinary users. See Section 6.1.9, “No-Login
Pluggable Authentication”.

A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.1.10, “Socket Peer-Credential Pluggable Authentication”.

A plugin that authenticates users to MySQL Server using FIDO authentication. See Section 6.1.11,
“FIDO Pluggable Authentication”.

A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.1.12, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on
Pluggable Authentication.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

104

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins.html

The Default Authentication Plugin

The Default Authentication Plugin

The CREATE USER and ALTER USER statements have syntax for specifying how an account
authenticates. Some forms of this syntax do not explicitly name an authentication plugin (there is no
| DENTI FI ED W TH clause). For example:

CREATE USER 'jeffrey' @Il ocal host' | DENTIFI ED BY ' password';

In such cases, the server assigns the default authentication plugin to the account. Prior to MySQL
8.0.27, this default is the value of the def aul t _aut henti cati on_pl ugi n system variable.

As of MySQL 8.0.27, which introduces multifactor authentication, there can be up to three clauses that
specify how an account authenticates. The rules that determine the default authentication plugin for
authentication methods that name no plugin are factor-specific:

e Factor 1: If aut henti cati on_pol i cy element 1 names an authentication plugin,
that plugin is the default. If aut henti cati on_pol i cy element 1 is *, the value of
defaul t _aut henti cati on_pl ugi nis the default.

Given the rules above, the following statement creates a two-factor authentication account,
with the first factor authentication method determined by the aut hent i cati on_pol i cy or
def aul t _aut henti cati on_pl ugi n setting:

CREATE USER 'wei' @1 ocal host' | DENTI FI ED BY ' passwor d'
AND | DENTI FI ED W TH aut henti cati on_| dap_si npl e;

In the same way, this example creates a three-factor authentication account:

CREATE USER ' mat eo' @ | ocal host' | DENTI FI ED BY ' password'
AND | DENTI FI ED W TH aut henti cati on_| dap_si npl e
AND | DENTI FI ED W TH aut henti cati on_fi do;

You can use SHOW CREATE USER to view the applied authentication methods.

» Factor 2 or 3: If the corresponding aut hent i cat i on_pol i cy element names an authentication
plugin, that plugin is the default. If the aut henti cati on_pol i cy elementis * or empty, there is no
default; attempting to define an account authentication method for the factor without naming a plugin
is an error, as in the following examples:

nysgl > CREATE USER 'sofia' @I ocal host' | DENTI FI ED W TH aut henti cati on_| dap_si npl e
AND | DENTI FI ED BY ' abc';

ERROR 1524 (HY000): Plugin '' is not |oaded

nysgl > CREATE USER 'sofia' @I ocal host' | DENTI FI ED W TH aut henti cati on_| dap_si npl e
AND | DENTI FI ED BY ' abc';

ERROR 1524 (HY000): Plugin '*' is not |oaded

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For
instructions specific to a given plugin, see the section that describes that plugin under Section 6.1,
“Authentication Plugins”.

In general, pluggable authentication uses a pair of corresponding plugins on the server and client
sides, so you use a given authentication method like this:

* If necessary, install the plugin library or libraries containing the appropriate plugins. On the server
host, install the library containing the server-side plugin, so that the server can use it to authenticate
client connections. Similarly, on each client host, install the library containing the client-side plugin for
use by client programs. Authentication plugins that are built in need not be installed.

» For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation
statement need not specify the plugin explicitly. The server assigns the the default authentication
plugin, determined as described in The Default Authentication Plugin.

105

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy

Authentication Plugin Client/Server Compatibility

« When a client connects, the server-side plugin tells the client program which client-side plugin to use
for authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided.

For standard MySQL clients such as nysqgl and nysql adm n, the - - def aul t - aut h=pl ugi n_nane
option can be specified on the command line as a hint about which client-side plugin the program can
expect to use, although the server overrides this if the server-side plugin associated with the user
account requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a - - pl ugi n-
di r=di r _nane option to indicate the plugin library directory location.

Authentication Plugin Client/Server Compatibility

Pluggable authentication enables flexibility in the choice of authentication methods for MySQL
accounts, but in some cases client connections cannot be established due to authentication plugin
incompatibility between the client and server.

The general compatibility principle for a successful client connection to a given account on a given
server is that the client and server both must support the authentication method required by the
account. Because authentication methods are implemented by authentication plugins, the client and
server both must support the authentication plugin required by the account.

Authentication plugin incompatibilities can arise in various ways. Examples:

» Connect using a MySQL 5.7 client from 5.7.22 or lower to a MySQL 8.0 server account that
authenticates with cachi ng_sha2_passwor d. This fails because the 5.7 client does not recognize
the plugin, which was introduced in MySQL 8.0. (This issue is addressed in MySQL 5.7 as of 5.7.23,
when cachi ng_sha2_passwor d client-side support was added to the MySQL client library and
client programs.)

» Connect using a MySQL 5.7 client to a pre-5.7 server account that authenticates with
nysql ol d_passwor d. This fails for multiple reasons. First, such a connection requires - -
secur e- aut h=0, which is no longer a supported option. Even were it supported, the 5.7 client does
not recognize the plugin because it was removed in MySQL 5.7.

» Connect using a MySQL 5.7 client from a Community distribution to a MySQL 5.7 Enterprise server
account that authenticates using one of the Enterprise-only LDAP authentication plugins. This fails
because the Community client does not have access to the Enterprise plugin.

In general, these compatibility issues do not arise when connections are made between a client and
server from the same MySQL distribution. When connections are made between a client and server
from different MySQL series, issues can arise. These issues are inherent in the development process
when MySQL introduces new authentication plugins or removes old ones. To minimize the potential for
incompatibilities, regularly upgrade the server, clients, and connectors on a timely basis.

Authentication Plugin Connector-Writing Considerations

Various implementations of the MySQL client/server protocol exist. The | i brrysql cl i ent C API
client library is one implementation. Some MySQL connectors (typically those not written in C) provide
their own implementation. However, not all protocol implementations handle plugin authentication the
same way. This section describes an authentication issue that protocol implementors should take into
account.

In the client/server protocol, the server tells connecting clients which authentication plugin it considers
the default. If the protocol implementation used by the client tries to load the default plugin and that

106

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-auth
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_plugin-dir

Restrictions on Pluggable Authentication

plugin does not exist on the client side, the load operation fails. This is an unnecessary failure if the
default plugin is not the plugin actually required by the account to which the client is trying to connect.

If a client/server protocol implementation does not have its own notion of default authentication plugin
and always tries to load the default plugin specified by the server, it fails with an error if that plugin is
not available.

To avoid this problem, the protocol implementation used by the client should have its own default
plugin and should use it as its first choice (or, alternatively, fall back to this default in case of failure to
load the default plugin specified by the server). Example:

* INnMySQL 5.7, i bnysql cl i ent uses as its default choice either mysql native_password or
the plugin specified through the MYSQL_DEFAULT _AUTH option for nysql _opti ons().

* When a 5.7 client tries to connect to an 8.0 server, the server specifies cachi ng_sha2_password
as its default authentication plugin, but the client still sends credential details per either
nysqgl _native_passwor d or whatever is specified through MYSQL_DEFAULT_AUTH.

» The only time the client loads the plugin specified by the server is for a change-plugin request, but in
that case it can be any plugin depending on the user account. In this case, the client must try to load
the plugin, and if that plugin is not available, an error is not optional.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 4.17, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can
take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in

the nysql . user system table. This is the same authentication method provided by older MySQL
servers, before pluggable authentication was implemented. “Windows native authentication” refers to
authentication using the credentials of a user who has already logged in to Windows, as implemented
by the Windows Native Authentication plugin (“Windows plugin” for short).

» General Pluggable Authentication Restrictions

» Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

» Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to | i bnysqgl cl i ent
dynamically (rather than statically) and it loads the current version of | i bnysql cl i ent if that
version is installed, or if the connector is recompiled from source to link against the current

i bmysqgl client.

For information about writing connectors to handle informatin from the server about the default
server-side authentication plugin, see Authentication Plugin Connector-Writing Considerations.

» Connector/NET: Clients that use Connector/NET can connect to the server through accounts that
use native authentication or Windows native authentication.

» Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysql nd).

* Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

107

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Multifactor Authentication

e Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a
user name different from that of the connecting user). For example, the PAM and Windows plugins
support proxy users. The nysgl _native password and sha256_passwor d authentication
plugins do not support proxy users by default, but can be configured to do so; see Server Support for
Proxy User Mapping.

» Replication: Replicas can not only employ replication user accounts using native authentication, but
can also connect through replication user accounts that use nonnative authentication if the required
client-side plugin is available. If the plugin is built into | i bnysql cl i ent, it is available by default.
Otherwise, the plugin must be installed on the replica side in the directory named by the replica's
pl ugi n_di r system variable.

» FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

* An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
toli bnysql cli ent dynamically (rather than statically) and it loads the current version of
I'i bmysgl cli ent if that version is installed.

» To take advantage of pluggable authentication capabilities, a connector thatis | i brmysql cl i ent -
based should be relinked against the current version of | i bnysql cl i ent . This enables the
connector to support connections though accounts that require client-side plugins now built into
I'i bmysqgl cl i ent (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current | i brysqgl cl i ent also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's pl ugi n_di r system
variable).

If a connector links to | i brrysql ¢l i ent dynamically, it must be ensured that the newer version of
I'i brysgl cli ent isinstalled on the client host and that the connector loads it at runtime.

» Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

« If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as nysql and nysql adni n implement a
- - pl ugi n-di r option. See also C API Client Plugin Interface.

» Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

4.18 Multifactor Authentication

Authentication involves one party establishing its identity to the satisfaction of a second party.
Multifactor authentication (MFA) is the use of multiple authentication values (or “factors”) during the

108

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Elements of Multifactor Authentication Support

authentication process. MFA provides greater security than one-factor/single-factor authentication
(1LFA/SFA), which uses only one authentication method such as a password. MFA enables additional
authentication methods, such as authentication using multiple passwords, or authentication using
devices like smart cards, security keys, and biometric readers.

MySQL 8.0.27 and higher includes support for multifactor authentication. This capability includes forms
of MFA that require up to three authentication values. That is, MySQL account management supports
accounts that use 2FA or 3FA, in addition to the existing 1FA support.

When a client attempts a connection to the MySQL server using a single-factor account, the server
invokes the authentication plugin indicated by the account definition and accepts or rejects the
connection depending on whether the plugin reports success or failure.

For an account that has multiple authentication factors, the process is similar. The server invokes
authentication plugins in the order listed in the account definition. If a plugin reports success, the server
either accepts the connection if the plugin is the last one, or proceeds to invoke the next plugin if any
remain. If any plugin reports failure, the server rejects the connection.

The following sections cover multifactor authentication in MySQL in more detail.
» Elements of Multifactor Authentication Support
» Configuring the Multifactor Authentication Policy

e Getting Started with Multifactor Authentication

Elements of Multifactor Authentication Support

Authentication factors commonly include these types of information:

» Something you know, such as a secret password or passphrase.

« Something you have, such as a security key or smart card.

» Something you are; that is, a biometric characteristic such as a fingerprint or facial scan.

The “something you know” factor type relies on information that is kept secret on both sides of the
authentication process. Unfortunately, secrets may be subject to compromise: Someone might see you
enter your password or fool you with a phishing attack, a password stored on the server side might be
exposed by a security breach, and so forth. Security can be improved by using multiple passwords, but
each may still be subject to compromise. Use of the other factor types enables improved security with
less risk of compromise.

Implementation of multifactor authentication in MySQL comprises these elements:

e The aut henti cati on_pol i cy system variable controls how many authentication factors can
be used and the types of authentication permitted for each factor. That is, it places constraints on
CREATE USERand ALTER USER statements with respect to multifactor authentication.

 CREATE USERand ALTER USER have syntax enabling multiple authentication methods to be
specified for new accounts, and for adding, modifying, or dropping authentication methods for
existing accounts. If an account uses 2FA or 3FA, the nysql . user system table stores information
about the additional authentication factors in the User _at t ri but es column.

» To enable authentication to the MySQL server using accounts that require multiple passwords, client
programs have - - passwor d1, - - passwor d2, and - - passwor d3 options that permit up to three
passwords to be specified. For applications that use the C API, the MYSQL_OPT_USER_PASSWORD
option for the nysql _opti ons4() C API function enables the same capability.

e The server-side aut henti cati on_fi do plugin enables authentication using devices.
This server-side FIDO authentication plugin is included only in MySQL Enterprise Edition

109

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password1
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password2
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password3
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Configuring the Multifactor Authentication Policy

distributions. It is not included in MySQL community distributions. However, the client-

side aut henti cation_fido_client pluginisincluded in all distributions, including
community distributions. This enables clients from any distribution to connect to accounts that
use aut henti cati on_fi do to authenticate on a server that has that plugin loaded. See
Section 6.1.11, “FIDO Pluggable Authentication”.

» aut hentication_fi do also enables passwordless authentication, if it is the only authentication
plugin used by an account. See FIDO Passwordless Authentication.

» Multifactor authentication can use non-FIDO MySQL authentication methods, the FIDO
authentication method, or a combination of both.

e These privileges enable users to perform certain restricted multifactor authentication-related
operations:

¢ A user who has the AUTHENTI CATI ON_POLI CY_ADM N privilege is not subject to the constraints
imposed by the aut henti cati on_pol i cy system variable. (A warning does occur for
statements that otherwise would not be permitted.)

e The PASSWORDLESS USER_ADM N privilege enables creation of passwordless-authentication
accounts and replication of operations on them.

Configuring the Multifactor Authentication Policy

The aut henti cati on_pol i cy system variable defines the multifactor authentication policy.
Specifically, it defines how many authentication factors accounts may have (or are required to have)
and the authentication methods that can be used for each factor.

The value of aut henti cati on_pol i cy isalist of 1, 2, or 3 comma-separated elements. Each
element in the list corresponds to an authentication factor and can be an authentication plugin name,
an asterisk (*), empty, or missing. (Exception: Element 1 cannot be empty or missing.) The entire list
is enclosed in single quotes. For example, the following aut hent i cat i on_pol i cy value includes an
asterisk, an authentication plugin name, and an empty element:

aut hentication_policy = '*, authentication_fido,"

An asterisk (*) indicates that an authentication method is required but any method is permitted.

An empty element indicates that an authentication method optional and any method is permitted.

A missing element (no asterisk, empty element, or authentication plugin name) indicates that an
authentication method is not permitted. When a plugin name is specified, that authentication method is
required for the respective factor when creating or modifying an account.

The default aut hent i cati on_policy valueis' *,,"' (an asterisk and two empty elements),
which requires a first factor, and optionally permits second and third factors. The default

aut henti cation_pol i cy value is thus backward compatible with existing 1FA accounts, but also
permits creation or modification of accounts to use 2FA or 3FA.

A user who has the AUTHENTI CATI ON_POLI CY_ADM N privilege is not subject to the constraints
imposed by the aut hent i cat i on_pol i cy setting. (A warning occurs for statements that otherwise
would not be permitted.)

aut henti cati on_pol i cy values can be defined in an option file or specified using a SET GLOBAL
statement:

SET GLOBAL aut hentication_policy="*,*,"

There are several rules that govern how the aut henti cati on_pol i cy value can be defined. Refer
to the aut henti cati on_pol i cy system variable description for a compete account of those rules.
The following table provides several aut hent i cati on_pol i cy example values and the policy
established by each.

110

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy

Getting Started with Multifactor Authentication

Table 4.10 Example authentication_policy Values

authentication_policy Value

Effective Policy

Permit only creating or altering accounts with one
factor.

Permit only creating or altering accounts with two
factors.

LS

Permit only creating or altering accounts with
three factors.

Permit creating or altering accounts with one or
two factors.

Permit creating or altering accounts with one, two,
or three factors.

Permit creating or altering accounts with two or
three factors.

"* aut h_plugin'

Permit creating or altering accounts with two
factors, where the first factor can be any
authentication method, and the second factor
must be the named plugin.

"“aut h_plugin, *,"

Permit creating or altering accounts with two or
three factors, where the first factor must be the
named plugin.

aut h_pl ugin,"'

Permit creating or altering accounts with one or
two factors, where the first factor must be the
named plugin.

aut h_pl ugi n, aut h_pl ugi n, aut h_pl ugi n’

Permits creating or altering accounts with three
factors, where the factors must use the named
plugins.

Getting Started with Multifactor Authentication

By default, MySQL uses a multifactor authentication policy that permits any authentication plugin
for the first factor, and optionally permits second and third authentication factors. This policy is
configurable; for details, see Configuring the Multifactor Authentication Policy.

Suppose that you want an account to authenticate first using the cachi ng_sha2_ passwor d plugin,
then using the aut henti cati on_I| dap_sasl SASL LDAP plugin. (This assumes that LDAP
authentication is already set up as described in Section 6.1.7, “LDAP Pluggable Authentication”, and
that the user has an entry in the LDAP directory corresponding to the authentication string shown in the
example.) Create the account using a statement like this:

CREATE USER 'alice' @I ocal host*

| DENTI FI ED W TH cachi ng_sha2_passwor d

BY ' sha2_password'

AND | DENTI FI ED W TH aut hent i cati on_| dap_sasl

AS ' ui d=ul_| dap, ou=Peopl e, dc=exanpl e, dc=coni ;

To connect, the user must supply two passwords. To enable authentication to the MySQL server using
accounts that require multiple passwords, client programs have - - passwor d1, - - passwor d2, and

- - passwor d3 options that permit up to three passwords to be specified. These options are similar to
the - - passwor d option in that they can take a password value following the option on the command
line (which is insecure) or if given without a password value cause the user to be prompted for one.
For the account just created, factors 1 and 2 take passwords, so invoke the nysql client with the - -
passwor d1l and - - passwor d2 options. mysql will prompt for each password in turn:

$> nysql --user=alice --passwordl

- - passwor d2

111

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password1
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password2
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password3
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password1
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password1
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password2

Proxy Users

Enter password: (enter factor 1 password)
Enter password: (enter factor 2 password)

Suppose you want to add a third authentication factor. This can be achieved by dropping and
recreating the user with a third factor or by using ALTER USER user ADD fact or syntax. Both
methods are shown below:

DROP USER 'alice' @I ocal host ' ;

CREATE USER 'alice' @Il ocal host'
| DENTI FI ED W TH cachi ng_sha2_passwor d
BY ' sha2_password'
AND | DENTI FI ED W TH aut henti cati on_| dap_sasl
AS ' ui d=ul_| dap, ou=Peopl e, dc=exanpl e, dc=com
AND | DENTI FI ED W TH aut henti cati on_fi do;

ADD f act or syntax includes the factor number and FACTOR keyword:

ALTER USER ' alice' @l ocal host' ADD 3 FACTOR | DENTI FI ED W TH aut henti cati on_fi do;

ALTER USER user DROP fact or syntax permits dropping a factor. The following example drops the
third factor (aut henti cati on_f i do) that was added in the previous example:

ALTER USER 'alice' @Il ocal host' DROP 3 FACTOR;

ALTER USER user MODI FY fact or syntax permits changing the plugin or authentication string for
a particular factor, provided that the factor exists. The following example modifies the second factor,
changing the authentication method from aut henti cati on_| dap_sasl| toaut heti cation_fi do:

ALTER USER 'alice' @Il ocal host' MODI FY 2 FACTOR | DENTI FI ED W TH aut henti cati on_fi do;

Use SHOW CREATE USER to view the authentication methods defined for an account:

SHOW CREATE USER ' ul' @I ocal host'\ G
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhhkkhkkkx*x 1. I'OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhkkhkkkx*x
CREATE USER for ul@ ocal host: CREATE USER "ul @I ocal host

| DENTI FI ED W TH ' cachi ng_sha2_password' AS 'sha2_ password'

AND | DENTI FI ED W TH ' aut henti cati on_fi do' REQUI RE NONE
PASSWORD EXPI RE DEFAULT ACCOUNT UNLOCK PASSWORD HI STORY
DEFAULT PASSWORD REUSE | NTERVAL DEFAULT PASSWORD REQUI RE
CURRENT DEFAULT

4.19 Proxy Users

The MySQL server authenticates client connections using authentication plugins. The plugin that

authenticates a given connection may request that the connecting (external) user be treated as a

different user for privilege-checking purposes. This enables the external user to be a proxy for the
second user; that is, to assume the privileges of the second user:

» The external user is a “proxy user” (a user who can impersonate or become known as another user).

» The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 4.17, “Pluggable Authentication”. For information about specific
plugins, see Section 6.1, “Authentication Plugins”. For information about writing authentication plugins
that support proxy users, see Implementing Proxy User Support in Authentication Plugins.

» Requirements for Proxy User Support
» Simple Proxy User Example

» Preventing Direct Login to Proxied Accounts

112

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins-proxy-users.html

Requirements for Proxy User Support

Granting and Revoking the PROXY Privilege
Default Proxy Users
Default Proxy User and Anonymous User Conflicts
Server Support for Proxy User Mapping
Proxy User System Variables

Note

One administrative benefit to be gained by proxying is that the DBA can set up
a single account with a set of privileges and then enable multiple proxy users
to have those privileges without having to assign the privileges individually to
each of those users. As an alternative to proxy users, DBAs may find that roles
provide a suitable way to map users onto specific sets of named privileges.
Each user can be granted a given single role to, in effect, be granted the
appropriate set of privileges. See Section 4.10, “Using Roles”.

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

Proxying must be supported, either by the plugin itself, or by the MySQL server on behalf of the
plugin. In the latter case, server support may need to be enabled explicitly; see Server Support for
Proxy User Mapping.

The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER statement to associate an account with an authentication plugin, or ALTER USERto
change its plugin.

The account for the proxied user must exist and be granted the privileges to be assumed by the
proxy user. Use the CREATE USER and GRANT statements for this.

Normally, the proxied user is configured so that it can be used only in proxying scenaries and not for
direct logins.

The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin
must return a user name different from the client user name, to indicate the user name of the proxied
account that defines the privileges to be assumed by the proxy user.

Alternatively, for plugins that are provided proxy mapping by the server, the proxied user is
determined from the PROXY privilege held by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name.
There is no provision for mapping host names:

When a client connects to the server, the server determines the proper account based on the user
name passed by the client program and the host from which the client connects.

If that account is a proxy account, the server attempts to determine the appropriate proxied account
by finding a match for a proxied account using the user name returned by the authentication plugin
and the host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

113

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Preventing Direct Login to Proxied Accounts

-- create proxy account
CREATE USER ' enpl oyee_ext' @1 ocal host "'
| DENTI FI ED W TH mmy_aut h_pl ugi n
AS 'ny_auth_string';
-- create proxied account and grant its privil eges;
-- use nysqgl _no_login plugin to prevent direct |ogin
CREATE USER ' enpl oyee' @1 ocal host'
| DENTI FI ED W TH nysql _no_I ogi n;
GRANT ALL
ON enpl oyees. *
TO ' enpl oyee' @1 ocal host ' ;
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
ON ' enpl oyee' @I ocal host'
TO ' enpl oyee_ext' @1 ocal host ' ;

When a client connects as enpl oyee_ext from the local host, MySQL uses the plugin named

nmy_aut h_pl ugi n to perform authentication. Suppose that my _aut h_pl ugi n returns a user name

of enpl oyee to the server, based on the content of ' ny_aut h_string' and perhaps by consulting
some external authentication system. The name enpl oyee differs from enpl oyee_ext, so returning
enpl oyee serves as a request to the server to treat the enpl oyee_ext external user, for purposes of
privilege checking, as the enpl oyee local user.

In this case, enpl oyee_ext is the proxy user and enpl oyee is the proxied user.

The server verifies that proxy authentication for enpl oyee is possible for the enpl oyee_ ext user by
checking whether enpl oyee_ext (the proxy user) has the PROXY privilege for enpl oyee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, enpl oyee_ext assumes

the privileges of enpl oyee. The server checks statements executed during the client session by

enpl oyee_ext against the privileges granted to enpl oyee. In this case, enpl oyee_ext can access
tables in the enpl oyees database.

The proxied account, enpl oyee, uses the nysgl _no_| ogi n authentication plugin to prevent clients
from using the account to log in directly. (This assumes that the plugin is installed. For instructions,
see Section 6.1.9, “No-Login Pluggable Authentication”.) For alternative methods of protecting proxied
accounts against direct use, see Preventing Direct Login to Proxied Accounts.

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the
current session (the proxied user). For the example just described, those functions return these values:

nysql > SELECT USER(), CURRENT USER();

fmocccooccocccooccoosoooso fooccccocoocccoocoooso +
| USER() | CURRENT_USER() |
fmocccooccocccooccoosoooso fooccccocoocccoocoooso +
| enpl oyee_ext @ocal host | enpl oyee@ ocal host |
fmocccooccocccooccoosoooso fooccccocoocccoocoooso +

In the CREATE USER statement that creates the proxy user account, the | DENTI FI ED W TH

clause that names the proxy-supporting authentication plugin is optionally followed by an AS
"auth_string' clause specifying a string that the server passes to the plugin when the user
connects. If present, the string provides information that helps the plugin determine how to map the
proxy (external) client user name to a proxied user name. It is up to each plugin whether it requires the
AS clause. If so, the format of the authentication string depends on how the plugin intends to use it.
Consult the documentation for a given plugin for information about the authentication string values it
accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

114

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Granting and Revoking the PROXY Privilege

There are multiple ways to ensure that a proxied account cannot be used directly:

» Associate the account with the mysql _no_ I ogi n authentication plugin. In this case, the account
cannot be used for direct logins under any circumstances. This assumes that the plugin is installed.
For instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.

* Include the ACCOUNT LCOCK option when you create the account. See CREATE USER Statement.
With this method, also include a password so that if the account is unlocked later, it cannot be
accessed with no password. (If the val i dat e_passwor d component is enabled, creating an
account without a password is not permitted, even if the account is locked. See Section 6.3, “The
Password Validation Component”.)

» Create the account with a password but do not tell anyone else the password. If you do not let
anyone know the password for the account, clients cannot use it to connect directly to the MySQL
server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON ' proxied user' TO 'proxy_user';

The statement creates a row in the mysql . proxi es_pri v grant table.

At connect time, pr oxy_user must represent a valid externally authenticated MySQL user, and
proxi ed_user must represent a valid locally authenticated user. Otherwise, the connection attempt
fails.

The corresponding REVCOKE syntax is:

REVOKE PROXY ON ' proxied_user' FROM ' proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. Examples:

-- grant PROXY to multiple accounts

GRANT PROXY ON 'a' TO'b', 'c', 'd';

-- revoke PROXY frommultiple accounts

REVOKE PROXY ON 'a* FROM'b', 'c', 'd';

-- grant PROXY to an account and enabl e the account to grant
-- PROXY to the proxied account

GRANT PROXY ON 'a' TO 'd' WTH GRANT OPTI ON;

-- grant PROXY to default proxy account

GRANT PROXY ON 'a’ TO''@";

The PROXY privilege can be granted in these cases:
* By a user that has GRANT PROXY ... W TH GRANT OPTI ONfor pr oxi ed_user.

e By proxi ed_user foritself: The value of USER() must exactly match CURRENT USER() and
proxi ed_user, for both the user name and host name parts of the account name.

The initial r oot account created during MySQL installation has the PROXY ... W TH GRANT

OPTI ON privilege for ' ' @ ' , that is, for all users and all hosts. This enables r oot to set up proxy
users, as well as to delegate to other accounts the authority to set up proxy users. For example, r oot
can do this:

CREATE USER 'adm n' @1 ocal host*

| DENTI FI ED BY ' adm n_password';
GRANT PROXY

N @

TO "adm n' @1 ocal host*

W TH GRANT OPTI ON,

115

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Default Proxy Users

Those statements create an adni n user that can manage all GRANT PROXY mappings. For example,
admi n can do this:

GRANT PROXY ON sally TO j oe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (' ' @ '), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named | dap_aut h that implements LDAP authentication and maps connecting users
onto either a developer or manager account. To set up proxying of users onto these accounts, use the
following statements:

-- create default proxy account
CREATE USER '' @'

| DENTI FI ED W TH | dap_aut h

AS ' O=Oracle, OUu=M/SQ';
-- create proxied accounts; use
-- nmysqgl _no_login plugin to prevent direct |ogin
CREATE USER ' devel oper' @I ocal host'

| DENTI FI ED W TH nysql _no_|I ogi n;
CREATE USER ' manager' @I ocal host'

| DENTI FI ED W TH nysql _no_I ogi n;
-- grant to default proxy account the
-- PROXY privilege for proxi ed accounts
GRANT PROXY

ON ' manager' @1 ocal host"'

O @'
GRANT PROXY

ON ' devel oper' @1 ocal host"*

0@

Now assume that a client connects as follows:

$> nysql --user=myuser --password ...
Enter password: myuser password

The server does not find myuser defined as a MySQL user, but because there is a blank user account
(' @) that matches the client user name and host name, the server authenticates the client against
that account. The server invokes the | dap_aut h authentication plugin and passes myuser and
nyuser _passwor d to it as the user name and password.

If the | dap_aut h plugin finds in the LDAP directory that nyuser _passwor d is not the correct
password for myuser , authentication fails and the server rejects the connection.

If the password is correct and | dap_aut h finds that myuser is a developer, it returns the user name
devel oper tothe MySQL server, rather than myuser . Returning a user name different from the client
user name of myuser signals to the server that it should treat nyuser as a proxy. The server verifies
that' ' @' can authenticate as devel oper (because'' @' has the PROXY privilege to do so) and
accepts the connection. The session proceeds with nyuser having the privileges of the devel oper
proxied user. (These privileges should be set up by the DBA using GRANT statements, not shown.) The
USER() and CURRENT USER() functions return these values:

nysql > SELECT USER(), CURRENT_USER();
+

e +
| USER() | CURRENT_USER() |
. R +
| myuser @ocal host | devel oper @ ocal host |
. R +

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of the manager proxied user.

mysql > SELECT USER(), CURRENT_USER();

116

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Default Proxy User and Anonymous User Conflicts

For simplicity, external authentication cannot be multilevel: Neither the credentials for devel oper nor
those for neanager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the devel oper or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has ' ' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with
the same user part and ' % in the host part, because ' % also matches any host, but has precedence
over' ' by the rules that the server uses to sort account rows internally (see Section 4.6, “Access
Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER '' @'
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';
-- create anonynous account
CREATE USER '' @ %
| DENTI FI ED BY ' anon_user _password' ;

The first account (' ' @ ") is intended as the default proxy user, used to authenticate connections

for users who do not otherwise match a more-specific account. The second account (' ' @ %) is an
anonymous-user account, which might have been created, for example, to enable users without their
own account to connect anonymously.

Both accounts have the same user part (' '), which matches any user. And each account has a

host part that matches any host. Nevertheless, there is a priority in account matching for connection
attempts because the matching rules sort a host of ' % ahead of ' ' . For accounts that do not match
any more-specific account, the server attempts to authenticate them against' ' @ % (the anonymous
user) ratherthan' ' @' (the default proxy user). As a result, the default proxy account is never used.

To avoid this problem, use one of the following strategies:
* Remove the anonymous account so that it does not conflict with the default proxy user.

» Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only | ocal host proxy connections, use' ' @ | ocal host "' :

CREATE USER '' @1 ocal host'
| DENTI FI ED W TH some_pl ugi n
AS 'sone_auth_string';

In addition, modify any GRANT PROXY statements to name'' @ | ocal host' ratherthan'' @' as
the proxy user.

Be aware that this strategy prevents anonymous-user connections from | ocal host .

» Use a named default account rather than an anonymous default account. For an example of
this technique, consult the instructions for using the aut hent i cati on_wi ndows plugin. See
Section 6.1.6, “Windows Pluggable Authentication”.

117

Server Support for Proxy User Mapping

» Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

- create proxy user for local connections
CREATE USER '' @1 ocal host'
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';
- create proxy user for renote connections
CREATE USER '' @ %
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';

Create the proxied users:

- create proxied user for |ocal connections
CREATE USER ' devel oper' @1 ocal host'
| DENTI FI ED W TH nysql _no_I ogi n;
- create proxied user for renote connections
CREATE USER ' devel oper' @ %
| DENTI FI ED W TH nysql _no_I ogi n;

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
ON ' devel oper' @1 ocal host"'
TO '' @I ocal host ' ;

GRANT PROXY
ON ' devel oper' @ %
TO'"@%;

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the sone_pl ugi n/' sone_aut h_string' combination causes sone_pl ugi n to map
the client user name to devel oper . Local connections matchthe' ' @ | ocal host' proxy user,
which maps to the ' devel oper' @ | ocal host' proxied user. Remote connections match the

"' @ % proxy user, which maps to the ' devel oper' @ % proxied user.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy
privileges: nysql _nati ve_passwor d, sha256_passwor d. If the check_proxy_users system
variable is enabled, the server performs proxy user mapping for any authentication plugins that make
such a request:

» By default, check proxy_users is disabled, so the server performs no proxy user mapping even
for authentication plugins that request server support for proxy users.

» If check_proxy_users is enabled, it may also be necessary to enable a plugin-specific system
variable to take advantage of server proxy user mapping support:

e Forthe nysql native_ password plugin, enable nysql native_ password_proxy_users.
* For the sha256_passwor d plugin, enable sha256_passwor d_pr oxy_users.

For example, to enable all the preceding capabilities, start the server with these lines in the ny. cnf
file:

[nysql d]
check_proxy_user s=ON
nysql _nati ve_password_proxy_user s=ON

118

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mysql_native_password_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_proxy_users

Proxy User System Variables

sha256_passwor d_pr oxy_user s=ON

Assuming that the relevant system variables have been enabled, create the proxy user as usual using
CREATE USER, then grant it the PROXY privilege to a single other account to be treated as the proxied
user. When the server receives a successful connection request for the proxy user, it finds that the user
has the PROXY privilege and uses it to determine the proper proxied user.

-- create proxy account
CREATE USER ' proxy_user' @I ocal host'
| DENTI FI ED W TH nmysql _nati ve_passwor d
BY ' password' ;
-- create proxied account and grant its privil eges;
-- use nysqgl _no_login plugin to prevent direct |ogin
CREATE USER ' proxi ed_user' @I ocal host'
| DENTI FI ED W TH nysql _no_I ogi n;
-- grant privileges to proxied account
GRANT . ..
TO ' proxi ed_user' @Il ocal host "' ;
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
ON ' proxi ed_user' @Il ocal host'
TO ' proxy_user' @I ocal host "' ;

To use the proxy account, connect to the server using its name and password:

$> nmysqgl -u proxy_user -p
Ent er password: (enter proxy_user password here)

Authentication succeeds, the server finds that pr oxy_user has the PROXY privilege for
proxi ed_user, and the session proceeds with pr oxy_user having the privileges of
proxi ed_user.

Proxy user mapping performed by the server is subject to these restrictions:

» The server does not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

» When a single account has been granted proxy privileges for more than one proxied account, server
proxy user mapping is nondeterministic. Therefore, granting to a single account proxy privileges for
multiple proxied accounts is discouraged.

Proxy User System Variables
Two system variables help trace the proxy login process:

e proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates throughthe ' ' @' proxy account, this variable is set
as follows:

nmysql > SELECT @ar oxy_user ;

S +
| @@roxy_user |
S +
| @ |
S +

» external _user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses a
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the ext er nal _user read-only session variable. If the plugin does not
set this variable, its value is NULL.

4.20 Account Locking

119

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_proxy_user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user

Setting Account Resource Limits

MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK and ACCOUNT
UNLOCK clauses for the CREATE USER and ALTER USER statements:

* When used with CREATE USER, these clauses specify the initial locking state for a new account. In
the absence of either clause, the account is created in an unlocked state.

If the val i dat e_passwor d component is enabled, creating an account without a password is not
permitted, even if the account is locked. See Section 6.3, “The Password Validation Component”.

» When used with ALTER USER, these clauses specify the new locking state for an existing account.
In the absence of either clause, the account locking state remains unchanged.

As of MySQL 8.0.19, ALTER USER ... UNLOCK unlocks any account named by the statement that
is temporarily locked due to too many failed logins. See Section 4.15, “Password Management”.

Account locking state is recorded in the account | ocked column of the nysql . user system table.
The output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connect s status variable that indicates the number of attempts to connect to a locked
account, returns an ER_ACCOUNT_HAS BEEN_LOCKED error, and writes a message to the error log:

Access deni ed for user 'user nane' @host _nane'.
Account is | ocked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFI NER attribute naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account | ocked column in the
nysqgl . user system table. For upgrades from MySQL versions older than 5.7.6, perform the MySQL
upgrade procedure to ensure that this column exists. See Upgrading MySQL. For nonupgraded
installations that have no account | ocked column, the server treats all accounts as unlocked, and
using the ACCOUNT LOCK or ACCOUNT UNLCCK clauses produces an error.

4.21 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global

nmax_user _connecti ons system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user _connect i ons does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server
resources:

» The number of queries an account can issue per hour

» The number of updates an account can issue per hour

e The number of times an account can connect to the server per hour

» The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit. Only statements that modify
databases or tables count against the update limit.

An “account” in this context corresponds to a row in the nmysql . user system table. That is, a
connection is assessed against the User and Host values in the user table row that applies to the
connection. For example, an account ' usera' @ % exanpl e. com corresponds to a row in the user

120

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Locked_connects
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_account_has_been_locked
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections

Setting Account Resource Limits

table that has User and Host values of user a and % exanpl e. com to permit user a to connect
from any host in the exanpl e. comdomain. In this case, the server applies resource limits in this row
collectively to all connections by user a from any host in the exanpl e. comdomain because all such
connections use the same account.

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the - - ol d- st yl e-
user-1imts option. In this case, if user a connects simultaneously from host 1. exanpl e. comand
host 2. exanpl e. com the server applies the account resource limits separately to each connection.
If user a connects again from host 1. exanpl e. com the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. Provide a W TH clause that names each
resource to be limited. The default value for each limit is zero (no limit). For example, to create a new

account that can access the cust oner database, but only in a limited fashion, issue these statements:

nmysql > CREATE USER 'francis' @I ocal host' | DENTI FI ED BY ' frank’

-> W TH MAX_QUERI ES_PER HOUR 20
-> MAX_UPDATES_PER HOUR 10
-> MAX_CONNECTI ONS_PER_HOUR 5
-> MAX_USER _CONNECTI ONS 2;

The limit types need not all be named in the W TH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTI ONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user _connecti ons system
variable value determines the number of simultaneous connections. If max_user _connecti ons is
also zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement
changes the query limit for f r anci s to 100:

nysql > ALTER USER 'francis' @I ocal host' W TH MAX_QUERI ES_PER HOUR 100;
The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
franci s can connect, use this statement:

nysql > ALTER USER 'francis' @I ocal host' WTH MAX_CONNECTI ONS_PER_HOUR O;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTI ONS limit and the nax_user _connect i ons system variable. Suppose that
the global max_user _connecti ons value is 10 and three accounts have individual resource limits
specified as follows:

ALTER USER 'userl1' @I ocal host' W TH MAX_USER CONNECTI ONS O0;
ALTER USER 'user2' @I ocal host' W TH MAX_USER CONNECTI ONS 5;
ALTER USER 'user3' @I ocal host' W TH MAX_USER CONNECTI ONS 20;

user 1 has a connection limit of 10 (the global mex_user connect i ons value) because it has
a MAX_USER CONNECTI ONS limit of zero. user 2 and user 3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX USER CONNECTI ONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The nax_quest i ons, max_updat es, and max_connect i ons columns store the per-hour limits, and
the max_user _connect i ons column stores the MAX_USER_CONNECTI ONS limit. (See Section 4.3,
“Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

121

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections

Troubleshooting Problems Connecting to MySQL

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or
updates, the server rejects further queries or updates until the hour is up. In all such cases, the server
issues appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

» To reset the current counts to zero for all accounts, issue a FLUSH USER RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRI VI LECES
statement or a nysql admi n rel oad command).

» The counts for an individual account can be reset to zero by setting any of its limits again. Specify a
limit value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECT! ONS limit.
All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_ USER_CONNECTI ONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO MANY USER CONNECTI ONS or ER_USER LI M T_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection is once more permitted.

4.22 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

» Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

$> nysql

ERROR 2003: Can't connect to MySQ. server on 'host_name' (111)
$> nysql

ERROR 2002: Can't connect to |ocal MySQ server through socket
"/tnp/ nmysql . sock' (111)

« It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a - - por t option to indicate the proper port number, or a - - socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

$> netstat -In | grep nysql

» Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the ski p_net wor ki ng system variable enabled, no TCP/
IP connections are accepted. If the server was started with the bi nd_addr ess system variable set
to 127. 0. 0. 1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

» Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for

122

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-user-resources
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_user_limit_reached
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_port
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_socket
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_bind_address

Troubleshooting Problems Connecting to MySQL

communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
Windows Firewall may need to be configured not to block the MySQL port.

» The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM and DEB distributions
on Linux), the installation process initializes the MySQL data directory, including the nysql system
database containing the grant tables. For distributions that do not do this, you must initialize the data
directory manually. For details, see Chapter 3, Postinstallation Setup and Testing.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named dat a or var and is located under your MySQL
installation directory.) Make sure that you have a file named user . MYDin the nysql database
directory. If not, initialize the data directory. After doing so and starting the server, you should be able
to connect to the server.

» After a fresh installation, if you try to log on to the server as r oot without using a password, you
might get the following error message.

$> nysql -u root
ERROR 1045 (28000): Access denied for user 'root' @l ocal host' (using password: NO

It means a root password has already been assigned during installation and it has to be supplied.
See Section 3.4, “Securing the Initial MySQL Account” on the different ways the password could
have been assigned and, in some cases, how to find it. If you need to reset the root password, see
instructions in How to Reset the Root Password. After you have found or reset your password, log on
again as r oot using the - - passwor d (or - p) option:

$> nysql -u root -p
Ent er password:

However, the server is going to let you connect as r oot without using a password if you have
initialized MySQL using nysqgl d --initialize-insecure (see Section 3.1, “Initializing the Data
Directory” for details). That is a security risk, so you should set a password for the r oot account; see
Section 3.4, “Securing the Initial MySQL Account” for instructions.

* If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Upgrading MySQL.

* If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

$> nysql
Client does not support authentication protocol requested
by server; consider upgrading M/SQ client

. Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access deni ed when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the - - no- def aul t s
option. For example:

$> nysqgl admin --no-defaults -u root version

The option files that clients use are listed in Using Option Files. Environment variables are listed in
Environment Variables.

« If you get the following error, it means that you are using an incorrect r oot password:

123

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html

Troubleshooting Problems Connecting to MySQL

$> nysqgl admin -u root -pxxxx ver
Access denied for user 'root' @l ocal host' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the - - no- def aul t s option as described in the
previous item.

For information on changing passwords, see Section 4.14, “Assigning Account Passwords”.
If you have lost or forgotten the r oot password, see How to Reset the Root Password.

| ocal host is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a - - host =127. 0. 0. 1 option to name the server host explicitly. This causes a TCP/IP
connection to the local mysql d server. You can also use TCP/IP by specifying a - - host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as
the server.

The Access deni ed error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains usi ng password: NGO, it
means that you tried to log in without a password.

If you get an Access deni ed error when trying to connect to the database with mysqgl -u
user _namne, you may have a problem with the user table. Check this by executing mysqgl -u
root nysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with ' % as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the ' % inthe user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the gl i bc library than the one you are using. In this case,
you should either upgrade your operating system or gl i bc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

$> nysqgladmin -u root -pxxxx -h some_host name ver
Access denied for user 'root' @' (using password: YES)

124

https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_host
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_host

Troubleshooting Problems Connecting to MySQL

If you try to connect as r oot and get the following error, it means that you do not have a row in the
user table with a User column value of ' root ' and that mysql d cannot resolve the host name for
your client:

Access denied for user '' @unknown'

These errors indicate a DNS problem. To fix it, execute mysql adm n fl ush- host s to reset the
internal DNS host cache. See DNS Lookups and the Host Cache.

Some permanent solutions are:
« Determine what is wrong with your DNS server and fix it.
« Specify IP addresses rather than host names in the MySQL grant tables.

¢ Put an entry for the client machine name in/ et ¢/ host s on Unix or \ wi ndows\ host s on
Windows.

e Start mnysql d with the ski p_nane_r esol ve system variable enabled.
o Start nysql d with the - - ski p- host - cache option.

« On Unix, if you are running the server and the client on the same machine, connect to
| ocal host . For connections to | ocal host , MySQL programs attempt to connect to the local
server by using a Unix socket file, unless there are connection parameters specified to ensure that
the client makes a TCP/IP connection. For more information, see Connecting to the MySQL Server
Using Command Options.

* On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

If mysql -u root works butnmysql -h your _hostnane -u root resultsin Access deni ed
(where your _host name is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host ' pl ut o' in
the user table, but your DNS tells MySQL that your host name is ' pl ut 0. exanpl e. comi , the
row does not work. Try adding a row to the user table that contains the IP address of your host as
the Host column value. (Alternatively, you could add a row to the user table with a Host value
that contains a wildcard (for example, ' pl ut 0. %). However, use of Host values ending with %is
insecure and is not recommended!)

If nysqgl -u user _nane works but mysgl -u user _nane sone_db does not, you have not
granted access to the given user for the database named sone_db.

If nysqgl -u user_nane works when executed on the server host, but nysql -h host _nane -
u user _nane does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

If you cannot figure out why you get Access deni ed, remove from the user table all rows that
have Host values containing wildcards (rows that contain ' % or' _' characters). A very common
error is to insert a new row with Host =" % and User =' sonme_user ', thinking that this enables

you to specify | ocal host to connect from the same machine. The reason that this does not work
is that the default privileges include a row with Host =' | ocal host' and User ="' . Because that
row has a Host value ' | ocal host' that is more specific than ' % , it is used in preference to the
new row when connecting from | ocal host ! The correct procedure is to insert a second row with
Host =' | ocal host' and User =' sone_user ', or to delete the row with Host =' | ocal host' and
User ="' . After deleting the row, remember to issue a FLUSH PRI VI LEGES statement to reload the
grant tables. See also Section 4.6, “Access Control, Stage 1: Connection Verification”.

125

https://dev.mysql.com/doc/refman/8.0/en/host-cache.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-host-cache
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

SQL-Based Account Activity Auditing

« If you are able to connect to the MySQL server, but get an Access deni ed message whenever you
issue a SELECT ... | NTO OUTFI LE or LOAD DATA statement, your row in the user table does
not have the FI LE privilege enabled.

* If you change the grant tables directly (for example, by using | NSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRI VI LEGES statement or anysql adnmi n fl ush-privi | eges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the r oot password with an UPDATE statement, you do
not need to specify the new password until after you flush the privileges, because the server does
not know until then that you have changed the password.

« If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but it
also affects existing connections as indicated in Section 4.13, “When Privilege Changes Take Effect”.

« If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the
server with nysql -u user_nane db_nane ornysgl -u user_nane -ppassword db_nane.
If you are able to connect using the nmysql client, the problem lies with your program, not with the
access privileges. (There is no space between - p and the password; you can also use the - -
passwor d=passwor d syntax to specify the password. If you use the - p or - - passwor d option with
no password value, MySQL prompts you for the password.)

» For testing purposes, start the nysql d server with the - - ski p- gr ant -t abl es option. Then
you can change the MySQL grant tables and use the SHOW GRANTS statement to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
nysql admi n flush-privileges to tell the nysql d server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

« If everything else fails, start the nmysql d server with a debugging option (for example, - -
debug=d, gener al , quer y). This prints host and user information about attempted connections, as
well as information about each command issued. See The DBUG Package.

« If you have any other problems with the MySQL grant tables and ask on the MySQL Community
Slack, always provide a dump of the MySQL grant tables. You can dump the tables with the
nysql dunp nysqgl command. To file a bug report, see the instructions at How to Report Bugs or
Problems. In some cases, you may need to restart mysql d with - - ski p- grant -t abl es to run

nysql dunp.

4.23 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql . user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User

and Host column values in this row uniquely identify the account and correspond to the

"user _name' @ host _nane' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT _USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT _USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

» Stored routines (procedures and functions) defined with the SQL SECURI TY DEFI NER characteristic

» Views defined with the SQL SECURI TY DEFI NER characteristic

126

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

SQL-Based Account Activity Auditing

» Triggers and events

In those contexts, privilege checking is done against the DEFI NER account and CURRENT _USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT _USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of' ' @ | ocal host' enables
clients to connect as an anonymous user from the local host with any user name. In this case, if a client
connects as user 1 from the local host, USER() and CURRENT USER() return different values:

mysql > SELECT USER(), CURRENT_USER();

L EEE TR e +
| USER() | CURRENT_USER() |
L EEE TR e +
| userl@ocal host | @ ocal host |
L EEE TR e +

The host name part of an account can also contain wildcards. If the host name containsa' % or

' ' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT USER() value does not indicate which one. For example, the account
"user2' @ % exanpl e. com can be used by user 2 to connect from any host in the exanpl e. com
domain. If user 2 connects from r enot e. exanpl e. com USER() and CURRENT USER() return
different values:

mysql > SELECT USER(), CURRENT_USER();

L e L +
| USER() | CURRENT_USER() |
L e L +
| user2@ enot e. exanpl e.com | user 2@6 exanpl e. com |
L e L +

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ' ' @1 ocal host' and ' user2' @ % exanpl e. coni
accounts should be changed not to use wildcards:

RENAME USER '' @1 ocal host' TO 'user1' @I ocal host "' ;
RENAME USER ' user2' @ % exanpl e.comi TO 'user2' @r enot e. exanpl e. coni ;

If user 2 must be able to connect from several hosts in the exanpl e. comdomain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT _USER() or USER() value, use the
SUBSTRI NG_| NDEX() function:

nysql > SELECT SUBSTRI NG | NDEX(CURRENT _USER(),' @, 1);

o m e m e e e e e e meeememmeoaaa-aa +
| SUBSTRI NG | NDEX(CURRENT USER(),' @, 1) |

o m e m e e e e e e meeememmeoaaa-aa +

| userl |

o m e m e e e e e e meeememmeoaaa-aa +

mysql > SELECT SUBSTRI NG | NDEX(CURRENT_USER(),' @, - 1)
P +

| SUBSTRI NG_| NDEX(CURRENT_USER(),' @, -1) |
P +

| I ocal host |

127

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_substring-index

SQL-Based Account Activity Auditing

128

Chapter 5 Using Encrypted Connections

Table of Contents

5.1 Configuring MySQL to Use Encrypted CONNECLIONSvveuniviiiiiiiieii e e e e e e e e 130
5.2 Encrypted Connection TLS Protocols and Ciphersccoovoiiiiiiiiie e, 136
5.3 Creating SSL and RSA Certificates and KEYSoviiiiiiiiiiiiiiicii e 144
5.3.1 Creating SSL and RSA Certificates and Keys using MySQLccovveviiiiniiiiinnneiinnnnn. 144
5.3.2 Creating SSL Certificates and Keys USINg OPENSS|vviiiiiiiiiiiiiiiiciieeci e 146
5.3.3 Creating RSA Keys USING OPENSSI ...t 151
5.4 Connecting to MySQL Remotely from Windows with SSHccoooiiiiiiii e, 152

With an unencrypted connection between the MySQL client and the server, someone with access to
the network could watch all your traffic and inspect the data being sent or received between client and
server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport
Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL
does not actually use the SSL protocol for encrypted connections because its encryption is weak (see
Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It
has mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide
identity verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some
entity called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs
them. Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key
and a secret key). A certificate owner can present the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted using this public key can be decrypted
only using the corresponding secret key, which is held by the owner of the certificate.

Support for encrypted connections in MySQL is provided using OpenSSL. For information about the
encryption protocols and ciphers that OpenSSL supports, see Section 5.2, “Encrypted Connection TLS
Protocols and Ciphers”.

Note

From MySQL 8.0.11 to 8.0.17, it was possible to compile MySQL using wolfSSL
as an alternative to OpenSSL. As of MySQL 8.0.18, support for wolfSSL is
removed and all MySQL builds use OpenSSL.

By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be
established. For information about options that affect use of encrypted connections, see Section 5.1,
“Configuring MySQL to Use Encrypted Connections” and Command Options for Encrypted
Connections.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can be
optional or mandatory. This enables you to choose an encrypted or unencrypted connection according
to the requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUI RE clause of the CREATE USER statement in CREATE

129

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Configuring MySQL to Use Encrypted Connections

USER Statement. See also the description of the r equi re_secure_transport system variable at
Server System Variables

Encrypted connections can be used between source and replica servers. See Setting Up Replication to
Use Encrypted Connections.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server
host. For an example, see Section 5.4, “Connecting to MySQL Remotely from Windows with SSH”.

5.1 Configuring MySQL to Use Encrypted Connections

Several configuration parameters are available to indicate whether to use encrypted connections,
and to specify the appropriate certificate and key files. This section provides general guidance about
configuring the server and clients for encrypted connections:

» Server-Side Startup Configuration for Encrypted Connections

» Server-Side Runtime Configuration and Monitoring for Encrypted Connections

» Client-Side Configuration for Encrypted Connections

» Configuring Encrypted Connections as Mandatory

Encrypted connections also can be used in other contexts, as discussed in these additional sections:

* Between source and replica replication servers. See Setting Up Replication to Use Encrypted
Connections.

* Among Group Replication servers. See Securing Group Communication Connections with Secure
Socket Layer (SSL).

» By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

Instructions for creating any required certificate and key files are available in Section 5.3, “Creating
SSL and RSA Certificates and Keys”.

Server-Side Startup Configuration for Encrypted Connections

On the server side, the - - ss| option specifies that the server permits but does not require encrypted
connections. This option is enabled by default, so it need not be specified explicitly.

To require that clients connect using encrypted connections, enable the
requi re_secure_transport system variable. See Configuring Encrypted Connections as
Mandatory.

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

» ss| _ca: The path name of the Certificate Authority (CA) certificate file. (ssl _capat h is similar but
specifies the path name of a directory of CA certificate files.)

» ssl _cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

» ssl _key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my. cnf file,
changing the file names as necessary:

[nysal d]
ssl _ca=ca. pem

130

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key

Server-Side Runtime Configuration and Monitoring for Encrypted Connections

ssl _cert=server-cert.pem
ssl _key=server - key. pem

To specify in addition that clients are required to use encrypted connections, enable the
requi re_secure_transport system variable:

[nysql d]

ssl _ca=ca. pem

ssl _cert=server-cert.pem
ssl _key=server-key. pem
require_secure_transport=0ON

Each certificate and key system variable names a file in PEM format. Should you need to create
the required certificate and key files, see Section 5.3, “Creating SSL and RSA Certificates and
Keys”. MySQL servers compiled using OpenSSL can generate missing certificate and key files
automatically at startup. See Section 5.3.1, “Creating SSL and RSA Certificates and Keys using
MySQL". Alternatively, if you have a MySQL source distribution, you can test your setup using the
demonstration certificate and key files in its mysql -t est/ st d_dat a directory.

The server performs certificate and key file autodiscovery. If no explicit encrypted-connection options
are given other than - - ssl (possibly along with ssl _ci pher) to configure encrypted connections, the
server attempts to enable encrypted-connection support automatically at startup:

« If the server discovers valid certificate and key files named ca. pem server-cert. pem and
server - key. pemin the data directory, it enables support for encrypted connections by clients. (The
files need not have been generated automatically; what matters is that they have those names and
are valid.)

« If the server does not find valid certificate and key files in the data directory, it continues executing
but without support for encrypted connections.

If the server automatically enables encrypted connection support, it writes a note to the error
log. If the server discovers that the CA certificate is self-signed, it writes a warning to the error
log. (The certificate is self-signed if created automatically by the server or manually using
nysqgl _ssl _rsa_setup.)

MySQL also provides these system variables for server-side encrypted-connection control:
e ssl _ci pher: The list of permissible ciphers for connection encryption.

» ssl _crl: The path name of the file containing certificate revocation lists. (ssl _cr | pat h is similar
but specifies the path name of a directory of certificate revocation-list files.)

e tls version,tls_ciphersuites: Which encryption protocols and ciphersuites the server
permits for encrypted connections; see Section 5.2, “Encrypted Connection TLS Protocols and
Ciphers”. For example, you can configure t | s_ver si on to prevent clients from using less-secure
protocols.

If the server cannot create a valid TLS context from the system variables for server-side encrypted-
connection control, the server executes without support for encrypted connections.

Server-Side Runtime Configuration and Monitoring for Encrypted
Connections

Prior to MySQL 8.0.16, the t | s_xxx and ssl| _xxx system variables that configure encrypted-
connection support can be set only at server startup. These system variables therefore determine the
TLS context the server uses for all new connections.

As of MySQL 8.0.16, the t | s_xxx and ssl _xxx system variables are dynamic and can be set at
runtime, not just at startup. If changed with SET GLOBAL, the new values apply only until server restart.
If changed with SET PERSI ST, the new values also carry over to subsequent server restarts. See

SET Syntax for Variable Assignment. However, runtime changes to these variables do not immediately
affect the TLS context for new connections, as explained later in this section.

131

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Server-Side Runtime Configuration and Monitoring for Encrypted Connections

Along with the change in MySQL 8.0.16 that enables runtime changes to the TLS context-related
system variables, the server enables runtime updates to the actual TLS context used for new
connections. This capability may be useful, for example, to avoid restarting a MySQL server that has
been running so long that its SSL certificate has expired.

To create the initial TLS context, the server uses the values that the context-related system variables
have at startup. To expose the context values, the server also initializes a set of corresponding
status variables. The following table shows the system variables that define the TLS context and the
corresponding status variables that expose the currently active context values.

Table 5.1 System and Status Variables for Server Main Connection Interface TLS Context

System Variable Name Corresponding Status Variable Name
ssl _ca Current _tls _ca

ssl _capath Current _tls_capath

ssl _cert Current tls_cert

ssl _ci pher Current _tls_cipher

ssl _crl Current _tls_crl

ssl _crlpath Current _tls_crlpath

ssl _key Current _tls_key
tls_ciphersuites Current _tls_ciphersuites
tls_version Current tls_version

As of MySQL 8.0.21, those active TLS context values are also exposed as properties in the
Performance Schemat| s_channel _st at us table, along with the properties for any other active TLS
contexts.

To reconfigure the TLS context at runtime, use this procedure:
1. Seteach TLS context-related system variable that should be changed to its new value.

2. Execute ALTER | NSTANCE RELOAD TLS. This statement reconfigures the active TLS context
from the current values of the TLS context-related system variables. It also sets the context-
related status variables to reflect the new active context values. The statement requires the
CONNECTI ON_ADM N privilege.

3. New connections established after execution of ALTER | NSTANCE RELOAD TLS use the new TLS
context. Existing connections remain unaffected. If existing connections should be terminated, use
the KI LL statement.

The members of each pair of system and status variables may have different values temporarily due to
the way the reconfiguration procedure works:

» Changes to the system variables prior to ALTER | NSTANCE RELOAD TLS do not change the
TLS context. At this point, those changes have no effect on new connections, and corresponding
context-related system and status variables may have different values. This enables you to make
any changes required to individual system variables, then update the active TLS context atomically
with ALTER | NSTANCE RELOAD TLS after all system variable changes have been made.

o After ALTER | NSTANCE RELOAD TLS, corresponding system and status variables have the same
values. This remains true until the next change to the system variables.

In some cases, ALTER | NSTANCE RELOAD TLS by itself may suffice to reconfigure the TLS context,
without changing any system variables. Suppose that the certificate in the file named by ssl _cert
has expired. It is sufficient to replace the existing file contents with a nonexpired certificate and
execute ALTER | NSTANCE RELQAD TLSto cause the new file contents to be read and used for new
connections.

132

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_capath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_crl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_version
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls

Client-Side Configuration for Encrypted Connections

As of MySQL 8.0.21, the server implements independent connection-encryption configuration for the
administrative connection interface. See Administrative Interface Support for Encrypted Connections.
In addition, ALTER | NSTANCE RELOAD TLS is extended with a FOR CHANNEL clause that enables
specifying the channel (interface) for which to reload the TLS context. See ALTER INSTANCE
Statement. There are no status variables to expose the administrative interface TLS context, but the
Performance Schemat| s _channel _st at us table exposes TLS properties for both the main and
administrative interfaces. See The tls_channel_status Table.

Updating the main interface TLS context has these effects:
* The update changes the TLS context used for new connections on the main connection interface.

» The update also changes the TLS context used for new connections on the administrative interface
unless some nondefault TLS parameter value is configured for that interface.

» The update does not affect the TLS context used by other enabled server plugins or components
such as Group Replication or X Plugin:

* To apply the main interface reconfiguration to Group Replication's group communication
connections, which take their settings from the server's TLS context-related system variables, you
must execute STOP GROUP_REPLI CATI ON followed by START GROUP_REPLI CATI ONto stop
and restart Group Replication.

¢ X Plugin initializes its TLS context at plugin initialization as described at Using Encrypted
Connections with X Plugin. This context does not change thereafter.

By default, the RELOAD TLS action rolls back with an error and has no effect if the configuration values
do not permit creation of the new TLS context. The previous context values continue to be used for
new connections. If the optional NO ROLLBACK ON ERROR clause is given and the new context cannot
be created, rollback does not occur. Instead, a warning is generated and encryption is disabled for new
connections on the interface to which the statement applies.

Options that enable or disable encrypted connections on a connection interface have an effect only at
startup. For example, the - - ssl and - - adm n- ssl options affect only at startup whether the main
and administrative interfaces support encrypted connections. Such options are ignored and have

no effect on the operation of ALTER | NSTANCE RELOAD TLS at runtime. For example, you can

use - - ss| =OFF to start the server with encrypted connections disabled on the main interface, then
reconfigure TLS and execute ALTER | NSTANCE RELQOAD TLS to enable encrypted connections at
runtime.

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the - - ss| - node option:

» Inthe absence of an - - ssl - nbde option, clients attempt to connect using encryption, falling back
to an unencrypted connection if an encrypted connection cannot be established. This is also the
behavior with an explicit - - ss| - node=PREFFERED option.

» With - - ssl - node=REQUI RED, clients require an encrypted connection and fail if one cannot be
established.

* With - - ss| - node=DI SABLED, clients use an unencrypted connection.

e With - - ssl| - node=VERI FY_CAor - - ssl - nrode=VERI FY_| DENTI TY, clients require an
encrypted connection, and also perform verification against the server CA certificate and (with
VERI FY_| DENTI TY) against the server host name in its certificate.

133

https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html#administrative-interface-encrypted-connections
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/stop-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_admin-ssl
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Client-Side Configuration for Encrypted Connections

Attempts to establish an unencrypted connection fail if the r equi re_secure_transport system
variable is enabled on the server side to cause the server to require encrypted connections. See
Configuring Encrypted Connections as Mandatory.

The following options on the client side identify the certificate and key files clients use when
establishing encrypted connections to the server. They are similar to the ssl _ca, ssl _cert, and
ssl _key system variables used on the server side, but - - ssl - cert and - - ssl - key identify the
client public and private key:

» --ssl - ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (- - ssl - capat h is similar but specifies the path
name of a directory of CA certificate files.)

» --ssl -cert: The path name of the client public key certificate file.
» --ssl -key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA
certificate matching the one used by the server and enable host name identity verification. In this way,
the server and client place their trust in the same CA certificate and the client verifies that the host to
which it connected is the one intended:

» To specify the CA certificate, use - - ssl - ca (or - - ssl - capat h), and specify - - ssl -
node=VERI FY_CA.

* To enable host name identity verification as well, use - - ss| - node=VERI FY_I DENTI TY rather than
- -ssl - node=VERI FY_CA.

Note

Host name identity verification with VERI FY_| DENTI TY does not work with
self-signed certificates that are created automatically by the server or manually
using nysql _ssl _rsa_set up (see Section 5.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL"). Such self-signed certificates do not
contain the server name as the Common Name value.

Prior to MySQL 8.0.12, host name identity verification also does not work with
certificates that specify the Common Name using wildcards because that name
is compared verbatim to the server name.

MySQL also provides these options for client-side encrypted-connection control:
e --ssl-ci pher: The list of permissible ciphers for connection encryption.

* --ssl-crl: The path name of the file containing certificate revocation lists. (- - ssl - crl pat h is
similar but specifies the path name of a directory of certificate revocation-list files.)

e --tls-version,--tls-ciphersuites: The permitted encryption protocols and ciphersuites;
see Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a CREATE USER statement that included the REQUI RE SSL clause. Assuming that
the server supports encrypted connections, a client can connect using encryption with no - - ssl - node
option or with an explicit - - ss| - nrode=PREFFERED option:

nysq
Or:

nmysql - -ssl - node=PREFERRED

134

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Configuring Encrypted Connections as Mandatory

For an account created with a REQUI RE SSL clause, the connection attempt fails if an encrypted
connection cannot be established. For an account with no special encryption requirements, the attempt
falls back to an unencrypted connection if an encrypted connection cannot be established. To prevent
fallback and fail if an encrypted connection cannot be obtained, connect like this:

nmysql --ssl-nmde=REQUI RED

If the account has more stringent security requirements, other options must be specified to establish an
encrypted connection:

» For accounts created with a REQUI RE X509 clause, clients must specify at least - - ssl - cert
and - - ssl - key. In addition, - - ssl - ca (or - - ssl - capat h) is recommended so that the public
certificate provided by the server can be verified. For example (enter the command on a single line):
mysql --ssl-ca=ca. pem

--ssl-cert=client-cert.pem
--ssl -key=client-key. pem

e For accounts created with a REQUI RE | SSUER or REQUI RE SUBJECT clause, the encryption
requirements are the same as for REQUI RE X509, but the certificate must match the issue or
subject, respectively, specified in the account definition.

For additional information about the REQUI RE clause, see CREATE USER Statement.

To prevent use of encryption and override other - - ssl - xxx options, invoke the client program with - -
ssl - node=DI SABLED:

nmysql --ssl-nobde=Dl SABLED

To determine whether the current connection with the server uses encryption, check the session value
of the Ssl _ci pher status variable. If the value is empty, the connection is not encrypted. Otherwise,
the connection is encrypted and the value indicates the encryption cipher. For example:

nmysqgl > SHOW SESSI ON STATUS LI KE ' Ssl _ci pher';

tom e e ee e e e e e e e eeeemmmee e +
| Variabl e_nane | Val ue |
tom e e ee e e e e e e e eeeemmmee e +
| Ssl _cipher | DHE- RSA- AES128- GCM SHA256 |
tom e e ee e e e e e e e eeeemmmee e +

For the nysql client, an alternative is to use the STATUS or \ s command and check the SSL line:
nysql > \'s

SSL: Not in use

Or:
nmysql > \'s

SSL: G pher in use is DHE- RSA- AES128- GCM SHA256

Configuring Encrypted Connections as Mandatory

For some MySQL deployments it may be not only desirable but mandatory to use encrypted
connections (for example, to satisfy regulatory requirements). This section discusses configuration
settings that enable you to do this. These levels of control are available:

* You can configure the server to require that clients connect using encrypted connections.

» You can invoke individual client programs to require an encrypted connection, even if the server
permits but does not require encryption.

* You can configure individual MySQL accounts to be usable only over encrypted connections.

135

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher

Encrypted Connection TLS Protocols and Ciphers

To require that clients connect using encrypted connections, enable the
requi re_secure_transport system variable. For example, put these lines in the server ny. cnf
file:

[nysql d]
require_secure_transport=0N

Alternatively, to set and persist the value at runtime, use this statement:

SET PERSI ST requi re_secure_transport =0N,

SET PERSI ST sets a value for the running MySQL instance. It also saves the value, causing it to be
used for subsequent server restarts. See SET Syntax for Variable Assignment.

With requi re_secure_transport enabled, client connections to the server are required to use
some form of secure transport, and the server permits only TCP/IP connections that use SSL, or
connections that use a socket file (on Unix) or shared memory (on Windows). The server rejects
nonsecure connection attempts, which fail with an ER_ SECURE_TRANSPORT _REQUI RED error.

To invoke a client program such that it requires an encrypted connection whether or not the
server requires encryption, use an - - ssl - node option value of REQUI RED, VERI FY_CA, or
VERI FY_| DENTI TY. For example:

nysqgl --ssl-nde=REQUI RED
nysql dunp --ssl-npde=VERI FY_CA
nysql adm n --ssl - node=VERI FY_| DENTI TY

To configure a MySQL account to be usable only over encrypted connections, include a REQUI RE
clause in the CREATE USER statement that creates the account, specifying in that clause the
encryption characteristics you require. For example, to require an encrypted connection and the use of
a valid X.509 certificate, use REQUI RE X509:

CREATE USER 'jeffrey' @l ocal host' REQUI RE X5009;
For additional information about the REQUI RE clause, see CREATE USER Statement.

To modify existing accounts that have no encryption requirements, use the ALTER USER statement.

5.2 Encrypted Connection TLS Protocols and Ciphers

MySQL supports multiple TLS protocols and ciphers, and enables configuring which protocols and
ciphers to permit for encrypted connections. It is also possible to determine which protocol and cipher
the current session uses.

» Supported Connection TLS Protocols

» Connection TLS Protocol Configuration
» Deprecated TLS Protocols

» Connection Cipher Configuration

» Connection TLS Protocol Negotiation

» Monitoring Current Client Session TLS Protocol and Cipher

Supported Connection TLS Protocols

MySQL supports encrypted connections using the TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3 protocols,
listed in order from less secure to more secure. The set of protocols actually permitted for connections
is subject to multiple factors:

» MySQL configuration. Permitted TLS protocols can be configured on both the server side and client
side to include only a subset of the supported TLS protocols. The configuration on both sides must

136

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_secure_transport_required
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Connection TLS Protocol Configuration

include at least one protocol in common or connection attempts cannot negotiate a protocol to use.
For details, see Connection TLS Protocol Negotiation.

» System-wide host configuration. The host system may permit only certain TLS protocols, which
means that MySQL connections cannot use nonpermitted protocols even if MySQL itself permits
them:

¢ Suppose that MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system
configuration permits only connections that use TLSv1.2 or higher. In this case, you cannot
establish MySQL connections that use TLSv1 or TLSv1.1, even though MySQL is configured to
permit them, because the host system does not permit them.

e If MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system configuration
permits only connections that use TLSv1.3 or higher, you cannot establish MySQL connections at
all, because no protocol permitted by MySQL is permitted by the host system.

Workarounds for this issue include:

« Change the system-wide host configuration to permit additional TLS protocols. Consult your
operating system documentation for instructions. For example, your system may have an/ et ¢/
ssl / openssl . cnf file that contains these lines to restrict TLS protocols to TLSv1.2 or higher:

[system defaul t _sect]
M nProtocol = TLSv1.2

Changing the value to a lower protocol version or None makes the system more permissive. This
workaround has the disadvantage that permitting lower (less secure) protocols may have adverse
security consequences.

« If you cannot or prefer not to change the host system TLS configuration, change MySQL
applications to use higher (more secure) TLS protocols that are permitted by the host system.
This may not be possible for older versions of MySQL that support only lower protocol versions.
For example, TLSv1 is the only supported protocol prior to MySQL 5.6.46, so attempts to connect
to a pre-5.6.46 server fail even if the client is from a newer MySQL version that supports higher
protocol versions. In such cases, an upgrade to a version of MySQL that supports additional TLS
versions may be required.

» The SSL library. If the SSL library does not support a particular protocol, neither does MySQL, and
any parts of the following discussion that specify that protocol do not apply.

Note

Support for the TLSv1.3 protocol is available as of MySQL 8.0.16 (as of
MySQL 8.0.18 for the Group Replication component). In addition, to use
TLSv1.3, both the MySQL server and the client application must be compiled
using OpenSSL 1.1.1 or higher.

Connection TLS Protocol Configuration

On the server side, the value of the t | s_ver si on system variable determines which TLS protocols
a MySQL server permits for encrypted connections. Thet | s_ver si on value applies to connections
from clients, regular source/replica replication connections where this server instance is the source,
Group Replication group communication connections, and Group Replication distributed recovery
connections where this server instance is the donor. The administrative connection interface is
configured similarly, but uses the adni n_t | s_ver si on system variable (see Administrative
Connection Management). This discussion applies to adm n_t | s_ver si on as well.

The t| s_ver si on value is a list of one or more comma-separated protocol versions from this list
(not case-sensitive): TLSv1, TLSv1.1, TLSv1.2, and (if available) TLSV1.3. By default, this variable
lists all protocols supported by the SSL library used to compile MySQL. To determine the value of
t I s_versi on at runtime, use this statement:

137

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html
https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version

Connection TLS Protocol Configuration

nmysqgl > SHOW GLOBAL VARI ABLES LIKE 'tls_version'

doococccocoococoao doocococcoocooocococoooao +
| Variabl e_nane | Val ue

doococccocoococoao doocococcoocooocococoooao +
| tls_version | TLSv1, TLSv1. 1, TLSv1.2
doococccocoococoao doocococcoocooocococoooao +

To change the value of t | s_ver si on, set it at server startup. For example, to permit connections that
use the TLSv1.1 or TLSv1.2 protocol, but prohibit connections that use the less-secure TLSv1 protocol,
use these lines in the server ny. cnf file:

[mysql d]
tls_version=TLSv1. 1, TLSv1. 2

To be even more restrictive and permit only TLSv1.2 connections, sett| s_ver si on like this:

[mysql d]
tls_version=TLSv1. 2

As of MySQL 8.0.16,t | s_ver si on can also be changed at runtime. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections.

Note

As of MySQL 8.0.26, the TLSv1 and TLSv1.1 connection protocols are
deprecated and support for them is subject to removal in a future version of
MySQL. See Deprecated TLS Protocols.

On the client side, the - - t | s- ver si on option specifies which TLS protocols a client program permits
for connections to the server. The format of the option value is the same as forthet | s_ver si on
system variable described previously (a list of one or more comma-separated protocol versions).

For source/replica replication connections where this server instance is the replica, the

SOURCE_TLS VERSI ON| MASTER_TLS_VERSI ON option for the CHANGE REPLI CATI ON SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) specifies
which TLS protocols the replica permits for connections to the source. The format of the option value is
the same as forthe t | s_ver si on system variable described previously. See Setting Up Replication to
Use Encrypted Connections.

The protocols that can be specified for SOURCE_TLS VERSI ON| MASTER TLS VERSI ONdepend

on the SSL library. This option is independent of and not affected by the servert| s_ver si on value.
For example, a server that acts as a replica can be configured with t [s_ver si on setto TLSv1.3 to
permit only incoming connections that use TLSv1.3, but also configured with SOURCE_TLS VERSI ON |
MASTER TLS VERSI ONset to TLSv1.2 to permit only TLSv1.2 for outgoing replica connections to the
source.

For Group Replication distributed recovery connections where this server instance

is the joining member that initiates distributed recovery (that is, the client), the
group_replication_recovery_ tls_version system variable specifies which protocols are
permitted by the client. This option is independent of and not affected by the servert| s_ver si on
value, which applies when this server instance is the donor. A Group Replication server generally
participates in distributed recovery both as a donor and as a joining member over the course of its
group membership, so both these system variables should be set. See Securing Group Communication
Connections with Secure Socket Layer (SSL).

TLS protocol configuration affects which protocol a given connection uses, as described in Connection
TLS Protocol Negotiation.

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these server
configuration values do not have holes:

tls_version=TLSv1, TLSv1. 1, TLSv1l. 2, TLSv1. 3
tls_version=TLSv1. 1, TLSv1. 2, TLSv1. 3
tls_version=TLSvl. 2, TLSv1. 3

138

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html

Deprecated TLS Protocols

tls_version=TLSv1. 3

These values do have holes and should not be used:

tls_version=TLSv1l, TLSv1. 2 (TLSv1.1 is m ssing)
tls_version=TLSvl. 1, TLSv1. 3 (TLSv1.2 is m ssing)

The prohibition on holes also applies in other configuration contexts, such as for clients or replicas.

Unless you intend to disable encrypted connections, the list of permitted protocols should not be empty.
If you set a TLS version parameter to the empty string, encrypted connections cannot be established:

» t1s_version: The server does not permit encrypted incoming connections.
e --tls-version: The client does not permit encrypted outgoing connections to the server.

* SOURCE_TLS_VERSI ON| MASTER_TLS_VERSI ON: The replica does not permit encrypted outgoing
connections to the source.

e group_replication_recovery tls version: The joining member does not permit encrypted
connections to the distributed recovery connection.

Deprecated TLS Protocols

As of MySQL 8.0.26, the TLSv1 and TLSv1.1 connection protocols are deprecated and support for
them is subject to removal in a future MySQL version. (For background, refer to the IETF memo
Deprecating TLSv1.0 and TLSv1.1.) It is recommended that connections be made using the more-
secure TLSv1.2 and TLSv1.3 protocols. TLSv1.3 requires that both the MySQL server and the client
application be compiled with OpenSSL 1.1.1 or higher.

On the server side, this deprecation has the following effects:

» Ifthetls_versionoradm n_tls_version system variable is assigned a value containing a
deprecated TLS protocol during server startup, the server produces a warning for each deprecated
protocol:

« If the assignment occurs during server startup, the warning appears in the error log.

« If the assignment occurs at runtime, the warning is added to the result of executing the ALTER
| NSTANCE RELOAD TLS statement.

« If a client successfully connects using a deprecated TLS protocol, the server writes a warning to the
error log.

On the client side, the deprecation has no visible effect. Clients do not issue a warning if configured to
permit a deprecated TLS protocol. This includes:

 Client programs that supporta - -t | s- ver si on option for specifying TLS protocols for connections
to the MySQL server.

» Statements that enable replicas to specify TLS protocols for connections to the source server.
(CHANGE REPLI CATI ON SOURCE TOhas a SOURCE_TLS_VERSI ON option and CHANGE MASTER
TOhas a MASTER_TLS_VERSI ON option.)

« Thegroup_replication_recovery tls_version system variable that enables joining
members to specify TLS protocols for distributed recovery connections.

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly
configuring the permitted ciphers. During connection establishment, both sides of a connection must
permit some cipher in common or the connection fails. Of the permitted ciphers common to both sides,
the SSL library chooses the one supported by the provided certificate that has the highest priority.

139

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_tls_version
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_tls_version

Connection Cipher Configuration

To specify a cipher or ciphers applicable for encrypted connections that use TLS protocols up through
TLSv1.2:

» Setthe ssl _ci pher system variable on the server side, and use the - - ssl - ci pher option for
client programs.

» For regular source/replica replication connections, where this server instance is the source,
setthe ssl _ci pher system variable. Where this server instance is the replica, use the
SOURCE_SSL_Cl PHER | MASTER _SSL_ Cl PHER option for the CHANGE REPLI CATI ON SOURCE
TOstatement (from MySQL 8.0.23) or CHANGE MASTER TOstatement (before MySQL 8.0.23). See
Setting Up Replication to Use Encrypted Connections.

» For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this
server instance is the donor, set the ssl _ci pher system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication_recovery ssl _cipher system variable. See Securing Group
Communication Connections with Secure Socket Layer (SSL).

For encrypted connections that use TLSv1.3, OpenSSL 1.1.1 and higher supports the following
ciphersuites, the first three of which are enabled by default:

TLS AES 128 _GCM SHA256
TLS AES 256_GCM SHA384

TLS CHACHA20 POLY1305_SHA256
TLS AES 128_CCM SHA256

TLS AES 128 CCM 8_SHA256

To configure the permitted TLSv1.3 ciphersuites explicitly, set the following parameters. In each case,
the configuration value is a list of zero or more colon-separated ciphersuite names.

» On the server side, use the t | s_ci pher sui t es system variable. If this variable is not set, its
default value is NULL, which means that the server permits the default set of ciphersuites. If the
variable is set to the empty string, no ciphersuites are enabled and encrypted connections cannot be
established.

» On the client side, use the - -t | s- ci pher sui t es option. If this option is not set, the client permits
the default set of ciphersuites. If the option is set to the empty string, no ciphersuites are enabled and
encrypted connections cannot be established.

» For regular source/replica replication connections, where this server instance is the source,
use thet | s_ci phersui t es system variable. Where this server instance is the replica, use
the SOURCE_TLS Cl PHERSUI TES | MASTER TLS Cl PHERSUI TES option for the CHANGE
REPLI CATI ON SOURCE TOstatement (from MySQL 8.0.23) or CHANGE MASTER TOstatement
(before MySQL 8.0.23). See Setting Up Replication to Use Encrypted Connections.

» For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this server
instance is the donor, use thet | s_ci pher sui t es system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication recovery tls ciphersuites system variable. See Securing Group
Communication Connections with Secure Socket Layer (SSL).

Note

Ciphersuite support is available as of MySQL 8.0.16, but requires that both the
MySQL server and the client application be compiled using OpenSSL 1.1.1 or
higher.

In MySQL 8.0.16 through 8.0.18, the
group_replication_recovery tls ciphersuites system variable and
the SOURCE_TLS Cl PHERSUI TES | MASTER TLS Cl PHERSUI TES option for

140

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_tls_ciphersuites

Connection Cipher Configuration

the CHANGE REPLI CATI ON SOURCE TOstatement (from MySQL 8.0.23) or
CHANGE MASTER TOstatement (before MySQL 8.0.23) are not available. In
these releases, if TLSv1.3 is used for source/replica replication connections, or
in Group Replication for distributed recovery (supported from MySQL 8.0.18),
the replication source or Group Replication donor servers must permit the use
of at least one TLSv1.3 ciphersuite that is enabled by default. From MySQL
8.0.19, you can use the options to configure client support for any selection of
ciphersuites, including only non-default ciphersuites if you want.

A given cipher may work only with particular TLS protocols, which affects the TLS protocol negotiation
process. See Connection TLS Protocol Negotiation.

To determine which ciphers a given server supports, check the session value of the
Ssl _ci pher _|i st status variable:

SHOW SESSI ON STATUS LI KE ' Ssl _ci pher_list";

The Ssl _ci pher | i st status variable lists the possible SSL ciphers (empty for non-SSL
connections). If MySQL supports TLSv1.3, the value includes the possible TLSv1.3 ciphersuites.

For encrypted connections that use TLS.v1.3, MySQL uses the SSL library default ciphersuite list.

For encrypted connections that use TLS protocols up through TLSv1.2, MySQL passes the following
default cipher list to the SSL library.

ECDHE- ECDSA- AES128- GCM SHA256
ECDHE- ECDSA- AES256- GCM SHA384
ECDHE- RSA- AES128- GOM SHA256
ECDHE- RSA- AES256- GOM SHA384
ECDHE- ECDSA- AES128- SHA256
ECDHE- RSA- AES128- SHA256
ECDHE- ECDSA- AES256- SHA384
ECDHE- RSA- AES256- SHA384

DHE- RSA- AES128- GCM SHA256
DHE- DSS- AES128- GCM SHA256
DHE- RSA- AES128- SHA256

DHE- DSS- AES128- SHA256

DHE- DSS- AES256- GCM SHA384
DHE- RSA- AES256- SHA256

DHE- DSS- AES256- SHA256

ECDHE- RSA- AES128- SHA

ECDHE- ECDSA- AES128- SHA
ECDHE- RSA- AES256- SHA

ECDHE- ECDSA- AES256- SHA

DHE- DSS- AES128- SHA

DHE- RSA- AES128- SHA
TLS_DHE_DSS_W TH AES 256_CBC_SHA
DHE- RSA- AES256- SHA

AES128- GCM SHA256

DH- DSS- AES128- GCM SHA256
ECDH- ECDSA- AES128- GOM SHA256
AES256- GCM SHA384

DH- DSS- AES256- GCM SHA384
ECDH- ECDSA- AES256- GCM SHA384
AES128- SHA256

DH- DSS- AES128- SHA256

ECDH- ECDSA- AES128- SHA256
AES256- SHA256

DH- DSS- AES256- SHA256

ECDH- ECDSA- AES256- SHA384
AES128- SHA

DH- DSS- AES128- SHA

ECDH- ECDSA- AES128- SHA
AES256- SHA

DH- DSS- AES256- SHA

ECDH- ECDSA- AES256- SHA

DHE- RSA- AES256- GCM SHA384
DH- RSA- AES128- GCM SHA256

141

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher_list
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher_list

Connection TLS Protocol Negotiation

ECDH- RSA- AES128- GCM SHA256
DH- RSA- AES256- GCM SHA384
ECDH- RSA- AES256- GCM SHA384
DH- RSA- AES128- SHA256

ECDH- RSA- AES128- SHA256

DH- RSA- AES256- SHA256

ECDH- RSA- AES256- SHA384
ECDHE- RSA- AES128- SHA
ECDHE- ECDSA- AES128- SHA
ECDHE- RSA- AES256- SHA
ECDHE- ECDSA- AES256- SHA
DHE- DSS- AES128- SHA

DHE- RSA- AES128- SHA

TLS DHE DSS_W TH_AES 256_CBC_SHA
DHE- RSA- AES256- SHA

AES128- SHA

DH- DSS- AES128- SHA

ECDH- ECDSA- AES128- SHA
AES256- SHA

DH- DSS- AES256- SHA

ECDH- ECDSA- AES256- SHA

DH- RSA- AES128- SHA

ECDH- RSA- AES128- SHA

DH- RSA- AES256- SHA

ECDH- RSA- AES256- SHA

DES- CBC3- SHA

These cipher restrictions are in place:

» The following ciphers are permanently restricted:

! DHE- DSS- DES- CBC3- SHA

! DHE- RSA- DES- CBC3- SHA

! ECDH- RSA- DES- CBC3- SHA

| ECDH- ECDSA- DES- CBC3- SHA
! ECDHE- RSA- DES- CBC3- SHA

! ECDHE- ECDSA- DES- CBC3- SHA

» The following categories of ciphers are permanently restricted:

I'aNULL
I'eNULL

I EXPORT
I LOW

I VD5

! DES

I RC2

I RC4

I PSK

I SSLv3

If the server is started with the ssl _cert system variable set to a certificate that uses any of
the preceding restricted ciphers or cipher categories, the server starts with support for encrypted

connections disabled.

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both
sides for which a protocol-compatible encryption cipher is available on both sides. The negotiation

process depends on factors such as the SSL library used to compile the server and client, the TLS
protocol and encryption cipher configuration, and which key size is used:

» For a connection attempt to succeed, the server and client TLS protocol configuration must permit

some protocol in common.

» Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation

process is not chosen unless there is also a compatible cipher.

142

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert

Monitoring Current Client Session TLS Protocol and Cipher

e If TLSv1.3 is available, it is used if possible. (This means that server and client configuration both
must permit TLSv1.3, and both must also permit some TLSv1.3-compatible encryption cipher.)
Otherwise, MySQL continues through the list of available protocols, using TLSv1.2 if possible, and
so forth. Negotiation proceeds from more secure protocols to less secure. Negotiation order is
independent of the order in which protocols are configured. For example, negotiation order is the
same regardless of whethert | s_ver si on has avalue of TLSv1, TLSv1l. 1, TLSv1l. 2, TLSv1. 3 or
TLSv1. 3, TLSv1. 2, TLSv1. 1, TLSv1.

» TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol
with such a key, set the ssl _ci pher system variable on the server side or use the - - ssl - ci pher
client option to specify the cipher name explicitly:

AES128- SHA
AES128- SHA256
AES256- SHA
AES256- SHA256
CAMELLI A128- SHA
CAMELLI A256- SHA
DES- CBC3- SHA
DHE- RSA- AES256- SHA
RCA- MD5

RCA- SHA

SEED- SHA

* For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher
in common, the server terminates the connection request. Examples:

* If the server is configured witht | s_ver si on=TLSv1. 1, TLSv1. 2:

< Connection attempts fail for clients invoked with - - t | s- ver si on=TLSv 1, and for older clients
that support only TLSv1.

< Similarly, connection attempts fail for replicas configured with MASTER TLS VERSI ON =
" TLSv1', and for older replicas that support only TLSv1.

« If the server is configured witht | s_ver si on=TLSv1 or is an older server that supports only TLSv1:
< Connection attempts fail for clients invoked with - -t | s-ver si on=TLSv1. 1, TLSv1. 2.

< Similarly, connection attempts fail for replicas configured with MASTER TLS VERSI ON =
"TLSv1. 1, TLSvl1. 2'.

MySQL permits specifying a list of protocols to support. This list is passed directly down to the
underlying SSL library and is ultimately up to that library what protocols it actually enables from
the supplied list. Please refer to the MySQL source code and the OpenSSL SSL_CTX_new()
documentation for information about how the SSL library handles this.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the
session values of the Ss| _ver si on and Ssl _ci pher status variables:

nysql > SELECT * FROM perfor mance_schena. sessi on_st at us
WHERE VARI ABLE_NAME I N (' Ssl _version','Ssl_cipher');

e cococooonosooo e T +
| VARI ABLE NAME | VARI ABLE_VALUE [
e cococooonosooo e T +
| Ssl _cipher | DHE- RSA- AES128- GCM SHA256 |
| Ssl _version | TLSv1.2 |
e cococooonosooo e T +

If the connection is not encrypted, both variables have an empty value.

143

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_new.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_version
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher

Creating SSL and RSA Certificates and Keys

5.3 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in
MySQL. File creation can be performed using facilities provided by MySQL itself, or by invoking the
openssl command directly.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See
Section 5.1, “Configuring MySQL to Use Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections
for accounts authenticated by the sha256 passwor d or cachi ng_sha2_ passwor d plugin. See
Section 6.1.3, “SHA-256 Pluggable Authentication”, and Section 6.1.2, “Caching SHA-2 Pluggable
Authentication”.

5.3.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides these ways to create the SSL certificate and key files and RSA key-pair files
required to support encrypted connections using SSL and secure password exchange using RSA over
unencrypted connections, if those files are missing:

» The server can autogenerate these files at startup, for MySQL distributions.
» Users can invoke the nysql _ssl _rsa_set up utility manually.

» For some distribution types, such as RPM and DEB packages, nysql _ssl _rsa_set up invocation
occurs during data directory initialization. In this case, the MySQL distribution need not have been
compiled using OpenSSL as long as the openssl command is available.

Important

Server autogeneration and nmysql _ssl _rsa_set up help lower the barrier
to using SSL by making it easier to generate the required files. However,
certificates generated by these methods are self-signed, which may not be
very secure. After you gain experience using such files, consider obtaining
certificate/key material from a registered certificate authority.

» Automatic SSL and RSA File Generation
* Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

* SSL and RSA File Characteristics

Automatic SSL and RSA File Generation

For MySQL distributions compiled using OpenSSL, the MySQL server has the

capability of automatically generating missing SSL and RSA files at startup. The

aut o_generate_certs,sha256 _password_auto_generate_rsa_keys, and

cachi ng_sha2 password_auto_generat e rsa_keys system variables control automatic
generation of these files. These variables are enabled by default. They can be enabled at startup and
inspected but not set at runtime.

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the aut o_gener at e_cert s system variable is enabled, no SSL options other
than - - ssl are specified, and the server-side SSL files are missing from the data directory. These
files enable encrypted client connections using SSL; see Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

1. The server checks the data directory for SSL files with the following names:

ca. pem
server-cert.pem

144

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl

Creating SSL and RSA Certificates and Keys using MySQL

server - key. pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus
some additional files:

ca. pem Sel f-signed CA certificate
ca- key. pem CA private key
server-cert.pem Server certificate

server - key. pem Server private key
client-cert.pem Client certificate
client-key. pem Client private key

3. If the server autogenerates SSL files, it uses the names of the ca. pem server-cert. pem and
server - key. pemfiles to set the corresponding system variables (ss| _ca, ssl _cert, ssl _key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory

if all of these conditions are true: The sha256_password_aut o_generate_rsa_keys or
caching_sha2_password_aut o_generat e_rsa_keys system variable is enabled; no RSA
options are specified; the RSA files are missing from the data directory. These key-pair files enable
secure password exchange using RSA over unencrypted connections for accounts authenticated by
the sha256_passwor d or cachi ng_sha2_passwor d plugin; see Section 6.1.3, “SHA-256 Pluggable
Authentication”, and Section 6.1.2, “Caching SHA-2 Pluggable Authentication”.

1. The server checks the data directory for RSA files with the following names:

private_key. pem Private nenber of private/public key pair
publ i c_key. pem Publ i c nenber of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

3. If the server autogenerates the RSA files, it uses their names to set the
corresponding system variables (sha256_passwor d_pri vat e_key_pat h and
sha256_passwor d_publ i c_key_pat h; cachi ng_sha2_password_pri vat e_key_pat h and
cachi ng_sha2_password_public_key_ pat h).

Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup
MySQL distributions include a nysql _ssl rsa_set up utility that can be invoked manually to
generate SSL and RSA files. This utility is included with all MySQL distributions, but it does require that

the openssl command be available. For usage instructions, see mysql_ssl_rsa_setup — Create SSL/
RSA Files.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysqgl _ssl _rsa_set up have
these characteristics:

SSL and RSA keys are have a size of 2048 bits.

The SSL CA certificate is self signed.

The SSL server and client certificates are signed with the CA certificate and key, using the
sha256W t hRSAEncr ypt i on signature algorithm.

SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA,
Server, Client):

ca. pem MySQL_Server _suffix_Auto_Generated_CA Certificate
server-cert.pm M/SQ._Server_suffix_Auto_Generated_Server_Certificate
client-cert.pm M/SQ._Server_suffix_Auto_Generated_Client_Certificate

The suf f i x value is based on the MySQL version number. For files generated by
nysql _ssl _rsa_set up, the suffix can be specified explicitly using the - - suf f i x option.

145

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_suffix

Creating SSL Certificates and Keys Using openssl|

For files generated by the server, if the resulting CN values exceed 64 characters, the _suf fi x
portion of the name is omitted.

» SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization
Unit Name (OU) and email address.

» SSL files created by the server or by mysql _ssl _rsa_set up are valid for ten years from the time
of generation.

* RSA files do not expire.

» SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for
Client).

 Files created automatically by the server are owned by the account that runs the server. Files
created using mysql _ssl _rsa_set up are owned by the user who invoked that program. This can
be changed on systems that support the chown() system call if the program is invoked by r oot and
the - - ui d option is given to specify the user who should own the files.

» On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world
readable) and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is
valid), invoke openssl| directly:

openssl x509 -text -in ca.pem

openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

It is also possible to check SSL certificate expiration information using this SQL statement:

nysqgl > SHOW STATUS LI KE ' Ssl _server_not % ;

| Ssl_server_not_after | Apr 28 14:16:39 2027 GM |
| Ssl_server_not_before | May 1 14:16:39 2017 GM |
ffoceooc--cco-—c--ccooo--o ffeoceooc--cceooco-—cccoco-c=-=o +

5.3.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files

for use by MySQL servers and clients. The first example shows a simplified procedure such as you
might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openss| command that is part of OpenSSL.
The third example describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than

the procedure described here: Let the server autogenerate them or use the
nysqgl _ssl _rsa_set up program. See Section 5.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL".

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ
from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files do not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HYOO00): SSL connection error:

146

https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_uid

Creating SSL Certificates and Keys Using openssl|

I error:00000001: |ib(0):func(0):reason(1l)
» Example 1: Creating SSL Files from the Command Line on Unix
» Example 2: Creating SSL Files Using a Script on Unix

« Example 3: Creating SSL Files on Windows
Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and
key files. You must respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nhonempty
responses.

Create cl ean environnent
rm-rf newcerts
nmkdi r newcerts &% cd newcerts
Create CA certificate
openssl genrsa 2048 > ca- key. pem
openssl req -new -x509 -nodes -days 3600 \

-key ca-key. pem -out ca.pem
Create server certificate, renove passphrase, and sign it
server-cert.pem = public key, server-key.pem= private key
openssl req -newkey rsa: 2048 -days 3600 \

-nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-reg. pem -days 3600 \

- CA ca. pem - CAkey ca-key.pem -set_serial 01 -out server-cert.pem
Create client certificate, renove passphrase, and sign it
client-cert.pem = public key, client-key.pem= private key
openssl req -newkey rsa: 2048 -days 3600 \

-nodes -keyout client-key. pem-out client-req.pem
openssl rsa -in client-key. pem-out client-key.pem
openssl x509 -req -in client-req. pem-days 3600 \

- CA ca. pem - CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pemserver-cert.pemclient-cert.pem

You should see a response like this:

server-cert.pem OK
client-cert.pem K

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

openssl x509 -text -in ca.pem

openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

» ca. pem Use this to set the ssl _ca system variable on the server side and the - - ssl - ca option on
the client side. (The CA certificate, if used, must be the same on both sides.)

e server-cert.pemserver-key. pem Use these to setthe ssl _cert and ssl _key system
variables on the server side.

e client-cert.pemclient-key. pem Use these as the arguments to the - - ssl -cert and - -
ssl - key options on the client side.

For additional usage instructions, see Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

147

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key

Creating SSL Certificates and Keys Using openssl|

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 5.1, “Configuring MySQL
to Use Encrypted Connections”.

Dl R="pwd" / openssl

PRI V=$DI R/ pri vat e

nkdir $DI R $PRIV $DI R/ newcerts

cp /usr/share/ssl/openssl.cnf $DIR

repl ace ./denmCA $DIR -- $Dl R/ openssl . cnf

Create necessary files: $database, $serial and $new certs_dir

directory (optional)

touch $DI R/ i ndex. t xt

echo "01" > $DI R/ seri al

#

Generation of Certificate Authority(CA)

#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DI R/ ca.pem\
-days 3600 -config $Dl R/ openssl . cnf

Sanpl e out put:

Using configuration from/homne/jones/openssl/openssl.cnf

CGenerating a 1024 bit RSA private key

,,,,,,,,,,,,,,,, ++++++

,,,,,,,,, ++++++

witing new private key to '/hone/jones/openssl/private/cakey. pem

Ent er PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information to be

incorporated into your certificate request.

What you are about to enter is what is called a Distingui shed Nane

or a DN.

There are quite a few fields but you can | eave sone bl ank
For sone fields there will be a default val ue,

If you enter '."', the field will be left blank.

Country Nane (2 letter code) [AU: Fl

State or Province Nanme (full nane) [Sone-State]:.

Locality Nanme (eg, city) []:

Organi zati on Nane (eg, conpany) [Internet Wdgits Pty Ltd]: My\SQL AB
Organi zational Unit Nane (eg, section) []:

Common Narme (eg, YOUR nane) []: M/SQL admin

Emai| Address []:

Create server request and key

HHHHHHHH R

openssl req -new -keyout $DI R/ server-key.pem -out \
$DI R/ server-req. pem -days 3600 -config $Dl R/ openssl . cnf

Sanpl e out put :

Using configuration from/home/jones/openssl/openssl.cnf

CGenerating a 1024 bit RSA private key

.. ++++++

oo ++++++

witing new private key to '/hone/jones/openssl/server-key. pem
Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

2 coooo

You are about to be asked to enter information that will be

incorporated into your certificate request.

What you are about to enter is what is called a Distingui shed Nane
or a DN

There are quite a few fields but you can | eave sone bl ank

For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

2 coooo

Country Nane (2 letter code) [AU : Fl

State or Province Name (full nane) [Sone-State]:.

Locality Nane (eg, city) []:

Organi zati on Name (eg, conpany) [Internet Wdgits Pty Ltd]: My\SQL AB
Organi zational Unit Name (eg, section) []:

148

Creating SSL Certificates and Keys Using openssl|

HHHO HHHHHHHHHFHR

Common Narme (eg, YOUR nane) []: MySQL server
Emai| Address []:

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []:

An optional conpany nanme []:

Renmove the passphrase fromthe key

penssl rsa -in $D R/ server-key. pem -out $Dl R/ server-key. pem

Si gn server cert

openssl ca -cert $DI R/ ca.pem -policy policy_anything \

HHHHHH R R

-out $DI R/ server-cert.pem-config $D R/ openssl.cnf \
-infiles $DI R/ server-req. pem

Sanpl e out put :

Usi ng configuration from/home/jones/openssl/openssl.cnf

Ent er PEM pass phrase:

Check that the request matches the signature

Si ghat ure ok

The Subj ects Distinguished Nane is as foll ows

count r yName : PRI NTABLE: ' FI''

or gani zat i onNane : PRI NTABLE: ' \ySQ. AB'

commonNane : PRI NTABLE: ' MySQL admi n'

Certificate is to be certified until Sep 13 14:22:46 2003 GMI
(365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, conmmt? [y/n]y
Wite out database with 1 new entries
Dat a Base Updat ed

Create client request and key

openssl req -new -keyout $DI R/ client-key. pem-out \

#
#
#

HHFEHFHEHFHFEHFHEHFHHFHHHE R

$DI R/ cl i ent-req. pem -days 3600 -config $DI R/ openssl . cnf
Sanpl e out put :
Usi ng configuration from/home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, APAFAFTFARA R
,,, APAFAFTFARA R
witing new private key to '/hone/jones/openssl/client-key.pemn
Ent er PEM pass phrase:
Verifying password - Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distingui shed Nane

or a DN.

There are quite a few fields but you can | eave sone bl ank
For sone fields there will be a default val ue,

If you enter '."', the field will be left blank.

Country Nane (2 letter code) [AU : Fl
State or Province Name (full nane) [Sone-State]:.
Locality Nanme (eg, city) []:

Organi zati on Nane (eg, conpany) [Internet Wdgits Pty Ltd]: My\SQL AB

Organi zational Unit Nane (eg, section) []:
Common Narme (eg, YOUR nane) []: M/SQL user
Emai| Address []:

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []:

An optional conpany nanme []:

Renmove the passphrase fromthe key

openssl rsa -in $DI R/ client-key.pem-out $DI R/ client-key. pem

149

Creating SSL Certificates and Keys Using openssl|

#

Sign client cert

#

openssl ca -cert $DI R/ ca.pem -policy policy_anything \
-out $DIR/client-cert.pem-config $D R/ openssl.cnf \
-infiles $DI R/ client-req. pem

Sanpl e out put :

Using configuration from/home/jones/openssl/openssl.cnf

Enter PEM pass phrase:

Check that the request matches the signature

Si gnature ok

The Subj ects Distinguished Name is as foll ows

count ryName : PRI NTABLE: ' FI'*

organi zati onNane : PRI NTABLE: ' \ySQ. AB'

conmmonName : PRI NTABLE: ' MySQL user'

Certificate is to be certified until Sep 13 16:45:17 2003 GVI'
(365 days)

Sign the certificate? [y/n]:y

#

#

1 out of 1 certificate requests certified, commt? [y/n]y

Wite out database with 1 new entries

Data Base Updat ed

#

Create a ny.cnf file that you can use to test the certificates
#

cat <<ECOF > $DI R/ ny. cnf
[client]

ssl -ca=$Dl R/ ca. pem
ssl-cert=$DI R/ client-cert.pem
ssl - key=3%$DI R/ cl i ent - key. pem
[nysgqld]

ssl _ca=$Dl R/ ca. pem

ssl _cert=$Dl R/ server-cert.pem
ssl _key=3%$DI R/ server - key. pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://ww. sl proweb. com product s/ Wn320penSSL. ht mi

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location is C. \ OQpenSSL- W n32 or C. \ QpenSSL- W n64,
depending on which package you downloaded. The following instructions assume a default location of
C. \ OpenSSL- W n32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating' . . . critical conponent is m ssing:
M crosoft Visual C++ 2008 Redi stri butabl es', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

 Visual C++ 2008 Redistributables (x86), available at:

http://ww. m crosoft.com downl oads/ det ai | s. aspx?fam | yi d=9B2DA534- 3E03-4391- 8A4D- 074B9F2BC1BF

 Visual C++ 2008 Redistributables (x64), available at:
http://ww. m crosoft.com downl oads/ det ai | s. aspx?fam | yi d=bd2a6171- e2d6-4230- b809- 9a8d7548c1hb6
After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C: \ OpenSSL- W n32 as the install path, and also leave the
default option ' Copy OpenSSL DLL files to the Wndows systemdirectory' selected.

When the installation has finished, add C. \ OpenSSL- W n32\ bi n to the Windows System Path
variable of your server (depending on your version of Windows, the following path-setting instructions
might differ slightly):

150

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Creating RSA Keys Using openssl

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4, Add'; C\ QpenSSL- W n32\ bi n' to the end (notice the semicolon).
5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (St art >Run>cnd. exe) and verifying that OpenSSL is available:

M crosoft Wndows [Version ...]

Copyright (c) 2006 M crosoft Corporation. Al rights reserved.

C. \ W ndows\ syst enB2>cd \

C: \ >openssl

penSSL> exit <<< |f you see the QpenSSL prompt, installation was successful.
C\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in
this section), with the following changes:

» Change the following Unix commands:

Create clean environnent
rm-rf newcerts
nkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environnent
md c:\newcerts
cd c:\newcerts

* Whena'\' character is shown at the end of a command line, this' \ ' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 5.1,
“Configuring MySQL to Use Encrypted Connections”.

5.3.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable
MySQL to support secure password exchange over unencrypted connections for accounts
authenticated by the sha256_passwor d and cachi ng_sha2_passwor d plugins.

Note

There are easier alternatives to generating the files required for RSA than

the procedure described here: Let the server autogenerate them or use the
mysql _ssl _rsa_set up program. See Section 5.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL”".

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so that the files are owned by that account:

openssl genrsa -out private_key. pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

151

Connecting to MySQL Remotely from Windows with SSH

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chnod 400 private_key. pem
chnod 444 public_key. pem

5.4 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcar | son@mpl conm con®.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of SSH_clients.

2. Start your Windows SSH client. Set Host _Nane = yournysqgl server URL_or | P. Set
useri d=your _useri dtolog in to your server. This useri d value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set | ocal port: 3306, renote_host:
your mysql servernane_or _ip,renote_port: 3306) or alocal forward (Setport: 3306,
host: | ocal host,renote port: 3306).

4. Save everything, otherwise you must redo it the next time.
5. Log in to your server with the SSH session you just created.
6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in | ocal host for the MySQL host server, not your nysql ser ver nane.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

152

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Chapter 6 Security Components and Plugins

Table of Contents

6.1 AULheNtiCatioN PIUGINSuiiii i e e e e e e e e e et e e e e e e et e e eanaeernees 154
6.1.1 Native Pluggable AUthentiCationcooiiiiiiiiii e e e e e 154
6.1.2 Caching SHA-2 Pluggable AUthentiCationooeveiiiiiiiiii e 155
6.1.3 SHA-256 Pluggable AUthentiCationcoeiuiiiiiiir e e e 160
6.1.4 Client-Side Cleartext Pluggable Authenticationcccoovviiiiiii i 164
6.1.5 PAM Pluggable AUthentiCatioNnoiiiiiiiiii e e e e e e e ees 165
6.1.6 Windows Pluggable AUthentiCationccoeeuiiiiiiiiii e e e 176
6.1.7 LDAP Pluggable AUthentiCationiiiiuiiriiiiii e e e e 180
6.1.8 Kerberos Pluggable AUthentiCationcociuiiiiiiiiii e e e 200
6.1.9 No-Login Pluggable AUthentiCationcoceuiiiiiiiii e e e 210
6.1.10 Socket Peer-Credential Pluggable Authenticationcccoveviiiiiiiiiiiiicii e 213
6.1.11 FIDO Pluggable AUthentiCationcoouiiiiiiiii e 215
6.1.12 Test Pluggable AUthentiCationcc.oiiiiiiiiiie e e e 220
6.1.13 Pluggable Authentication System Variablescc.ovvviiiiiiiiiiii e 222

6.2 The Connection-Control PIUGINScvuuiiii e e e e e e e e e e eanns 240
6.2.1 Connection-Control Plugin INStallationccooeuiiiiiiiiiiic e 240
6.2.2 Connection-Control System and Status Variablescooovviiiiiiiini e 244

6.3 The Password Validation COMPONENTuuiiiiiii e e e e e e e e e e e eeees 246
6.3.1 Password Validation Component Installation and Uninstallationcccooevvvvennn.n. 248
6.3.2 Password Validation Options and Variablesc.cccoiiiiiiiiiiinii e 249
6.3.3 Transitioning to the Password Validation Componentcccoeevueieviiiieineeeiiieeeeennn. 257

L I T I YA @ T I (=3 Y/ 11 o S 258
6.4.1 Keyring Components Versus Keyring PIUGINSc.couiiiiiiiieiiieii e eeneeeieeeanneens 259
6.4.2 Keyring Component INStallationcooouiiiiiiiiiin e e e 260
6.4.3 Keyring Plugin INStallationcoouiiiiiiiii e e e e e 262
6.4.4 Using the component_keyring_file File-Based Keyring Componentccocevveennnnn. 264
6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring
L0 0 0T o o 1= o 266
6.4.6 Using the keyring_file File-Based Keyring PIUgINccoiiiiiiiii e, 268
6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin 269
6.4.8 Using the keyring_ 0kv KMIP PIUGQINcouuiiiiri e e e e e 270
6.4.9 Using the keyring_aws Amazon Web Services Keyring Plugincccoovviiveviineennnen. 275
6.4.10 Using the HashiCorp Vault Keyring PIUgINcoiviiiiiiieic e e 278
6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Plugincccocoiviviiiiiiieinnen, 285
6.4.12 Supported Keyring Key Types and Lengthsc.oovviiiiiiiiiiii e 287
6.4.13 Migrating Keys Between Keyring KEYSIOrESovvuuiiiiiieiiiieiiiiieeeeeeevneeeneeeiaees 289
6.4.14 General-Purpose Keyring Key-Management FUNCLIONSccccceveviiiiviinieiiniecieeeenn, 295
6.4.15 Plugin-Specific Keyring Key-Management FUNCLIONScovveiiiiiiieiiiieiiiecneeiiees 302
L G =) V1T 1Y/ 1] = o = = 303
6.4.17 Keyring Command OPLIONSeiuuieiiiieiiiieee e eeieeee e et e e e e et e ee e s e e e eenneeannaees 304
6.4.18 Keyring System Variablesc.ooiiiiiiiii e 306

6.5 MySQL ENterpriS® AUILuiiiei e e e e e e e e et e e e e e et e e e e eanaeeees 321
6.5.1 Elements of MySQL Enterprise AUditcoouniiiiiiiiii e e e 321
6.5.2 Installing or Uninstalling MySQL Enterprise Auditcooviiiiiiiiiiiierineeine e 322
6.5.3 MySQL Enterprise Audit Security ConsSiderationscoevuveriiiieeiiieeiiieriineeeneeeiees 324
6.5.4 Audit LOg File FOIMALSuiiiiiiiii i e e e e e e e e e e e eanaees 324
6.5.5 Configuring Audit Logging CharacteriStiCScvevuiiiiiiiiiiieeii e e 344
6.5.6 Reading Audit LOG FilESuiiiiiiii e e e 352
6.5.7 Audit LOG FltEriNGuivee e e e 356
6.5.8 Writing Audit Log Filter Definitionsccuiiiiiiiiii e e 360
6.5.9 Legacy Mode Audit LOg FILEINGuueriiiei e e e e 378
6.5.10 Audit LOG REFEIENCEuiiiiiii e e eeaen 380

Authentication Plugins

6.5.11 Audit LOG RESIICHIONScivtiiiii e e e e e e e e et e e et eaa e eans 400
6.6 The Audit MeSSAage COMPONENTcuuiiiiiieiie e e e e e e e e e e e e e e et e et e e et e eatneeenneees 400
6.7 MySQL ENterprise FIrE@Wallc.ouiiiiiiiii i e e e e e 403
6.7.1 Elements of MySQL Enterprise Firewallcoooeuiiiiiiiiiiii e 404
6.7.2 Installing or Uninstalling MySQL Enterprise Firewallccooviiiiiiiniiiiiiecees 405
6.7.3 Using MySQL Enterprise FireWallccouiiiiiiiiiiiiciii e e e 408
6.7.4 MySQL Enterprise Firewall REfEIrENCEcooviiiiiiiiii e 421

MySQL includes several components and plugins that implement security features:

» Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 4.17, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 6.1, “Authentication Plugins”.

» A password-validation component for implementing password strength policies and assessing the
strength of potential passwords. See Section 6.3, “The Password Validation Component”.

» Keyring plugins that provide secure storage for sensitive information. See Section 6.4, “The MySQL
Keyring”.

* (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses
the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection
and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance
solution for applications that are governed by both internal and external regulatory guidelines. See
Section 6.5, “MySQL Enterprise Audit”.

A function enables applications to add their own message events to the audit log. See Section 6.6,
“The Audit Message Component”.

* (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against
lists of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL
injection or attempts to exploit applications by using them outside of their legitimate query workload
characteristics. See Section 6.7, “MySQL Enterprise Firewall”.

» (MySQL Enterprise Edition only) MySQL Enterprise Data Masking and De-ldentification,
implemented as a plugin library containing a plugin and a set of functions. Data masking hides
sensitive information by replacing real values with substitutes. MySQL Enterprise Data Masking and
De-ldentification functions enable masking existing data using several methods such as obfuscation
(removing identifying characteristics), generation of formatted random data, and data replacement or
substitution. See MySQL Enterprise Data Masking and De-Identification.

6.1 Authentication Plugins

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 4.17,
“Pluggable Authentication”.

The default authentication plugin is determined as described in The Default Authentication Plugin.

6.1.1 Native Pluggable Authentication

MySQL includes a mysql _nati ve_passwor d plugin that implements native authentication; that is,
authentication based on the password hashing method in use from before the introduction of pluggable
authentication.

The following table shows the plugin names on the server and client sides.

154

https://dev.mysql.com/doc/refman/8.0/en/data-masking.html

Caching SHA-2 Pluggable Authentication

Table 6.1 Plugin and Library Names for Native Password Authentication

Plugin or File

Plugin or File Name

Server-side plugin

mysql _native_password

Client-side plugin

nysqgl native_password

Library file

None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable

authentication:

* Installing Native Pluggable Authentication

» Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable

Authentication”.

Installing Native Pluggable Authentication

The nysql _native_passwor d plugin exists in server and client forms:

e The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled

by unloading it.

» The client-side plugin is built into the | i brysqgl cl i ent client library and is available to any program

linked against | i

brmysql cli ent.

Using Native Pluggable Authentication

MySQL client programs use mysql _nati ve_passwor d by default. The - - def aul t - aut h option can
be used as a hint about which client-side plugin the program can expect to use:

$> nysql --default-auth=nysql _native_password ...

6.1.2 Caching SHA-2 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account

passwords:

» sha256_passwor d: Implements basic SHA-256 authentication.

» cachi ng_sha2_passwor d: Implements SHA-256 authentication (like sha256_passwor d),
but uses caching on the server side for better performance and has additional features for wider

applicability.

This section describes the caching SHA-2 authentication plugin. For information about the original
basic (noncaching) plugin, see Section 6.1.3, “SHA-256 Pluggable Authentication”.

Important

In MySQL 8.0, cachi ng_sha2_ passwor d is the default authentication plugin
rather than mysql nati ve_ passwor d. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Important

To connect to the server using an account that authenticates with the
cachi ng_sha2_passwor d plugin, you must use either a secure connection
or an unencrypted connection that supports password exchange using

155

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-auth
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

Caching SHA-2 Pluggable Authentication

an RSA key pair, as described later in this section. Either way, the
cachi ng_sha2_ passwor d plugin uses MySQL's encryption capabilities. See
Chapter 5, Using Encrypted Connections.

Note

In the name sha256_passwor d, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name cachi ng_sha2_ passwor d, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The cachi ng_sha2_ passwor d plugin has these advantages, compared to sha256 passwor d:

» On the server side, an in-memory cache enables faster reauthentication of users who have
connected previously when they connect again.

» RSA-based password exchange is available regardless of the SSL library against which MySQL is
linked.

» Support is provided for client connections that use the Unix socket-file and shared-memory protocols.
The following table shows the plugin names on the server and client sides.

Table 6.2 Plugin and Library Names for SHA-2 Authentication

Plugin or File Plugin or File Name
Server-side plugin cachi ng_sha2_password
Client-side plugin cachi ng_sha2_ password
Library file None (plugins are built in)

The following sections provide installation and usage information specific to caching SHA-2 pluggable
authentication:

* Installing SHA-2 Pluggable Authentication
» Using SHA-2 Pluggable Authentication
» Cache Operation for SHA-2 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing SHA-2 Pluggable Authentication
The cachi ng_sha2_passwor d plugin exists in server and client forms:

» The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

» The client-side plugin is built into the | i brmysql cl i ent client library and is available to any program
linked against | i brmysqgl cl i ent .

The server-side plugin uses the sha2_cache_cl eaner audit plugin as a helper to perform password
cache management. sha2 cache_cl eaner, like cachi ng_sha2 passwor d, is built in and need not
be installed.

Using SHA-2 Pluggable Authentication

To set up an account that uses the cachi ng_sha2 passwor d plugin for SHA-256 password hashing,
use the following statement, where passwor d is the desired account password:

156

Caching SHA-2 Pluggable Authentication

CREATE USER ' sha2user' @I ocal host'
| DENTI FI ED W TH cachi ng_sha2_password BY ' password';

The server assigns the cachi ng_sha2_passwor d plugin to the account and uses it to encrypt
the password using SHA-256, storing those values in the pl ugi n and aut henti cati on_stri ng
columns of the nysql . user system table.

The preceding instructions do not assume that cachi ng_sha2_passwor d is the default
authentication plugin. If cachi ng_sha2_ passwor d is the default authentication plugin, a simpler
CREATE USER syntax can be used.

To start the server with the default authentication plugin set to cachi ng_sha2 passwor d, put these
lines in the server option file:

[mysql d]
def aul t _aut henti cati on_pl ugi n=cachi ng_sha2_password

That causes the cachi ng_sha2_passwor d plugin to be used by default for new accounts. As a
result, it is possible to create the account and set its password without naming the plugin explicitly:

CREATE USER ' sha2user' @I ocal host' | DENTI FI ED BY ' password';

Another consequence of setting def aul t _aut henti cati on_pl ugi nto
cachi ng_sha2_ passwor d is that, to use some other plugin for account creation, you must specify
that plugin explicitly. For example, to use the nysql nati ve_passwor d plugin, use this statement:

CREATE USER 'nati veuser' @I ocal host'
| DENTI FI ED W TH nmysql _nati ve_password BY ' password';

cachi ng_sha2_ passwor d supports connections over secure transport. If you follow the RSA
configuration procedure given later in this section, it also supports encrypted password exchange using
RSA over unencrypted connections. RSA support has these characteristics:

» On the server side, two system variables name the RSA private and public
key-pair files: cachi ng_sha2 password_private_ key path and
cachi ng_sha2 _password _public_key pat h. The database administrator must set these
variables at server startup if the key files to use have names that differ from the system variable
default values.

e The server uses the cachi ng_sha2 password_aut o_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

» The Cachi ng_sha2_password_rsa_publ i c_key status variable displays the RSA public key
value used by the cachi ng_sha2_passwor d authentication plugin.

+ Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

» For connections by accounts that authenticate with cachi ng_sha2_passwor d and RSA key pair-
based password exchange, the server does not send the RSA public key to clients by default. Clients
can use a client-side copy of the required public key, or request the public key from the server.

Use of a trusted local copy of the public key enables the client to avoid a round trip in the client/
server protocol, and is more secure than requesting the public key from the server. On the other
hand, requesting the public key from the server is more convenient (it requires no management of a
client-side file) and may be acceptable in secure network environments.

e For command-line clients, use the - - ser ver - publ i c- key- pat h option to specify the RSA
public key file. Use the - - get - ser ver - publ i c- key option to request the public key from
the server. The following programs support the two options: nysql , mysql sh, nysql admi n,
mysql bi nl og, mysql check, nysqgl dunp, nysql i nport, nysql punp, nysql show,
mysql sl ap, nysql test, nysql _upgr ade.

157

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key

Caching SHA-2 Pluggable Authentication

« For programs that use the C API, call mysqgl _opti ons() to specify the RSA public key file by
passing the MYSQL_SERVER PUBLI C _KEY option and the name of the file, or request the public
key from the server by passing the MYSQL_OPT_GET_SERVER PUBLI C_KEY option.

 For replicas, use the CHANGE REPLI CATI ON SOURCE TOstatement (from MySQL 8.0.23) or
CHANGE MASTER TOstatement (before MySQL 8.0.23) with the SOURCE_PUBLI C_KEY_PATH
| MASTER_PUBLI C_KEY_PATH option to specify the RSA public key file, or the
GET_SOURCE_PUBLI C_KEY | GET_MASTER _PUBLI C_KEY option to request the public key from
the source. For Group Replication, the gr oup_r epl i cati on_recovery_public_key_path
and group_replication _recovery get public_key system variables serve the same
purpose.

In all cases, if the option is given to specify a valid public key file, it takes precedence over the option
to request the public key from the server.

For clients that use the cachi ng_sha2_ passwor d plugin, passwords are never exposed as cleartext
when connecting to the server. How password transmission occurs depends on whether a secure
connection or RSA encryption is used:

If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to TCP
connections encrypted using TLS, as well as Unix socket-file and shared-memory connections. The
password is sent as cleartext but cannot be snooped because the connection is secure.

If the connection is not secure, an RSA key pair is used. This applies to TCP connections not
encrypted using without TLS and named-pipe connections. RSA is used only for password exchange
between client and server, to prevent password snooping. When the server receives the encrypted
password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

To enable use of an RSA key pair for password exchange during the client connection process, use the
following procedure:

1.

2.

Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

If the private and public key files are located in the data directory and

are named pri vat e_key. pemand publ i ¢c_key. pem(the default

values of the cachi ng_sha2 password_private_ key path and

cachi ng_sha2 password_public_key_ pat h system variables), the server uses them
automatically at startup.

Otherwise, to hame the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[nysql d]
cachi ng_sha2_password_privat e_key_pat h=nypri vkey. pem
cachi ng_sha2_passwor d_publ i c_key_pat h=nmypubkey. pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[nysal d]
cachi ng_sha2_password_private_key_pat h=/usr/ | ocal / nmysql / nypri vkey. pem
cachi ng_sha2_passwor d_publ i c_key_pat h=/usr/| ocal / nysql / nypubkey. pem

If you want to change the number of hash rounds used by cachi ng_sha2_passwor d during
password generation, set the cachi ng_sha2_passwor d_di gest _r ounds system variable. For
example:

[nysql d]
cachi ng_sha2_passwor d_di gest _r ounds=10000

158

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_get_public_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_digest_rounds

Caching SHA-2 Pluggable Authentication

4. Restart the server, then connect to it and check the
Cachi ng_sha2 password rsa_public_key status variable value. The value actually displayed
differs from that shown here, but should be nonempty:

nysql > SHOW STATUS LI KE ' Cachi ng_sha2_password_rsa_public_key'\G

R R R R R EEEEEEEEEEEEEEEESESE] 1 r ow EE R R R R R R R R R R

Vari abl e_nane: Cachi ng_sha2_password_r sa_public_key

Val ue: ----- BEG N PUBLI C KEY---- -
M G MAOGCSqGSI b3DQEBAQUAA4GNADCBI QKBg QD9 nRUDA+Kv SZg Y7 ¢ NBZMNpwX6
M/E1PbJFXO7ul18nJ9l we99Du/ E71 w6 CVXw7 VKr XPeHbVQUz Gy UNKf 45Nz/ ckaaJa
alLgJOBCl DmiNVnyUs40T/ 11 cs2xi yf aDMe8f C164ZwTnKbY2gkt 11 M UAB5Qgd5kJ
g8aV7Et KwyhHb0c30Q DAQAB
----- END PUBLI C KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the

cachi ng_sha2_passwor d plugin have the option of using those key files to connect to the server.
As mentioned previously, such accounts can use either a secure connection (in which case RSA is not
used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> nysql --ssl-node=DI SABLED -u sha2user -p
Ent er password: password

For this connection attempt by sha2user , the server determines that cachi ng_sha2_password is
the appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. However, the server does not send the public key to the client, and
the client provided no public key, so it cannot encrypt the password and the connection fails:

ERROR 2061 (HY000): Authentication plugin 'caching_sha2_password
reported error: Authentication requires secure connection

To request the RSA public key from the server, specify the - - get - ser ver - publ i c- key option:

$> nysql --ssl-nmode=DI SABLED -u sha2user -p --get-server-public-key
Ent er password: password

In this case, the server sends the RSA public key to the client, which uses it to encrypt the password
and returns the result to the server. The plugin uses the RSA private key on the server side to decrypt
the password and accepts or rejects the connection based on whether the password is correct.

Alternatively, if the client has a file containing a local copy of the RSA public key required by the server,
it can specify the file using the - - ser ver - publ i c- key- pat h option:

$> nysql --ssl-node=Dl SABLED -u sha2user -p --server-public-key-path=file_nane
Ent er password: password

In this case, the client uses the public key to encrypt the password and returns the result to the server.
The plugin uses the RSA private key on the server side to decrypt the password and accepts or rejects
the connection based on whether the password is correct.

The public key value in the file named by the - - server - publ i c- key- pat h

option should be the same as the key value in the server-side file named by the

cachi ng_sha2_password_publ i c_key_pat h system variable. If the key file contains a valid public
key value but the value is incorrect, an access-denied error occurs. If the key file does not contain a
valid public key, the client program cannot use it.

Client users can obtain the RSA public key two ways:

» The database administrator can provide a copy of the public key file.

159

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path

SHA-256 Pluggable Authentication

A client user who can connect to the server some other way can use a SHOW STATUS LI KE
" Cachi ng_sha2 password rsa_public_key' statement and save the returned key value in a
file.

Cache Operation for SHA-2 Pluggable Authentication

On the server side, the cachi ng_sha2_passwor d plugin uses an in-memory cache for faster
authentication of clients who have connected previously. Entries consist of account-name/password-
hash pairs. The cache works like this:

1. When a client connects, cachi ng_sha2_passwor d checks whether the client and password
match some cache entry. If so, authentication succeeds.

2. If there is no matching cache entry, the plugin attempts to verify the client against the credentials in
the mysql . user system table. If this succeeds, cachi ng_sha2 passwor d adds an entry for the
client to the hash. Otherwise, authentication fails and the connection is rejected.

In this way, when a client first connects, authentication against the nysql . user system table occurs.
When the client connects subsequently, faster authentication against the cache occurs.

Password cache operations other than adding entries are handled by the sha2_cache_cl eaner audit
plugin, which performs these actions on behalf of cachi ng_sha2 passwor d:

« It clears the cache entry for any account that is renamed or dropped, or any account for which the
credentials or authentication plugin are changed.

* It empties the cache when the FLUSH PRI VI LEGES statement is executed.

« It empties the cache at server shutdown. (This means the cache is not persistent across server
restarts.)

Cache clearing operations affect the authentication requirements for subsequent client connections.
For each user account, the first client connection for the user after any of the following operations
must use a secure connection (made using TCP using TLS credentials, a Unix socket file, or shared
memory) or RSA key pair-based password exchange:

* After account creation.

 After a password change for the account.
» After RENAMVE USER for the account.

o After FLUSH PRI VI LEGES.

FLUSH PRI VI LEGES clears the entire cache and affects all accounts that use the
cachi ng_sha2_passwor d plugin. The other operations clear specific cache entries and affect only
accounts that are part of the operation.

Once the user authenticates successfully, the account is entered into the cache and subsequent
connections do not require a secure connection or the RSA key pair, until another cache clearing

event occurs that affects the account. (When the cache can be used, the server uses a challenge-
response mechanism that does not use cleartext password transmission and does not require a secure
connection.)

6.1.3 SHA-256 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account
passwords:

» sha256_passwor d: Implements basic SHA-256 authentication.

160

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

SHA-256 Pluggable Authentication

e caching _sha2 passwor d: Implements SHA-256 authentication (like sha256 passwor d),
but uses caching on the server side for better performance and has additional features for wider

applicability.

This section describes the original noncaching SHA-2 authentication plugin. For information about the
caching plugin, see Section 6.1.2, “Caching SHA-2 Pluggable Authentication”.

Important

In MySQL 8.0, cachi ng_sha2_ passwor d is the default authentication plugin
rather than nysql nati ve_passwor d. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Because cachi ng_sha2_ passwor d is the default authentication

plugin in MySQL 8.0 and provides a superset of the capabilities of the
sha256 passwor d authentication plugin, sha256 passwor d is deprecated;
expect it to be removed in a future version of MySQL. MySQL accounts

that authenticate using sha256_ passwor d should be migrated to use

cachi ng_sha2 passwor d instead.

Important

To connect to the server using an account that authenticates with the
sha256_passwor d plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key
pair, as described later in this section. Either way, the sha256_passwor d
plugin uses MySQL's encryption capabilities. See Chapter 5, Using Encrypted
Connections.

Note

In the name sha256_passwor d, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name cachi ng_sha2_passwor d, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The following table shows the plugin names on the server and client sides.

Table 6.3 Plugin and Library Names for SHA-256 Authentication

Plugin or File

Plugin or File Name

Server-side plugin

sha256_password

Client-side plugin

sha256_passwor d

Library file

None (plugins are built in)

The following sections provide installation and usage information specific to SHA-256 pluggable

authentication:

* Installing SHA-256 Pluggable Authentication

» Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable

Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_passwor d plugin exists in server and client forms:

161

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

SHA-256 Pluggable Authentication

e The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

* The client-side plugin is built into the | i brysqgl cl i ent client library and is available to any program
linked against | i brmysql cl i ent.

Using SHA-256 Pluggable Authentication

To set up an account that uses the sha256_passwor d plugin for SHA-256 password hashing, use the
following statement, where passwor d is the desired account password:

CREATE USER ' sha256user' @I ocal host'
| DENTI FI ED W TH sha256_password BY ' password';

The server assigns the sha256_passwor d plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the pl ugi n and aut henti cati on_stri ng columns of the
nysql . user system table.

The preceding instructions do not assume that sha256 passwor d is the default authentication plugin.
If sha256 passwor d is the default authentication plugin, a simpler CREATE USER syntax can be
used.

To start the server with the default authentication plugin set to sha256_passwor d, put these lines in
the server option file:

[nysql d]
def aul t _aut henti cati on_pl ugi n=sha256_passwor d

That causes the sha256_passwor d plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER ' sha256user' @1 ocal host' | DENTI FI ED BY ' password';

Another consequence of setting def aul t _aut henti cati on_pl ugi n to sha256_ passwor d is that,
to use some other plugin for account creation, you must specify that plugin explicitly. For example, to
use the nysql _nati ve_passwor d plugin, use this statement:

CREATE USER ' nati veuser' @I ocal host'
| DENTI FI ED W TH nysql _nati ve_password BY ' password';

sha256_ passwor d supports connections over secure transport. sha256_passwor d also supports
encrypted password exchange using RSA over unencrypted connections if MySQL is compiled using
OpenSSL, and the MySQL server to which you wish to connect is configured to support RSA (using the
RSA configuration procedure given later in this section).

RSA support has these characteristics:

« On the server side, two system variables name the RSA private and public key-pair files:
sha256_password _private key pathandsha256 password_public_key path. The
database administrator must set these variables at server startup if the key files to use have names
that differ from the system variable default values.

» The server uses the sha256_password_aut o_generat e_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

» The Rsa_publ i c_key status variable displays the RSA public key value used by the
sha256_passwor d authentication plugin.

 Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

162

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rsa_public_key

SHA-256 Pluggable Authentication

» For connections by accounts that authenticate with sha256_passwor d and RSA public key pair-
based password exchange, the server sends the RSA public key to the client as needed. However, if
a copy of the public key is available on the client host, the client can use it to save a round trip in the
client/server protocol:

» For these command-line clients, use the - - ser ver - publ i c- key- pat h option to specify
the RSA public key file: nysql , nysql adm n, nysql bi nl og, nysql check, nmysql dunp,
mysql i mport, nysql punp, nysgl show, nysql sl ap, mysql t est, nysql _upgr ade.

¢ For programs that use the C API, call mysql _opti ons() to specify the RSA public key file by
passing the MYSQL_SERVER PUBLI C_KEY option and the name of the file.

» For replicas, use the CHANGE REPLI CATI ON SOURCE TOstatement (from MySQL 8.0.23) or
CHANGE MASTER TOstatement (before MySQL 8.0.23) with the SOURCE_PUBLI C_KEY_PATH |
MASTER PUBLI C_KEY_PATH option to specify the RSA public key file. For Group Replication, the
group_replication_recovery_get_public_key system variable serves the same purpose.

For clients that use the sha256_passwor d plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection
or RSA encryption is used:

« If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to
connections encrypted using TLS. The password is sent as cleartext but cannot be snooped because
the connection is secure.

Note

Unlike cachi ng_sha2_passwor d, the sha256_passwor d plugin does not
treat shared-memory connections as secure, even though share-memory
transport is secure by default.

« If the connection is not secure, and an RSA key pair is available, the connection remains
unencrypted. This applies to connections not encrypted using TLS. RSA is used only for password
exchange between client and server, to prevent password snooping. When the server receives the
encrypted password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

« If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

Note

To use RSA password encryption with sha256 _passwor d, the client and
server both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use
of an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are
named pri vat e_key. pemand publ i c_key. pem(the default values of the
sha256_password _private_key pat h and sha256_password_publ i c_key pat h system
variables), the server uses them automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[nysql d]
sha256_passwor d_pri vat e_key_pat h=nypri vkey. pem
sha256_passwor d_publ i c_key_pat h=mypubkey. pem

163

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_recovery_get_public_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path

Client-Side Cleartext Pluggable Authentication

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysgl d]
sha256_password_privat e_key_pat h=/usr /| ocal / mysql / mypri vkey. pem
sha256_passwor d_publ i c_key_pat h=/usr/| ocal / mysql / mypubkey. pem

3. Restart the server, then connect to it and check the Rsa_publ i ¢c_key status variable value. The
value actually displayed differs from that shown here, but should be nonempty:

nysql > SHOW STATUS LI KE ' Rsa_public_key'\G

EEEEEEEEEEEEEEEEEEEEEEEEESESE] 1 r ow EEEEEEEEEEEEEEEEREEEEEEEEEESES

Vari abl e_nane: Rsa_public_key

Val ue: ----- BEG N PUBLI C KEY- - - - -
M Gf MAOGCSqGSI b3 DQEBAQUAA4GNADCBI QKBgQDO9nRUDd +Kv SZg Y7 ¢ NBZMNpwX6
M/E1PbJFXO7u18nJ9l we99Du/ E71 we CVXw7 VKr XPeHbVQUz Gy UNkf 45Nz/ ckaaJa
alLgJOBCl DniNVnyU540T/ 11 cs2xi yf aDve8f C164ZwTnKbY2gkt 11 M UAB50gd5kJ
g8aV7Et KwyhHb0c30Q DAQAB

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_passwor d plugin have the option of using those key files to connect to the server. As
mentioned previously, such accounts can use either a secure connection (in which case RSA is not
used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> nysql --ssl-nmode=DI SABLED -u sha256user -p
Ent er password: password

For this connection attempt by sha256user , the server determines that sha256_passwor d is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to
be transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client,
which uses it to encrypt the password and returns the result to the server. The plugin uses the RSA
private key on the server side to decrypt the password and accepts or rejects the connection based on
whether the password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file
containing a local copy of the RSA public key required by the server, it can specify the file using the - -
server-publ i c-key- pat h option:

$> nysql --ssl-node=Dl SABLED -u sha256user -p --server-public-key-path=file_nane
Ent er password: password

The public key value in the file named by the - - ser ver - publ i c- key- pat h option should be the
same as the key value in the server-side file named by the sha256_password_publ i c_key path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-
denied error occurs. If the key file does not contain a valid public key, the client program cannot use
it. In this case, the sha256_passwor d plugin sends the public key to the client as if no - - ser ver -
publ i c- key- pat h option had been specified.

Client users can obtain the RSA public key two ways:
» The database administrator can provide a copy of the public key file.

» A client user who can connect to the server some other way can use a SHOW STATUS LI KE
"Rsa_public_key' statement and save the returned key value in a file.

6.1.4 Client-Side Cleartext Pluggable Authentication

164

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path

PAM Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.4 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name
Server-side plugin None, see discussion
Client-side plugin nysqgl _cl ear _password
Library file None (plugin is built in)

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive
the password as entered on the client side. In such cases, the client-side nmysql _cl ear _passwor d
plugin is used, which enables the client to send the password to the server as cleartext. There is

no corresponding server-side plugin. Rather, nysqgl _cl ear _passwor d can be used on the client
side in concert with any server-side plugin that needs a cleartext password. (Examples are the PAM
and simple LDAP authentication plugins; see Section 6.1.5, “PAM Pluggable Authentication”, and
Section 6.1.7, “LDAP Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Note

Sending passwords as cleartext may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Chapter 5, Using
Encrypted Connections), IPsec, or a private network.

To make inadvertent use of the mysqgl _cl ear _passwor d plugin less likely, MySQL clients must
explicitly enable it. This can be done in several ways:

» Setthe LI BMWSQL_ENABLE CLEARTEXT_PLUGQ N environment variable to a value that begins with
1, Y, ory. This enables the plugin for all client connections.

e The nysqgl , nysql adm n, nysql check, nysql dunp, nysql show, and nysql sl ap client
programs support an - - enabl e- cl eart ext - pl ugi n option that enables the plugin on a per-
invocation basis.

» Thenysqgl _options() C API function supports a MYSQL_ENABLE CLEARTEXT_PLUG N option
that enables the plugin on a per-connection basis. Also, any program that uses | i bnysql cl i ent
and reads option files can enable the plugin by including an enabl e- cl ear t ext - pl ugi n option in
an option group read by the client library.

6.1.5 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysqgl.com/products/.

165

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://www.mysql.com/products/

PAM Pluggable Authentication

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use
PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to
use a standard interface to access various kinds of authentication methods, such as traditional Unix
passwords or an LDAP directory.

PAM pluggable authentication provides these capabilities:

» External authentication: PAM authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables and that authenticate using methods supported by
PAM.

» Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
sytem user named j oe can connect and have the privileges of a MySQL user named devel oper.

PAM pluggable authentication has been tested on Linux and macOS.
The following table shows the plugin and library file names. The file name suffix might differ on your

system. The file must be located in the directory named by the pl ugi n_di r system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.5 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name
Server-side plugin aut henti cati on_pam
Client-side plugin nysqgl _cl ear _password
Library file aut henti cati on_pam so

The client-side nysql _cl ear _passwor d cleartext plugin that communicates with the server-side
PAM plugin is built into the | i brrysql cl i ent client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable
authentication:

* How PAM Authentication of MySQL Users Works

* Installing PAM Pluggable Authentication

» Uninstalling PAM Pluggable Authentication

e Using PAM Pluggable Authentication

* PAM Unix Password Authentication without Proxy Users

* PAM LDAP Authentication without Proxy Users

« PAM Unix Password Authentication with Proxy Users and Group Mapping
* PAM Authentication Access to Unix Password Store

* PAM Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For information about the mysql _cl ear passwor d plugin, see Section 6.1.4, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

166

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

PAM Pluggable Authentication

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific PAM services, see Using
PAM Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

* The client user name is the external user name.

« For accounts that use the PAM server-side authentication plugin, the corresponding client-side
pluginis mysqgl _cl ear passwor d. This client-side plugin performs no password hashing, with
the result that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from
which the client connects. The PAM plugin uses the information passed to it by MySQL Server
(such as user name, host name, password, and authentication string). When you define a MySQL
account that authenticates using PAM, the authentication string contains:

* A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL
application developer.

< Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user
credentials and returns ' Aut henti cati on succeeded, Usernane is user_nane' or
"Aut henti cation failed' .The password must be appropriate for the password store used by
the PAM service. Examples:

« For traditional Unix passwords, the service looks up passwords stored in the / et ¢/ shadowfile.
« For LDAP, the service looks up passwords stored in an LDAP directory.
If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no
PAM group mapping, proxying does not occur. In this case, the MySQL user name is the same as
the external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

< For traditional Unix passwords, groups are Unix groups defined in the / et ¢/ gr oup file, possibly
supplemented with additional PAM information in a file such as / et ¢/ securi ty/ group. conf.

« For LDAP, groups are LDAP groups defined in an LDAP directory.

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory
location by setting the value of pl ugi n_di r at server startup.

167

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

PAM Pluggable Authentication

The plugin library file base name is aut hent i cat i on_pam The file name suffix differs per platform
(for example, . so for Unix and Unix-like systems, . dl | for Windows).

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file
that contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server ny. cnf file, adjusting the . so suffix for your platform as
necessary:

[nysal d]
pl ugi n- | oad- add=aut henti cati on_pam so

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the . so suffix for your platform
as necessary:

I NSTALL PLUG N aut henti cati on_pam SONAME ' aut henti cati on_pam so';

| NSTALL PLUG N loads the plugin immediately, and also registers it in the mysql . pl ugi ns system
table to cause the server to load it for each subsequent normal startup without the need for - -
pl ugi n-1 oad- add.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOWV
PLUG NS statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHENA. PLUG NS
VWHERE PLUG N_NAME LI KE ' 9%pan® ;

Fom e e me e eaaao E T +
| PLUG N_NAME | PLUG N_STATUS |
Fom e e me e eaaao E T +
| aut hentication_pam | ACTIVE |
Fom e e me e eaaao E T +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

« If you installed the plugin at server startup using a - - pl ugi n- | oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUGQ N statement, it remains installed
across server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N aut henti cati on_pam

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from
MySQL client programs to the server. The following sections provide instructions for using PAM
authentication in specific ways. It is assumed that the server is running with the server-side PAM plugin
enabled, as described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the | DENTI FI ED W TH clause of a CREATE USER
statement, use the name aut hent i cati on_pam For example:

CREATE USER user

| DENTI FI ED W TH aut henti cati on_pam
AS 'auth_string';

The authentication string specifies the following types of information:

168

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

PAM Pluggable Authentication

e The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of nysql - uni x for authentication using traditional Unix
passwords, and nysql - | dap for authentication using LDAP.

» For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user
name other than the external user name passed by the client program when it connects to the
server. Use the authentication string to control the mapping from external user names to MySQL
user names. If you want to take advantage of proxy user capabilities, the authentication string must
include this kind of mapping.

For example, if an account uses the nysql - uni x PAM service hame and should map operating
system users in the r oot and user s PAM groups to the devel oper and dat a_ent ry MySQL users,
respectively, use a statement like this:

CREATE USER user
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql - uni X, root=devel oper, users=data_entry’

Authentication string syntax for the PAM authentication plugin follows these rules:

» The string consists of a PAM service name, optionally followed by a PAM group mapping list
consisting of one or more keyword/value pairs each specifying a PAM group name and a MySQL
user name:

pam servi ce_nane[, pam gr oup_nane=nysql _user _naneg]. ..

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

e Each pam group_nane=nysql _user _nane pair must be preceded by a comma.
» Leading and trailing spaces not inside double quotation marks are ignored.

» Unquoted pam ser vi ce_nane, pam gr oup_nane, and nysql _user _namne values can contain
anything except equal sign, comma, or space.

e Ifapam servi ce_nane, pam group_nane, or mysqgl user nane value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation
mark and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks
for a PAM group mapping list in the authentication string and, if present, uses it to return a different
MySQL user name to the MySQL server based on which PAM groups the external user is a member of:

« If the authentication string contains no PAM group mapping list, the plugin returns the external name.

« If the authentication string does contain a PAM group mapping list, the plugin examines each
pam group_name=nysql user _nane pair in the list from left to right and tries to find a match for
the pam gr oup_nane value in a non-MySQL directory of the groups assigned to the authenticated
user and returns nysql _user _nane for the first match it finds. If the plugin finds no match for
any PAM group, it returns the external name. If the plugin is not capable of looking up a group in a
directory, it ignores the PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

» No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined
to use PAM authentication. (For a MySQL account of ' user _nane' @ host _nane' to match
the external user, user _name must be the external user name and host _nane must match the
host from which the client connects.) Authentication can be performed by various PAM-supported

169

PAM Pluggable Authentication

methods. Later discussion shows how to authenticate client credentials using traditional Unix
passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL
user name to be same as the operating system user name. MySQL user names are limited to 32
characters (see Section 4.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix
accounts with names of at most 32 characters.

» Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually
based on the external PAM groups the users are members of) to map all the external user names
to the few MySQL accounts holding the privilege sets. Any client who connects and specifies an
external user name as the client user name is mapped to one of the MySQL accounts and uses its
privileges. The discussion shows how to set this up using traditional Unix passwords, but other PAM
methods such as LDAP could be used instead.

Variations on these scenarios are possible:

» You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

* You can use one PAM authentication method for some users, and another method for other users,
by using differing PAM service names among your PAM-authenticated accounts. For example, you
can use the nmysql - uni x PAM service for some users, and nysql - | dap for others.

The examples make the following assumptions. You might need to make some adjustments if your
system is set up differently.

» The login name and password are ant oni o and ant oni o_passwor d, respectively. Change these
to correspond to the user you want to authenticate.

e The PAM configuration directory is / et ¢/ pam d.

» The PAM service name corresponds to the authentication method (nysql - uni x or nysql -1 dap
in this discussion). To use a given PAM service, you must set up a PAM file with the same name
in the PAM configuration directory (creating the file if it does not exist). In addition, you must name
the PAM service in the authentication string of the CREATE USER statement for any account that
authenticates using that PAM service.

The PAM authentication plugin checks at initialization time whether the AUTHENTI CATI ON_PAM LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of
diagnostic messages to the standard output. Depending on how your server is started, the message
might appear on the console or in the error log. These messages can be helpful for debugging PAM-
related issues that occur when the plugin performs authentication. For more information, see PAM
Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through traditional Unix password store.

Note

Traditional Unix passwords are checked using the / et ¢/ shadowfile.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o
and password ant oni o_passwor d.

170

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

PAM Pluggable Authentication

2. Setup PAM to authenticate MySQL connections using traditional Unix passwords by creating a
nysqgl - uni x PAM service file named / et ¢/ pam d/ nysql - uni x. The file contents are system
dependent, so check existing login-related files in the / et ¢/ pam d directory to see what they look
like. On Linux, the mysql - uni x file might look like this:

#9PAM 1. 0
aut h i ncl ude passwor d- aut h
account i ncl ude passwor d- aut h

For macOS, use | ogi n rather than passwor d- aut h.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@ ncl ude common- aut h
@ ncl ude common-account
@ ncl ude commmon-sessi on-noni nteractive

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the nmysql - uni x PAM service:

CREATE USER ' antoni o' @I ocal host '
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql - uni x' ;
GRANT ALL PRI VI LEGES
ON nydb. *
TO "antoni o' @I ocal host"';

Here, the authentication string contains only the PAM service name, nysql - uni x, which
authenticates Unix passwords.

4. Use the mysgl command-line client to connect to the MySQL server as ant oni 0. For example:

$> nysql --user=antoni o --password --enabl e-cl eartext-plugin
Ent er password: antoni o_password

The server should permit the connection and the following query returns output as shown:

nysql > SELECT USER(), CURRENT_USER(), @@proxy_user;
------------------- e

CURRENT_USER() | @g@proxy_user |

This demonstrates that the ant oni o operating system user is authenticated to have the privileges
granted to the ant oni o MySQL user, and that no proxying has occurred.

Note

The client-side nysql _cl ear _passwor d authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

* To make inadvertent use of the nysql cl ear _passwor d plugin less likely,
MySQL clients must explicitly enable it (for example, with the - - enabl e-
cl eart ext - pl ugi n option). See Section 6.1.4, “Client-Side Cleartext
Pluggable Authentication”.

¢ To avoid password exposure with the nysql _cl ear passwor d plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

171

PAM Pluggable Authentication

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and LDAP passwords, without proxying. Every such external user permitted to connect
to MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:
» An LDAP server must be available for the PAM LDAP service to communicate with.

» Each LDAP user to be authenticated by MySQL must be present in the directory managed by the
LDAP server.

Note

Another way to use LDAP for MySQL user authentication is to use the
LDAP-specific authentication plugins. See Section 6.1.7, “LDAP Pluggable
Authentication”.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o
and password ant oni o_passwor d.

2. Set up PAM to authenticate MySQL connections using LDAP by creating a mysql - | dap PAM
service file named / et ¢/ pam d/ nysql - | dap. The file contents are system dependent, so check
existing login-related files in the / et ¢/ pam d directory to see what they look like. On Linux, the
nysql - | dap file might look like this:

#YPAM 1. 0
aut h required pam | dap. so
account required pam | dap. so

If PAM object files have a suffix different from . so on your system, substitute the correct suffix.
The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the nysql - | dap PAM service:

CREATE USER ' antoni o' @1 ocal host '
| DENTI FI ED W TH aut henti cati on_pam
AS 'nysql -1 dap' ;
GRANT ALL PRI VI LEGES
ON nydb. *
TO 'antoni o' @I ocal host"';

Here, the authentication string contains only the PAM service name, nysql - | dap, which
authenticates using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without
Proxy Users.

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users

are mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy
account is mapped to one of those MySQL accounts, the privileges for which determine the database
operations permitted to the external user.

172

PAM Pluggable Authentication

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early
steps of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the / et ¢/ shadowfile.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o
and password ant oni o_passwor d.

2. Verify that ant oni o is a member of the r oot or user s PAM group.

3. Setup PAM to authenticate the mysql - uni x PAM service through operating system users by
creating a file named / et ¢/ pam d/ mysql - uni x. The file contents are system dependent, so
check existing login-related files in the / et ¢/ pam d directory to see what they look like. On Linux,
the mysql - uni x file might look like this:

#9PAM 1. 0
aut h i ncl ude passwor d- aut h
account i ncl ude passwor d- aut h

For macOS, use | ogi n rather than passwor d- aut h.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@ ncl ude common- aut h
@ ncl ude common- account
@ ncl ude common-sessi on-noni nteractive

4. Create a default proxy user (' ' @ ') that maps external PAM users to the proxied accounts:

CREATE USER '' @'
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql -uni x, root=devel oper, users=data_entry';

Here, the authentication string contains the PAM service hame, nmysql - uni x, which authenticates
Unix passwords. The authentication string also maps external users in the r oot and user s PAM
groups to the devel oper and dat a_ent ry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy
users. Otherwise, the plugin cannot tell how to perform mapping from external user names to the
proper proxied MySQL user hames.

Note

If your MySQL installation has anonymous users, they might conflict with
the default proxy user. For more information about this issue, and ways of
dealing with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER ' devel oper' @1 ocal host"
| DENTI FI ED W TH nysql _no_I ogi n;
CREATE USER 'data_entry' @I ocal host"
| DENTI FI ED W TH nysql _no_I ogi n;
GRANT ALL PRI VI LEGES

ON nydevdb. *

TO ' devel oper' @1 ocal host "' ;
GRANT ALL PRI VI LEGES

ON nydb. *

TO 'data_entry' @I ocal host "' ;

173

PAM Pluggable Authentication

The proxied accounts use the nysgl _no_| ogi n authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using PAM

are expected to use the devel oper or dat a_ent ry account by proxy based on their PAM group.
(This assumes that the plugin is installed. For instructions, see Section 6.1.9, “No-Login Pluggable
Authentication”.) For alternative methods of protecting proxied accounts against direct use, see
Preventing Direct Login to Proxied Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
ON ' devel oper' @1 ocal host'
0@

GRANT PROXY
ON 'data_entry' @I ocal host'
0@

Use the mysql command-line client to connect to the MySQL server as ant oni o.

$> nysql --user=antoni o --password --enabl e-cl eartext-plugin
Ent er password: antoni o_password

The server authenticates the connection using the default' ' @' proxy account. The resulting
privileges for ant oni o depend on which PAM groups ant oni o is a member of. If ant oni o is

a member of the r oot PAM group, the PAM plugin maps r oot to the devel oper MySQL user
name and returns that name to the server. The server verifies that' ' @' has the PROXY privilege
for devel oper and permits the connection. The following query returns output as shown:

mysql > SELECT USER(), CURRENT_USER(), @@proxy_user;

doocoocccoocooooooooo doococccooocococoocoooo dooccococoocoooo +
| USER() | CURRENT_USER() | @@roxy_user |
doocoocccoocooooooooo doococccooocococoocoooo dooccococoocoooo +
| antoni o@ocal host | devel oper @ocal host | @ [
doocoocccoocooooooooo doococccooocococoocoooo dooccococoocoooo +

This demonstrates that the ant oni o operating system user is authenticated to have the privileges
granted to the devel oper MySQL user, and that proxying occurs through the default proxy
account.

If ant oni o is not a member of the r oot PAM group but is a member of the user s PAM group,
a similar process occurs, but the plugin maps user PAM group membership to the dat a_entry
MySQL user name and returns that name to the server:

nysql > SELECT USER(), CURRENT_USER(), @@proxy_user;

e Feme e emeee e eemeaaaas Femem e mmeeao o +
| USER() | CURRENT_USER() | @@proxy_user |
e Feme e emeee e eemeaaaas Femem e mmeeao o +
| antoni o@ocal host | data_entry@ ocal host | @ |
e Feme e emeee e eemeaaaas Femem e mmeeao o +

This demonstrates that the ant oni 0 operating system user is authenticated to have the privileges
of the dat a_ent ry MySQL user, and that proxying occurs through the default proxy account.

Note

The client-side nysql _cl ear passwor d authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

* To make inadvertent use of the nysql _cl ear _passwor d plugin less likely,
MySQL clients must explicitly enable it (for example, with the - - enabl e-

174

PAM Pluggable Authentication

cl eart ext - pl ugi n option). See Section 6.1.4, “Client-Side Cleartext
Pluggable Authentication”.

¢ To avoid password exposure with the nysql cl ear passwor d plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as / et ¢/ shadow, a file that
typically has restricted access permissions. This can cause MySQL PAM-based authentication to

fail. Unfortunately, the PAM implementation does not permit distinguishing “password could not be
checked” (due, for example, to inability to read / et ¢/ shadow) from “password does not match.” If you
are using Unix password store for PAM authentication, you may be able to enable access to it from
MySQL using one of the following methods:

» Assuming that the MySQL server is run from the nysql operating system account, put that account
in the shadow group that has / et ¢/ shadow access:

1. Create ashadowgroupin/etc/ group.
2. Add the nysql operating system user to the shadowgroup in/ et c/ gr oup.

3. Assign/ et c/ group to the shadowgroup and enable the group read permission:

chgrp shadow / et ¢/ shadow
chmod g+r /etc/shadow

4. Restart the MySQL server.

« If you are using the pam uni x module and the uni x_chkpwd utility, enable password store access
as follows:

chnmod u-s /usr/sbin/uni x_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/ uni x_chkpwd

Adjust the path to uni x_chkpwd as necessary for your platform.
PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTI CATI ON_PAM _LOG
environment value is set (the value does not matter). If so, the plugin enables logging of diagnostic
messages to the standard output. These messages may be helpful for debugging PAM-related issues
that occur when the plugin performs authentication.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during
connection attempts is to configure PAM authentication to permit all connections, then check the
system log files. This technique should be used only on a temporary basis, and not on a production
server.

Configure a PAM service file named / et ¢/ pam d/ nysqgl - any- passwor d with these contents (the
format may differ on some systems):

#%PAM 1. 0
aut h required pam pernit.so
account required pam pernit.so

Create an account that uses the PAM plugin and names the nysql - any- passwor d PAM service:

175

Windows Pluggable Authentication

CREATE USER 'testuser' @I ocal host'
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql - any- password' ;

The nysql - any- passwor d service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as / var/ | og/ secure,/var/ | og/audit.| og,/var/| og/
sysl og, or/ var/ | og/ messages.

After determining what the problem is, remove the nmysqgl - any- passwor d PAM service file to disable
any-password access.

6.1.6 Windows Pluggable Authentication

Note

Windows pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysqgl.com/products/.

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate
client connections. Users who have logged in to Windows can connect from MySQL client programs to
the server based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

» External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

» Proxy user support: Windows authentication can return to MySQL a user name different from
the external user name passed by the client program. This means that the plugin can return the
MySQL user that defines the privileges the external Windows-authenticated user should have. For
example, a Windows user named | oe can connect and have the privileges of a MySQL user named
devel oper.

The following table shows the plugin and library file names. The file must be located in the directory
named by the pl ugi n_di r system variable.

Table 6.6 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin aut henti cati on_w ndows
Client-side plugin aut henti cati on_wi ndows_cl i ent
Library file aut henti cati on_wi ndows. dl |

The library file includes only the server-side plugin. The client-side plugin is built into the
i brysgl cli ent client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,

176

https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Windows Pluggable Authentication

including community distributions. This enables clients from any distribution to connect to a server that
has the server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

* Installing Windows Pluggable Authentication
 Uninstalling Windows Pluggable Authentication
» Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory
location by setting the value of pl ugi n_di r at server startup.

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my. cnf file:

[mysql d]
pl ugi n- | oad- add=aut henti cati on_wi ndows. dl |

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

I NSTALL PLUG N aut henti cati on_wi ndows SONAME ' aut henti cati on_w ndows. dl | *;

| NSTALL PLUG Nloads the plugin immediately, and also registers it in the mysql . pl ugi ns system
table to cause the server to load it for each subsequent normal startup without the need for - -
pl ugi n-1 oad- add.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOWV
PLUG NS statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHENA. PLUG NS
WHERE PLUG N_NAME LI KE ' %M ndows% ;

Fom e e emeeaaaaas F T +
| PLUG N_NAME | PLUG N_STATUS |
Fom e e emeeaaaaas F T +
| aut hentication_w ndows | ACTI VE |
Fom e e emeeaaaaas F T +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin,

see Using Windows Pluggable Authentication. Additional plugin control is

provided by the aut hent i cati on_w ndows_use_princi pal _nane and

aut hentication_wi ndows | og | evel system variables. See Server System Variables.

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

177

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_log_level
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Windows Pluggable Authentication

« If you installed the plugin at server startup using a - - pl ugi n-1 oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUGQ N statement, it remains installed
across server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N aut henti cati on_wi ndows;
In addition, remove any startup options that set Windows plugin-related system variables.
Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have
logged in to Windows can connect to the MySQL server without having to specify an additional
password. It is assumed that the server is running with the server-side plugin enabled, as described in
Installing Windows Pluggable Authentication. Once the DBA has enabled the server-side plugin and set
up accounts to use it, clients can connect using those accounts with no other setup required on their
part.

To refer to the Windows authentication plugin in the | DENTI FI ED W TH clause of a CREATE USER
statement, use the name aut hent i cati on_wi ndows. Suppose that the Windows users Raf al
and Tasha should be permitted to connect to MySQL, as well as any users in the Adnmi ni strators
or Power User s group. To set this up, create a MySQL account named sql _adni n that uses the
Windows plugin for authentication:

CREATE USER sql _adnin
| DENTI FI ED W TH aut henti cati on_wi ndows
AS 'Rafal, Tasha, Adm nistrators, "Power Users"';

The plugin name is aut hent i cati on_wi ndows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Raf al or Tasha are permitted

to authenticate to the server as the MySQL user sql _adni n, as are any Windows users in the
Admi ni strators or Power Users group. The latter group name contains a space, so it must be
guoted with double quote characters.

After you create the sql _adni n account, a user who has logged in to Windows can attempt to connect
to the server using that account:

C:\> nysqgl --user=sqgl_adnin

No password is required here. The aut hent i cat i on_wi ndows plugin uses the Windows security
API to check which Windows user is connecting. If that user is named Raf al or Tasha, oris a
member of the Admi ni st rat ors or Power User s group, the server grants access and the client
is authenticated as sql _adni n and has whatever privileges are granted to the sgl _admni n account.
Otherwise, the server denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:
» The string consists of one or more user mappings separated by commas.

» Each user mapping associates a Windows user or group name with a MySQL user name:

W n_user _or _group_nane=nysql _user _nane
Wi n_user _or_group_nane

For the latter syntax, with no nysql _user _nane value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql _admi n
| DENTI FI ED W TH aut henti cati on_wi ndows
AS 'Rafal, Tasha, Administrators, "Power Users"';
CREATE USER sql _admi n
| DENTI FI ED W TH aut henti cati on_wi ndows
AS ' Raf al =sql _admi n, Tasha=sql _admi n, Admi ni strators=sql _adm n,
"Power Users"=sqgl _admn';

178

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Windows Pluggable Authentication

» Each backslash character (\) in a value must be doubled because backslash is the escape character
in MySQL strings.

» Leading and trailing spaces not inside double quotation marks are ignored.

* Unquoted wi n_user _or _group_nane and nysqgl _user _nane values can contain anything
except equal sign, comma, or space.

e Ifawi n_user_or_group_namne and or mysqgl _user _nane value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the name contains space characters. All characters within double quotes are legal except double
quotation mark and backslash. To include either character, escape it with a backslash.

* Wi n_user_or_group_nane values use conventional syntax for Windows principals, either local or
in a domain. Examples (note the doubling of backslashes):

donmi n\ \ user

.\\user

domai n\\ gr oup

.\\group

BUI LTI N\ \ V&I | KnownGr oup

When invoked by the server to authenticate a client, the plugin scans the authentication string left
to right for a user or group match to the Windows user. If there is a match, the plugin returns the
corresponding nysql _user _nane to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user
named wi n_user is a member of wi n_gr oup and the authentication string looks like this:

"win_group = sql _userl, win_user = sql_user?2'

When wi n_user connects to the MySQL server, there is a match both towi n_gr oup and to

Wi n_user . The plugin authenticates the user as sql _user 2 because the more-specific user match
takes precedence over the group match, even though the group is listed first in the authentication
string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is
also possible to permit connections from a different domain, as in this example:

CREATE USER sqgl _accounti ng
| DENTI FI ED W TH aut hent i cat i on_wi ndows
AS ' SoneDonmi n\\ Accounti ng' ;

Here SoneDomnmai n is the name of the other domain. The backslash character is doubled because it is
the MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the
MySQL server using one account but while connected has the privileges of another account (see
Section 4.19, “Proxy Users”). Suppose that you want Windows users to connect using a single user
name but be mapped based on their Windows user and group names onto specific MySQL accounts
as follows:

» Thel ocal _user and MyDomai n\ donai n_user local and domain Windows users should map to
the |l ocal _wl ad MySQL account.

» Users in the MyDomai n\ Devel oper s domain group should map to the | ocal _dev MySQL
account.

e Local machine administrators should map to the | ocal _adm n MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account
so that users and groups map to the appropriate MySQL accounts (I ocal _w ad, | ocal _dev,

179

LDAP Pluggable Authentication

| ocal _adm n). In addition, grant the MySQL accounts the privileges appropriate to the operations
they need to perform. The following instructions use wi n_pr oxy as the proxy account, and
| ocal _w ad, | ocal dev,and!| ocal _adni n as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER Wi n_pr oxy
| DENTI FI ED W TH aut henti cati on_wi ndows

AS 'l ocal _user = |local _W ad,
MyDonai n\\ domai n_user = |ocal _w ad,
MyDonmi n\\ Devel opers = | ocal _dev,

BUI LTI N\\ Admi ni strators = | ocal _admi n';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER | ocal _wW ad

| DENTI FI ED W TH nysql _no_| ogi n;
CREATE USER | ocal _dev

| DENTI FI ED W TH nysql _no_| ogi n;
CREATE USER | ocal _admi n

| DENTI FI ED W TH nysql _no_| ogi n;

The proxied accounts use the nysqgl _no_| ogi n authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using Windows
are expected to use the wi n_pr oxy proxy account. (This assumes that the plugin is installed. For
instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

You should also execute GRANT statements (not shown) that grant each proxied account the
privileges required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON | ocal _wl ad TO wi n_pr oxy;
GRANT PROXY ON | ocal _dev TO w n_pr oxy;
GRANT PROXY ON | ocal _admin TO wi n_pr oxy;

Now the Windows users | ocal _user and MyDonai n\ domai n_user can connect to the MySQL
server as wi n_pr oxy and when authenticated have the privileges of the account given in the
authentication string (in this case, | ocal _w ad). A user in the MyDonai n\ Devel oper s group
who connects as wi n_pr oxy has the privileges of the | ocal _dev account. A user in the BUI LTI N
\ Adni ni st rat or s group has the privileges of the | ocal _adni n account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (' * @ ") for wi n_pr oxy in the preceding
instructions. For information about default proxy accounts, see Section 4.19, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET
8.0 and higher, see Connector/NET Authentication.

6.1.7 LDAP Pluggable Authentication

Note

LDAP pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysgl.com/products/.

180

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html
https://www.mysql.com/products/

LDAP Pluggable Authentication

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use LDAP
(Lightweight Directory Access Protocol) to authenticate MySQL users by accessing directory services
such as X.500. MySQL uses LDAP to fetch user, credential, and group information.

LDAP pluggable authentication provides these capabilities:

» External authentication: LDAP authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables in LDAP directories.

* Proxy user support: LDAP authentication can return to MySQL a user name different from the
external user name passed by the client program, based on the LDAP groups the external user is a
member of. This means that an LDAP plugin can return the MySQL user that defines the privileges
the external LDAP-authenticated user should have. For example, an LDAP user named j oe can
connect and have the privileges of a MySQL user named devel oper, if the LDAP group for j oe is
devel oper.

» Security: Using TLS, connections to the LDAP server can be secure.

The following tables show the plugin and library file names for simple and SASL-based LDAP
authentication. The file name suffix might differ on your system. The files must be located in the
directory named by the pl ugi n_di r system variable.

Table 6.7 Plugin and Library Names for Simple LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name aut hentication_I| dap_sinple
Client-side plugin name nysqgl _cl ear _password

Library file name aut henti cation_I dap_sinple.so

Table 6.8 Plugin and Library Names for SASL-Based LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name aut henti cati on_I| dap_sasl
Client-side plugin name aut hentication_| dap_sasl _client
Library file names aut henti cation_I| dap_sasl . so,

aut henti cation_I dap_sasl _client.so

The library files include only the aut hent i cati on_I dap_XXX authentication plugins. The client-side
nmysql _cl ear _passwor d plugin is built into the | i brrysqgl cl i ent client library.

Each server-side LDAP plugin works with a specific client-side plugin:

e The server-side aut henti cati on_| dap_si npl e plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
nysqgl _cl ear passwor d plugin, which sends the password to the server as cleartext. No
password hashing or encryption is used, so a secure connection between the MySQL client and
server is recommended to prevent password exposure.

» The server-side aut henti cati on_| dap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-
side aut henti cati on_| dap_sasl| cl i ent plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to
avoid sending the cleartext password between the MySQL client and server.

The server-side LDAP authentication plugins are included only in MySQL Enterprise Edition. They
are not included in MySQL community distributions. The client-side SASL LDAP plugin is included
in all distributions, including community distributions, and, as mentioned previously, the client-side
nysqgl _cl ear passwor d plugin is built into the | i bnysqgl cl i ent client library, which also is

181

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

LDAP Pluggable Authentication

included in all distributions. This enables clients from any distribution to connect to a server that has the
appropriate server-side plugin loaded.

The following sections provide installation and usage information specific to LDAP pluggable
authentication:

» Prerequisites for LDAP Pluggable Authentication

* How LDAP Authentication of MySQL Users Works
« Installing LDAP Pluggable Authentication

» Uninstalling LDAP Pluggable Authentication

» LDAP Pluggable Authentication and ldap.conf

e Using LDAP Pluggable Authentication

» Simple LDAP Authentication

* SASL-Based LDAP Authentication

» LDAP Authentication with Proxying

» LDAP Authentication Group Preference and Mapping Specification
» LDAP Authentication User DN Suffixes

» LDAP Authentication Methods

» The GSSAPI/Kerberos Authentication Method

* LDAP Search Referral

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For information about the nysql _cl ear _passwor d plugin, see Section 6.1.4, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

Note

If your system supports PAM and permits LDAP as a PAM authentication
method, another way to use LDAP for MySQL user authentication is to use the
server-side aut hent i cat i on_pamplugin. See Section 6.1.5, “PAM Pluggable
Authentication”.

Prerequisites for LDAP Pluggable Authentication
To use LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:
» An LDAP server must be available for the LDAP authentication plugins to communicate with.

» LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

* An LDAP client library must be available on systems where the server-side
aut hentication_| dap_sasl orauthentication_ | dap_si npl e plugin is used. Currently,
supported libraries are the Windows native LDAP library, or the OpenLDAP library on non-Windows
systems.

* To use SASL-based LDAP authentication:

* The LDAP server must be configured to communicate with a SASL server.

182

LDAP Pluggable Authentication

* A SASL client library must be available on systems where the client-side
aut hentication_| dap_sasl _client pluginis used. Currently, the only supported library is
the Cyrus SASL library.

e To use a particular SASL authentication method, any other services required by that method must
be available. For example, to use GSSAPI/Kerberos, a GSSAPI library and Kerberos services
must be available.

How LDAP Authentication of MySQL Users Works

This section provides an overview of how MySQL and LDAP work toget