
GNU Offloading and Multi Processing Runtime Library
The GNU OpenMP and OpenACC Implementation

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright c© 2006-2021 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Funding Free Software”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

1 Enabling OpenMP . 3

2 OpenMP Runtime Library Routines . 5

3 OpenMP Environment Variables . 21

4 Enabling OpenACC . 29

5 OpenACC Runtime Library Routines . 31

6 OpenACC Environment Variables . 49

7 CUDA Streams Usage . 51

8 OpenACC Library Interoperability . 53

9 OpenACC Profiling Interface . 57

10 The libgomp ABI . 63

11 Reporting Bugs . 69

GNU General Public License . 71

GNU Free Documentation License . 83

Funding Free Software . 91

Library Index . 93

iii

Table of Contents

Introduction . 1

1 Enabling OpenMP . 3

2 OpenMP Runtime Library Routines 5
2.1 omp_get_active_level – Number of parallel regions 5
2.2 omp_get_ancestor_thread_num – Ancestor thread ID 5
2.3 omp_get_cancellation – Whether cancellation support is enabled

. 5
2.4 omp_get_default_device – Get the default device for target

regions . 6
2.5 omp_get_dynamic – Dynamic teams setting . 6
2.6 omp_get_initial_device – Return device number of initial

device . 6
2.7 omp_get_device_num – Return device number of current device

. 7
2.8 omp_get_level – Obtain the current nesting level 7
2.9 omp_get_max_active_levels – Current maximum number of

active regions . 7
2.10 omp_get_max_task_priority – Maximum priority value 8
2.11 omp_get_max_threads – Maximum number of threads of parallel

region . 8
2.12 omp_get_nested – Nested parallel regions . 8
2.13 omp_get_num_devices – Number of target devices 9
2.14 omp_get_num_procs – Number of processors online 9
2.15 omp_get_num_teams – Number of teams . 9
2.16 omp_get_num_threads – Size of the active team 10
2.17 omp_get_proc_bind – Whether theads may be moved between

CPUs . 10
2.18 omp_get_schedule – Obtain the runtime scheduling method . . 11
2.19 omp_get_supported_active_levels – Maximum number of

active regions supported . 11
2.20 omp_get_team_num – Get team number . 11
2.21 omp_get_team_size – Number of threads in a team 12
2.22 omp_get_thread_limit – Maximum number of threads 12
2.23 omp_get_thread_num – Current thread ID 12
2.24 omp_in_parallel – Whether a parallel region is active 13
2.25 omp_in_final – Whether in final or included task region 13
2.26 omp_is_initial_device – Whether executing on the host device

. 13
2.27 omp_set_default_device – Set the default device for target

regions . 13

iv GNU libgomp

2.28 omp_set_dynamic – Enable/disable dynamic teams 14
2.29 omp_set_max_active_levels – Limits the number of active

parallel regions . 14
2.30 omp_set_nested – Enable/disable nested parallel regions 15
2.31 omp_set_num_threads – Set upper team size limit 15
2.32 omp_set_schedule – Set the runtime scheduling method 15
2.33 omp_init_lock – Initialize simple lock . 16
2.34 omp_set_lock – Wait for and set simple lock 16
2.35 omp_test_lock – Test and set simple lock if available 17
2.36 omp_unset_lock – Unset simple lock . 17
2.37 omp_destroy_lock – Destroy simple lock . 17
2.38 omp_init_nest_lock – Initialize nested lock 18
2.39 omp_set_nest_lock – Wait for and set nested lock 18
2.40 omp_test_nest_lock – Test and set nested lock if available . . 18
2.41 omp_unset_nest_lock – Unset nested lock 19
2.42 omp_destroy_nest_lock – Destroy nested lock 19
2.43 omp_get_wtick – Get timer precision . 19
2.44 omp_get_wtime – Elapsed wall clock time . 20
2.45 omp_fulfill_event – Fulfill and destroy an OpenMP event . . 20

3 OpenMP Environment Variables 21
3.1 OMP_CANCELLATION – Set whether cancellation is activated 21
3.2 OMP_DISPLAY_ENV – Show OpenMP version and environment

variables . 21
3.3 OMP_DEFAULT_DEVICE – Set the device used in target regions . . . 21
3.4 OMP_DYNAMIC – Dynamic adjustment of threads 21
3.5 OMP_MAX_ACTIVE_LEVELS – Set the maximum number of nested

parallel regions . 22
3.6 OMP_MAX_TASK_PRIORITY – Set the maximum priority 22
3.7 OMP_NESTED – Nested parallel regions . 22
3.8 OMP_NUM_THREADS – Specifies the number of threads to use 22
3.9 OMP_PROC_BIND – Whether theads may be moved between CPUs

. 23
3.10 OMP_PLACES – Specifies on which CPUs the theads should be

placed . 23
3.11 OMP_STACKSIZE – Set default thread stack size 24
3.12 OMP_SCHEDULE – How threads are scheduled 24
3.13 OMP_TARGET_OFFLOAD – Controls offloading behaviour 24
3.14 OMP_THREAD_LIMIT – Set the maximum number of threads 25
3.15 OMP_WAIT_POLICY – How waiting threads are handled 25
3.16 GOMP_CPU_AFFINITY – Bind threads to specific CPUs 25
3.17 GOMP_DEBUG – Enable debugging output . 26
3.18 GOMP_STACKSIZE – Set default thread stack size 26
3.19 GOMP_SPINCOUNT – Set the busy-wait spin count 26
3.20 GOMP_RTEMS_THREAD_POOLS – Set the RTEMS specific thread

pools . 26

v

4 Enabling OpenACC . 29

5 OpenACC Runtime Library Routines 31
5.1 acc_get_num_devices – Get number of devices for given device

type . 31
5.2 acc_set_device_type – Set type of device accelerator to use. . . 31
5.3 acc_get_device_type – Get type of device accelerator to be used.

. 31
5.4 acc_set_device_num – Set device number to use. 32
5.5 acc_get_device_num – Get device number to be used. 32
5.6 acc_get_property – Get device property. 32
5.7 acc_async_test – Test for completion of a specific asynchronous

operation. 33
5.8 acc_async_test_all – Tests for completion of all asynchronous

operations. 34
5.9 acc_wait – Wait for completion of a specific asynchronous

operation. 34
5.10 acc_wait_all – Waits for completion of all asynchronous

operations. 34
5.11 acc_wait_all_async – Wait for completion of all asynchronous

operations. 35
5.12 acc_wait_async – Wait for completion of asynchronous

operations. 35
5.13 acc_init – Initialize runtime for a specific device type. 35
5.14 acc_shutdown – Shuts down the runtime for a specific device

type. 36
5.15 acc_on_device – Whether executing on a particular device . . . 36
5.16 acc_malloc – Allocate device memory. 36
5.17 acc_free – Free device memory. 36
5.18 acc_copyin – Allocate device memory and copy host memory to

it. 37
5.19 acc_present_or_copyin – If the data is not present on the

device, allocate device memory and copy from host memory. 37
5.20 acc_create – Allocate device memory and map it to host

memory. 38
5.21 acc_present_or_create – If the data is not present on the

device, allocate device memory and map it to host memory. 39
5.22 acc_copyout – Copy device memory to host memory. 39
5.23 acc_delete – Free device memory. 40
5.24 acc_update_device – Update device memory from mapped host

memory. 41
5.25 acc_update_self – Update host memory from mapped device

memory. 42
5.26 acc_map_data – Map previously allocated device memory to host

memory. 42
5.27 acc_unmap_data – Unmap device memory from host memory.

. 43

vi GNU libgomp

5.28 acc_deviceptr – Get device pointer associated with specific host
address. 43

5.29 acc_hostptr – Get host pointer associated with specific device
address. 43

5.30 acc_is_present – Indicate whether host variable / array is
present on device. 43

5.31 acc_memcpy_to_device – Copy host memory to device memory.
. 44

5.32 acc_memcpy_from_device – Copy device memory to host
memory. 44

5.33 acc_attach – Let device pointer point to device-pointer target.
. 44

5.34 acc_detach – Let device pointer point to host-pointer target.
. 45

5.35 acc_get_current_cuda_device – Get CUDA device handle.
. 45

5.36 acc_get_current_cuda_context – Get CUDA context handle.
. 45

5.37 acc_get_cuda_stream – Get CUDA stream handle. 45
5.38 acc_set_cuda_stream – Set CUDA stream handle. 46
5.39 acc_prof_register – Register callbacks. 46
5.40 acc_prof_unregister – Unregister callbacks. 46
5.41 acc_prof_lookup – Obtain inquiry functions. 46
5.42 acc_register_library – Library registration. 47

6 OpenACC Environment Variables 49
6.1 ACC_DEVICE_TYPE . 49
6.2 ACC_DEVICE_NUM . 49
6.3 ACC_PROFLIB . 49
6.4 GCC_ACC_NOTIFY . 49

7 CUDA Streams Usage . 51

8 OpenACC Library Interoperability 53
8.1 Introduction . 53
8.2 First invocation: NVIDIA CUBLAS library API 53
8.3 First invocation: OpenACC library API . 54
8.4 OpenACC library and environment variables 55

9 OpenACC Profiling Interface 57
9.1 Implementation Status and Implementation-Defined Behavior . . 57

vii

10 The libgomp ABI . 63
10.1 Implementing MASTER construct . 63
10.2 Implementing CRITICAL construct . 63
10.3 Implementing ATOMIC construct . 63
10.4 Implementing FLUSH construct . 63
10.5 Implementing BARRIER construct . 63
10.6 Implementing THREADPRIVATE construct 63
10.7 Implementing PRIVATE clause . 64
10.8 Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and

COPYPRIVATE clauses . 64
10.9 Implementing REDUCTION clause . 64
10.10 Implementing PARALLEL construct . 64
10.11 Implementing FOR construct . 65
10.12 Implementing ORDERED construct . 66
10.13 Implementing SECTIONS construct . 66
10.14 Implementing SINGLE construct . 66
10.15 Implementing OpenACC’s PARALLEL construct 67

11 Reporting Bugs . 69

GNU General Public License . 71

GNU Free Documentation License 83
ADDENDUM: How to use this License for your documents 90

Funding Free Software . 91

Library Index . 93

Introduction 1

Introduction

This manual documents the usage of libgomp, the GNU Offloading and Multi Process-
ing Runtime Library. This includes the GNU implementation of the OpenMP Application
Programming Interface (API) for multi-platform shared-memory parallel programming in
C/C++ and Fortran, and the GNU implementation of the OpenACC Application Program-
ming Interface (API) for offloading of code to accelerator devices in C/C++ and Fortran.

Originally, libgomp implemented the GNU OpenMP Runtime Library. Based on this,
support for OpenACC and offloading (both OpenACC and OpenMP 4’s target construct)
has been added later on, and the library’s name changed to GNU Offloading and Multi
Processing Runtime Library.

https://www.openmp.org
https://www.openacc.org

Chapter 1: Enabling OpenMP 3

1 Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag -fopenmp
must be specified. This enables the OpenMP directive #pragma omp in C/C++ and !$omp

directives in free form, c$omp, *$omp and !$omp directives in fixed form, !$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, for Fortran.
The flag also arranges for automatic linking of the OpenMP runtime library (Chapter 2
[Runtime Library Routines], page 5).

A complete description of all OpenMP directives accepted may be found in the OpenMP
Application Program Interface manual, version 4.5.

https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 5

2 OpenMP Runtime Library Routines

The runtime routines described here are defined by Section 3 of the OpenMP specification
in version 4.5. The routines are structured in following three parts:

2.1 omp_get_active_level – Number of parallel regions

Description:
This function returns the nesting level for the active parallel blocks, which
enclose the calling call.

C/C++

Prototype: int omp_get_active_level(void);

Fortran:

Interface: integer function omp_get_active_level()

See also: Section 2.8 [omp get level], page 7, Section 2.9 [omp get max active levels],
page 7, Section 2.29 [omp set max active levels], page 14

Reference: OpenMP specification v4.5, Section 3.2.20.

2.2 omp_get_ancestor_thread_num – Ancestor thread ID

Description:
This function returns the thread identification number for the given nesting
level of the current thread. For values of level outside zero to omp_get_level

-1 is returned; if level is omp_get_level the result is identical to omp_get_

thread_num.

C/C++

Prototype: int omp_get_ancestor_thread_num(int level);

Fortran:

Interface: integer function omp_get_ancestor_thread_num(level)

integer level

See also: Section 2.8 [omp get level], page 7, Section 2.23 [omp get thread num],
page 12, Section 2.21 [omp get team size], page 12

Reference: OpenMP specification v4.5, Section 3.2.18.

2.3 omp_get_cancellation – Whether cancellation support is
enabled

Description:
This function returns true if cancellation is activated, false otherwise. Here,
true and false represent their language-specific counterparts. Unless OMP_

CANCELLATION is set true, cancellations are deactivated.

C/C++:

Prototype: int omp_get_cancellation(void);

https://www.openmp.org
https://www.openmp.org

6 GNU libgomp

Fortran:

Interface: logical function omp_get_cancellation()

See also: Section 3.1 [OMP CANCELLATION], page 21

Reference: OpenMP specification v4.5, Section 3.2.9.

2.4 omp_get_default_device – Get the default device for
target regions

Description:
Get the default device for target regions without device clause.

C/C++:

Prototype: int omp_get_default_device(void);

Fortran:

Interface: integer function omp_get_default_device()

See also: Section 3.3 [OMP DEFAULT DEVICE], page 21, Section 2.27
[omp set default device], page 13

Reference: OpenMP specification v4.5, Section 3.2.30.

2.5 omp_get_dynamic – Dynamic teams setting

Description:
This function returns true if enabled, false otherwise. Here, true and false

represent their language-specific counterparts.

The dynamic team setting may be initialized at startup by the OMP_DYNAMIC

environment variable or at runtime using omp_set_dynamic. If undefined, dy-
namic adjustment is disabled by default.

C/C++:

Prototype: int omp_get_dynamic(void);

Fortran:

Interface: logical function omp_get_dynamic()

See also: Section 2.28 [omp set dynamic], page 14, Section 3.4 [OMP DYNAMIC],
page 21

Reference: OpenMP specification v4.5, Section 3.2.8.

2.6 omp_get_initial_device – Return device number of
initial device

Description:
This function returns a device number that represents the host device. For
OpenMP 5.1, this must be equal to the value returned by the omp_get_num_

devices function.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 7

C/C++

Prototype: int omp_get_initial_device(void);

Fortran:

Interface: integer function omp_get_initial_device()

See also: Section 2.13 [omp get num devices], page 9

Reference: OpenMP specification v4.5, Section 3.2.35.

2.7 omp_get_device_num – Return device number of current
device

Description:
This function returns a device number that represents the device that the cur-
rent thread is executing on. For OpenMP 5.0, this must be equal to the value
returned by the omp_get_initial_device function when called from the host.

C/C++

Prototype: int omp_get_device_num(void);

Fortran:

Interface: integer function omp_get_device_num()

See also: Section 2.6 [omp get initial device], page 6

Reference: OpenMP specification v5.0, Section 3.2.37.

2.8 omp_get_level – Obtain the current nesting level

Description:
This function returns the nesting level for the parallel blocks, which enclose the
calling call.

C/C++

Prototype: int omp_get_level(void);

Fortran:

Interface: integer function omp_level()

See also: Section 2.1 [omp get active level], page 5

Reference: OpenMP specification v4.5, Section 3.2.17.

2.9 omp_get_max_active_levels – Current maximum number
of active regions

Description:
This function obtains the maximum allowed number of nested, active parallel
regions.

C/C++

Prototype: int omp_get_max_active_levels(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

8 GNU libgomp

Fortran:

Interface: integer function omp_get_max_active_levels()

See also: Section 2.29 [omp set max active levels], page 14, Section 2.1
[omp get active level], page 5

Reference: OpenMP specification v4.5, Section 3.2.16.

2.10 omp_get_max_task_priority – Maximum priority value

that can be set for tasks.

Description:
This function obtains the maximum allowed priority number for tasks.

C/C++

Prototype: int omp_get_max_task_priority(void);

Fortran:

Interface: integer function omp_get_max_task_priority()

Reference: OpenMP specification v4.5, Section 3.2.29.

2.11 omp_get_max_threads – Maximum number of threads of
parallel region

Description:
Return the maximum number of threads used for the current parallel region
that does not use the clause num_threads.

C/C++:

Prototype: int omp_get_max_threads(void);

Fortran:

Interface: integer function omp_get_max_threads()

See also: Section 2.31 [omp set num threads], page 15, Section 2.28 [omp set dynamic],
page 14, Section 2.22 [omp get thread limit], page 12

Reference: OpenMP specification v4.5, Section 3.2.3.

2.12 omp_get_nested – Nested parallel regions

Description:
This function returns true if nested parallel regions are enabled, false other-
wise. Here, true and false represent their language-specific counterparts.

The state of nested parallel regions at startup depends on several environment
variables. If OMP_MAX_ACTIVE_LEVELS is defined and is set to greater than one,
then nested parallel regions will be enabled. If not defined, then the value of
the OMP_NESTED environment variable will be followed if defined. If neither are
defined, then if either OMP_NUM_THREADS or OMP_PROC_BIND are defined with a

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 9

list of more than one value, then nested parallel regions are enabled. If none of
these are defined, then nested parallel regions are disabled by default.

Nested parallel regions can be enabled or disabled at runtime using omp_set_

nested, or by setting the maximum number of nested regions with omp_set_

max_active_levels to one to disable, or above one to enable.

C/C++:

Prototype: int omp_get_nested(void);

Fortran:

Interface: logical function omp_get_nested()

See also: Section 2.29 [omp set max active levels], page 14, Section 2.30
[omp set nested], page 15, Section 3.5 [OMP MAX ACTIVE LEVELS],
page 22, Section 3.7 [OMP NESTED], page 22

Reference: OpenMP specification v4.5, Section 3.2.11.

2.13 omp_get_num_devices – Number of target devices

Description:
Returns the number of target devices.

C/C++:

Prototype: int omp_get_num_devices(void);

Fortran:

Interface: integer function omp_get_num_devices()

Reference: OpenMP specification v4.5, Section 3.2.31.

2.14 omp_get_num_procs – Number of processors online

Description:
Returns the number of processors online on that device.

C/C++:

Prototype: int omp_get_num_procs(void);

Fortran:

Interface: integer function omp_get_num_procs()

Reference: OpenMP specification v4.5, Section 3.2.5.

2.15 omp_get_num_teams – Number of teams

Description:
Returns the number of teams in the current team region.

C/C++:

Prototype: int omp_get_num_teams(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

10 GNU libgomp

Fortran:

Interface: integer function omp_get_num_teams()

Reference: OpenMP specification v4.5, Section 3.2.32.

2.16 omp_get_num_threads – Size of the active team

Description:
Returns the number of threads in the current team. In a sequential section of
the program omp_get_num_threads returns 1.

The default team size may be initialized at startup by the OMP_NUM_THREADS

environment variable. At runtime, the size of the current team may be set
either by the NUM_THREADS clause or by omp_set_num_threads. If none of the
above were used to define a specific value and OMP_DYNAMIC is disabled, one
thread per CPU online is used.

C/C++:

Prototype: int omp_get_num_threads(void);

Fortran:

Interface: integer function omp_get_num_threads()

See also: Section 2.11 [omp get max threads], page 8, Section 2.31 [omp set num threads],
page 15, Section 3.8 [OMP NUM THREADS], page 22

Reference: OpenMP specification v4.5, Section 3.2.2.

2.17 omp_get_proc_bind – Whether theads may be moved
between CPUs

Description:
This functions returns the currently active thread affinity policy, which
is set via OMP_PROC_BIND. Possible values are omp_proc_bind_false,
omp_proc_bind_true, omp_proc_bind_primary, omp_proc_bind_master,
omp_proc_bind_close and omp_proc_bind_spread, where omp_proc_bind_

master is an alias for omp_proc_bind_primary.

C/C++:

Prototype: omp_proc_bind_t omp_get_proc_bind(void);

Fortran:

Interface: integer(kind=omp_proc_bind_kind) function omp_get_proc_

bind()

See also: Section 3.9 [OMP PROC BIND], page 23, Section 3.10 [OMP PLACES],
page 23, Section 3.16 [GOMP CPU AFFINITY], page 25,

Reference: OpenMP specification v4.5, Section 3.2.22.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 11

2.18 omp_get_schedule – Obtain the runtime scheduling
method

Description:
Obtain the runtime scheduling method. The kind argument will be set to
the value omp_sched_static, omp_sched_dynamic, omp_sched_guided or omp_
sched_auto. The second argument, chunk size, is set to the chunk size.

C/C++

Prototype: void omp_get_schedule(omp_sched_t *kind, int *chunk_size);

Fortran:

Interface: subroutine omp_get_schedule(kind, chunk_size)

integer(kind=omp_sched_kind) kind

integer chunk_size

See also: Section 2.32 [omp set schedule], page 15, Section 3.12 [OMP SCHEDULE],
page 24

Reference: OpenMP specification v4.5, Section 3.2.13.

2.19 omp_get_supported_active_levels – Maximum number
of active regions supported

Description:
This function returns the maximum number of nested, active parallel regions
supported by this implementation.

C/C++

Prototype: int omp_get_supported_active_levels(void);

Fortran:

Interface: integer function omp_get_supported_active_levels()

See also: Section 2.9 [omp get max active levels], page 7, Section 2.29
[omp set max active levels], page 14

Reference: OpenMP specification v5.0, Section 3.2.15.

2.20 omp_get_team_num – Get team number

Description:
Returns the team number of the calling thread.

C/C++:

Prototype: int omp_get_team_num(void);

Fortran:

Interface: integer function omp_get_team_num()

Reference: OpenMP specification v4.5, Section 3.2.33.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

12 GNU libgomp

2.21 omp_get_team_size – Number of threads in a team

Description:
This function returns the number of threads in a thread team to which either
the current thread or its ancestor belongs. For values of level outside zero to
omp_get_level, -1 is returned; if level is zero, 1 is returned, and for omp_get_
level, the result is identical to omp_get_num_threads.

C/C++:

Prototype: int omp_get_team_size(int level);

Fortran:

Interface: integer function omp_get_team_size(level)

integer level

See also: Section 2.16 [omp get num threads], page 10, Section 2.8 [omp get level],
page 7, Section 2.2 [omp get ancestor thread num], page 5

Reference: OpenMP specification v4.5, Section 3.2.19.

2.22 omp_get_thread_limit – Maximum number of threads

Description:
Return the maximum number of threads of the program.

C/C++:

Prototype: int omp_get_thread_limit(void);

Fortran:

Interface: integer function omp_get_thread_limit()

See also: Section 2.11 [omp get max threads], page 8, Section 3.14 [OMP THREAD LIMIT],
page 25

Reference: OpenMP specification v4.5, Section 3.2.14.

2.23 omp_get_thread_num – Current thread ID

Description:
Returns a unique thread identification number within the current team. In a
sequential parts of the program, omp_get_thread_num always returns 0. In
parallel regions the return value varies from 0 to omp_get_num_threads-1 in-
clusive. The return value of the primary thread of a team is always 0.

C/C++:

Prototype: int omp_get_thread_num(void);

Fortran:

Interface: integer function omp_get_thread_num()

See also: Section 2.16 [omp get num threads], page 10, Section 2.2 [omp get ancestor thread num],
page 5

Reference: OpenMP specification v4.5, Section 3.2.4.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 13

2.24 omp_in_parallel – Whether a parallel region is active

Description:
This function returns true if currently running in parallel, false otherwise.
Here, true and false represent their language-specific counterparts.

C/C++:

Prototype: int omp_in_parallel(void);

Fortran:

Interface: logical function omp_in_parallel()

Reference: OpenMP specification v4.5, Section 3.2.6.

2.25 omp_in_final – Whether in final or included task region

Description:
This function returns true if currently running in a final or included task re-
gion, false otherwise. Here, true and false represent their language-specific
counterparts.

C/C++:

Prototype: int omp_in_final(void);

Fortran:

Interface: logical function omp_in_final()

Reference: OpenMP specification v4.5, Section 3.2.21.

2.26 omp_is_initial_device – Whether executing on the host
device

Description:
This function returns true if currently running on the host device, false oth-
erwise. Here, true and false represent their language-specific counterparts.

C/C++:

Prototype: int omp_is_initial_device(void);

Fortran:

Interface: logical function omp_is_initial_device()

Reference: OpenMP specification v4.5, Section 3.2.34.

2.27 omp_set_default_device – Set the default device for
target regions

Description:
Set the default device for target regions without device clause. The argument
shall be a nonnegative device number.

C/C++:

Prototype: void omp_set_default_device(int device_num);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

14 GNU libgomp

Fortran:

Interface: subroutine omp_set_default_device(device_num)

integer device_num

See also: Section 3.3 [OMP DEFAULT DEVICE], page 21, Section 2.4
[omp get default device], page 6

Reference: OpenMP specification v4.5, Section 3.2.29.

2.28 omp_set_dynamic – Enable/disable dynamic teams

Description:
Enable or disable the dynamic adjustment of the number of threads within a
team. The function takes the language-specific equivalent of true and false,
where true enables dynamic adjustment of team sizes and false disables it.

C/C++:

Prototype: void omp_set_dynamic(int dynamic_threads);

Fortran:

Interface: subroutine omp_set_dynamic(dynamic_threads)

logical, intent(in) :: dynamic_threads

See also: Section 3.4 [OMP DYNAMIC], page 21, Section 2.5 [omp get dynamic], page 6

Reference: OpenMP specification v4.5, Section 3.2.7.

2.29 omp_set_max_active_levels – Limits the number of
active parallel regions

Description:
This function limits the maximum allowed number of nested, active parallel
regions. max levels must be less or equal to the value returned by omp_get_

supported_active_levels.

C/C++

Prototype: void omp_set_max_active_levels(int max_levels);

Fortran:

Interface: subroutine omp_set_max_active_levels(max_levels)

integer max_levels

See also: Section 2.9 [omp get max active levels], page 7, Section 2.1
[omp get active level], page 5, Section 2.19 [omp get supported active levels],
page 11

Reference: OpenMP specification v4.5, Section 3.2.15.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 15

2.30 omp_set_nested – Enable/disable nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The function takes the language-specific equivalent
of true and false, where true enables dynamic adjustment of team sizes and
false disables it.

Enabling nested parallel regions will also set the maximum number of active
nested regions to the maximum supported. Disabling nested parallel regions
will set the maximum number of active nested regions to one.

C/C++:

Prototype: void omp_set_nested(int nested);

Fortran:

Interface: subroutine omp_set_nested(nested)

logical, intent(in) :: nested

See also: Section 2.12 [omp get nested], page 8, Section 2.29 [omp set max active levels],
page 14, Section 3.5 [OMP MAX ACTIVE LEVELS], page 22, Section 3.7
[OMP NESTED], page 22

Reference: OpenMP specification v4.5, Section 3.2.10.

2.31 omp_set_num_threads – Set upper team size limit

Description:
Specifies the number of threads used by default in subsequent parallel sections,
if those do not specify a num_threads clause. The argument of omp_set_num_
threads shall be a positive integer.

C/C++:

Prototype: void omp_set_num_threads(int num_threads);

Fortran:

Interface: subroutine omp_set_num_threads(num_threads)

integer, intent(in) :: num_threads

See also: Section 3.8 [OMP NUM THREADS], page 22, Section 2.16
[omp get num threads], page 10, Section 2.11 [omp get max threads],
page 8

Reference: OpenMP specification v4.5, Section 3.2.1.

2.32 omp_set_schedule – Set the runtime scheduling method

Description:
Sets the runtime scheduling method. The kind argument can have the
value omp_sched_static, omp_sched_dynamic, omp_sched_guided or
omp_sched_auto. Except for omp_sched_auto, the chunk size is set to the
value of chunk size if positive, or to the default value if zero or negative. For
omp_sched_auto the chunk size argument is ignored.

https://www.openmp.org
https://www.openmp.org

16 GNU libgomp

C/C++

Prototype: void omp_set_schedule(omp_sched_t kind, int chunk_size);

Fortran:

Interface: subroutine omp_set_schedule(kind, chunk_size)

integer(kind=omp_sched_kind) kind

integer chunk_size

See also: Section 2.18 [omp get schedule], page 11 Section 3.12 [OMP SCHEDULE],
page 24

Reference: OpenMP specification v4.5, Section 3.2.12.

2.33 omp_init_lock – Initialize simple lock

Description:
Initialize a simple lock. After initialization, the lock is in an unlocked state.

C/C++:

Prototype: void omp_init_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_init_lock(svar)

integer(omp_lock_kind), intent(out) :: svar

See also: Section 2.37 [omp destroy lock], page 17

Reference: OpenMP specification v4.5, Section 3.3.1.

2.34 omp_set_lock – Wait for and set simple lock

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_

lock. The calling thread is blocked until the lock is available. If the lock is
already held by the current thread, a deadlock occurs.

C/C++:

Prototype: void omp_set_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_set_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 2.33 [omp init lock], page 16, Section 2.35 [omp test lock], page 17,
Section 2.36 [omp unset lock], page 17

Reference: OpenMP specification v4.5, Section 3.3.4.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 17

2.35 omp_test_lock – Test and set simple lock if available

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_

lock. Contrary to omp_set_lock, omp_test_lock does not block if the lock is
not available. This function returns true upon success, false otherwise. Here,
true and false represent their language-specific counterparts.

C/C++:

Prototype: int omp_test_lock(omp_lock_t *lock);

Fortran:

Interface: logical function omp_test_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 2.33 [omp init lock], page 16, Section 2.34 [omp set lock], page 16,
Section 2.34 [omp set lock], page 16

Reference: OpenMP specification v4.5, Section 3.3.6.

2.36 omp_unset_lock – Unset simple lock

Description:
A simple lock about to be unset must have been locked by omp_set_lock or
omp_test_lock before. In addition, the lock must be held by the thread calling
omp_unset_lock. Then, the lock becomes unlocked. If one or more threads
attempted to set the lock before, one of them is chosen to, again, set the lock
to itself.

C/C++:

Prototype: void omp_unset_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_unset_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 2.34 [omp set lock], page 16, Section 2.35 [omp test lock], page 17

Reference: OpenMP specification v4.5, Section 3.3.5.

2.37 omp_destroy_lock – Destroy simple lock

Description:
Destroy a simple lock. In order to be destroyed, a simple lock must be in the
unlocked state.

C/C++:

Prototype: void omp_destroy_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_destroy_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

https://www.openmp.org
https://www.openmp.org

18 GNU libgomp

See also: Section 2.33 [omp init lock], page 16

Reference: OpenMP specification v4.5, Section 3.3.3.

2.38 omp_init_nest_lock – Initialize nested lock

Description:
Initialize a nested lock. After initialization, the lock is in an unlocked state and
the nesting count is set to zero.

C/C++:

Prototype: void omp_init_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_init_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(out) :: nvar

See also: Section 2.42 [omp destroy nest lock], page 19

Reference: OpenMP specification v4.5, Section 3.3.1.

2.39 omp_set_nest_lock – Wait for and set nested lock

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_

nest_lock. The calling thread is blocked until the lock is available. If the
lock is already held by the current thread, the nesting count for the lock is
incremented.

C/C++:

Prototype: void omp_set_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_set_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 2.38 [omp init nest lock], page 18, Section 2.41 [omp unset nest lock],
page 19

Reference: OpenMP specification v4.5, Section 3.3.4.

2.40 omp_test_nest_lock – Test and set nested lock if
available

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_

nest_lock. Contrary to omp_set_nest_lock, omp_test_nest_lock does not
block if the lock is not available. If the lock is already held by the current
thread, the new nesting count is returned. Otherwise, the return value equals
zero.

C/C++:

Prototype: int omp_test_nest_lock(omp_nest_lock_t *lock);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 2: OpenMP Runtime Library Routines 19

Fortran:

Interface: logical function omp_test_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 2.33 [omp init lock], page 16, Section 2.34 [omp set lock], page 16,
Section 2.34 [omp set lock], page 16

Reference: OpenMP specification v4.5, Section 3.3.6.

2.41 omp_unset_nest_lock – Unset nested lock

Description:
A nested lock about to be unset must have been locked by omp_set_nested_

lock or omp_test_nested_lock before. In addition, the lock must be held by
the thread calling omp_unset_nested_lock. If the nesting count drops to zero,
the lock becomes unlocked. If one ore more threads attempted to set the lock
before, one of them is chosen to, again, set the lock to itself.

C/C++:

Prototype: void omp_unset_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_unset_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 2.39 [omp set nest lock], page 18

Reference: OpenMP specification v4.5, Section 3.3.5.

2.42 omp_destroy_nest_lock – Destroy nested lock

Description:
Destroy a nested lock. In order to be destroyed, a nested lock must be in the
unlocked state and its nesting count must equal zero.

C/C++:

Prototype: void omp_destroy_nest_lock(omp_nest_lock_t *);

Fortran:

Interface: subroutine omp_destroy_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 2.33 [omp init lock], page 16

Reference: OpenMP specification v4.5, Section 3.3.3.

2.43 omp_get_wtick – Get timer precision

Description:
Gets the timer precision, i.e., the number of seconds between two successive
clock ticks.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

20 GNU libgomp

C/C++:

Prototype: double omp_get_wtick(void);

Fortran:

Interface: double precision function omp_get_wtick()

See also: Section 2.44 [omp get wtime], page 20

Reference: OpenMP specification v4.5, Section 3.4.2.

2.44 omp_get_wtime – Elapsed wall clock time

Description:
Elapsed wall clock time in seconds. The time is measured per thread, no guar-
antee can be made that two distinct threads measure the same time. Time is
measured from some "time in the past", which is an arbitrary time guaranteed
not to change during the execution of the program.

C/C++:

Prototype: double omp_get_wtime(void);

Fortran:

Interface: double precision function omp_get_wtime()

See also: Section 2.43 [omp get wtick], page 19

Reference: OpenMP specification v4.5, Section 3.4.1.

2.45 omp_fulfill_event – Fulfill and destroy an OpenMP
event

Description:
Fulfill the event associated with the event handle argument. Currently, it is
only used to fulfill events generated by detach clauses on task constructs - the
effect of fulfilling the event is to allow the task to complete.

The result of calling omp_fulfill_event with an event handle other than that
generated by a detach clause is undefined. Calling it with an event handle that
has already been fulfilled is also undefined.

C/C++:

Prototype: void omp_fulfill_event(omp_event_handle_t event);

Fortran:

Interface: subroutine omp_fulfill_event(event)

integer (kind=omp_event_handle_kind) :: event

Reference: OpenMP specification v5.0, Section 3.5.1.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Environment Variables 21

3 OpenMP Environment Variables

The environment variables which beginning with OMP_ are defined by section 4 of the
OpenMP specification in version 4.5, while those beginning with GOMP_ are GNU exten-
sions.

3.1 OMP_CANCELLATION – Set whether cancellation is activated

Description:
If set to TRUE, the cancellation is activated. If set to FALSE or if unset, cancel-
lation is disabled and the cancel construct is ignored.

See also: Section 2.3 [omp get cancellation], page 5

Reference: OpenMP specification v4.5, Section 4.11

3.2 OMP_DISPLAY_ENV – Show OpenMP version and
environment variables

Description:
If set to TRUE, the OpenMP version number and the values associated with
the OpenMP environment variables are printed to stderr. If set to VERBOSE,
it additionally shows the value of the environment variables which are GNU
extensions. If undefined or set to FALSE, this information will not be shown.

Reference: OpenMP specification v4.5, Section 4.12

3.3 OMP_DEFAULT_DEVICE – Set the device used in target
regions

Description:
Set to choose the device which is used in a target region, unless the value is
overridden by omp_set_default_device or by a device clause. The value shall
be the nonnegative device number. If no device with the given device number
exists, the code is executed on the host. If unset, device number 0 will be used.

See also: Section 2.4 [omp get default device], page 6, Section 2.27
[omp set default device], page 13,

Reference: OpenMP specification v4.5, Section 4.13

3.4 OMP_DYNAMIC – Dynamic adjustment of threads

Description:
Enable or disable the dynamic adjustment of the number of threads within
a team. The value of this environment variable shall be TRUE or FALSE. If
undefined, dynamic adjustment is disabled by default.

See also: Section 2.28 [omp set dynamic], page 14

Reference: OpenMP specification v4.5, Section 4.3

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

22 GNU libgomp

3.5 OMP_MAX_ACTIVE_LEVELS – Set the maximum number of
nested parallel regions

Description:
Specifies the initial value for the maximum number of nested parallel regions.
The value of this variable shall be a positive integer. If undefined, then if OMP_
NESTED is defined and set to true, or if OMP_NUM_THREADS or OMP_PROC_BIND

are defined and set to a list with more than one item, the maximum number
of nested parallel regions will be initialized to the largest number supported,
otherwise it will be set to one.

See also: Section 2.29 [omp set max active levels], page 14, Section 3.7
[OMP NESTED], page 22

Reference: OpenMP specification v4.5, Section 4.9

3.6 OMP_MAX_TASK_PRIORITY – Set the maximum priority

number that can be set for a task.

Description:
Specifies the initial value for the maximum priority value that can be set for
a task. The value of this variable shall be a non-negative integer, and zero is
allowed. If undefined, the default priority is 0.

See also: Section 2.10 [omp get max task priority], page 8

Reference: OpenMP specification v4.5, Section 4.14

3.7 OMP_NESTED – Nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The value of this environment variable shall be
TRUE or FALSE. If set to TRUE, the number of maximum active nested regions
supported will by default be set to the maximum supported, otherwise it will
be set to one. If OMP_MAX_ACTIVE_LEVELS is defined, its setting will override
this setting. If both are undefined, nested parallel regions are enabled if OMP_
NUM_THREADS or OMP_PROC_BINDS are defined to a list with more than one item,
otherwise they are disabled by default.

See also: Section 2.29 [omp set max active levels], page 14, Section 2.30
[omp set nested], page 15

Reference: OpenMP specification v4.5, Section 4.6

3.8 OMP_NUM_THREADS – Specifies the number of threads to use

Description:
Specifies the default number of threads to use in parallel regions. The value of
this variable shall be a comma-separated list of positive integers; the value spec-
ifies the number of threads to use for the corresponding nested level. Specifying
more than one item in the list will automatically enable nesting by default. If
undefined one thread per CPU is used.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Environment Variables 23

See also: Section 2.31 [omp set num threads], page 15, Section 3.7 [OMP NESTED],
page 22

Reference: OpenMP specification v4.5, Section 4.2

3.9 OMP_PROC_BIND – Whether theads may be moved between
CPUs

Description:
Specifies whether threads may be moved between processors. If set to TRUE,
OpenMP theads should not be moved; if set to FALSE they may be moved.
Alternatively, a comma separated list with the values PRIMARY, MASTER, CLOSE
and SPREAD can be used to specify the thread affinity policy for the correspond-
ing nesting level. With PRIMARY and MASTER the worker threads are in the
same place partition as the primary thread. With CLOSE those are kept close to
the primary thread in contiguous place partitions. And with SPREAD a sparse
distribution across the place partitions is used. Specifying more than one item
in the list will automatically enable nesting by default.

When undefined, OMP_PROC_BIND defaults to TRUE when OMP_PLACES or GOMP_
CPU_AFFINITY is set and FALSE otherwise.

See also: Section 2.17 [omp get proc bind], page 10, Section 3.16 [GOMP CPU AFFINITY],
page 25, Section 3.7 [OMP NESTED], page 22, Section 3.10 [OMP PLACES],
page 23

Reference: OpenMP specification v4.5, Section 4.4

3.10 OMP_PLACES – Specifies on which CPUs the theads
should be placed

Description:
The thread placement can be either specified using an abstract name or by an
explicit list of the places. The abstract names threads, cores and sockets

can be optionally followed by a positive number in parentheses, which denotes
the how many places shall be created. With threads each place corresponds
to a single hardware thread; cores to a single core with the corresponding
number of hardware threads; and with sockets the place corresponds to a single
socket. The resulting placement can be shown by setting the OMP_DISPLAY_ENV
environment variable.

Alternatively, the placement can be specified explicitly as comma-separated list
of places. A place is specified by set of nonnegative numbers in curly braces,
denoting the denoting the hardware threads. The hardware threads belonging
to a place can either be specified as comma-separated list of nonnegative thread
numbers or using an interval. Multiple places can also be either specified by
a comma-separated list of places or by an interval. To specify an interval, a
colon followed by the count is placed after after the hardware thread number
or the place. Optionally, the length can be followed by a colon and the stride
number – otherwise a unit stride is assumed. For instance, the following specifies

https://www.openmp.org
https://www.openmp.org

24 GNU libgomp

the same places list: "{0,1,2}, {3,4,6}, {7,8,9}, {10,11,12}"; "{0:3},

{3:3}, {7:3}, {10:3}"; and "{0:2}:4:3".

If OMP_PLACES and GOMP_CPU_AFFINITY are unset and OMP_PROC_BIND is either
unset or false, threads may be moved between CPUs following no placement
policy.

See also: Section 3.9 [OMP PROC BIND], page 23, Section 3.16 [GOMP CPU AFFINITY],
page 25, Section 2.17 [omp get proc bind], page 10, Section 3.2
[OMP DISPLAY ENV], page 21

Reference: OpenMP specification v4.5, Section 4.5

3.11 OMP_STACKSIZE – Set default thread stack size

Description:
Set the default thread stack size in kilobytes, unless the number is suffixed by B,
K, M or G, in which case the size is, respectively, in bytes, kilobytes, megabytes or
gigabytes. This is different from pthread_attr_setstacksize which gets the
number of bytes as an argument. If the stack size cannot be set due to system
constraints, an error is reported and the initial stack size is left unchanged. If
undefined, the stack size is system dependent.

Reference: OpenMP specification v4.5, Section 4.7

3.12 OMP_SCHEDULE – How threads are scheduled

Description:
Allows to specify schedule type and chunk size. The value of the variable
shall have the form: type[,chunk] where type is one of static, dynamic,
guided or auto The optional chunk size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.

See also: Section 2.32 [omp set schedule], page 15

Reference: OpenMP specification v4.5, Sections 2.7.1.1 and 4.1

3.13 OMP_TARGET_OFFLOAD – Controls offloading behaviour

Description:
Specifies the behaviour with regard to offloading code to a device. This variable
can be set to one of three values - MANDATORY, DISABLED or DEFAULT.

If set to MANDATORY, the program will terminate with an error if the offload
device is not present or is not supported. If set to DISABLED, then offloading is
disabled and all code will run on the host. If set to DEFAULT, the program will
try offloading to the device first, then fall back to running code on the host if
it cannot.

If undefined, then the program will behave as if DEFAULT was set.

Reference: OpenMP specification v5.0, Section 6.17

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Environment Variables 25

3.14 OMP_THREAD_LIMIT – Set the maximum number of
threads

Description:
Specifies the number of threads to use for the whole program. The value of this
variable shall be a positive integer. If undefined, the number of threads is not
limited.

See also: Section 3.8 [OMP NUM THREADS], page 22, Section 2.22
[omp get thread limit], page 12

Reference: OpenMP specification v4.5, Section 4.10

3.15 OMP_WAIT_POLICY – How waiting threads are handled

Description:
Specifies whether waiting threads should be active or passive. If the value
is PASSIVE, waiting threads should not consume CPU power while waiting;
while the value is ACTIVE specifies that they should. If undefined, threads wait
actively for a short time before waiting passively.

See also: Section 3.19 [GOMP SPINCOUNT], page 26

Reference: OpenMP specification v4.5, Section 4.8

3.16 GOMP_CPU_AFFINITY – Bind threads to specific CPUs

Description:
Binds threads to specific CPUs. The variable should contain a space-separated
or comma-separated list of CPUs. This list may contain different kinds of
entries: either single CPU numbers in any order, a range of CPUs (M-N) or a
range with some stride (M-N:S). CPU numbers are zero based. For example,
GOMP_CPU_AFFINITY="0 3 1-2 4-15:2" will bind the initial thread to CPU 0,
the second to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to
CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and
then start assigning back from the beginning of the list. GOMP_CPU_AFFINITY=0
binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity spec-
ification is in effect. As a workaround, language-specific library functions, e.g.,
getenv in C or GET_ENVIRONMENT_VARIABLE in Fortran, may be used to query
the setting of the GOMP_CPU_AFFINITY environment variable. A defined CPU
affinity on startup cannot be changed or disabled during the runtime of the
application.

If both GOMP_CPU_AFFINITY and OMP_PROC_BIND are set, OMP_PROC_BIND has a
higher precedence. If neither has been set and OMP_PROC_BIND is unset, or when
OMP_PROC_BIND is set to FALSE, the host system will handle the assignment of
threads to CPUs.

See also: Section 3.10 [OMP PLACES], page 23, Section 3.9 [OMP PROC BIND],
page 23

https://www.openmp.org
https://www.openmp.org

26 GNU libgomp

3.17 GOMP_DEBUG – Enable debugging output

Description:
Enable debugging output. The variable should be set to 0 (disabled, also the
default if not set), or 1 (enabled).

If enabled, some debugging output will be printed during execution. This is
currently not specified in more detail, and subject to change.

3.18 GOMP_STACKSIZE – Set default thread stack size

Description:
Set the default thread stack size in kilobytes. This is different from pthread_

attr_setstacksize which gets the number of bytes as an argument. If the
stack size cannot be set due to system constraints, an error is reported and
the initial stack size is left unchanged. If undefined, the stack size is system
dependent.

See also: Section 3.11 [OMP STACKSIZE], page 24

Reference: GCC Patches Mailinglist, GCC Patches Mailinglist

3.19 GOMP_SPINCOUNT – Set the busy-wait spin count

Description:
Determines how long a threads waits actively with consuming CPU power be-
fore waiting passively without consuming CPU power. The value may be either
INFINITE, INFINITY to always wait actively or an integer which gives the num-
ber of spins of the busy-wait loop. The integer may optionally be followed
by the following suffixes acting as multiplication factors: k (kilo, thousand), M
(mega, million), G (giga, billion), or T (tera, trillion). If undefined, 0 is used
when OMP_WAIT_POLICY is PASSIVE, 300,000 is used when OMP_WAIT_POLICY is
undefined and 30 billion is used when OMP_WAIT_POLICY is ACTIVE. If there are
more OpenMP threads than available CPUs, 1000 and 100 spins are used for
OMP_WAIT_POLICY being ACTIVE or undefined, respectively; unless the GOMP_

SPINCOUNT is lower or OMP_WAIT_POLICY is PASSIVE.

See also: Section 3.15 [OMP WAIT POLICY], page 25

3.20 GOMP_RTEMS_THREAD_POOLS – Set the RTEMS specific
thread pools

Description:
This environment variable is only used on the RTEMS real-time operating
system. It determines the scheduler instance specific thread pools. The
format for GOMP_RTEMS_THREAD_POOLS is a list of optional <thread-pool-

count>[$<priority>]@<scheduler-name> configurations separated by :

where:

• <thread-pool-count> is the thread pool count for this scheduler instance.

https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html

Chapter 3: OpenMP Environment Variables 27

• $<priority> is an optional priority for the worker threads of a thread pool
according to pthread_setschedparam. In case a priority value is omitted,
then a worker thread will inherit the priority of the OpenMP primary
thread that created it. The priority of the worker thread is not changed
after creation, even if a new OpenMP primary thread using the worker has
a different priority.

• @<scheduler-name> is the scheduler instance name according to the
RTEMS application configuration.

In case no thread pool configuration is specified for a scheduler instance, then
each OpenMP primary thread of this scheduler instance will use its own dy-
namically allocated thread pool. To limit the worker thread count of the thread
pools, each OpenMP primary thread must call omp_set_num_threads.

Example: Lets suppose we have three scheduler instances IO, WRK0, and WRK1 with GOMP_

RTEMS_THREAD_POOLS set to "1@WRK0:3$4@WRK1". Then there are no thread
pool restrictions for scheduler instance IO. In the scheduler instance WRK0 there
is one thread pool available. Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP primary thread
that created it. In the scheduler instance WRK1 there are three thread pools
available and their worker threads run at priority four.

Chapter 4: Enabling OpenACC 29

4 Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time flag
‘-fopenacc’ must be specified. This enables the OpenACC directive #pragma acc in
C/C++ and !$acc directives in free form, c$acc, *$acc and !$acc directives in fixed form,
!$ conditional compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form,
for Fortran. The flag also arranges for automatic linking of the OpenACC runtime library
(Chapter 5 [OpenACC Runtime Library Routines], page 31).

See https://gcc.gnu.org/wiki/OpenACC for more information.

A complete description of all OpenACC directives accepted may be found in the
OpenACC Application Programming Interface manual, version 2.6.

https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 31

5 OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC specifications
in version 2.6. They have C linkage, and do not throw exceptions. Generally, they are
available only for the host, with the exception of acc_on_device, which is available for
both the host and the acceleration device.

5.1 acc_get_num_devices – Get number of devices for given
device type

Description
This function returns a value indicating the number of devices available for the
device type specified in devicetype.

C/C++:

Prototype: int acc_get_num_devices(acc_device_t devicetype);

Fortran:

Interface: integer function acc_get_num_devices(devicetype)

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6, section 3.2.1.

5.2 acc_set_device_type – Set type of device accelerator to
use.

Description
This function indicates to the runtime library which device type, specified in
devicetype, to use when executing a parallel or kernels region.

C/C++:

Prototype: acc_set_device_type(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_set_device_type(devicetype)

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6, section 3.2.2.

5.3 acc_get_device_type – Get type of device accelerator to
be used.

Description
This function returns what device type will be used when executing a parallel
or kernels region.

This function returns acc_device_none if acc_get_device_type is called from
acc_ev_device_init_start, acc_ev_device_init_end callbacks of the Ope-
nACC Profiling Interface (Chapter 9 [OpenACC Profiling Interface], page 57),
that is, if the device is currently being initialized.

https://www.openacc.org
https://www.openacc.org

32 GNU libgomp

C/C++:

Prototype: acc_device_t acc_get_device_type(void);

Fortran:

Interface: function acc_get_device_type(void)

integer(kind=acc_device_kind) acc_get_device_type

Reference: OpenACC specification v2.6, section 3.2.3.

5.4 acc_set_device_num – Set device number to use.

Description
This function will indicate to the runtime which device number, specified by
devicenum, associated with the specified device type devicetype.

C/C++:

Prototype: acc_set_device_num(int devicenum, acc_device_t devicetype);

Fortran:

Interface: subroutine acc_set_device_num(devicenum, devicetype)

integer devicenum

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6, section 3.2.4.

5.5 acc_get_device_num – Get device number to be used.

Description
This function returns which device number associated with the specified device
type devicetype, will be used when executing a parallel or kernels region.

C/C++:

Prototype: int acc_get_device_num(acc_device_t devicetype);

Fortran:

Interface: function acc_get_device_num(devicetype)

integer(kind=acc_device_kind) devicetype

integer acc_get_device_num

Reference: OpenACC specification v2.6, section 3.2.5.

5.6 acc_get_property – Get device property.

Description
These routines return the value of the specified property for the device being
queried according to devicenum and devicetype. Integer-valued and string-
valued properties are returned by acc_get_property and acc_get_property_

string respectively. The Fortran acc_get_property_string subroutine re-
turns the string retrieved in its fourth argument while the remaining entry
points are functions, which pass the return value as their result.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 33

Note for Fortran, only: the OpenACC technical committee corrected and,
hence, modified the interface introduced in OpenACC 2.6. The kind-value pa-
rameter acc_device_property has been renamed to acc_device_property_

kind for consistency and the return type of the acc_get_property function
is now a c_size_t integer instead of a acc_device_property integer. The
parameter acc_device_property will continue to be provided, but might be
removed in a future version of GCC.

C/C++:

Prototype: size_t acc_get_property(int devicenum, acc_device_t

devicetype, acc_device_property_t property);

Prototype: const char *acc_get_property_string(int devicenum,

acc_device_t devicetype, acc_device_property_t property);

Fortran:

Interface: function acc_get_property(devicenum, devicetype, property)

Interface: subroutine acc_get_property_string(devicenum, devicetype,

property, string)

use ISO_C_Binding, only: c_size_t

integer devicenum

integer(kind=acc_device_kind) devicetype

integer(kind=acc_device_property_kind) property

integer(kind=c_size_t) acc_get_property

character(*) string

Reference: OpenACC specification v2.6, section 3.2.6.

5.7 acc_async_test – Test for completion of a specific
asynchronous operation.

Description
This function tests for completion of the asynchronous operation specified in
arg. In C/C++, a non-zero value will be returned to indicate the specified
asynchronous operation has completed. While Fortran will return a true. If the
asynchronous operation has not completed, C/C++ returns a zero and Fortran
returns a false.

C/C++:

Prototype: int acc_async_test(int arg);

Fortran:

Interface: function acc_async_test(arg)

integer(kind=acc_handle_kind) arg

logical acc_async_test

Reference: OpenACC specification v2.6, section 3.2.9.

https://www.openacc.org
https://www.openacc.org

34 GNU libgomp

5.8 acc_async_test_all – Tests for completion of all
asynchronous operations.

Description
This function tests for completion of all asynchronous operations. In C/C++,
a non-zero value will be returned to indicate all asynchronous operations have
completed. While Fortran will return a true. If any asynchronous operation
has not completed, C/C++ returns a zero and Fortran returns a false.

C/C++:

Prototype: int acc_async_test_all(void);

Fortran:

Interface: function acc_async_test()

logical acc_get_device_num

Reference: OpenACC specification v2.6, section 3.2.10.

5.9 acc_wait – Wait for completion of a specific
asynchronous operation.

Description
This function waits for completion of the asynchronous operation specified in
arg.

C/C++:

Prototype: acc_wait(arg);

Prototype
(OpenACC 1.0
compatibility):

acc_async_wait(arg);

Fortran:

Interface: subroutine acc_wait(arg)

integer(acc_handle_kind) arg

Interface
(OpenACC 1.0
compatibility):

subroutine acc_async_wait(arg)

integer(acc_handle_kind) arg

Reference: OpenACC specification v2.6, section 3.2.11.

5.10 acc_wait_all – Waits for completion of all
asynchronous operations.

Description
This function waits for the completion of all asynchronous operations.

C/C++:

Prototype: acc_wait_all(void);

Prototype
(OpenACC 1.0
compatibility):

acc_async_wait_all(void);

https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 35

Fortran:

Interface: subroutine acc_wait_all()

Interface
(OpenACC 1.0
compatibility):

subroutine acc_async_wait_all()

Reference: OpenACC specification v2.6, section 3.2.13.

5.11 acc_wait_all_async – Wait for completion of all
asynchronous operations.

Description
This function enqueues a wait operation on the queue async for any and all
asynchronous operations that have been previously enqueued on any queue.

C/C++:

Prototype: acc_wait_all_async(int async);

Fortran:

Interface: subroutine acc_wait_all_async(async)

integer(acc_handle_kind) async

Reference: OpenACC specification v2.6, section 3.2.14.

5.12 acc_wait_async – Wait for completion of asynchronous
operations.

Description
This function enqueues a wait operation on queue async for any and all asyn-
chronous operations enqueued on queue arg.

C/C++:

Prototype: acc_wait_async(int arg, int async);

Fortran:

Interface: subroutine acc_wait_async(arg, async)

integer(acc_handle_kind) arg, async

Reference: OpenACC specification v2.6, section 3.2.12.

5.13 acc_init – Initialize runtime for a specific device type.

Description
This function initializes the runtime for the device type specified in devicetype.

C/C++:

Prototype: acc_init(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_init(devicetype)

integer(acc_device_kind) devicetype

Reference: OpenACC specification v2.6, section 3.2.7.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

36 GNU libgomp

5.14 acc_shutdown – Shuts down the runtime for a specific
device type.

Description
This function shuts down the runtime for the device type specified in devicetype.

C/C++:

Prototype: acc_shutdown(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_shutdown(devicetype)

integer(acc_device_kind) devicetype

Reference: OpenACC specification v2.6, section 3.2.8.

5.15 acc_on_device – Whether executing on a particular
device

Description:
This function returns whether the program is executing on a particular device
specified in devicetype. In C/C++ a non-zero value is returned to indicate
the device is executing on the specified device type. In Fortran, true will be
returned. If the program is not executing on the specified device type C/C++
will return a zero, while Fortran will return false.

C/C++:

Prototype: acc_on_device(acc_device_t devicetype);

Fortran:

Interface: function acc_on_device(devicetype)

integer(acc_device_kind) devicetype

logical acc_on_device

Reference: OpenACC specification v2.6, section 3.2.17.

5.16 acc_malloc – Allocate device memory.

Description
This function allocates len bytes of device memory. It returns the device address
of the allocated memory.

C/C++:

Prototype: d_void* acc_malloc(size_t len);

Reference: OpenACC specification v2.6, section 3.2.18.

5.17 acc_free – Free device memory.

Description
Free previously allocated device memory at the device address a.

C/C++:

Prototype: acc_free(d_void *a);

Reference: OpenACC specification v2.6, section 3.2.19.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 37

5.18 acc_copyin – Allocate device memory and copy host
memory to it.

Description
In C/C++, this function allocates len bytes of device memory and maps it to the
specified host address in a. The device address of the newly allocated device
memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: void *acc_copyin(h_void *a, size_t len);

Prototype: void *acc_copyin_async(h_void *a, size_t len, int async);

Fortran:

Interface: subroutine acc_copyin(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_copyin(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_copyin_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyin_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.20.

5.19 acc_present_or_copyin – If the data is not present on
the device, allocate device memory and copy from host
memory.

Description
This function tests if the host data specified by a and of length len is present
or not. If it is not present, then device memory will be allocated and the host
memory copied. The device address of the newly allocated device memory is
returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_copyin and acc_pcopyin exist for backward com-
patibility with OpenACC 2.0; use Section 5.18 [acc copyin], page 37 instead.

C/C++:

Prototype: void *acc_present_or_copyin(h_void *a, size_t len);

Prototype: void *acc_pcopyin(h_void *a, size_t len);

https://www.openacc.org

38 GNU libgomp

Fortran:

Interface: subroutine acc_present_or_copyin(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_present_or_copyin(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_pcopyin(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_pcopyin(a, len)

type, dimension(:[,:]...) :: a

integer len

Reference: OpenACC specification v2.6, section 3.2.20.

5.20 acc_create – Allocate device memory and map it to
host memory.

Description
This function allocates device memory and maps it to host memory specified by
the host address a with a length of len bytes. In C/C++, the function returns
the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: void *acc_create(h_void *a, size_t len);

Prototype: void *acc_create_async(h_void *a, size_t len, int async);

Fortran:

Interface: subroutine acc_create(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_create(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_create_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_create_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.21.

https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 39

5.21 acc_present_or_create – If the data is not present on
the device, allocate device memory and map it to host
memory.

Description
This function tests if the host data specified by a and of length len is present
or not. If it is not present, then device memory will be allocated and mapped
to host memory. In C/C++, the device address of the newly allocated device
memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_create and acc_pcreate exist for backward com-
patibility with OpenACC 2.0; use Section 5.20 [acc create], page 38 instead.

C/C++:

Prototype: void *acc_present_or_create(h_void *a, size_t len)

Prototype: void *acc_pcreate(h_void *a, size_t len)

Fortran:

Interface: subroutine acc_present_or_create(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_present_or_create(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_pcreate(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_pcreate(a, len)

type, dimension(:[,:]...) :: a

integer len

Reference: OpenACC specification v2.6, section 3.2.21.

5.22 acc_copyout – Copy device memory to host memory.

Description
This function copies mapped device memory to host memory which is specified
by host address a for a length len bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_copyout(h_void *a, size_t len);

Prototype: acc_copyout_async(h_void *a, size_t len, int async);

Prototype: acc_copyout_finalize(h_void *a, size_t len);

Prototype: acc_copyout_finalize_async(h_void *a, size_t len, int

async);

Fortran:

https://www.openacc.org

40 GNU libgomp

Interface: subroutine acc_copyout(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_copyout(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_copyout_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_copyout_finalize(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_copyout_finalize_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.22.

5.23 acc_delete – Free device memory.

Description
This function frees previously allocated device memory specified by the device
address a and the length of len bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_delete(h_void *a, size_t len);

Prototype: acc_delete_async(h_void *a, size_t len, int async);

Prototype: acc_delete_finalize(h_void *a, size_t len);

Prototype: acc_delete_finalize_async(h_void *a, size_t len, int async);

Fortran:

Interface: subroutine acc_delete(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_delete(a, len)

type, dimension(:[,:]...) :: a

integer len

https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 41

Interface: subroutine acc_delete_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_finalize(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_delete_finalize(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_delete_async_finalize(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_async_finalize(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.23.

5.24 acc_update_device – Update device memory from
mapped host memory.

Description
This function updates the device copy from the previously mapped host mem-
ory. The host memory is specified with the host address a and a length of len
bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_update_device(h_void *a, size_t len);

Prototype: acc_update_device(h_void *a, size_t len, async);

Fortran:

Interface: subroutine acc_update_device(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_update_device(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_update_device_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_update_device_async(a, len, async)

type, dimension(:[,:]...) :: a

https://www.openacc.org

42 GNU libgomp

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.24.

5.25 acc_update_self – Update host memory from mapped
device memory.

Description
This function updates the host copy from the previously mapped device mem-
ory. The host memory is specified with the host address a and a length of len
bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_update_self(h_void *a, size_t len);

Prototype: acc_update_self_async(h_void *a, size_t len, int async);

Fortran:

Interface: subroutine acc_update_self(a)

type, dimension(:[,:]...) :: a

Interface: subroutine acc_update_self(a, len)

type, dimension(:[,:]...) :: a

integer len

Interface: subroutine acc_update_self_async(a, async)

type, dimension(:[,:]...) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_update_self_async(a, len, async)

type, dimension(:[,:]...) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6, section 3.2.25.

5.26 acc_map_data – Map previously allocated device
memory to host memory.

Description
This function maps previously allocated device and host memory. The device
memory is specified with the device address d. The host memory is specified
with the host address h and a length of len.

C/C++:

Prototype: acc_map_data(h_void *h, d_void *d, size_t len);

Reference: OpenACC specification v2.6, section 3.2.26.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 43

5.27 acc_unmap_data – Unmap device memory from host
memory.

Description
This function unmaps previously mapped device and host memory. The latter
specified by h.

C/C++:

Prototype: acc_unmap_data(h_void *h);

Reference: OpenACC specification v2.6, section 3.2.27.

5.28 acc_deviceptr – Get device pointer associated with
specific host address.

Description
This function returns the device address that has been mapped to the host
address specified by h.

C/C++:

Prototype: void *acc_deviceptr(h_void *h);

Reference: OpenACC specification v2.6, section 3.2.28.

5.29 acc_hostptr – Get host pointer associated with specific
device address.

Description
This function returns the host address that has been mapped to the device
address specified by d.

C/C++:

Prototype: void *acc_hostptr(d_void *d);

Reference: OpenACC specification v2.6, section 3.2.29.

5.30 acc_is_present – Indicate whether host variable / array
is present on device.

Description
This function indicates whether the specified host address in a and a length of
len bytes is present on the device. In C/C++, a non-zero value is returned to
indicate the presence of the mapped memory on the device. A zero is returned
to indicate the memory is not mapped on the device.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes. If the host memory is mapped to device
memory, then a true is returned. Otherwise, a false is return to indicate the
mapped memory is not present.

C/C++:

Prototype: int acc_is_present(h_void *a, size_t len);

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

44 GNU libgomp

Fortran:

Interface: function acc_is_present(a)

type, dimension(:[,:]...) :: a

logical acc_is_present

Interface: function acc_is_present(a, len)

type, dimension(:[,:]...) :: a

integer len

logical acc_is_present

Reference: OpenACC specification v2.6, section 3.2.30.

5.31 acc_memcpy_to_device – Copy host memory to device
memory.

Description
This function copies host memory specified by host address of src to device
memory specified by the device address dest for a length of bytes bytes.

C/C++:

Prototype: acc_memcpy_to_device(d_void *dest, h_void *src, size_t

bytes);

Reference: OpenACC specification v2.6, section 3.2.31.

5.32 acc_memcpy_from_device – Copy device memory to host
memory.

Description
This function copies host memory specified by host address of src from device
memory specified by the device address dest for a length of bytes bytes.

C/C++:

Prototype: acc_memcpy_from_device(d_void *dest, h_void *src, size_t

bytes);

Reference: OpenACC specification v2.6, section 3.2.32.

5.33 acc_attach – Let device pointer point to device-pointer
target.

Description
This function updates a pointer on the device from pointing to a host-pointer
address to pointing to the corresponding device data.

C/C++:

Prototype: acc_attach(h_void **ptr);

Prototype: acc_attach_async(h_void **ptr, int async);

Reference: OpenACC specification v2.6, section 3.2.34.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 45

5.34 acc_detach – Let device pointer point to host-pointer
target.

Description
This function updates a pointer on the device from pointing to a device-pointer
address to pointing to the corresponding host data.

C/C++:

Prototype: acc_detach(h_void **ptr);

Prototype: acc_detach_async(h_void **ptr, int async);

Prototype: acc_detach_finalize(h_void **ptr);

Prototype: acc_detach_finalize_async(h_void **ptr, int async);

Reference: OpenACC specification v2.6, section 3.2.35.

5.35 acc_get_current_cuda_device – Get CUDA device
handle.

Description
This function returns the CUDA device handle. This handle is the same as
used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_current_cuda_device(void);

Reference: OpenACC specification v2.6, section A.2.1.1.

5.36 acc_get_current_cuda_context – Get CUDA context
handle.

Description
This function returns the CUDA context handle. This handle is the same as
used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_current_cuda_context(void);

Reference: OpenACC specification v2.6, section A.2.1.2.

5.37 acc_get_cuda_stream – Get CUDA stream handle.

Description
This function returns the CUDA stream handle for the queue async. This
handle is the same as used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_cuda_stream(int async);

Reference: OpenACC specification v2.6, section A.2.1.3.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

46 GNU libgomp

5.38 acc_set_cuda_stream – Set CUDA stream handle.

Description
This function associates the stream handle specified by stream with the queue
async.

This cannot be used to change the stream handle associated with acc_async_

sync.

The return value is not specified.

C/C++:

Prototype: int acc_set_cuda_stream(int async, void *stream);

Reference: OpenACC specification v2.6, section A.2.1.4.

5.39 acc_prof_register – Register callbacks.

Description:
This function registers callbacks.

C/C++:

Prototype: void acc_prof_register (acc_event_t, acc_prof_callback,

acc_register_t);

See also: Chapter 9 [OpenACC Profiling Interface], page 57

Reference: OpenACC specification v2.6, section 5.3.

5.40 acc_prof_unregister – Unregister callbacks.

Description:
This function unregisters callbacks.

C/C++:

Prototype: void acc_prof_unregister (acc_event_t, acc_prof_callback,

acc_register_t);

See also: Chapter 9 [OpenACC Profiling Interface], page 57

Reference: OpenACC specification v2.6, section 5.3.

5.41 acc_prof_lookup – Obtain inquiry functions.

Description:
Function to obtain inquiry functions.

C/C++:

Prototype: acc_query_fn acc_prof_lookup (const char *);

See also: Chapter 9 [OpenACC Profiling Interface], page 57

Reference: OpenACC specification v2.6, section 5.3.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 5: OpenACC Runtime Library Routines 47

5.42 acc_register_library – Library registration.

Description:
Function for library registration.

C/C++:

Prototype: void acc_register_library (acc_prof_reg, acc_prof_reg,

acc_prof_lookup_func);

See also: Chapter 9 [OpenACC Profiling Interface], page 57, Section 6.3
[ACC PROFLIB], page 49

Reference: OpenACC specification v2.6, section 5.3.

https://www.openacc.org

Chapter 6: OpenACC Environment Variables 49

6 OpenACC Environment Variables

The variables ACC_DEVICE_TYPE and ACC_DEVICE_NUM are defined by section 4 of the Ope-
nACC specification in version 2.0. The variable ACC_PROFLIB is defined by section 4 of the
OpenACC specification in version 2.6. The variable GCC_ACC_NOTIFY is used for diagnostic
purposes.

6.1 ACC_DEVICE_TYPE

Reference: OpenACC specification v2.6, section 4.1.

6.2 ACC_DEVICE_NUM

Reference: OpenACC specification v2.6, section 4.2.

6.3 ACC_PROFLIB

See also: Section 5.42 [acc register library], page 47, Chapter 9 [OpenACC Profiling
Interface], page 57

Reference: OpenACC specification v2.6, section 4.3.

6.4 GCC_ACC_NOTIFY

Description:
Print debug information pertaining to the accelerator.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 7: CUDA Streams Usage 51

7 CUDA Streams Usage

This applies to the nvptx plugin only.

The library provides elements that perform asynchronous movement of data and asyn-
chronous operation of computing constructs. This asynchronous functionality is imple-
mented by making use of CUDA streams1.

The primary means by that the asynchronous functionality is accessed is through the
use of those OpenACC directives which make use of the async and wait clauses. When
the async clause is first used with a directive, it creates a CUDA stream. If an async-

argument is used with the async clause, then the stream is associated with the specified
async-argument.

Following the creation of an association between a CUDA stream and the async-

argument of an async clause, both the wait clause and the wait directive can be used.
When either the clause or directive is used after stream creation, it creates a rendezvous
point whereby execution waits until all operations associated with the async-argument,
that is, stream, have completed.

Normally, the management of the streams that are created as a result of using the async
clause, is done without any intervention by the caller. This implies the association between
the async-argument and the CUDA stream will be maintained for the lifetime of the
program. However, this association can be changed through the use of the library function
acc_set_cuda_stream. When the function acc_set_cuda_stream is called, the CUDA
stream that was originally associated with the async clause will be destroyed. Caution
should be taken when changing the association as subsequent references to the async-

argument refer to a different CUDA stream.

1 See "Stream Management" in "CUDA Driver API", TRM-06703-001, Version 5.5, for additional
information

Chapter 8: OpenACC Library Interoperability 53

8 OpenACC Library Interoperability

8.1 Introduction

The OpenACC library uses the CUDA Driver API, and may interact with programs that
use the Runtime library directly, or another library based on the Runtime library, e.g.,
CUBLAS1. This chapter describes the use cases and what changes are required in order to
use both the OpenACC library and the CUBLAS and Runtime libraries within a program.

8.2 First invocation: NVIDIA CUBLAS library API

In this first use case (see below), a function in the CUBLAS library is called prior to any
of the functions in the OpenACC library. More specifically, the function cublasCreate().

When invoked, the function initializes the library and allocates the hardware resources
on the host and the device on behalf of the caller. Once the initialization and allocation
has completed, a handle is returned to the caller. The OpenACC library also requires
initialization and allocation of hardware resources. Since the CUBLAS library has already
allocated the hardware resources for the device, all that is left to do is to initialize the
OpenACC library and acquire the hardware resources on the host.

Prior to calling the OpenACC function that initializes the library and allocate the host
hardware resources, you need to acquire the device number that was allocated during the
call to cublasCreate(). The invoking of the runtime library function cudaGetDevice()

accomplishes this. Once acquired, the device number is passed along with the device type
as parameters to the OpenACC library function acc_set_device_num().

Once the call to acc_set_device_num() has completed, the OpenACC library uses the
context that was created during the call to cublasCreate(). In other words, both libraries
will be sharing the same context.

/* Create the handle */

s = cublasCreate(&h);

if (s != CUBLAS_STATUS_SUCCESS)

{

fprintf(stderr, "cublasCreate failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Get the device number */

e = cudaGetDevice(&dev);

if (e != cudaSuccess)

{

fprintf(stderr, "cudaGetDevice failed %d\n", e);

exit(EXIT_FAILURE);

}

/* Initialize OpenACC library and use device ’dev’ */

acc_set_device_num(dev, acc_device_nvidia);

Use Case 1

1 See section 2.26, "Interactions with the CUDA Driver API" in "CUDA Runtime API", Version 5.5,
and section 2.27, "VDPAU Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5, for
additional information on library interoperability.

54 GNU libgomp

8.3 First invocation: OpenACC library API

In this second use case (see below), a function in the OpenACC library is called prior to any
of the functions in the CUBLAS library. More specificially, the function acc_set_device_

num().

In the use case presented here, the function acc_set_device_num() is used to both
initialize the OpenACC library and allocate the hardware resources on the host and the
device. In the call to the function, the call parameters specify which device to use and what
device type to use, i.e., acc_device_nvidia. It should be noted that this is but one method
to initialize the OpenACC library and allocate the appropriate hardware resources. Other
methods are available through the use of environment variables and these will be discussed
in the next section.

Once the call to acc_set_device_num() has completed, other OpenACC functions can
be called as seen with multiple calls being made to acc_copyin(). In addition, calls can
be made to functions in the CUBLAS library. In the use case a call to cublasCreate() is
made subsequent to the calls to acc_copyin(). As seen in the previous use case, a call to
cublasCreate() initializes the CUBLAS library and allocates the hardware resources on the
host and the device. However, since the device has already been allocated, cublasCreate()
will only initialize the CUBLAS library and allocate the appropriate hardware resources on
the host. The context that was created as part of the OpenACC initialization is shared
with the CUBLAS library, similarly to the first use case.

dev = 0;

acc_set_device_num(dev, acc_device_nvidia);

/* Copy the first set to the device */

d_X = acc_copyin(&h_X[0], N * sizeof (float));

if (d_X == NULL)

{

fprintf(stderr, "copyin error h_X\n");

exit(EXIT_FAILURE);

}

/* Copy the second set to the device */

d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));

if (d_Y == NULL)

{

fprintf(stderr, "copyin error h_Y1\n");

exit(EXIT_FAILURE);

}

/* Create the handle */

s = cublasCreate(&h);

if (s != CUBLAS_STATUS_SUCCESS)

{

fprintf(stderr, "cublasCreate failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Perform saxpy using CUBLAS library function */

s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);

if (s != CUBLAS_STATUS_SUCCESS)

{

Chapter 8: OpenACC Library Interoperability 55

fprintf(stderr, "cublasSaxpy failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Copy the results from the device */

acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));

Use Case 2

8.4 OpenACC library and environment variables

There are two environment variables associated with the OpenACC library that may be
used to control the device type and device number: ACC_DEVICE_TYPE and ACC_DEVICE_

NUM, respectively. These two environment variables can be used as an alternative to calling
acc_set_device_num(). As seen in the second use case, the device type and device number
were specified using acc_set_device_num(). If however, the aforementioned environment
variables were set, then the call to acc_set_device_num() would not be required.

The use of the environment variables is only relevant when an OpenACC function is
called prior to a call to cudaCreate(). If cudaCreate() is called prior to a call to an
OpenACC function, then you must call acc_set_device_num()2

2 More complete information about ACC_DEVICE_TYPE and ACC_DEVICE_NUM can be found in sections 4.1
and 4.2 of the OpenACC Application Programming Interface, Version 2.6.

https://www.openacc.org

Chapter 9: OpenACC Profiling Interface 57

9 OpenACC Profiling Interface

9.1 Implementation Status and Implementation-Defined
Behavior

We’re implementing the OpenACC Profiling Interface as defined by the OpenACC 2.6
specification. We’re clarifying some aspects here as implementation-defined behavior, while
they’re still under discussion within the OpenACC Technical Committee.

This implementation is tuned to keep the performance impact as low as possible for the
(very common) case that the Profiling Interface is not enabled. This is relevant, as the
Profiling Interface affects all the hot code paths (in the target code, not in the offloaded
code). Users of the OpenACC Profiling Interface can be expected to understand that
performance will be impacted to some degree once the Profiling Interface has gotten enabled:
for example, because of the runtime (libgomp) calling into a third-party library for every
event that has been registered.

We’re not yet accounting for the fact that OpenACC events may occur during event
processing. We just handle one case specially, as required by CUDA 9.0 nvprof, that
acc_get_device_type (Section 5.3 [acc get device type], page 31)) may be called from
acc_ev_device_init_start, acc_ev_device_init_end callbacks.

We’re not yet implementing initialization via a acc_register_library function
that is either statically linked in, or dynamically via LD_PRELOAD. Initialization via
acc_register_library functions dynamically loaded via the ACC_PROFLIB environment
variable does work, as does directly calling acc_prof_register, acc_prof_unregister,
acc_prof_lookup.

As currently there are no inquiry functions defined, calls to acc_prof_lookup will always
return NULL.

There aren’t separate start, stop events defined for the event types acc_ev_create, acc_
ev_delete, acc_ev_alloc, acc_ev_free. It’s not clear if these should be triggered before
or after the actual device-specific call is made. We trigger them after.

Remarks about data provided to callbacks:

acc_prof_info.event_type

It’s not clear if for nested event callbacks (for example, acc_ev_enqueue_

launch_start as part of a parent compute construct), this should be set for
the nested event (acc_ev_enqueue_launch_start), or if the value of the parent
construct should remain (acc_ev_compute_construct_start). In this imple-
mentation, the value will generally correspond to the innermost nested event
type.

acc_prof_info.device_type

• For acc_ev_compute_construct_start, and in presence of an if clause
with false argument, this will still refer to the offloading device type. It’s
not clear if that’s the expected behavior.

• Complementary to the item before, for acc_ev_compute_construct_end,
this is set to acc_device_host in presence of an if clause with false ar-
gument. It’s not clear if that’s the expected behavior.

58 GNU libgomp

acc_prof_info.thread_id

Always -1; not yet implemented.

acc_prof_info.async

• Not yet implemented correctly for acc_ev_compute_construct_start.

• In a compute construct, for host-fallback execution/acc_device_host it
will always be acc_async_sync. It’s not clear if that’s the expected be-
havior.

• For acc_ev_device_init_start and acc_ev_device_init_end, it will al-
ways be acc_async_sync. It’s not clear if that’s the expected behavior.

acc_prof_info.async_queue

There is no limited number of asynchronous queues in libgomp. This will always
have the same value as acc_prof_info.async.

acc_prof_info.src_file

Always NULL; not yet implemented.

acc_prof_info.func_name

Always NULL; not yet implemented.

acc_prof_info.line_no

Always -1; not yet implemented.

acc_prof_info.end_line_no

Always -1; not yet implemented.

acc_prof_info.func_line_no

Always -1; not yet implemented.

acc_prof_info.func_end_line_no

Always -1; not yet implemented.

acc_event_info.event_type, acc_event_info.*.event_type
Relating to acc_prof_info.event_type discussed above, in this implementa-
tion, this will always be the same value as acc_prof_info.event_type.

acc_event_info.*.parent_construct

• Will be acc_construct_parallel for all OpenACC compute constructs
as well as many OpenACC Runtime API calls; should be the one matching
the actual construct, or acc_construct_runtime_api, respectively.

• Will be acc_construct_enter_data or acc_construct_exit_data when
processing variable mappings specified in OpenACC declare directives;
should be acc_construct_declare.

• For implicit acc_ev_device_init_start, acc_ev_device_init_

end, and explicit as well as implicit acc_ev_alloc, acc_ev_free,
acc_ev_enqueue_upload_start, acc_ev_enqueue_upload_end,
acc_ev_enqueue_download_start, and acc_ev_enqueue_download_end,
will be acc_construct_parallel; should reflect the real parent construct.

acc_event_info.*.implicit

For acc_ev_alloc, acc_ev_free, acc_ev_enqueue_upload_start,
acc_ev_enqueue_upload_end, acc_ev_enqueue_download_start, and

Chapter 9: OpenACC Profiling Interface 59

acc_ev_enqueue_download_end, this currently will be 1 also for explicit
usage.

acc_event_info.data_event.var_name

Always NULL; not yet implemented.

acc_event_info.data_event.host_ptr

For acc_ev_alloc, and acc_ev_free, this is always NULL.

typedef union acc_api_info

. . . as printed in 5.2.3. Third Argument: API-Specific Information. This should
obviously be typedef struct acc_api_info.

acc_api_info.device_api

Possibly not yet implemented correctly for acc_ev_compute_construct_start,
acc_ev_device_init_start, acc_ev_device_init_end: will always be acc_

device_api_none for these event types. For acc_ev_enter_data_start, it
will be acc_device_api_none in some cases.

acc_api_info.device_type

Always the same as acc_prof_info.device_type.

acc_api_info.vendor

Always -1; not yet implemented.

acc_api_info.device_handle

Always NULL; not yet implemented.

acc_api_info.context_handle

Always NULL; not yet implemented.

acc_api_info.async_handle

Always NULL; not yet implemented.

Remarks about certain event types:

acc_ev_device_init_start, acc_ev_device_init_end
• Whan a compute construct triggers implicit acc_ev_device_init_start

and acc_ev_device_init_end events, they currently aren’t nested
within the corresponding acc_ev_compute_construct_start and
acc_ev_compute_construct_end, but they’re currently observed before
acc_ev_compute_construct_start. It’s not clear what to do: the
standard asks us provide a lot of details to the acc_ev_compute_

construct_start callback, without (implicitly) initializing a device
before?

• Callbacks for these event types will not be invoked for calls to the acc_

set_device_type and acc_set_device_num functions. It’s not clear if
they should be.

acc_ev_enter_data_start, acc_ev_enter_data_end, acc_ev_exit_data_start,
acc_ev_exit_data_end

• Callbacks for these event types will also be invoked for OpenACC host data
constructs. It’s not clear if they should be.

60 GNU libgomp

• Callbacks for these event types will also be invoked when processing vari-
able mappings specified in OpenACC declare directives. It’s not clear if
they should be.

Callbacks for the following event types will be invoked, but dispatch and information
provided therein has not yet been thoroughly reviewed:

• acc_ev_alloc

• acc_ev_free

• acc_ev_update_start, acc_ev_update_end

• acc_ev_enqueue_upload_start, acc_ev_enqueue_upload_end

• acc_ev_enqueue_download_start, acc_ev_enqueue_download_end

During device initialization, and finalization, respectively, callbacks for the following
event types will not yet be invoked:

• acc_ev_alloc

• acc_ev_free

Callbacks for the following event types have not yet been implemented, so currently
won’t be invoked:

• acc_ev_device_shutdown_start, acc_ev_device_shutdown_end

• acc_ev_runtime_shutdown

• acc_ev_create, acc_ev_delete

• acc_ev_wait_start, acc_ev_wait_end

For the following runtime library functions, not all expected callbacks will be invoked
(mostly concerning implicit device initialization):

• acc_get_num_devices

• acc_set_device_type

• acc_get_device_type

• acc_set_device_num

• acc_get_device_num

• acc_init

• acc_shutdown

Aside from implicit device initialization, for the following runtime library functions, no
callbacks will be invoked for shared-memory offloading devices (it’s not clear if they should
be):

• acc_malloc

• acc_free

• acc_copyin, acc_present_or_copyin, acc_copyin_async

• acc_create, acc_present_or_create, acc_create_async

• acc_copyout, acc_copyout_async, acc_copyout_finalize, acc_copyout_

finalize_async

• acc_delete, acc_delete_async, acc_delete_finalize, acc_delete_finalize_

async

Chapter 9: OpenACC Profiling Interface 61

• acc_update_device, acc_update_device_async

• acc_update_self, acc_update_self_async

• acc_map_data, acc_unmap_data

• acc_memcpy_to_device, acc_memcpy_to_device_async

• acc_memcpy_from_device, acc_memcpy_from_device_async

Chapter 10: The libgomp ABI 63

10 The libgomp ABI

The following sections present notes on the external ABI as presented by libgomp. Only
maintainers should need them.

10.1 Implementing MASTER construct
if (omp_get_thread_num () == 0)

block

Alternately, we generate two copies of the parallel subfunction and only include this in
the version run by the primary thread. Surely this is not worthwhile though...

10.2 Implementing CRITICAL construct

Without a specified name,

void GOMP_critical_start (void);

void GOMP_critical_end (void);

so that we don’t get COPY relocations from libgomp to the main application.

With a specified name, use omp set lock and omp unset lock with name being trans-
formed into a variable declared like

omp_lock_t gomp_critical_user_<name> __attribute__((common))

Ideally the ABI would specify that all zero is a valid unlocked state, and so we wouldn’t
need to initialize this at startup.

10.3 Implementing ATOMIC construct

The target should implement the __sync builtins.

Failing that we could add

void GOMP_atomic_enter (void)

void GOMP_atomic_exit (void)

which reuses the regular lock code, but with yet another lock object private to the library.

10.4 Implementing FLUSH construct

Expands to the __sync_synchronize builtin.

10.5 Implementing BARRIER construct
void GOMP_barrier (void)

10.6 Implementing THREADPRIVATE construct

In most cases we can map this directly to __thread. Except that OMP allows constructors
for C++ objects. We can either refuse to support this (how often is it used?) or we can
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions to the main pthreads library.
Failing that, we can have a set of entry points to register ctor functions to be called.

64 GNU libgomp

10.7 Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent of a PARALLEL block, the
variable becomes a local variable in the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new automatic variable within
the current function. This preserves the semantic of new variable creation.

10.8 Implementing FIRSTPRIVATE LASTPRIVATE
COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks. Create a private struct for communicating
between the parent and subfunction. In the parent, copy in values for scalar and "small"
structs; copy in addresses for others TREE ADDRESSABLE types. In the subfunction,
copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks. The only thing I can
figure is that we do something like:

#pragma omp for firstprivate(x) lastprivate(y)

for (int i = 0; i < n; ++i)

body;

which becomes

{

int x = x, y;

// for stuff

if (i == n)

y = y;

}

where the "x=x" and "y=y" assignments actually have different uids for the two vari-
ables, i.e. not something you could write directly in C. Presumably this only makes sense
if the "outer" x and y are global variables.

COPYPRIVATE would work the same way, except the structure broadcast would have
to happen via SINGLE machinery instead.

10.9 Implementing REDUCTION clause

The private struct mentioned in the previous section should have a pointer to an array of
the type of the variable, indexed by the thread’s team id. The thread stores its final value
into the array, and after the barrier, the primary thread iterates over the array to collect
the values.

10.10 Implementing PARALLEL construct
#pragma omp parallel

{

body;

}

becomes

void subfunction (void *data)

{

Chapter 10: The libgomp ABI 65

use data;

body;

}

setup data;

GOMP_parallel_start (subfunction, &data, num_threads);

subfunction (&data);

GOMP_parallel_end ();

void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)

The FN argument is the subfunction to be run in parallel.

The DATA argument is a pointer to a structure used to communicate data in and out
of the subfunction, as discussed above with respect to FIRSTPRIVATE et al.

The NUM THREADS argument is 1 if an IF clause is present and false, or the value of
the NUM THREADS clause, if present, or 0.

The function needs to create the appropriate number of threads and/or launch them
from the dock. It needs to create the team structure and assign team ids.

void GOMP_parallel_end (void)

Tears down the team and returns us to the previous omp_in_parallel() state.

10.11 Implementing FOR construct
#pragma omp parallel for

for (i = lb; i <= ub; i++)

body;

becomes

void subfunction (void *data)

{

long _s0, _e0;

while (GOMP_loop_static_next (&_s0, &_e0))

{

long _e1 = _e0, i;

for (i = _s0; i < _e1; i++)

body;

}

GOMP_loop_end_nowait ();

}

GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);

subfunction (NULL);

GOMP_parallel_end ();

#pragma omp for schedule(runtime)

for (i = 0; i < n; i++)

body;

becomes

{

long i, _s0, _e0;

if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))

do {

long _e1 = _e0;

for (i = _s0, i < _e0; i++)

body;

} while (GOMP_loop_runtime_next (&_s0, _&e0));

66 GNU libgomp

GOMP_loop_end ();

}

Note that while it looks like there is trickiness to propagating a non-constant STEP,
there isn’t really. We’re explicitly allowed to evaluate it as many times as we want, and
any variables involved should automatically be handled as PRIVATE or SHARED like any
other variables. So the expression should remain evaluable in the subfunction. We can also
pull it into a local variable if we like, but since its supposed to remain unchanged, we can
also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be able to
get away with no work-sharing context at all, since we can simply perform the arithmetic
directly in each thread to divide up the iterations. Which would mean that we wouldn’t
need to call any of these routines.

There are separate routines for handling loops with an ORDERED clause. Bookkeeping
for that is non-trivial...

10.12 Implementing ORDERED construct
void GOMP_ordered_start (void)

void GOMP_ordered_end (void)

10.13 Implementing SECTIONS construct

A block as

#pragma omp sections

{

#pragma omp section

stmt1;

#pragma omp section

stmt2;

#pragma omp section

stmt3;

}

becomes

for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())

switch (i)

{

case 1:

stmt1;

break;

case 2:

stmt2;

break;

case 3:

stmt3;

break;

}

GOMP_barrier ();

10.14 Implementing SINGLE construct

A block like

Chapter 10: The libgomp ABI 67

#pragma omp single

{

body;

}

becomes
if (GOMP_single_start ())

body;

GOMP_barrier ();

while
#pragma omp single copyprivate(x)

body;

becomes
datap = GOMP_single_copy_start ();

if (datap == NULL)

{

body;

data.x = x;

GOMP_single_copy_end (&data);

}

else

x = datap->x;

GOMP_barrier ();

10.15 Implementing OpenACC’s PARALLEL construct
void GOACC_parallel ()

Chapter 11: Reporting Bugs 69

11 Reporting Bugs

Bugs in the GNU Offloading and Multi Processing Runtime Library should be reported via
Bugzilla. Please add "openacc", or "openmp", or both to the keywords field in the bug
report, as appropriate.

https://gcc.gnu.org/bugzilla/

GNU General Public License 71

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

72 GNU libgomp

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 73

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

74 GNU libgomp

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 75

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

76 GNU libgomp

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 77

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

78 GNU libgomp

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 79

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

80 GNU libgomp

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 81

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read https://www.gnu.org/licenses/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

GNU Free Documentation License 83

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

84 GNU libgomp

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 85

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

86 GNU libgomp

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 87

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

88 GNU libgomp

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 89

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

90 GNU libgomp

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Funding Free Software 91

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

Library Index 93

Library Index

A
acc get property . 32
acc get property string . 32

E
Environment Variable 21, 22, 23, 24, 25, 26

F
FDL, GNU Free Documentation License 83

I
Implementation specific setting 22, 24, 26

Introduction . 1

	Introduction
	Enabling OpenMP
	OpenMP Runtime Library Routines
	omp_get_active_level -- Number of parallel regions
	omp_get_ancestor_thread_num -- Ancestor thread ID
	omp_get_cancellation -- Whether cancellation support is enabled
	omp_get_default_device -- Get the default device for target regions
	omp_get_dynamic -- Dynamic teams setting
	omp_get_initial_device -- Return device number of initial device
	omp_get_device_num -- Return device number of current device
	omp_get_level -- Obtain the current nesting level
	omp_get_max_active_levels -- Current maximum number of active regions
	omp_get_max_task_priority -- Maximum priority value
	omp_get_max_threads -- Maximum number of threads of parallel region
	omp_get_nested -- Nested parallel regions
	omp_get_num_devices -- Number of target devices
	omp_get_num_procs -- Number of processors online
	omp_get_num_teams -- Number of teams
	omp_get_num_threads -- Size of the active team
	omp_get_proc_bind -- Whether theads may be moved between CPUs
	omp_get_schedule -- Obtain the runtime scheduling method
	omp_get_supported_active_levels -- Maximum number of active regions supported
	omp_get_team_num -- Get team number
	omp_get_team_size -- Number of threads in a team
	omp_get_thread_limit -- Maximum number of threads
	omp_get_thread_num -- Current thread ID
	omp_in_parallel -- Whether a parallel region is active
	omp_in_final -- Whether in final or included task region
	omp_is_initial_device -- Whether executing on the host device
	omp_set_default_device -- Set the default device for target regions
	omp_set_dynamic -- Enable/disable dynamic teams
	omp_set_max_active_levels -- Limits the number of active parallel regions
	omp_set_nested -- Enable/disable nested parallel regions
	omp_set_num_threads -- Set upper team size limit
	omp_set_schedule -- Set the runtime scheduling method
	omp_init_lock -- Initialize simple lock
	omp_set_lock -- Wait for and set simple lock
	omp_test_lock -- Test and set simple lock if available
	omp_unset_lock -- Unset simple lock
	omp_destroy_lock -- Destroy simple lock
	omp_init_nest_lock -- Initialize nested lock
	omp_set_nest_lock -- Wait for and set nested lock
	omp_test_nest_lock -- Test and set nested lock if available
	omp_unset_nest_lock -- Unset nested lock
	omp_destroy_nest_lock -- Destroy nested lock
	omp_get_wtick -- Get timer precision
	omp_get_wtime -- Elapsed wall clock time
	omp_fulfill_event -- Fulfill and destroy an OpenMP event

	OpenMP Environment Variables
	OMP_CANCELLATION -- Set whether cancellation is activated
	OMP_DISPLAY_ENV -- Show OpenMP version and environment variables
	OMP_DEFAULT_DEVICE -- Set the device used in target regions
	OMP_DYNAMIC -- Dynamic adjustment of threads
	OMP_MAX_ACTIVE_LEVELS -- Set the maximum number of nested parallel regions
	OMP_MAX_TASK_PRIORITY -- Set the maximum priority
	OMP_NESTED -- Nested parallel regions
	OMP_NUM_THREADS -- Specifies the number of threads to use
	OMP_PROC_BIND -- Whether theads may be moved between CPUs
	OMP_PLACES -- Specifies on which CPUs the theads should be placed
	OMP_STACKSIZE -- Set default thread stack size
	OMP_SCHEDULE -- How threads are scheduled
	OMP_TARGET_OFFLOAD -- Controls offloading behaviour
	OMP_THREAD_LIMIT -- Set the maximum number of threads
	OMP_WAIT_POLICY -- How waiting threads are handled
	GOMP_CPU_AFFINITY -- Bind threads to specific CPUs
	GOMP_DEBUG -- Enable debugging output
	GOMP_STACKSIZE -- Set default thread stack size
	GOMP_SPINCOUNT -- Set the busy-wait spin count
	GOMP_RTEMS_THREAD_POOLS -- Set the RTEMS specific thread pools

	Enabling OpenACC
	OpenACC Runtime Library Routines
	acc_get_num_devices -- Get number of devices for given device type
	acc_set_device_type -- Set type of device accelerator to use.
	acc_get_device_type -- Get type of device accelerator to be used.
	acc_set_device_num -- Set device number to use.
	acc_get_device_num -- Get device number to be used.
	acc_get_property -- Get device property.
	acc_async_test -- Test for completion of a specific asynchronous operation.
	acc_async_test_all -- Tests for completion of all asynchronous operations.
	acc_wait -- Wait for completion of a specific asynchronous operation.
	acc_wait_all -- Waits for completion of all asynchronous operations.
	acc_wait_all_async -- Wait for completion of all asynchronous operations.
	acc_wait_async -- Wait for completion of asynchronous operations.
	acc_init -- Initialize runtime for a specific device type.
	acc_shutdown -- Shuts down the runtime for a specific device type.
	acc_on_device -- Whether executing on a particular device
	acc_malloc -- Allocate device memory.
	acc_free -- Free device memory.
	acc_copyin -- Allocate device memory and copy host memory to it.
	acc_present_or_copyin -- If the data is not present on the device, allocate device memory and copy from host memory.
	acc_create -- Allocate device memory and map it to host memory.
	acc_present_or_create -- If the data is not present on the device, allocate device memory and map it to host memory.
	acc_copyout -- Copy device memory to host memory.
	acc_delete -- Free device memory.
	acc_update_device -- Update device memory from mapped host memory.
	acc_update_self -- Update host memory from mapped device memory.
	acc_map_data -- Map previously allocated device memory to host memory.
	acc_unmap_data -- Unmap device memory from host memory.
	acc_deviceptr -- Get device pointer associated with specific host address.
	acc_hostptr -- Get host pointer associated with specific device address.
	acc_is_present -- Indicate whether host variable / array is present on device.
	acc_memcpy_to_device -- Copy host memory to device memory.
	acc_memcpy_from_device -- Copy device memory to host memory.
	acc_attach -- Let device pointer point to device-pointer target.
	acc_detach -- Let device pointer point to host-pointer target.
	acc_get_current_cuda_device -- Get CUDA device handle.
	acc_get_current_cuda_context -- Get CUDA context handle.
	acc_get_cuda_stream -- Get CUDA stream handle.
	acc_set_cuda_stream -- Set CUDA stream handle.
	acc_prof_register -- Register callbacks.
	acc_prof_unregister -- Unregister callbacks.
	acc_prof_lookup -- Obtain inquiry functions.
	acc_register_library -- Library registration.

	OpenACC Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB
	GCC_ACC_NOTIFY

	CUDA Streams Usage
	OpenACC Library Interoperability
	Introduction
	First invocation: NVIDIA CUBLAS library API
	First invocation: OpenACC library API
	OpenACC library and environment variables

	OpenACC Profiling Interface
	Implementation Status and Implementation-Defined Behavior

	The libgomp ABI
	Implementing MASTER construct
	Implementing CRITICAL construct
	Implementing ATOMIC construct
	Implementing FLUSH construct
	Implementing BARRIER construct
	Implementing THREADPRIVATE construct
	Implementing PRIVATE clause
	Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
	Implementing REDUCTION clause
	Implementing PARALLEL construct
	Implementing FOR construct
	Implementing ORDERED construct
	Implementing SECTIONS construct
	Implementing SINGLE construct
	Implementing OpenACC's PARALLEL construct

	Reporting Bugs
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Library Index

