
GNAT User’s Guide for Native Platforms
GNAT User’s Guide for Native Platforms , Dec 11, 2020

AdaCore

Copyright c© 2008-2021, Free Software Foundation

i

Table of Contents

1 About This Guide . 2
1.1 What This Guide Contains . 2
1.2 What You Should Know before Reading This Guide 2
1.3 Related Information . 3
1.4 Conventions . 3

2 Getting Started with GNAT 4
2.1 System Requirements . 4
2.2 Running GNAT . 4
2.3 Running a Simple Ada Program . 4
2.4 Running a Program with Multiple Units . 5

3 The GNAT Compilation Model 7
3.1 Source Representation . 7
3.2 Foreign Language Representation . 8

3.2.1 Latin-1 . 8
3.2.2 Other 8-Bit Codes . 8
3.2.3 Wide Character Encodings . 9
3.2.4 Wide Wide Character Encodings . 10

3.3 File Naming Topics and Utilities . 11
3.3.1 File Naming Rules . 11
3.3.2 Using Other File Names . 12
3.3.3 Alternative File Naming Schemes . 13
3.3.4 Handling Arbitrary File Naming Conventions with gnatname

. 15
3.3.4.1 Arbitrary File Naming Conventions 15
3.3.4.2 Running gnatname . 15
3.3.4.3 Switches for gnatname . 16
3.3.4.4 Examples of gnatname Usage . 18

3.3.5 File Name Krunching with gnatkr . 18
3.3.5.1 About gnatkr . 18
3.3.5.2 Using gnatkr . 18
3.3.5.3 Krunching Method . 19
3.3.5.4 Examples of gnatkr Usage . 20

3.3.6 Renaming Files with gnatchop . 20
3.3.6.1 Handling Files with Multiple Units 20
3.3.6.2 Operating gnatchop in Compilation Mode 21
3.3.6.3 Command Line for gnatchop . 22
3.3.6.4 Switches for gnatchop . 23
3.3.6.5 Examples of gnatchop Usage . 24

3.4 Configuration Pragmas . 24
3.4.1 Handling of Configuration Pragmas . 26

ii

3.4.2 The Configuration Pragmas Files . 27
3.5 Generating Object Files . 28
3.6 Source Dependencies . 28
3.7 The Ada Library Information Files . 29
3.8 Binding an Ada Program . 30
3.9 GNAT and Libraries . 31

3.9.1 Introduction to Libraries in GNAT . 31
3.9.2 General Ada Libraries . 31

3.9.2.1 Building a library . 31
3.9.2.2 Installing a library . 33
3.9.2.3 Using a library . 34

3.9.3 Stand-alone Ada Libraries . 35
3.9.3.1 Introduction to Stand-alone Libraries 35
3.9.3.2 Building a Stand-alone Library . 35
3.9.3.3 Creating a Stand-alone Library to be used in a non-Ada

context . 37
3.9.3.4 Restrictions in Stand-alone Libraries 38

3.9.4 Rebuilding the GNAT Run-Time Library 39
3.10 Conditional Compilation . 39

3.10.1 Modeling Conditional Compilation in Ada 39
3.10.1.1 Use of Boolean Constants . 39
3.10.1.2 Debugging - A Special Case . 40
3.10.1.3 Conditionalizing Declarations . 41
3.10.1.4 Use of Alternative Implementations 42
3.10.1.5 Preprocessing . 44

3.10.2 Preprocessing with gnatprep . 44
3.10.2.1 Preprocessing Symbols . 44
3.10.2.2 Using gnatprep . 44
3.10.2.3 Switches for gnatprep . 45
3.10.2.4 Form of Definitions File . 46
3.10.2.5 Form of Input Text for gnatprep 47

3.10.3 Integrated Preprocessing . 48
3.11 Mixed Language Programming . 51

3.11.1 Interfacing to C . 51
3.11.2 Calling Conventions . 54
3.11.3 Building Mixed Ada and C++ Programs 57

3.11.3.1 Interfacing to C++ . 57
3.11.3.2 Linking a Mixed C++ & Ada Program 58
3.11.3.3 A Simple Example . 59
3.11.3.4 Interfacing with C++ constructors 61
3.11.3.5 Interfacing with C++ at the Class Level 64

3.11.4 Generating Ada Bindings for C and C++ headers 68
3.11.4.1 Running the Binding Generator . 69
3.11.4.2 Generating Bindings for C++ Headers 70
3.11.4.3 Switches . 72

3.11.5 Generating C Headers for Ada Specifications 72
3.11.5.1 Running the C Header Generator 72

3.12 GNAT and Other Compilation Models . 73

iii

3.12.1 Comparison between GNAT and C/C++ Compilation
Models . 74

3.12.2 Comparison between GNAT and Conventional Ada Library
Models . 74

3.13 Using GNAT Files with External Tools . 75
3.13.1 Using Other Utility Programs with GNAT 75
3.13.2 The External Symbol Naming Scheme of GNAT 75

4 Building Executable Programs with GNAT
. 77

4.1 Building with gnatmake . 77
4.1.1 Running gnatmake . 77
4.1.2 Switches for gnatmake . 78
4.1.3 Mode Switches for gnatmake . 85
4.1.4 Notes on the Command Line . 86
4.1.5 How gnatmake Works . 86
4.1.6 Examples of gnatmake Usage . 87

4.2 Compiling with gcc . 87
4.2.1 Compiling Programs . 88
4.2.2 Search Paths and the Run-Time Library (RTL) 89
4.2.3 Order of Compilation Issues . 90
4.2.4 Examples . 90

4.3 Compiler Switches . 90
4.3.1 Alphabetical List of All Switches . 91
4.3.2 Output and Error Message Control . 105
4.3.3 Warning Message Control . 108
4.3.4 Debugging and Assertion Control . 128
4.3.5 Validity Checking . 129
4.3.6 Style Checking . 133
4.3.7 Run-Time Checks . 140
4.3.8 Using gcc for Syntax Checking . 142
4.3.9 Using gcc for Semantic Checking . 142
4.3.10 Compiling Different Versions of Ada . 143
4.3.11 Character Set Control . 144
4.3.12 File Naming Control . 146
4.3.13 Subprogram Inlining Control . 146
4.3.14 Auxiliary Output Control . 147
4.3.15 Debugging Control . 147
4.3.16 Exception Handling Control . 151
4.3.17 Units to Sources Mapping Files . 152
4.3.18 Code Generation Control . 153

4.4 Linker Switches . 153
4.5 Binding with gnatbind . 153

4.5.1 Running gnatbind . 154
4.5.2 Switches for gnatbind . 155

4.5.2.1 Consistency-Checking Modes . 160
4.5.2.2 Binder Error Message Control . 161
4.5.2.3 Elaboration Control . 162

iv

4.5.2.4 Output Control . 163
4.5.2.5 Dynamic Allocation Control . 164
4.5.2.6 Binding with Non-Ada Main Programs 164
4.5.2.7 Binding Programs with No Main Subprogram 165

4.5.3 Command-Line Access . 165
4.5.4 Search Paths for gnatbind . 165
4.5.5 Examples of gnatbind Usage . 166

4.6 Linking with gnatlink . 167
4.6.1 Running gnatlink . 167
4.6.2 Switches for gnatlink . 167

4.7 Using the GNU make Utility . 169
4.7.1 Using gnatmake in a Makefile . 169
4.7.2 Automatically Creating a List of Directories 171
4.7.3 Generating the Command Line Switches 172
4.7.4 Overcoming Command Line Length Limits 173

5 GNAT Utility Programs . 175
5.1 The File Cleanup Utility gnatclean . 175

5.1.1 Running gnatclean . 175
5.1.2 Switches for gnatclean . 175

5.2 The GNAT Library Browser gnatls . 177
5.2.1 Running gnatls . 177
5.2.2 Switches for gnatls . 178
5.2.3 Example of gnatls Usage . 179

6 GNAT and Program Execution 181
6.1 Running and Debugging Ada Programs . 181

6.1.1 The GNAT Debugger GDB . 181
6.1.2 Running GDB . 182
6.1.3 Introduction to GDB Commands . 182
6.1.4 Using Ada Expressions . 185
6.1.5 Calling User-Defined Subprograms . 185
6.1.6 Using the next Command in a Function 186
6.1.7 Stopping When Ada Exceptions Are Raised 186
6.1.8 Ada Tasks . 187
6.1.9 Debugging Generic Units . 187
6.1.10 Remote Debugging with gdbserver . 188
6.1.11 GNAT Abnormal Termination or Failure to Terminate . . 189
6.1.12 Naming Conventions for GNAT Source Files 190
6.1.13 Getting Internal Debugging Information 190
6.1.14 Stack Traceback . 191

6.1.14.1 Non-Symbolic Traceback . 191
6.1.14.2 Symbolic Traceback . 195

6.1.15 Pretty-Printers for the GNAT runtime 197
6.2 Profiling . 198

6.2.1 Profiling an Ada Program with gprof . 198
6.2.1.1 Compilation for profiling . 199
6.2.1.2 Program execution . 199

v

6.2.1.3 Running gprof . 199
6.2.1.4 Interpretation of profiling results 200

6.3 Improving Performance . 200
6.3.1 Performance Considerations . 200

6.3.1.1 Controlling Run-Time Checks . 201
6.3.1.2 Use of Restrictions . 201
6.3.1.3 Optimization Levels . 202
6.3.1.4 Debugging Optimized Code . 203
6.3.1.5 Inlining of Subprograms . 204
6.3.1.6 Floating Point Operations . 206
6.3.1.7 Vectorization of loops . 207
6.3.1.8 Other Optimization Switches . 208
6.3.1.9 Optimization and Strict Aliasing 209
6.3.1.10 Aliased Variables and Optimization 212
6.3.1.11 Atomic Variables and Optimization 213
6.3.1.12 Passive Task Optimization . 214

6.3.2 Text_IO Suggestions . 214
6.3.3 Reducing Size of Executables with Unused Subprogram/Data

Elimination . 215
6.3.3.1 About unused subprogram/data elimination 215
6.3.3.2 Compilation options . 215
6.3.3.3 Example of unused subprogram/data elimination . . . 215

6.4 Overflow Check Handling in GNAT . 216
6.4.1 Background . 216
6.4.2 Management of Overflows in GNAT . 218
6.4.3 Specifying the Desired Mode . 219
6.4.4 Default Settings . 220
6.4.5 Implementation Notes . 220

6.5 Performing Dimensionality Analysis in GNAT 221
6.6 Stack Related Facilities . 225

6.6.1 Stack Overflow Checking . 225
6.6.2 Static Stack Usage Analysis . 226
6.6.3 Dynamic Stack Usage Analysis . 226

6.7 Memory Management Issues . 227
6.7.1 Some Useful Memory Pools . 227
6.7.2 The GNAT Debug Pool Facility . 228

7 Platform-Specific Information 232
7.1 Run-Time Libraries . 232

7.1.1 Summary of Run-Time Configurations 232
7.2 Specifying a Run-Time Library . 232

7.2.1 Choosing the Scheduling Policy . 233
7.3 GNU/Linux Topics . 234

7.3.1 Required Packages on GNU/Linux . 234
7.4 Microsoft Windows Topics . 234

7.4.1 Using GNAT on Windows . 234
7.4.2 Using a network installation of GNAT 235
7.4.3 CONSOLE and WINDOWS subsystems 235

vi

7.4.4 Temporary Files . 236
7.4.5 Disabling Command Line Argument Expansion 236
7.4.6 Windows Socket Timeouts . 237
7.4.7 Mixed-Language Programming on Windows 237

7.4.7.1 Windows Calling Conventions . 238
7.4.7.2 C Calling Convention . 239
7.4.7.3 Stdcall Calling Convention . 239
7.4.7.4 Win32 Calling Convention . 240
7.4.7.5 DLL Calling Convention . 240
7.4.7.6 Introduction to Dynamic Link Libraries (DLLs) 240
7.4.7.7 Using DLLs with GNAT . 241
7.4.7.8 Creating an Ada Spec for the DLL Services 242
7.4.7.9 Creating an Import Library . 242
7.4.7.10 Building DLLs with GNAT Project files 244
7.4.7.11 Building DLLs with GNAT . 244
7.4.7.12 Building DLLs with gnatdll . 245
7.4.7.13 Limitations When Using Ada DLLs from Ada 246
7.4.7.14 Exporting Ada Entities . 246
7.4.7.15 Ada DLLs and Elaboration . 247
7.4.7.16 Ada DLLs and Finalization . 248
7.4.7.17 Creating a Spec for Ada DLLs . 248
7.4.7.18 Creating the Definition File . 249
7.4.7.19 Using gnatdll . 249
7.4.7.20 GNAT and Windows Resources 252
7.4.7.21 Building Resources . 253
7.4.7.22 Compiling Resources . 254
7.4.7.23 Using Resources . 254
7.4.7.24 Using GNAT DLLs from Microsoft Visual Studio

Applications . 254
7.4.7.25 Debugging a DLL . 255
7.4.7.26 Program and DLL Both Built with GCC/GNAT . . . 255
7.4.7.27 Program Built with Foreign Tools and DLL Built with

GCC/GNAT . 255
7.4.7.28 Setting Stack Size from gnatlink 257
7.4.7.29 Setting Heap Size from gnatlink 257

7.4.8 Windows Specific Add-Ons . 258
7.4.8.1 Win32Ada . 258
7.4.8.2 wPOSIX . 258

7.5 Mac OS Topics . 258
7.5.1 Codesigning the Debugger . 258

8 Example of Binder Output File 260

vii

9 Elaboration Order Handling in GNAT 276
9.1 Elaboration Code . 276
9.2 Elaboration Order . 277
9.3 Checking the Elaboration Order . 279
9.4 Controlling the Elaboration Order in Ada . 280
9.5 Controlling the Elaboration Order in GNAT 284
9.6 Mixing Elaboration Models . 285
9.7 ABE Diagnostics . 285
9.8 SPARK Diagnostics . 287
9.9 Elaboration Circularities . 287
9.10 Resolving Elaboration Circularities . 289
9.11 Elaboration-related Compiler Switches . 291
9.12 Summary of Procedures for Elaboration Control 293
9.13 Inspecting the Chosen Elaboration Order . 294

10 Inline Assembler . 297
10.1 Basic Assembler Syntax . 297
10.2 A Simple Example of Inline Assembler . 298
10.3 Output Variables in Inline Assembler . 299
10.4 Input Variables in Inline Assembler . 303
10.5 Inlining Inline Assembler Code . 304
10.6 Other Asm Functionality . 305

10.6.1 The Clobber Parameter . 305
10.6.2 The Volatile Parameter . 306

11 GNU Free Documentation License 307

Index . 314

1

GNAT, The GNU Ada Development Environment

GCC version 11.2.0
AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being
"GNAT User’s Guide for Native Platforms", and with no Back-Cover Texts. A copy of the
license is included in the section entitled [GNU Free Documentation License], page 306.

Chapter 1: About This Guide 2

1 About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada programming language. It documents the features of the compiler and tools, and
explains how to use them to build Ada applications.

GNAT implements Ada 95, Ada 2005, Ada 2012, and Ada 202x, and it may also be invoked
in Ada 83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override
with a compiler switch ([Compiling Different Versions of Ada], page 143) to explicitly specify
the language version. Throughout this manual, references to ’Ada’ without a year suffix
apply to all Ada versions of the language, starting with Ada 95.

1.1 What This Guide Contains

This guide contains the following chapters:

* [Getting Started with GNAT], page 3 describes how to get started compiling and run-
ning Ada programs with the GNAT Ada programming environment.

* [The GNAT Compilation Model], page 6 describes the compilation model used by
GNAT.

* [Building Executable Programs with GNAT], page 76 describes how to use the main
GNAT tools to build executable programs, and it also gives examples of using the GNU
make utility with GNAT.

* [GNAT Utility Programs], page 174 explains the various utility programs that are
included in the GNAT environment

* [GNAT and Program Execution], page 180 covers a number of topics related to running,
debugging, and tuning the performace of programs developed with GNAT

Appendices cover several additional topics:

* [Platform-Specific Information], page 231 describes the different run-time library im-
plementations and also presents information on how to use GNAT on several specific
platforms

* [Example of Binder Output File], page 259 shows the source code for the binder output
file for a sample program.

* [Elaboration Order Handling in GNAT], page 275 describes how GNAT helps you deal
with elaboration order issues.

* [Inline Assembler], page 296 shows how to use the inline assembly facility in an Ada
program.

1.2 What You Should Know before Reading This Guide

This guide assumes a basic familiarity with the Ada 95 language, as described in the In-
ternational Standard ANSI/ISO/IEC-8652:1995, January 1995. Reference manuals for Ada
95, Ada 2005, and Ada 2012 are included in the GNAT documentation package.

Chapter 1: About This Guide 3

1.3 Related Information

For further information about Ada and related tools, please refer to the following documents:

* Ada 95 Reference Manual, Ada 2005 Reference Manual, and Ada 2012 Reference Man-
ual, which contain reference material for the several revisions of the Ada language
standard.

* GNAT Reference Manual, which contains all reference material for the GNAT imple-
mentation of Ada.

* Using GNAT Studio, which describes the GNAT Studio Integrated Development En-
vironment.

* GNAT Studio Tutorial, which introduces the main GNAT Studio features through
examples.

* Debugging with GDB, for all details on the use of the GNU source-level debugger.

* GNU Emacs Manual, for full information on the extensible editor and programming
environment Emacs.

1.4 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

* Functions, utility program names, standard names, and classes.

* Option flags

* File names

* Variables

* Emphasis

* [optional information or parameters]

* Examples are described by text

and then shown this way.

* Commands that are entered by the user are shown as preceded by a prompt string
comprising the $ character followed by a space.

* Full file names are shown with the ’/’ character as the directory separator; e.g., parent-
dir/subdir/myfile.adb. If you are using GNAT on a Windows platform, please note
that the ’\’ character should be used instead.

Chapter 2: Getting Started with GNAT 4

2 Getting Started with GNAT

This chapter describes how to use GNAT’s command line interface to build executable Ada
programs. On most platforms a visually oriented Integrated Development Environment is
also available: GNAT Studio. GNAT Studio offers a graphical "look and feel", support
for development in other programming languages, comprehensive browsing features, and
many other capabilities. For information on GNAT Studio please refer to the GNAT Studio
documentation.

2.1 System Requirements

Even though any machine can run the GNAT toolset and GNAT Studio IDE, in order to
get the best experience, we recommend using a machine with as many cores as possible
since all individual compilations can run in parallel. A comfortable setup for a compiler
server is a machine with 24 physical cores or more, with at least 48 GB of memory (2 GB
per core).

For a desktop machine, a minimum of 4 cores is recommended (8 preferred), with at least
2GB per core (so 8 to 16GB).

In addition, for running and navigating sources in GNAT Studio smoothly, we recommend
at least 1.5 GB plus 3 GB of RAM per 1 million source line of code. In other words, we
recommend at least 3 GB for for 500K lines of code and 7.5 GB for 2 million lines of code.

Note that using local and fast drives will also make a difference in terms of build and link
time. Network drives such as NFS, SMB, or worse, configuration management filesystems
(such as ClearCase dynamic views) should be avoided as much as possible and will produce
very degraded performance (typically 2 to 3 times slower than on local fast drives). If
such slow drives cannot be avoided for accessing the source code, then you should at least
configure your project file so that the result of the compilation is stored on a drive local to
the machine performing the run. This can be achieved by setting the Object_Dir project
file attribute.

2.2 Running GNAT

Three steps are needed to create an executable file from an Ada source file:

* The source file(s) must be compiled.

* The file(s) must be bound using the GNAT binder.

* All appropriate object files must be linked to produce an executable.

All three steps are most commonly handled by using the gnatmake utility program that,
given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

2.3 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. (If Emacs is used, the optional
Ada mode may be helpful in laying out the program.) The program text is a normal text
file. We will assume in our initial example that you have used your editor to prepare the
following standard format text file:

Chapter 2: Getting Started with GNAT 5

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;

This file should be named hello.adb. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ads for a spec and adb for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (for further information please see [Using Other File Names], page 12).
Alternatively, if you want to rename your files according to this default convention, which
is probably more convenient if you will be using GNAT for all your compilations, then the
gnatchop utility can be used to generate correctly-named source files (see [Renaming Files
with gnatchop], page 20).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):

$ gcc -c hello.adb

gcc is the command used to run the compiler. This compiler is capable of compiling
programs in several languages, including Ada and C. It assumes that you have given it an
Ada program if the file extension is either .ads or .adb, and it will then call the GNAT
compiler to compile the specified file.

The -c switch is required. It tells gcc to only do a compilation. (For C programs, gcc can
also do linking, but this capability is not used directly for Ada programs, so the -c switch
must always be present.)

This compile command generates a file hello.o, which is the object file corresponding to
your Ada program. It also generates an ’Ada Library Information’ file hello.ali, which
contains additional information used to check that an Ada program is consistent.

To build an executable file, use either gnatmake or gprbuild with the name of the main file:
these tools are builders that will take care of all the necessary build steps in the correct
order. In particular, these builders automatically recompile any sources that have been
modified since they were last compiled, or sources that depend on such modified sources,
so that ’version skew’ is avoided.

$ gnatmake hello.adb

The result is an executable program called hello, which can be run by entering:

$ hello

assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see:

Hello WORLD!

appear in response to this command.

2.4 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and
the spec and body of a package:

Chapter 2: Getting Started with GNAT 6

package Greetings is

procedure Hello;

procedure Goodbye;

end Greetings;

with Ada.Text_IO; use Ada.Text_IO;

package body Greetings is

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;

procedure Goodbye is

begin

Put_Line ("Goodbye WORLD!");

end Goodbye;

end Greetings;

with Greetings;

procedure Gmain is

begin

Greetings.Hello;

Greetings.Goodbye;

end Gmain;

Following the one-unit-per-file rule, place this program in the following three separate files:

greetings.ads
spec of package Greetings

greetings.adb
body of package Greetings

gmain.adb

body of main program

Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the -gnatc switch:

$ gcc -c greetings.ads -gnatc

Although the compilation can be done in separate steps, in practice it is almost always more
convenient to use the gnatmake or gprbuild tools:

$ gnatmake gmain.adb

Chapter 3: The GNAT Compilation Model 7

3 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that
used by other languages such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a centralized program library. The
chapter covers the following material:

* Topics related to source file makeup and naming

* [Source Representation], page 7

* [Foreign Language Representation], page 8

* [File Naming Topics and Utilities], page 11

* [Configuration Pragmas], page 24

* [Generating Object Files], page 27

* [Source Dependencies], page 28

* [The Ada Library Information Files], page 29

* [Binding an Ada Program], page 30

* [GNAT and Libraries], page 30

* [Conditional Compilation], page 39

* [Mixed Language Programming], page 51

* [GNAT and Other Compilation Models], page 73

* [Using GNAT Files with External Tools], page 75

3.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see [Foreign Language Representation], page 8 for support
of non-USA character sets). The format effector characters are represented using their
standard ASCII encodings, as follows:

Character Effect Code

VT Vertical tab 16#0B#

HT Horizontal tab 16#09#

CR Carriage return 16#0D#

LF Line feed 16#0A#

FF Form feed 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical lines is marked by any of the
following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files that
are imported from other operating systems.

Chapter 3: The GNAT Compilation Model 8

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

3.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada as well as several other non-
standard character sets for use in localized versions of the compiler ([Character Set Control],
page 144).

3.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859,
part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII
coding, but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file a-chlat1.ads. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

3.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

ISO 8859-2 (Latin-2)
Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-3 (Latin-3)
Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-4 (Latin-4)
Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-5 (Cyrillic)
ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

ISO 8859-15 (Latin-9)
ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lower-
case equivalence

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended

Chapter 3: The GNAT Compilation Model 9

Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used for
some foreign character sets (e.g., the typical method of representing Chinese
characters on the PC).

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file csets.adb in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

3.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:

ESC a b c d

where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, ’a’ is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

Chapter 3: The GNAT Compilation Model 10

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxx#

16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#

16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-
bit characters as 6-byte sequences, and in the following section on wide wide
characters, the use of these sequences is documented).

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

[" a b c d "]

where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, [’A345’] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#

can be represented as [’A3’].

This scheme is compatible with use of the full Wide Character set, and is also
the method used for wide character encoding in some standard ACATS (Ada
Conformity Assessment Test Suite) test suite distributions.� �

Note: Some of these coding schemes do not permit the full use of the Ada character set.
For example, neither Shift JIS nor EUC allow the use of the upper half of the Latin-1 set.
 	
3.2.4 Wide Wide Character Encodings

GNAT allows wide wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation of character codes with values greater than 16#FFFF# is a
is a four, five, or six byte sequence:

Chapter 3: The GNAT Compilation Model 11

16#01_0000#-16#10_FFFF#: 11110xxx 10xxxxxx 10xxxxxx

10xxxxxx

16#0020_0000#-16#03FF_FFFF#: 111110xx 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx

16#0400_0000#-16#7FFF_FFFF#: 1111110x 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx 10xxxxxx

where the xxx bits correspond to the left-padded bits of the 32-bit character
value.

Brackets Coding
In this encoding, a wide wide character is represented by the following ten or
twelve byte character sequence:

[" a b c d e f "]

[" a b c d e f g h "]

where a-h are the six or eight hexadecimal characters (using uppercase letters)
of the wide wide character code. For example, ["1F4567"] is used to represent
the wide wide character with code 16#001F_4567#.

This scheme is compatible with use of the full Wide Wide Character set, and
is also the method used for wide wide character encoding in some standard
ACATS (Ada Conformity Assessment Test Suite) test suite distributions.

3.3 File Naming Topics and Utilities

GNAT has a default file naming scheme and also provides the user with a high degree
of control over how the names and extensions of the source files correspond to the Ada
compilation units that they contain.

3.3.1 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters a, g, i, or s, and the second character is a minus. In this case, the character
tilde is used in place of the minus. The reason for this special rule is to avoid clashes with
the standard names for child units of the packages System, Ada, Interfaces, and GNAT,
which use the prefixes s-, a-, i-, and g-, respectively.

The file extension is .ads for a spec and .adb for a body. The following table shows some
examples of these rules.

Source File Ada Compilation Unit

main.ads Main (spec)

main.adb Main (body)

arith_functions.ads Arith Functions (package spec)

Chapter 3: The GNAT Compilation Model 12

arith_functions.adb Arith Functions (package body)

func-spec.ads Func.Spec (child package spec)

func-spec.adb Func.Spec (child package body)

main-sub.adb Sub (subunit of Main)

a~bad.adb A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name ’krunching’). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. [Using gnatkr], page 18.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see [Renaming Files with gnatchop],
page 20.)

Note: in the case of Windows or Mac OS operating systems, case is not significant. So for
example on Windows if the canonical name is main-sub.adb, you can use the file name
Main-Sub.adb instead. However, case is significant for other operating systems, so for
example, if you want to use other than canonically cased file names on a Unix system, you
need to follow the procedures described in the next section.

3.3.2 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada com-
piler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source File Name pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,

Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,

Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

Chapter 3: The GNAT Compilation Model 13

The source file name pragma is a configuration pragma, which means that normally it will
be placed in the gnat.adc file used to hold configuration pragmas that apply to a complete
compilation environment. For more details on how the gnat.adc file is created and used
see [Handling of Configuration Pragmas], page 26.

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than .ads or .adb it is
necessary to use a special syntax when compiling the file. The name in this case must be
preceded by the special sequence -x followed by a space and the name of the language, here
ada, as in:

$ gcc -c -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, then it must be included in the gnatmake command, it may
not be omitted.

3.3.3 Alternative File Naming Schemes

The previous section described the use of the Source_File_Name pragma to allow arbitrary
names to be assigned to individual source files. However, this approach requires one pragma
for each file, and especially in large systems can result in very long gnat.adc files, and also
create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than the
standard default naming scheme previously described. An alternative scheme for naming is
specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (

Spec_File_Name => FILE_NAME_PATTERN

[, Casing => CASING_SPEC]

[, Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (

Body_File_Name => FILE_NAME_PATTERN

[, Casing => CASING_SPEC]

[, Dot_Replacement => STRING_LITERAL]) ;

pragma Source_File_Name (

Subunit_File_Name => FILE_NAME_PATTERN

[, Casing => CASING_SPEC]

[, Dot_Replacement => STRING_LITERAL]) ;

FILE_NAME_PATTERN ::= STRING_LITERAL

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
lower-case.

Chapter 3: The GNAT Compilation Model 14

The optional Dot_Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing
argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and sub-
units. Quite often the rule for subunits is the same as the rule for bodies, in which case, there
is no need to give a separate Subunit_File_Name rule, and in this case the Body_File_name
rule is used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case of
a compilation environment (e.g., a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:

* If there is a specific Source_File_Name pragma for the given unit, then this is always
used, and any general pattern rules are ignored.

* If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

* If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with .1.ada, and bodies end with .2.ada. GNAT will follow this
scheme if the following two pragmas appear:

pragma Source_File_Name

(Spec_File_Name => ".1.ada");

pragma Source_File_Name

(Body_File_Name => ".2.ada");

The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:

pragma Source_File_Name

(Spec_File_Name => ".ads", Dot_Replacement => "-");

pragma Source_File_Name

(Body_File_Name => ".adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was ’ ’ (two underscores), specs were identified
by adding _.ADA, bodies by adding .ADA, and subunits by adding .SEP. All file names were
upper case. Child units were not present of course since this was an Ada 83 compiler, but
it seems reasonable to extend this scheme to use the same double underscore separator for
child units.

pragma Source_File_Name

Chapter 3: The GNAT Compilation Model 15

(Spec_File_Name => "_.ADA",

Dot_Replacement => "__",

Casing = Uppercase);

pragma Source_File_Name

(Body_File_Name => ".ADA",

Dot_Replacement => "__",

Casing = Uppercase);

pragma Source_File_Name

(Subunit_File_Name => ".SEP",

Dot_Replacement => "__",

Casing = Uppercase);

3.3.4 Handling Arbitrary File Naming Conventions with gnatname

3.3.4.1 Arbitrary File Naming Conventions

The GNAT compiler must be able to know the source file name of a compilation unit. When
using the standard GNAT default file naming conventions (.ads for specs, .adb for bodies),
the GNAT compiler does not need additional information.

When the source file names do not follow the standard GNAT default file naming conven-
tions, the GNAT compiler must be given additional information through a configuration
pragmas file ([Configuration Pragmas], page 24) or a project file. When the non-standard file
naming conventions are well-defined, a small number of pragmas Source_File_Name spec-
ifying a naming pattern ([Alternative File Naming Schemes], page 13) may be sufficient.
However, if the file naming conventions are irregular or arbitrary, a number of pragma
Source_File_Name for individual compilation units must be defined. To help maintain the
correspondence between compilation unit names and source file names within the compiler,
GNAT provides a tool gnatname to generate the required pragmas for a set of files.

3.3.4.2 Running gnatname

The usual form of the gnatname command is:

$ gnatname [switches] naming_pattern [naming_patterns]

[--and [switches] naming_pattern [naming_patterns]]

All of the arguments are optional. If invoked without any argument, gnatname will display
its usage.

When used with at least one naming pattern, gnatname will attempt to find all the compila-
tion units in files that follow at least one of the naming patterns. To find these compilation
units, gnatname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gnatname. Each Naming
Pattern is enclosed between double quotes (or single quotes on Windows). A Naming
Pattern is a regular expression similar to the wildcard patterns used in file names by the
Unix shells or the DOS prompt.

gnatname may be called with several sections of directories/patterns. Sections are separated
by the switch --and. In each section, there must be at least one pattern. If no directory is
specified in a section, the current directory (or the project directory if -P is used) is implied.
The options other that the directory switches and the patterns apply globally even if they
are in different sections.

Chapter 3: The GNAT Compilation Model 16

Examples of Naming Patterns are:

"*.[12].ada"

"*.ad[sb]*"

"body_*" "spec_*"

For a more complete description of the syntax of Naming Patterns, see the second kind of
regular expressions described in g-regexp.ads (the ’Glob’ regular expressions).

When invoked without the switch -P, gnatname will create a configuration pragmas file
gnat.adc in the current working directory, with pragmas Source_File_Name for each file
that contains a valid Ada unit.

3.3.4.3 Switches for gnatname

Switches for gnatname must precede any specified Naming Pattern.

You may specify any of the following switches to gnatname:

--version

Display Copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

--subdirs=dir

Real object, library or exec directories are subdirectories <dir> of the specified
ones.

--no-backup

Do not create a backup copy of an existing project file.

--and

Start another section of directories/patterns.

-cfilename

Create a configuration pragmas file filename (instead of the default gnat.adc).
There may be zero, one or more space between -c and filename. filename

may include directory information. filename must be writable. There may
be only one switch -c. When a switch -c is specified, no switch -P may be
specified (see below).

-ddir

Look for source files in directory dir. There may be zero, one or more spaces
between -d and dir. dir may end with /**, that is it may be of the form
root_dir/**. In this case, the directory root_dir and all of its subdirectories,
recursively, have to be searched for sources. When a switch -d is specified,
the current working directory will not be searched for source files, unless it is
explicitly specified with a -d or -D switch. Several switches -d may be specified.
If dir is a relative path, it is relative to the directory of the configuration
pragmas file specified with switch -c, or to the directory of the project file
specified with switch -P or, if neither switch -c nor switch -P are specified, it
is relative to the current working directory. The directory specified with switch
-d must exist and be readable.

Chapter 3: The GNAT Compilation Model 17

-Dfilename

Look for source files in all directories listed in text file filename. There may
be zero, one or more spaces between -D and filename. filename must be
an existing, readable text file. Each nonempty line in filename must be a
directory. Specifying switch -D is equivalent to specifying as many switches -d
as there are nonempty lines in file.

-eL

Follow symbolic links when processing project files.

-fpattern

Foreign patterns. Using this switch, it is possible to add sources of languages
other than Ada to the list of sources of a project file. It is only useful if a -P
switch is used. For example,

gnatname -Pprj -f"*.c" "*.ada"

will look for Ada units in all files with the .ada extension, and will add to the
list of file for project prj.gpr the C files with extension .c.

-h

Output usage (help) information. The output is written to stdout.

-Pproj

Create or update project file proj. There may be zero, one or more space
between -P and proj. proj may include directory information. proj must be
writable. There may be only one switch -P. When a switch -P is specified, no
switch -c may be specified. On all platforms, except on VMS, when gnatname

is invoked for an existing project file <proj>.gpr, a backup copy of the project
file is created in the project directory with file name <proj>.gpr.saved x. ’x’ is
the first non negative number that makes this backup copy a new file.

-v

Verbose mode. Output detailed explanation of behavior to stdout. This in-
cludes name of the file written, the name of the directories to search and, for
each file in those directories whose name matches at least one of the Naming
Patterns, an indication of whether the file contains a unit, and if so the name
of the unit.

-v -v

Very Verbose mode. In addition to the output produced in verbose mode, for
each file in the searched directories whose name matches none of the Naming
Patterns, an indication is given that there is no match.

-xpattern

Excluded patterns. Using this switch, it is possible to exclude some files that
would match the name patterns. For example,

gnatname -x "*_nt.ada" "*.ada"

will look for Ada units in all files with the .ada extension, except those whose
names end with _nt.ada.

Chapter 3: The GNAT Compilation Model 18

3.3.4.4 Examples of gnatname Usage

$ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"

In this example, the directory /home/me must already exist and be writable. In addition,
the directory /home/me/sources (specified by -d sources) must exist and be readable.

Note the optional spaces after -c and -d.

$ gnatname -P/home/me/proj -x "*_nt_body.ada"

-dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"

Note that several switches -d may be used, even in conjunction with one or several switches
-D. Several Naming Patterns and one excluded pattern are used in this example.

3.3.5 File Name Krunching with gnatkr

This section discusses the method used by the compiler to shorten the default file names
chosen for Ada units so that they do not exceed the maximum length permitted. It also
describes the gnatkr utility that can be used to determine the result of applying this
shortening.

3.3.5.1 About gnatkr

The default file naming rule in GNAT is that the file name must be derived from the unit
name. The exact default rule is as follows:

* Take the unit name and replace all dots by hyphens.

* If such a replacement occurs in the second character position of a name, and the first
character is a, g, s, or i, then replace the dot by the character ~ (tilde) instead of a
minus.

The reason for this exception is to avoid clashes with the standard names for children
of System, Ada, Interfaces, and GNAT, which use the prefixes s-, a-, i-, and g-,
respectively.

The -gnatknn switch of the compiler activates a ’krunching’ circuit that limits file names
to nn characters (where nn is a decimal integer).

The gnatkr utility can be used to determine the krunched name for a given file, when
krunched to a specified maximum length.

3.3.5.2 Using gnatkr

The gnatkr command has the form:

$ gnatkr name [length]

name is the uncrunched file name, derived from the name of the unit in the standard manner
described in the previous section (i.e., in particular all dots are replaced by hyphens). The
file name may or may not have an extension (defined as a suffix of the form period followed by
arbitrary characters other than period). If an extension is present then it will be preserved
in the output. For example, when krunching hellofile.ads to eight characters, the result
will be hellofil.ads.

Note: for compatibility with previous versions of gnatkr dots may appear in the name
instead of hyphens, but the last dot will always be taken as the start of an extension. So if
gnatkr is given an argument such as Hello.World.adb it will be treated exactly as if the

Chapter 3: The GNAT Compilation Model 19

first period had been a hyphen, and for example krunching to eight characters gives the
result hellworl.adb.

Note that the result is always all lower case. Characters of the other case are folded as
required.

length represents the length of the krunched name. The default when no argument is given
is 8 characters. A length of zero stands for unlimited, in other words do not chop except
for system files where the implied crunching length is always eight characters.

The output is the krunched name. The output has an extension only if the original argument
was a file name with an extension.

3.3.5.3 Krunching Method

The initial file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters, except that a hyphen in the second
character position is replaced by a tilde if the first character is a, i, g, or s. The extension
is .ads for a spec and .adb for a body. Krunching does not affect the extension, but the
file name is shortened to the specified length by following these rules:

* The name is divided into segments separated by hyphens, tildes or underscores and all
hyphens, tildes, and underscores are eliminated. If this leaves the name short enough,
we are done.

* If the name is too long, the longest segment is located (left-most if there are two of
equal length), and shortened by dropping its last character. This is repeated until the
name is short enough.

As an example, consider the krunching of our-strings-wide_fixed.adb to fit the
name into 8 characters as required by some operating systems:

our-strings-wide_fixed 22

our strings wide fixed 19

our string wide fixed 18

our strin wide fixed 17

our stri wide fixed 16

our stri wide fixe 15

our str wide fixe 14

our str wid fixe 13

our str wid fix 12

ou str wid fix 11

ou st wid fix 10

ou st wi fix 9

ou st wi fi 8

Final file name: oustwifi.adb

* The file names for all predefined units are always krunched to eight characters. The
krunching of these predefined units uses the following special prefix replacements:

Prefix Replacement

ada- a-

Chapter 3: The GNAT Compilation Model 20

gnat- g-

interfac es- i-

system- s-

These system files have a hyphen in the second character position. That is why normal
user files replace such a character with a tilde, to avoid confusion with system file
names.

As an example of this special rule, consider ada-strings-wide_fixed.adb, which gets
krunched as follows:

ada-strings-wide_fixed 22

a- strings wide fixed 18

a- string wide fixed 17

a- strin wide fixed 16

a- stri wide fixed 15

a- stri wide fixe 14

a- str wide fixe 13

a- str wid fixe 12

a- str wid fix 11

a- st wid fix 10

a- st wi fix 9

a- st wi fi 8

Final file name: a-stwifi.adb

Of course no file shortening algorithm can guarantee uniqueness over all possible unit names,
and if file name krunching is used then it is your responsibility to ensure that no name clashes
occur. The utility program gnatkr is supplied for conveniently determining the krunched
name of a file.

3.3.5.4 Examples of gnatkr Usage

$ gnatkr very_long_unit_name.ads --> velounna.ads

$ gnatkr grandparent-parent-child.ads --> grparchi.ads

$ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads

$ gnatkr grandparent-parent-child --> grparchi

$ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads

$ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads

3.3.6 Renaming Files with gnatchop

This section discusses how to handle files with multiple units by using the gnatchop utility.
This utility is also useful in renaming files to meet the standard GNAT default file naming
conventions.

3.3.6.1 Handling Files with Multiple Units

The basic compilation model of GNAT requires that a file submitted to the compiler have
only one unit and there be a strict correspondence between the file name and the unit name.

Chapter 3: The GNAT Compilation Model 21

If you want to keep your files with multiple units, perhaps to maintain compatibility with
some other Ada compilation system, you can use gnatname to generate or update your
project files. Generated or modified project files can be processed by GNAT.

See [Handling Arbitrary File Naming Conventions with gnatname], page 15 for more details
on how to use gnatname.

Alternatively, if you want to permanently restructure a set of ’foreign’ files so that they
match the GNAT rules, and do the remaining development using the GNAT structure, you
can simply use gnatchop once, generate the new set of files and work with them from that
point on.

Note that if your file containing multiple units starts with a byte order mark (BOM) spec-
ifying UTF-8 encoding, then the files generated by gnatchop will each start with a copy
of this BOM, meaning that they can be compiled automatically in UTF-8 mode without
needing to specify an explicit encoding.

3.3.6.2 Operating gnatchop in Compilation Mode

The basic function of gnatchop is to take a file with multiple units and split it into separate
files. The boundary between files is reasonably clear, except for the issue of comments
and pragmas. In default mode, the rule is that any pragmas between units belong to the
previous unit, except that configuration pragmas always belong to the following unit. Any
comments belong to the following unit. These rules almost always result in the right choice
of the split point without needing to mark it explicitly and most users will find this default
to be what they want. In this default mode it is incorrect to submit a file containing only
configuration pragmas, or one that ends in configuration pragmas, to gnatchop.

However, using a special option to activate ’compilation mode’, gnatchop can perform
another function, which is to provide exactly the semantics required by the RM for handling
of configuration pragmas in a compilation. In the absence of configuration pragmas (at the
main file level), this option has no effect, but it causes such configuration pragmas to be
handled in a quite different manner.

First, in compilation mode, if gnatchop is given a file that consists of only configuration
pragmas, then this file is appended to the gnat.adc file in the current directory. This
behavior provides the required behavior described in the RM for the actions to be taken
on submitting such a file to the compiler, namely that these pragmas should apply to all
subsequent compilations in the same compilation environment. Using GNAT, the current
directory, possibly containing a gnat.adc file is the representation of a compilation environ-
ment. For more information on the gnat.adc file, see [Handling of Configuration Pragmas],
page 26.

Second, in compilation mode, if gnatchop is given a file that starts with configuration
pragmas, and contains one or more units, then these configuration pragmas are prepended
to each of the chopped files. This behavior provides the required behavior described in the
RM for the actions to be taken on compiling such a file, namely that the pragmas apply to
all units in the compilation, but not to subsequently compiled units.

Finally, if configuration pragmas appear between units, they are appended to the previous
unit. This results in the previous unit being illegal, since the compiler does not accept
configuration pragmas that follow a unit. This provides the required RM behavior that

Chapter 3: The GNAT Compilation Model 22

forbids configuration pragmas other than those preceding the first compilation unit of a
compilation.

For most purposes, gnatchop will be used in default mode. The compilation mode described
above is used only if you need exactly accurate behavior with respect to compilations, and
you have files that contain multiple units and configuration pragmas. In this circumstance
the use of gnatchop with the compilation mode switch provides the required behavior, and
is for example the mode in which GNAT processes the ACVC tests.

3.3.6.3 Command Line for gnatchop

The gnatchop command has the form:

$ gnatchop switches file_name [file_name ...]

[directory]

The only required argument is the file name of the file to be chopped. There are no
restrictions on the form of this file name. The file itself contains one or more Ada units,
in normal GNAT format, concatenated together. As shown, more than one file may be
presented to be chopped.

When run in default mode, gnatchop generates one output file in the current directory for
each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be
written. If it is not specified, all files are written to the current directory.

For example, given a file called hellofiles containing

procedure Hello;

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello");

end Hello;

the command

$ gnatchop hellofiles

generates two files in the current directory, one called hello.ads containing the single line
that is the procedure spec, and the other called hello.adb containing the remaining text.
The original file is not affected. The generated files can be compiled in the normal manner.

When gnatchop is invoked on a file that is empty or that contains only empty lines and/or
comments, gnatchop will not fail, but will not produce any new sources.

For example, given a file called toto.txt containing

-- Just a comment

the command

$ gnatchop toto.txt

will not produce any new file and will result in the following warnings:

toto.txt:1:01: warning: empty file, contains no compilation units

no compilation units found

no source files written

Chapter 3: The GNAT Compilation Model 23

3.3.6.4 Switches for gnatchop

gnatchop recognizes the following switches:

--version

Display Copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

-c

Causes gnatchop to operate in compilation mode, in which configuration prag-
mas are handled according to strict RM rules. See previous section for a full
description of this mode.

-gnatxxx

This passes the given -gnatxxx switch to gnat which is used to parse the given
file. Not all xxx options make sense, but for example, the use of -gnati2 allows
gnatchop to process a source file that uses Latin-2 coding for identifiers.

-h

Causes gnatchop to generate a brief help summary to the standard output file
showing usage information.

-kmm

Limit generated file names to the specified number mm of characters. This is
useful if the resulting set of files is required to be interoperable with systems
which limit the length of file names. No space is allowed between the -k and
the numeric value. The numeric value may be omitted in which case a default
of -k8, suitable for use with DOS-like file systems, is used. If no -k switch is
present then there is no limit on the length of file names.

-p

Causes the file modification time stamp of the input file to be preserved and
used for the time stamp of the output file(s). This may be useful for preserving
coherency of time stamps in an environment where gnatchop is used as part of
a standard build process.

-q

Causes output of informational messages indicating the set of generated files to
be suppressed. Warnings and error messages are unaffected.

-r

Generate Source_Reference pragmas. Use this switch if the output files are
regarded as temporary and development is to be done in terms of the original
unchopped file. This switch causes Source_Reference pragmas to be inserted
into each of the generated files to refers back to the original file name and
line number. The result is that all error messages refer back to the original
unchopped file. In addition, the debugging information placed into the object
file (when the -g switch of gcc or gnatmake is specified) also refers back to this

Chapter 3: The GNAT Compilation Model 24

original file so that tools like profilers and debuggers will give information in
terms of the original unchopped file.

If the original file to be chopped itself contains a Source_Reference pragma
referencing a third file, then gnatchop respects this pragma, and the gener-
ated Source_Reference pragmas in the chopped file refer to the original file,
with appropriate line numbers. This is particularly useful when gnatchop is
used in conjunction with gnatprep to compile files that contain preprocessing
statements and multiple units.

-v

Causes gnatchop to operate in verbose mode. The version number and copy-
right notice are output, as well as exact copies of the gnat1 commands spawned
to obtain the chop control information.

-w

Overwrite existing file names. Normally gnatchop regards it as a fatal error if
there is already a file with the same name as a file it would otherwise output,
in other words if the files to be chopped contain duplicated units. This switch
bypasses this check, and causes all but the last instance of such duplicated units
to be skipped.

--GCC=xxxx

Specify the path of the GNAT parser to be used. When this switch is used, no
attempt is made to add the prefix to the GNAT parser executable.

3.3.6.5 Examples of gnatchop Usage

$ gnatchop -w hello_s.ada prerelease/files

Chops the source file hello_s.ada. The output files will be placed in the directory
prerelease/files, overwriting any files with matching names in that directory (no files in
the current directory are modified).

$ gnatchop archive

Chops the source file archive into the current directory. One useful application of gnatchop
is in sending sets of sources around, for example in email messages. The required sources
are simply concatenated (for example, using a Unix cat command), and then gnatchop is
used at the other end to reconstitute the original file names.

$ gnatchop file1 file2 file3 direc

Chops all units in files file1, file2, file3, placing the resulting files in the directory
direc. Note that if any units occur more than once anywhere within this set of files, an
error message is generated, and no files are written. To override this check, use the -w

switch, in which case the last occurrence in the last file will be the one that is output, and
earlier duplicate occurrences for a given unit will be skipped.

3.4 Configuration Pragmas

Configuration pragmas include those pragmas described as such in the Ada Reference Man-
ual, as well as implementation-dependent pragmas that are configuration pragmas. See the
Implementation_Defined_Pragmas chapter in the GNAT Reference Manual for details on

Chapter 3: The GNAT Compilation Model 25

these additional GNAT-specific configuration pragmas. Most notably, the pragma Source_

File_Name, which allows specifying non-default names for source files, is a configuration
pragma. The following is a complete list of configuration pragmas recognized by GNAT:

Ada_83

Ada_95

Ada_05

Ada_2005

Ada_12

Ada_2012

Allow_Integer_Address

Annotate

Assertion_Policy

Assume_No_Invalid_Values

C_Pass_By_Copy

Check_Float_Overflow

Check_Name

Check_Policy

Compile_Time_Error

Compile_Time_Warning

Compiler_Unit

Compiler_Unit_Warning

Component_Alignment

Convention_Identifier

Debug_Policy

Detect_Blocking

Default_Scalar_Storage_Order

Default_Storage_Pool

Disable_Atomic_Synchronization

Discard_Names

Elaboration_Checks

Eliminate

Enable_Atomic_Synchronization

Extend_System

Extensions_Allowed

External_Name_Casing

Fast_Math

Favor_Top_Level

Ignore_Pragma

Implicit_Packing

Initialize_Scalars

Interrupt_State

License

Locking_Policy

No_Component_Reordering

No_Heap_Finalization

No_Run_Time

Chapter 3: The GNAT Compilation Model 26

No_Strict_Aliasing

Normalize_Scalars

Optimize_Alignment

Overflow_Mode

Overriding_Renamings

Partition_Elaboration_Policy

Persistent_BSS

Prefix_Exception_Messages

Priority_Specific_Dispatching

Profile

Profile_Warnings

Propagate_Exceptions

Queuing_Policy

Rational

Ravenscar

Rename_Pragma

Restricted_Run_Time

Restrictions

Restrictions_Warnings

Reviewable

Short_Circuit_And_Or

Short_Descriptors

Source_File_Name

Source_File_Name_Project

SPARK_Mode

Style_Checks

Suppress

Suppress_Exception_Locations

Task_Dispatching_Policy

Unevaluated_Use_Of_Old

Universal_Data

Unsuppress

Use_VADS_Size

Validity_Checks

Warning_As_Error

Warnings

Wide_Character_Encoding

3.4.1 Handling of Configuration Pragmas

Configuration pragmas may either appear at the start of a compilation unit, or they can
appear in a configuration pragma file to apply to all compilations performed in a given
compilation environment.

GNAT also provides the gnatchop utility to provide an automatic way to handle configu-
ration pragmas following the semantics for compilations (that is, files with multiple units),
described in the RM. See [Operating gnatchop in Compilation Mode], page 21 for details.

Chapter 3: The GNAT Compilation Model 27

However, for most purposes, it will be more convenient to edit the gnat.adc file that con-
tains configuration pragmas directly, as described in the following section.

In the case of Restrictions pragmas appearing as configuration pragmas in individual
compilation units, the exact handling depends on the type of restriction.

Restrictions that require partition-wide consistency (like No_Tasking) are recognized wher-
ever they appear and can be freely inherited, e.g. from a withed unit to the withing unit.
This makes sense since the binder will in any case insist on seeing consistent use, so any
unit not conforming to any restrictions that are anywhere in the partition will be rejected,
and you might as well find that out at compile time rather than at bind time.

For restrictions that do not require partition-wide consistency, e.g. SPARK or
No Implementation Attributes, in general the restriction applies only to the unit in which
the pragma appears, and not to any other units.

The exception is No Elaboration Code which always applies to the entire object file from a
compilation, i.e. to the body, spec, and all subunits. This restriction can be specified in a
configuration pragma file, or it can be on the body and/or the spec (in eithe case it applies
to all the relevant units). It can appear on a subunit only if it has previously appeared in
the body of spec.

3.4.2 The Configuration Pragmas Files

In GNAT a compilation environment is defined by the current directory at the time that
a compile command is given. This current directory is searched for a file whose name
is gnat.adc. If this file is present, it is expected to contain one or more configuration
pragmas that will be applied to the current compilation. However, if the switch -gnatA

is used, gnat.adc is not considered. When taken into account, gnat.adc is added to the
dependencies, so that if gnat.adc is modified later, an invocation of gnatmake will recompile
the source.

Configuration pragmas may be entered into the gnat.adc file either by running gnatchop

on a source file that consists only of configuration pragmas, or more conveniently by direct
editing of the gnat.adc file, which is a standard format source file.

Besides gnat.adc, additional files containing configuration pragmas may be applied to the
current compilation using the switch -gnatec=path where path must designate an existing
file that contains only configuration pragmas. These configuration pragmas are in addition
to those found in gnat.adc (provided gnat.adc is present and switch -gnatA is not used).

It is allowable to specify several switches -gnatec=, all of which will be taken into account.

Files containing configuration pragmas specified with switches -gnatec= are added to the
dependencies, unless they are temporary files. A file is considered temporary if its name ends
in .tmp or .TMP. Certain tools follow this naming convention because they pass information
to gcc via temporary files that are immediately deleted; it doesn’t make sense to depend
on a file that no longer exists. Such tools include gprbuild, gnatmake, and gnatcheck.

By default, configuration pragma files are stored by their absolute paths in ALI files. You
can use the -gnateb switch in order to store them by their basename instead.

If you are using project file, a separate mechanism is provided using project attributes.

Chapter 3: The GNAT Compilation Model 28

3.5 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following:

* If a package spec has no body, compile the package spec to produce the object file for
the package.

* If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case
because there is only one object file, which contains the code for both the spec and
body of the package.

* For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

* In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

* Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

* Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is .o as usual.

You may wish to compile other files for the purpose of checking their syntactic and semantic
correctness. For example, in the case where a package has a separate spec and body, you
would not normally compile the spec. However, it is convenient in practice to compile
the spec to make sure it is error-free before compiling clients of this spec, because such
compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking cor-
rectness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the -gnatc switch.

3.6 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using "depends" in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.
In addition to this basic dependency, a given object may depend on additional source files
as follows:

* If a file being compiled withs a unit X, the object file depends on the file containing
the spec of unit X. This includes files that are withed implicitly either because they
are parents of withed child units or they are run-time units required by the language
constructs used in a particular unit.

Chapter 3: The GNAT Compilation Model 29

* If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

* If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

* If a file being compiled contains a call to a subprogram for which pragma Inline

applies and inlining is activated with the -gnatn switch, the object file depends on
the file containing the body of this subprogram as well as on the file containing the
spec. Note that for inlining to actually occur as a result of the use of this switch, it is
necessary to compile in optimizing mode.

The use of -gnatN activates inlining optimization that is performed by the front end
of the compiler. This inlining does not require that the code generation be optimized.
Like -gnatn, the use of this switch generates additional dependencies.

When using a gcc-based back end (in practice this means using any version of GNAT
other than for the JVM, .NET or GNAAMP platforms), then the use of -gnatN is
deprecated, and the use of -gnatn is preferred. Historically front end inlining was
more extensive than the gcc back end inlining, but that is no longer the case.

* If an object file O depends on the proper body of a subunit through inlining or instanti-
ation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of O.

* The object file for a parent unit depends on all its subunit body files.

* The previous two rules meant that for purposes of computing dependencies and recom-
pilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A withs unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file c.adb.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as dictated by the Ada language standard. However,
it is a superset of what the standard describes, because it includes generic, inline, and
subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
gnatmake.

3.7 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the normal object
file that has a .o extension. The second is a text file containing full dependency information.
It has the same name as the source file, but an .ali extension. This file is known as the
Ada Library Information (ALI) file. The following information is contained in the ALI file.

* Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

Chapter 3: The GNAT Compilation Model 30

* Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

* List of arguments used in the gcc command for the compilation

* Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

* A list of relevant restrictions applying to the unit (used for consistency) checking.

* Categorization information (e.g., use of pragma Pure).

* Information on all withed units, including presence of Elaborate or Elaborate_All

pragmas.

* Information from any Linker_Options pragmas used in the unit

* Information on the use of Body_Version or Version attributes in the unit.

* Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

* Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ALI file, see the source of the body of
unit Lib.Writ, contained in file lib-writ.adb in the GNAT compiler sources.

3.8 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It is given
the name of the main program unit, and from this it determines the set of units required
by the program, by reading the corresponding ALI files. It generates error messages if the
program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,
followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is b~xxx.adb‘ (with the corresponding
spec b~xxx.ads‘) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object from
the main program from the bind step as well as the object files for the Ada units of the
program.

Chapter 3: The GNAT Compilation Model 31

3.9 GNAT and Libraries

This section describes how to build and use libraries with GNAT, and also shows how to
recompile the GNAT run-time library. You should be familiar with the Project Manager
facility (see the GNAT Project Manager chapter of the GPRbuild User’s Guide) before
reading this chapter.

3.9.1 Introduction to Libraries in GNAT

A library is, conceptually, a collection of objects which does not have its own main thread of
execution, but rather provides certain services to the applications that use it. A library can
be either statically linked with the application, in which case its code is directly included
in the application, or, on platforms that support it, be dynamically linked, in which case
its code is shared by all applications making use of this library.

GNAT supports both types of libraries. In the static case, the compiled code can be provided
in different ways. The simplest approach is to provide directly the set of objects resulting
from compilation of the library source files. Alternatively, you can group the objects into
an archive using whatever commands are provided by the operating system. For the latter
case, the objects are grouped into a shared library.

In the GNAT environment, a library has three types of components:

* Source files,

* ALI files (see [The Ada Library Information Files], page 29), and

* Object files, an archive or a shared library.

A GNAT library may expose all its source files, which is useful for documentation purposes.
Alternatively, it may expose only the units needed by an external user to make use of the
library. That is to say, the specs reflecting the library services along with all the units needed
to compile those specs, which can include generic bodies or any body implementing an
inlined routine. In the case of stand-alone libraries those exposed units are called interface
units ([Stand-alone Ada Libraries], page 35).

All compilation units comprising an application, including those in a library, need to be
elaborated in an order partially defined by Ada’s semantics. GNAT computes the elabora-
tion order from the ALI files and this is why they constitute a mandatory part of GNAT
libraries. Stand-alone libraries are the exception to this rule because a specific library
elaboration routine is produced independently of the application(s) using the library.

3.9.2 General Ada Libraries

3.9.2.1 Building a library

The easiest way to build a library is to use the Project Manager, which supports a special
type of project called a Library Project (see the Library Projects section in the GNAT
Project Manager chapter of the GPRbuild User’s Guide).

A project is considered a library project, when two project-level attributes are defined
in it: Library_Name and Library_Dir. In order to control different aspects of library
configuration, additional optional project-level attributes can be specified:

*

Chapter 3: The GNAT Compilation Model 32

Library_Kind

This attribute controls whether the library is to be static or dynamic

*

Library_Version

This attribute specifies the library version; this value is used during dy-
namic linking of shared libraries to determine if the currently installed
versions of the binaries are compatible.

* Library_Options

*

Library_GCC

These attributes specify additional low-level options to be used during
library generation, and redefine the actual application used to generate
library.

The GNAT Project Manager takes full care of the library maintenance task, including
recompilation of the source files for which objects do not exist or are not up to date,
assembly of the library archive, and installation of the library (i.e., copying associated
source, object and ALI files to the specified location).

Here is a simple library project file:

project My_Lib is

for Source_Dirs use ("src1", "src2");

for Object_Dir use "obj";

for Library_Name use "mylib";

for Library_Dir use "lib";

for Library_Kind use "dynamic";

end My_lib;

and the compilation command to build and install the library:

$ gnatmake -Pmy_lib

It is not entirely trivial to perform manually all the steps required to produce a library. We
recommend that you use the GNAT Project Manager for this task. In special cases where
this is not desired, the necessary steps are discussed below.

There are various possibilities for compiling the units that make up the library: for example
with a Makefile ([Using the GNU make Utility], page 169) or with a conventional script. For
simple libraries, it is also possible to create a dummy main program which depends upon
all the packages that comprise the interface of the library. This dummy main program can
then be given to gnatmake, which will ensure that all necessary objects are built.

After this task is accomplished, you should follow the standard procedure of the underlying
operating system to produce the static or shared library.

Here is an example of such a dummy program:

with My_Lib.Service1;

with My_Lib.Service2;

with My_Lib.Service3;

procedure My_Lib_Dummy is

begin

Chapter 3: The GNAT Compilation Model 33

null;

end;

Here are the generic commands that will build an archive or a shared library.

compiling the library

$ gnatmake -c my_lib_dummy.adb

we don’t need the dummy object itself

$ rm my_lib_dummy.o my_lib_dummy.ali

create an archive with the remaining objects

$ ar rc libmy_lib.a *.o

some systems may require "ranlib" to be run as well

or create a shared library

$ gcc -shared -o libmy_lib.so *.o

some systems may require the code to have been compiled with -fPIC

remove the object files that are now in the library

$ rm *.o

Make the ALI files read-only so that gnatmake will not try to

regenerate the objects that are in the library

$ chmod -w *.ali

Please note that the library must have a name of the form libxxx.a or libxxx.so (or
libxxx.dll on Windows) in order to be accessed by the directive -lxxx at link time.

3.9.2.2 Installing a library

If you use project files, library installation is part of the library build process (see the
Installing a Library with Project Files section of the GNAT Project Manager chapter of the
GPRbuild User’s Guide).

When project files are not an option, it is also possible, but not recommended, to install the
library so that the sources needed to use the library are on the Ada source path and the ALI
files & libraries be on the Ada Object path (see [Search Paths and the Run-Time Library
(RTL)], page 89. Alternatively, the system administrator can place general-purpose libraries
in the default compiler paths, by specifying the libraries’ location in the configuration files
ada_source_path and ada_object_path. These configuration files must be located in the
GNAT installation tree at the same place as the gcc spec file. The location of the gcc spec
file can be determined as follows:

$ gcc -v

The configuration files mentioned above have a simple format: each line must contain one
unique directory name. Those names are added to the corresponding path in their order
of appearance in the file. The names can be either absolute or relative; in the latter case,
they are relative to where theses files are located.

The files ada_source_path and ada_object_path might not be present in a GNAT instal-
lation, in which case, GNAT will look for its run-time library in the directories adainclude

Chapter 3: The GNAT Compilation Model 34

(for the sources) and adalib (for the objects and ALI files). When the files exist, the com-
piler does not look in adainclude and adalib, and thus the ada_source_path file must
contain the location for the GNAT run-time sources (which can simply be adainclude). In
the same way, the ada_object_path file must contain the location for the GNAT run-time
objects (which can simply be adalib).

You can also specify a new default path to the run-time library at compilation time with
the switch --RTS=rts-path. You can thus choose / change the run-time library you want
your program to be compiled with. This switch is recognized by gcc, gnatmake, gnatbind,
gnatls, gnatfind and gnatxref.

It is possible to install a library before or after the standard GNAT library, by reordering
the lines in the configuration files. In general, a library must be installed before the GNAT
library if it redefines any part of it.

3.9.2.3 Using a library

Once again, the project facility greatly simplifies the use of libraries. In this context, using
a library is just a matter of adding a with clause in the user project. For instance, to make
use of the library My_Lib shown in examples in earlier sections, you can write:

with "my_lib";

project My_Proj is

...

end My_Proj;

Even if you have a third-party, non-Ada library, you can still use GNAT’s Project Manager
facility to provide a wrapper for it. For example, the following project, when withed by
your main project, will link with the third-party library liba.a:

project Liba is

for Externally_Built use "true";

for Source_Files use ();

for Library_Dir use "lib";

for Library_Name use "a";

for Library_Kind use "static";

end Liba;

This is an alternative to the use of pragma Linker_Options. It is especially interesting in
the context of systems with several interdependent static libraries where finding a proper
linker order is not easy and best be left to the tools having visibility over project dependence
information.

In order to use an Ada library manually, you need to make sure that this library is on both
your source and object path (see [Search Paths and the Run-Time Library (RTL)], page 89
and [Search Paths for gnatbind], page 165). Furthermore, when the objects are grouped in
an archive or a shared library, you need to specify the desired library at link time.

For example, you can use the library mylib installed in /dir/my_lib_src and /dir/my_

lib_obj with the following commands:

$ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \\

-largs -lmy_lib

This can be expressed more simply:

Chapter 3: The GNAT Compilation Model 35

$ gnatmake my_appl

when the following conditions are met:

* /dir/my_lib_src has been added by the user to the environment variable
ADA_INCLUDE_PATH, or by the administrator to the file ada_source_path

* /dir/my_lib_obj has been added by the user to the environment variable
ADA_OBJECTS_PATH, or by the administrator to the file ada_object_path

* a pragma Linker_Options has been added to one of the sources. For example:

pragma Linker_Options ("-lmy_lib");

Note that you may also load a library dynamically at run time given its filename, as il-
lustrated in the GNAT plugins example in the directory share/examples/gnat/plugins

within the GNAT install area.

3.9.3 Stand-alone Ada Libraries

3.9.3.1 Introduction to Stand-alone Libraries

A Stand-alone Library (abbreviated ’SAL’) is a library that contains the necessary code
to elaborate the Ada units that are included in the library. In contrast with an ordinary
library, which consists of all sources, objects and ALI files of the library, a SAL may specify
a restricted subset of compilation units to serve as a library interface. In this case, the fully
self-sufficient set of files will normally consist of an objects archive, the sources of interface
units’ specs, and the ALI files of interface units. If an interface spec contains a generic unit
or an inlined subprogram, the body’s source must also be provided; if the units that must
be provided in the source form depend on other units, the source and ALI files of those must
also be provided.

The main purpose of a SAL is to minimize the recompilation overhead of client applications
when a new version of the library is installed. Specifically, if the interface sources have
not changed, client applications do not need to be recompiled. If, furthermore, a SAL is
provided in the shared form and its version, controlled by Library_Version attribute, is
not changed, then the clients do not need to be relinked.

SALs also allow the library providers to minimize the amount of library source text exposed
to the clients. Such ’information hiding’ might be useful or necessary for various reasons.

Stand-alone libraries are also well suited to be used in an executable whose main routine is
not written in Ada.

3.9.3.2 Building a Stand-alone Library

GNAT’s Project facility provides a simple way of building and installing stand-alone li-
braries; see the Stand-alone Library Projects section in the GNAT Project Manager chapter
of the GPRbuild User’s Guide. To be a Stand-alone Library Project, in addition to the two
attributes that make a project a Library Project (Library_Name and Library_Dir; see the
Library Projects section in the GNAT Project Manager chapter of the GPRbuild User’s
Guide), the attribute Library_Interface must be defined. For example:

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Interface use ("int1", "int1.child");

Chapter 3: The GNAT Compilation Model 36

Attribute Library_Interface has a non-empty string list value, each string in the list
designating a unit contained in an immediate source of the project file.

When a Stand-alone Library is built, first the binder is invoked to build a package whose
name depends on the library name (b~dummy.ads/b in the example above). This binder-
generated package includes initialization and finalization procedures whose names depend
on the library name (dummyinit and dummyfinal in the example above). The object cor-
responding to this package is included in the library.

You must ensure timely (e.g., prior to any use of interfaces in the SAL) calling of these
procedures if a static SAL is built, or if a shared SAL is built with the project-level attribute
Library_Auto_Init set to "false".

For a Stand-Alone Library, only the ALI files of the Interface Units (those that are listed
in attribute Library_Interface) are copied to the Library Directory. As a consequence,
only the Interface Units may be imported from Ada units outside of the library. If other
units are imported, the binding phase will fail.

It is also possible to build an encapsulated library where not only the code to elaborate
and finalize the library is embedded but also ensuring that the library is linked only against
static libraries. So an encapsulated library only depends on system libraries, all other code,
including the GNAT runtime, is embedded. To build an encapsulated library the attribute
Library_Standalone must be set to encapsulated:

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Kind use "dynamic";

for Library_Interface use ("int1", "int1.child");

for Library_Standalone use "encapsulated";

The default value for this attribute is standard in which case a stand-alone library is built.

The attribute Library_Src_Dir may be specified for a Stand-Alone Library. Library_

Src_Dir is a simple attribute that has a single string value. Its value must be the path
(absolute or relative to the project directory) of an existing directory. This directory cannot
be the object directory or one of the source directories, but it can be the same as the library
directory. The sources of the Interface Units of the library that are needed by an Ada client
of the library will be copied to the designated directory, called the Interface Copy directory.
These sources include the specs of the Interface Units, but they may also include bodies
and subunits, when pragmas Inline or Inline_Always are used, or when there is a generic
unit in the spec. Before the sources are copied to the Interface Copy directory, an attempt
is made to delete all files in the Interface Copy directory.

Building stand-alone libraries by hand is somewhat tedious, but for those occasions when
it is necessary here are the steps that you need to perform:

* Compile all library sources.

* Invoke the binder with the switch -n (No Ada main program), with all the ALI files
of the interfaces, and with the switch -L to give specific names to the init and final

procedures. For example:

$ gnatbind -n int1.ali int2.ali -Lsal1

* Compile the binder generated file:

$ gcc -c b~int2.adb

Chapter 3: The GNAT Compilation Model 37

* Link the dynamic library with all the necessary object files, indicating to the linker the
names of the init (and possibly final) procedures for automatic initialization (and
finalization). The built library should be placed in a directory different from the object
directory.

* Copy the ALI files of the interface to the library directory, add in this copy an indication
that it is an interface to a SAL (i.e., add a word SL on the line in the ALI file that
starts with letter ’P’) and make the modified copy of the ALI file read-only.

Using SALs is not different from using other libraries (see [Using a library], page 34).

3.9.3.3 Creating a Stand-alone Library to be used in a non-Ada
context

It is easy to adapt the SAL build procedure discussed above for use of a SAL in a non-Ada
context.

The only extra step required is to ensure that library interface subprograms are compatible
with the main program, by means of pragma Export or pragma Convention.

Here is an example of simple library interface for use with C main program:

package My_Package is

procedure Do_Something;

pragma Export (C, Do_Something, "do_something");

procedure Do_Something_Else;

pragma Export (C, Do_Something_Else, "do_something_else");

end My_Package;

On the foreign language side, you must provide a ’foreign’ view of the library interface;
remember that it should contain elaboration routines in addition to interface subprograms.

The example below shows the content of mylib_interface.h (note that there is no rule
for the naming of this file, any name can be used)

/* the library elaboration procedure */

extern void mylibinit (void);

/* the library finalization procedure */

extern void mylibfinal (void);

/* the interface exported by the library */

extern void do_something (void);

extern void do_something_else (void);

Libraries built as explained above can be used from any program, provided that the elabo-
ration procedures (named mylibinit in the previous example) are called before the library
services are used. Any number of libraries can be used simultaneously, as long as the
elaboration procedure of each library is called.

Below is an example of a C program that uses the mylib library.

#include "mylib_interface.h"

Chapter 3: The GNAT Compilation Model 38

int

main (void)

{

/* First, elaborate the library before using it */

mylibinit ();

/* Main program, using the library exported entities */

do_something ();

do_something_else ();

/* Library finalization at the end of the program */

mylibfinal ();

return 0;

}

Note that invoking any library finalization procedure generated by gnatbind shuts down
the Ada run-time environment. Consequently, the finalization of all Ada libraries must be
performed at the end of the program. No call to these libraries or to the Ada run-time
library should be made after the finalization phase.

Note also that special care must be taken with multi-tasks applications. The initialization
and finalization routines are not protected against concurrent access. If such requirement is
needed it must be ensured at the application level using a specific operating system services
like a mutex or a critical-section.

3.9.3.4 Restrictions in Stand-alone Libraries

The pragmas listed below should be used with caution inside libraries, as they can create
incompatibilities with other Ada libraries:

* pragma Locking_Policy

* pragma Partition_Elaboration_Policy

* pragma Queuing_Policy

* pragma Task_Dispatching_Policy

* pragma Unreserve_All_Interrupts

When using a library that contains such pragmas, the user must make sure that all libraries
use the same pragmas with the same values. Otherwise, Program_Error will be raised
during the elaboration of the conflicting libraries. The usage of these pragmas and its
consequences for the user should therefore be well documented.

Similarly, the traceback in the exception occurrence mechanism should be enabled or dis-
abled in a consistent manner across all libraries. Otherwise, Program Error will be raised
during the elaboration of the conflicting libraries.

If the Version or Body_Version attributes are used inside a library, then you need to
perform a gnatbind step that specifies all ALI files in all libraries, so that version identifiers
can be properly computed. In practice these attributes are rarely used, so this is unlikely
to be a consideration.

Chapter 3: The GNAT Compilation Model 39

3.9.4 Rebuilding the GNAT Run-Time Library

It may be useful to recompile the GNAT library in various debugging or experimentation
contexts. A project file called libada.gpr is provided to that effect and can be found in
the directory containing the GNAT library. The location of this directory depends on the
way the GNAT environment has been installed and can be determined by means of the
command:

$ gnatls -v

The last entry in the source search path usually contains the gnat library (the adainclude
directory). This project file contains its own documentation and in particular the set of
instructions needed to rebuild a new library and to use it.

Note that rebuilding the GNAT Run-Time is only recommended for temporary experiments
or debugging, and is not supported.

3.10 Conditional Compilation

This section presents some guidelines for modeling conditional compilation in Ada and
describes the gnatprep preprocessor utility.

3.10.1 Modeling Conditional Compilation in Ada

It is often necessary to arrange for a single source program to serve multiple purposes, where
it is compiled in different ways to achieve these different goals. Some examples of the need
for this feature are

* Adapting a program to a different hardware environment

* Adapting a program to a different target architecture

* Turning debugging features on and off

* Arranging for a program to compile with different compilers

In C, or C++, the typical approach would be to use the preprocessor that is defined as part of
the language. The Ada language does not contain such a feature. This is not an oversight,
but rather a very deliberate design decision, based on the experience that overuse of the
preprocessing features in C and C++ can result in programs that are extremely difficult to
maintain. For example, if we have ten switches that can be on or off, this means that there
are a thousand separate programs, any one of which might not even be syntactically correct,
and even if syntactically correct, the resulting program might not work correctly. Testing
all combinations can quickly become impossible.

Nevertheless, the need to tailor programs certainly exists, and in this section we will discuss
how this can be achieved using Ada in general, and GNAT in particular.

3.10.1.1 Use of Boolean Constants

In the case where the difference is simply which code sequence is executed, the cleanest
solution is to use Boolean constants to control which code is executed.

FP_Initialize_Required : constant Boolean := True;

...

if FP_Initialize_Required then

...

Chapter 3: The GNAT Compilation Model 40

end if;

Not only will the code inside the if statement not be executed if the constant Boolean is
False, but it will also be completely deleted from the program. However, the code is only
deleted after the if statement has been checked for syntactic and semantic correctness. (In
contrast, with preprocessors the code is deleted before the compiler ever gets to see it, so
it is not checked until the switch is turned on.)

Typically the Boolean constants will be in a separate package, something like:

package Config is

FP_Initialize_Required : constant Boolean := True;

Reset_Available : constant Boolean := False;

...

end Config;

The Config package exists in multiple forms for the various targets, with an appropriate
script selecting the version of Config needed. Then any other unit requiring conditional
compilation can do a with of Config to make the constants visible.

3.10.1.2 Debugging - A Special Case

A common use of conditional code is to execute statements (for example dynamic checks,
or output of intermediate results) under control of a debug switch, so that the debugging
behavior can be turned on and off. This can be done using a Boolean constant to control
whether the code is active:

if Debugging then

Put_Line ("got to the first stage!");

end if;

or

if Debugging and then Temperature > 999.0 then

raise Temperature_Crazy;

end if;

Since this is a common case, there are special features to deal with this in a convenient
manner. For the case of tests, Ada 2005 has added a pragma Assert that can be used for
such tests. This pragma is modeled on the Assert pragma that has always been available
in GNAT, so this feature may be used with GNAT even if you are not using Ada 2005
features. The use of pragma Assert is described in the GNAT Reference Manual, but as
an example, the last test could be written:

pragma Assert (Temperature <= 999.0, "Temperature Crazy");

or simply

pragma Assert (Temperature <= 999.0);

In both cases, if assertions are active and the temperature is excessive, the exception
Assert_Failure will be raised, with the given string in the first case or a string indicating
the location of the pragma in the second case used as the exception message.

You can turn assertions on and off by using the Assertion_Policy pragma.

This is an Ada 2005 pragma which is implemented in all modes by GNAT. Alternatively,
you can use the -gnata switch to enable assertions from the command line, which applies
to all versions of Ada.

Chapter 3: The GNAT Compilation Model 41

For the example above with the Put_Line, the GNAT-specific pragma Debug can be used:

pragma Debug (Put_Line ("got to the first stage!"));

If debug pragmas are enabled, the argument, which must be of the form of a procedure call,
is executed (in this case, Put_Line will be called). Only one call can be present, but of
course a special debugging procedure containing any code you like can be included in the
program and then called in a pragma Debug argument as needed.

One advantage of pragma Debug over the if Debugging then construct is that pragma
Debug can appear in declarative contexts, such as at the very beginning of a procedure,
before local declarations have been elaborated.

Debug pragmas are enabled using either the -gnata switch that also controls assertions, or
with a separate Debug Policy pragma.

The latter pragma is new in the Ada 2005 versions of GNAT (but it can be used in Ada 95
and Ada 83 programs as well), and is analogous to pragma Assertion_Policy to control
assertions.

Assertion_Policy and Debug_Policy are configuration pragmas, and thus they can ap-
pear in gnat.adc if you are not using a project file, or in the file designated to contain
configuration pragmas in a project file. They then apply to all subsequent compilations. In
practice the use of the -gnata switch is often the most convenient method of controlling
the status of these pragmas.

Note that a pragma is not a statement, so in contexts where a statement sequence is required,
you can’t just write a pragma on its own. You have to add a null statement.

if ... then

... -- some statements

else

pragma Assert (Num_Cases < 10);

null;

end if;

3.10.1.3 Conditionalizing Declarations

In some cases it may be necessary to conditionalize declarations to meet different require-
ments. For example we might want a bit string whose length is set to meet some hardware
message requirement.

This may be possible using declare blocks controlled by conditional constants:

if Small_Machine then

declare

X : Bit_String (1 .. 10);

begin

...

end;

else

declare

X : Large_Bit_String (1 .. 1000);

begin

...

Chapter 3: The GNAT Compilation Model 42

end;

end if;

Note that in this approach, both declarations are analyzed by the compiler so this can only
be used where both declarations are legal, even though one of them will not be used.

Another approach is to define integer constants, e.g., Bits_Per_Word, or Boolean constants,
e.g., Little_Endian, and then write declarations that are parameterized by these constants.
For example

for Rec use

Field1 at 0 range Boolean’Pos (Little_Endian) * 10 .. Bits_Per_Word;

end record;

If Bits_Per_Word is set to 32, this generates either

for Rec use

Field1 at 0 range 0 .. 32;

end record;

for the big endian case, or

for Rec use record

Field1 at 0 range 10 .. 32;

end record;

for the little endian case. Since a powerful subset of Ada expression notation is usable for
creating static constants, clever use of this feature can often solve quite difficult problems in
conditionalizing compilation (note incidentally that in Ada 95, the little endian constant was
introduced as System.Default_Bit_Order, so you do not need to define this one yourself).

3.10.1.4 Use of Alternative Implementations

In some cases, none of the approaches described above are adequate. This can occur for
example if the set of declarations required is radically different for two different configura-
tions.

In this situation, the official Ada way of dealing with conditionalizing such code is to write
separate units for the different cases. As long as this does not result in excessive duplication
of code, this can be done without creating maintenance problems. The approach is to
share common code as far as possible, and then isolate the code and declarations that are
different. Subunits are often a convenient method for breaking out a piece of a unit that is
to be conditionalized, with separate files for different versions of the subunit for different
targets, where the build script selects the right one to give to the compiler.

As an example, consider a situation where a new feature in Ada 2005 allows something
to be done in a really nice way. But your code must be able to compile with an Ada 95
compiler. Conceptually you want to say:

if Ada_2005 then

... neat Ada 2005 code

else

... not quite as neat Ada 95 code

end if;

where Ada_2005 is a Boolean constant.

Chapter 3: The GNAT Compilation Model 43

But this won’t work when Ada_2005 is set to False, since the then clause will be illegal
for an Ada 95 compiler. (Recall that although such unreachable code would eventually be
deleted by the compiler, it still needs to be legal. If it uses features introduced in Ada 2005,
it will be illegal in Ada 95.)

So instead we write

procedure Insert is separate;

Then we have two files for the subunit Insert, with the two sets of code. If the package
containing this is called File_Queries, then we might have two files

* file_queries-insert-2005.adb

* file_queries-insert-95.adb

and the build script renames the appropriate file to file_queries-insert.adb and then
carries out the compilation.

This can also be done with project files’ naming schemes. For example:

for body ("File_Queries.Insert") use "file_queries-insert-2005.ada";

Note also that with project files it is desirable to use a different extension than ads / adb

for alternative versions. Otherwise a naming conflict may arise through another commonly
used feature: to declare as part of the project a set of directories containing all the sources
obeying the default naming scheme.

The use of alternative units is certainly feasible in all situations, and for example the Ada
part of the GNAT run-time is conditionalized based on the target architecture using this
approach. As a specific example, consider the implementation of the AST feature in VMS.
There is one spec: s-asthan.ads which is the same for all architectures, and three bodies:

*

s-asthan.adb

used for all non-VMS operating systems

*

s-asthan-vms-alpha.adb

used for VMS on the Alpha

*

s-asthan-vms-ia64.adb

used for VMS on the ia64

The dummy version s-asthan.adb simply raises exceptions noting that this operating sys-
tem feature is not available, and the two remaining versions interface with the corresponding
versions of VMS to provide VMS-compatible AST handling. The GNAT build script knows
the architecture and operating system, and automatically selects the right version, renaming
it if necessary to s-asthan.adb before the run-time build.

Another style for arranging alternative implementations is through Ada’s access-to-
subprogram facility. In case some functionality is to be conditionally included, you can
declare an access-to-procedure variable Ref that is initialized to designate a ’do nothing’
procedure, and then invoke Ref.all when appropriate. In some library package, set Ref
to Proc’Access for some procedure Proc that performs the relevant processing. The
initialization only occurs if the library package is included in the program. The same idea
can also be implemented using tagged types and dispatching calls.

Chapter 3: The GNAT Compilation Model 44

3.10.1.5 Preprocessing

Although it is quite possible to conditionalize code without the use of C-style preprocessing,
as described earlier in this section, it is nevertheless convenient in some cases to use the C
approach. Moreover, older Ada compilers have often provided some preprocessing capability,
so legacy code may depend on this approach, even though it is not standard.

To accommodate such use, GNAT provides a preprocessor (modeled to a large extent on the
various preprocessors that have been used with legacy code on other compilers, to enable
easier transition).

The preprocessor may be used in two separate modes. It can be used quite separately from
the compiler, to generate a separate output source file that is then fed to the compiler as a
separate step. This is the gnatprep utility, whose use is fully described in [Preprocessing
with gnatprep], page 44.

The preprocessing language allows such constructs as

#if DEBUG or else (PRIORITY > 4) then

sequence of declarations

#else

completely different sequence of declarations

#end if;

The values of the symbols DEBUG and PRIORITY can be defined either on the command line
or in a separate file.

The other way of running the preprocessor is even closer to the C style and often more
convenient. In this approach the preprocessing is integrated into the compilation process.
The compiler is given the preprocessor input which includes #if lines etc, and then the
compiler carries out the preprocessing internally and processes the resulting output. For
more details on this approach, see [Integrated Preprocessing], page 48.

3.10.2 Preprocessing with gnatprep

This section discusses how to use GNAT’s gnatprep utility for simple preprocessing. Al-
though designed for use with GNAT, gnatprep does not depend on any special GNAT
features. For further discussion of conditional compilation in general, see [Conditional
Compilation], page 39.

3.10.2.1 Preprocessing Symbols

Preprocessing symbols are defined in definition files and referenced in the sources to be pre-
processed. A preprocessing symbol is an identifier, following normal Ada (case-insensitive)
rules for its syntax, with the restriction that all characters need to be in the ASCII set (no
accented letters).

3.10.2.2 Using gnatprep

To call gnatprep use:

$ gnatprep [switches] infile outfile [deffile]

where

*

Chapter 3: The GNAT Compilation Model 45

switches

is an optional sequence of switches as described in the next section.

*

infile

is the full name of the input file, which is an Ada source file containing
preprocessor directives.

*

outfile

is the full name of the output file, which is an Ada source in standard Ada
form. When used with GNAT, this file name will normally have an ads or
adb suffix.

*

deffile

is the full name of a text file containing definitions of preprocessing symbols
to be referenced by the preprocessor. This argument is optional, and can
be replaced by the use of the -D switch.

3.10.2.3 Switches for gnatprep

--version

Display Copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage and then exit disregarding all other
options.

-b

Causes both preprocessor lines and the lines deleted by preprocessing to be
replaced by blank lines in the output source file, preserving line numbers in the
output file.

-c

Causes both preprocessor lines and the lines deleted by preprocessing to be
retained in the output source as comments marked with the special string "--!

". This option will result in line numbers being preserved in the output file.

-C

Causes comments to be scanned. Normally comments are ignored by gnat-
prep. If this option is specified, then comments are scanned and any $symbol
substitutions performed as in program text. This is particularly useful when
structured comments are used (e.g., for programs written in a pre-2014 version
of the SPARK Ada subset). Note that this switch is not available when doing
integrated preprocessing (it would be useless in this context since comments are
ignored by the compiler in any case).

Chapter 3: The GNAT Compilation Model 46

-Dsymbol[=value]

Defines a new preprocessing symbol with the specified value. If no value is given
on the command line, then symbol is considered to be True. This switch can
be used in place of a definition file.

-r

Causes a Source_Reference pragma to be generated that references the original
input file, so that error messages will use the file name of this original file. The
use of this switch implies that preprocessor lines are not to be removed from
the file, so its use will force -b mode if -c has not been specified explicitly.

Note that if the file to be preprocessed contains multiple units, then it will be
necessary to gnatchop the output file from gnatprep. If a Source_Reference

pragma is present in the preprocessed file, it will be respected by gnatchop -r

so that the final chopped files will correctly refer to the original input source
file for gnatprep.

-s

Causes a sorted list of symbol names and values to be listed on the standard
output file.

-T

Use LF as line terminators when writing files. By default the line terminator
of the host (LF under unix, CR/LF under Windows) is used.

-u

Causes undefined symbols to be treated as having the value FALSE in the
context of a preprocessor test. In the absence of this option, an undefined
symbol in a #if or #elsif test will be treated as an error.

-v

Verbose mode: generates more output about work done.

Note: if neither -b nor -c is present, then preprocessor lines and deleted lines are completely
removed from the output, unless -r is specified, in which case -b is assumed.

3.10.2.4 Form of Definitions File

The definitions file contains lines of the form:

symbol := value

where symbol is a preprocessing symbol, and value is one of the following:

* Empty, corresponding to a null substitution,

* A string literal using normal Ada syntax, or

* Any sequence of characters from the set {letters, digits, period, underline}.

Comment lines may also appear in the definitions file, starting with the usual --, and
comments may be added to the definitions lines.

Chapter 3: The GNAT Compilation Model 47

3.10.2.5 Form of Input Text for gnatprep

The input text may contain preprocessor conditional inclusion lines, as well as general
symbol substitution sequences.

The preprocessor conditional inclusion commands have the form:

#if <expression> [then]

lines

#elsif <expression> [then]

lines

#elsif <expression> [then]

lines

...

#else

lines

#end if;

In this example, <expression> is defined by the following grammar:

<expression> ::= <symbol>

<expression> ::= <symbol> = "<value>"

<expression> ::= <symbol> = <symbol>

<expression> ::= <symbol> = <integer>

<expression> ::= <symbol> > <integer>

<expression> ::= <symbol> >= <integer>

<expression> ::= <symbol> < <integer>

<expression> ::= <symbol> <= <integer>

<expression> ::= <symbol> ’Defined

<expression> ::= not <expression>

<expression> ::= <expression> and <expression>

<expression> ::= <expression> or <expression>

<expression> ::= <expression> and then <expression>

<expression> ::= <expression> or else <expression>

<expression> ::= (<expression>)

Note the following restriction: it is not allowed to have "and" or "or" following "not" in
the same expression without parentheses. For example, this is not allowed:

not X or Y

This can be expressed instead as one of the following forms:

(not X) or Y

not (X or Y)

For the first test (<expression> ::= <symbol>) the symbol must have either the value true
or false, that is to say the right-hand of the symbol definition must be one of the (case-
insensitive) literals True or False. If the value is true, then the corresponding lines are
included, and if the value is false, they are excluded.

When comparing a symbol to an integer, the integer is any non negative literal integer as
defined in the Ada Reference Manual, such as 3, 16#FF# or 2#11#. The symbol value
must also be a non negative integer. Integer values in the range 0 .. 2**31-1 are supported.

Chapter 3: The GNAT Compilation Model 48

The test (<expression> ::= <symbol>’Defined) is true only if the symbol has been defined
in the definition file or by a -D switch on the command line. Otherwise, the test is false.

The equality tests are case insensitive, as are all the preprocessor lines.

If the symbol referenced is not defined in the symbol definitions file, then the effect depends
on whether or not switch -u is specified. If so, then the symbol is treated as if it had the
value false and the test fails. If this switch is not specified, then it is an error to reference
an undefined symbol. It is also an error to reference a symbol that is defined with a value
other than True or False.

The use of the not operator inverts the sense of this logical test. The not operator cannot
be combined with the or or and operators, without parentheses. For example, "if not X or
Y then" is not allowed, but "if (not X) or Y then" and "if not (X or Y) then" are.

The then keyword is optional as shown

The # must be the first non-blank character on a line, but otherwise the format is free form.
Spaces or tabs may appear between the # and the keyword. The keywords and the symbols
are case insensitive as in normal Ada code. Comments may be used on a preprocessor line,
but other than that, no other tokens may appear on a preprocessor line. Any number of
elsif clauses can be present, including none at all. The else is optional, as in Ada.

The # marking the start of a preprocessor line must be the first non-blank character on the
line, i.e., it must be preceded only by spaces or horizontal tabs.

Symbol substitution outside of preprocessor lines is obtained by using the sequence:

$symbol

anywhere within a source line, except in a comment or within a string literal. The identifier
following the $ must match one of the symbols defined in the symbol definition file, and the
result is to substitute the value of the symbol in place of $symbol in the output file.

Note that although the substitution of strings within a string literal is not possible, it is
possible to have a symbol whose defined value is a string literal. So instead of setting XYZ
to hello and writing:

Header : String := "$XYZ";

you should set XYZ to "hello" and write:

Header : String := $XYZ;

and then the substitution will occur as desired.

3.10.3 Integrated Preprocessing

As noted above, a file to be preprocessed consists of Ada source code in which preprocessing
lines have been inserted. However, instead of using gnatprep to explicitly preprocess a file
as a separate step before compilation, you can carry out the preprocessing implicitly as
part of compilation. Such integrated preprocessing, which is the common style with C, is
performed when either or both of the following switches are passed to the compiler:

* -gnatep, which specifies the preprocessor data file. This file dic-
tates how the source files will be preprocessed (e.g., which symbol
definition files apply to which sources).

* -gnateD, which defines values for preprocessing symbols.

Chapter 3: The GNAT Compilation Model 49

Integrated preprocessing applies only to Ada source files, it is not available for configuration
pragma files.

With integrated preprocessing, the output from the preprocessor is not, by default, written
to any external file. Instead it is passed internally to the compiler. To preserve the result of
preprocessing in a file, either run gnatprep in standalone mode or else supply the -gnateG
switch (described below) to the compiler.

When using project files:

* the builder switch -x should be used if any Ada source is compiled
with gnatep=, so that the compiler finds the preprocessor data file.

* the preprocessing data file and the symbol definition files should be
located in the source directories of the project.

Note that the gnatmake switch -m will almost always trigger recompilation for sources
that are preprocessed, because gnatmake cannot compute the checksum of the source after
preprocessing.

The actual preprocessing function is described in detail in [Preprocessing with gnatprep],
page 44. This section explains the switches that relate to integrated preprocessing.

-gnatep=preprocessor_data_file

This switch specifies the file name (without directory information) of the pre-
processor data file. Either place this file in one of the source directories, or,
when using project files, reference the project file’s directory via the project_
name’Project_Dir project attribute; e.g:

project Prj is

package Compiler is

for Switches ("Ada") use

("-gnatep=" & Prj’Project_Dir & "prep.def");

end Compiler;

end Prj;

A preprocessor data file is a text file that contains preprocessor control lines. A
preprocessor control line directs the preprocessing of either a particular source
file, or, analogous to others in Ada, all sources not specified elsewhere in the
preprocessor data file. A preprocessor control line can optionally identify a
definition file that assigns values to preprocessor symbols, as well as a list of
switches that relate to preprocessing. Empty lines and comments (using Ada
syntax) are also permitted, with no semantic effect.

Here’s an example of a preprocessor data file:

"toto.adb" "prep.def" -u

-- Preprocess toto.adb, using definition file prep.def

-- Undefined symbols are treated as False

* -c -DVERSION=V101

-- Preprocess all other sources without using a definition file

-- Suppressed lined are commented

-- Symbol VERSION has the value V101

Chapter 3: The GNAT Compilation Model 50

"tata.adb" "prep2.def" -s

-- Preprocess tata.adb, using definition file prep2.def

-- List all symbols with their values

A preprocessor control line has the following syntax:

<preprocessor_control_line> ::=

<preprocessor_input> [<definition_file_name>] { <switch> }

<preprocessor_input> ::= <source_file_name> | ’*’

<definition_file_name> ::= <string_literal>

<source_file_name> := <string_literal>

<switch> := (See below for list)

Thus each preprocessor control line starts with either a literal string or the
character ’*’:

* A literal string is the file name (without directory information) of the source
file that will be input to the preprocessor.

* The character ’*’ is a wild-card indicator; the additional parameters on
the line indicate the preprocessing for all the sources that are not specified
explicitly on other lines (the order of the lines is not significant).

It is an error to have two lines with the same file name or two lines starting
with the character ’*’.

After the file name or ’*’, an optional literal string specifies the name of the
definition file to be used for preprocessing ([Form of Definitions File], page 46).
The definition files are found by the compiler in one of the source directories.
In some cases, when compiling a source in a directory other than the current
directory, if the definition file is in the current directory, it may be necessary to
add the current directory as a source directory through the -I switch; otherwise
the compiler would not find the definition file.

Finally, switches similar to those of gnatprep may optionally appear:

-b

Causes both preprocessor lines and the lines deleted by preprocess-
ing to be replaced by blank lines, preserving the line number. This
switch is always implied; however, if specified after -c it cancels
the effect of -c.

-c

Causes both preprocessor lines and the lines deleted by preprocess-
ing to be retained as comments marked with the special string ’–!’.

-Dsymbol=new_value

Define or redefine symbol to have new_value as its value. The
permitted form for symbol is either an Ada identifier, or any Ada
reserved word aside from if, else, elsif, end, and, or and then.

Chapter 3: The GNAT Compilation Model 51

The permitted form for new_value is a literal string, an Ada identi-
fier or any Ada reserved word. A symbol declared with this switch
replaces a symbol with the same name defined in a definition file.

-s

Causes a sorted list of symbol names and values to be listed on the
standard output file.

-u

Causes undefined symbols to be treated as having the value FALSE
in the context of a preprocessor test. In the absence of this option,
an undefined symbol in a #if or #elsif test will be treated as an
error.

-gnateDsymbol[=new_value]

Define or redefine symbol to have new_value as its value. If no value is supplied,
then the value of symbol is True. The form of symbol is an identifier, following
normal Ada (case-insensitive) rules for its syntax, and new_value is either an
arbitrary string between double quotes or any sequence (including an empty
sequence) of characters from the set (letters, digits, period, underline). Ada
reserved words may be used as symbols, with the exceptions of if, else, elsif,
end, and, or and then.

Examples:

-gnateDToto=Tata

-gnateDFoo

-gnateDFoo=\"Foo-Bar\"

A symbol declared with this switch on the command line replaces a symbol
with the same name either in a definition file or specified with a switch -D in
the preprocessor data file.

This switch is similar to switch -D of gnatprep.

-gnateG

When integrated preprocessing is performed on source file
filename.extension, create or overwrite filename.extension.prep

to contain the result of the preprocessing. For example if the source file is
foo.adb then the output file will be foo.adb.prep.

3.11 Mixed Language Programming

This section describes how to develop a mixed-language program, with a focus on combining
Ada with C or C++.

3.11.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to
import and/or export entity definitions in each language – using extern statements in C,
for instance, and the Import, Export, and Convention pragmas in Ada. A full treatment
of these topics is provided in Appendix B, section 1 of the Ada Reference Manual.

Chapter 3: The GNAT Compilation Model 52

There are two ways to build a program using GNAT that contains some Ada sources and
some foreign language sources, depending on whether or not the main subprogram is written
in Ada. Here is a source example with the main subprogram in Ada:

/* file1.c */

#include <stdio.h>

void print_num (int num)

{

printf ("num is %d.\\n", num);

return;

}

/* file2.c */

/* num_from_Ada is declared in my_main.adb */

extern int num_from_Ada;

int get_num (void)

{

return num_from_Ada;

}

-- my_main.adb

procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada

My_Num : Integer := 10;

pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use

-- C function get_num for the implementation.

function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use

-- C function print_num for the implementation.

procedure Print_Num (Num : Integer);

pragma Import (C, Print_Num, "print_num");

begin

Print_Num (Get_Num);

end My_Main;

To build this example:

* First compile the foreign language files to generate object files:

$ gcc -c file1.c

$ gcc -c file2.c

* Then, compile the Ada units to produce a set of object files and ALI files:

Chapter 3: The GNAT Compilation Model 53

$ gnatmake -c my_main.adb

* Run the Ada binder on the Ada main program:

$ gnatbind my_main.ali

* Link the Ada main program, the Ada objects and the other language objects:

$ gnatlink my_main.ali file1.o file2.o

The last three steps can be grouped in a single command:

$ gnatmake my_main.adb -largs file1.o file2.o

If the main program is in a language other than Ada, then you may have more than one
entry point into the Ada subsystem. You must use a special binder option to generate
callable routines that initialize and finalize the Ada units ([Binding with Non-Ada Main
Programs], page 164). Calls to the initialization and finalization routines must be inserted
in the main program, or some other appropriate point in the code. The call to initialize
the Ada units must occur before the first Ada subprogram is called, and the call to finalize
the Ada units must occur after the last Ada subprogram returns. The binder will place
the initialization and finalization subprograms into the b~xxx.adb file where they can be
accessed by your C sources. To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);

extern int sub (int, int);

int main (int argc, char *argv[])

{

int a = 21, b = 7;

adainit();

/* Should print "21 + 7 = 28" */

printf ("%d + %d = %d\\n", a, b, add (a, b));

/* Should print "21 - 7 = 14" */

printf ("%d - %d = %d\\n", a, b, sub (a, b));

adafinal();

}

-- unit1.ads

package Unit1 is

function Add (A, B : Integer) return Integer;

pragma Export (C, Add, "add");

end Unit1;

-- unit1.adb

package body Unit1 is

function Add (A, B : Integer) return Integer is

Chapter 3: The GNAT Compilation Model 54

begin

return A + B;

end Add;

end Unit1;

-- unit2.ads

package Unit2 is

function Sub (A, B : Integer) return Integer;

pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb

package body Unit2 is

function Sub (A, B : Integer) return Integer is

begin

return A - B;

end Sub;

end Unit2;

The build procedure for this application is similar to the last example’s:

* First, compile the foreign language files to generate object files:

$ gcc -c main.c

* Next, compile the Ada units to produce a set of object files and ALI files:

$ gnatmake -c unit1.adb

$ gnatmake -c unit2.adb

* Run the Ada binder on every generated ALI file. Make sure to use the -n option to
specify a foreign main program:

$ gnatbind -n unit1.ali unit2.ali

* Link the Ada main program, the Ada objects and the foreign language objects. You
need only list the last ALI file here:

$ gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called exec_file.

Depending on the circumstances (for example when your non-Ada main object does not
provide symbol main), you may also need to instruct the GNAT linker not to include the
standard startup objects by passing the -nostartfiles switch to gnatlink.

3.11.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

Ada

This indicates that the standard Ada calling sequence will be used and all Ada
data items may be passed without any limitations in the case where GNAT is
used to generate both the caller and callee. It is also possible to mix GNAT
generated code and code generated by another Ada compiler. In this case,
the data types should be restricted to simple cases, including primitive types.

Chapter 3: The GNAT Compilation Model 55

Whether complex data types can be passed depends on the situation. Probably
it is safe to pass simple arrays, such as arrays of integers or floats. Records
may or may not work, depending on whether both compilers lay them out
identically. Complex structures involving variant records, access parameters,
tasks, or protected types, are unlikely to be able to be passed.

Note that in the case of GNAT running on a platform that supports HP Ada 83,
a higher degree of compatibility can be guaranteed, and in particular records are
laid out in an identical manner in the two compilers. Note also that if output
from two different compilers is mixed, the program is responsible for dealing
with elaboration issues. Probably the safest approach is to write the main
program in the version of Ada other than GNAT, so that it takes care of its own
elaboration requirements, and then call the GNAT-generated adainit procedure
to ensure elaboration of the GNAT components. Consult the documentation of
the other Ada compiler for further details on elaboration.

However, it is not possible to mix the tasking run time of GNAT and HP Ada
83, All the tasking operations must either be entirely within GNAT compiled
sections of the program, or entirely within HP Ada 83 compiled sections of the
program.

Assembler

Specifies assembler as the convention. In practice this has the same effect as
convention Ada (but is not equivalent in the sense of being considered the same
convention).

Asm

Equivalent to Assembler.

COBOL

Data will be passed according to the conventions described in section B.4 of the
Ada Reference Manual.

C

Data will be passed according to the conventions described in section B.3 of the
Ada Reference Manual.

A note on interfacing to a C ’varargs’ function:

In C, varargs allows a function to take a variable number
of arguments. There is no direct equivalent in this to Ada.
One approach that can be used is to create a C wrapper for
each different profile and then interface to this C wrapper.
For example, to print an int value using printf, create a
C function printfi that takes two arguments, a pointer to
a string and an int, and calls printf. Then in the Ada
program, use pragma Import to interface to printfi.

It may work on some platforms to directly interface to a
varargs function by providing a specific Ada profile for a
particular call. However, this does not work on all platforms,
since there is no guarantee that the calling sequence for a

Chapter 3: The GNAT Compilation Model 56

two argument normal C function is the same as for calling a
varargs C function with the same two arguments.

Default

Equivalent to C.

External

Equivalent to C.

C_Plus_Plus (or CPP)
This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for
further details.

Fortran

Data will be passed according to the conventions described in section B.5 of the
Ada Reference Manual.

Intrinsic

This applies to an intrinsic operation, as defined in the Ada Reference Manual.
If a pragma Import (Intrinsic) applies to a subprogram, this means that the
body of the subprogram is provided by the compiler itself, usually by means of
an efficient code sequence, and that the user does not supply an explicit body
for it. In an application program, the pragma may be applied to the following
sets of names:

* Rotate Left, Rotate Right, Shift Left, Shift Right, Shift Right Arithmetic.
The corresponding subprogram declaration must have two formal param-
eters. The first one must be a signed integer type or a modular type with
a binary modulus, and the second parameter must be of type Natural.
The return type must be the same as the type of the first argument. The
size of this type can only be 8, 16, 32, or 64.

* Binary arithmetic operators: ’+’, ’-’, ’*’, ’/’. The corresponding operator
declaration must have parameters and result type that have the same root
numeric type (for example, all three are long float types). This simplifies
the definition of operations that use type checking to perform dimensional
checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");

This common idiom is often programmed with a generic definition and an

explicit body. The pragma makes it simpler to introduce such declarations.

It incurs no overhead in compilation time or code size, because it is

implemented as a single machine instruction.

Chapter 3: The GNAT Compilation Model 57

* General subprogram entities. This is used to bind an Ada subprogram
declaration to a compiler builtin by name with back-ends where such in-
terfaces are available. A typical example is the set of __builtin functions
exposed by the GCC back-end, as in the following example:

function builtin_sqrt (F : Float) return Float;

pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");

Most of the GCC builtins are accessible this way, and as for other import
conventions (e.g. C), it is the user’s responsibility to ensure that the Ada
subprogram profile matches the underlying builtin expectations.

Stdcall

This is relevant only to Windows implementations of GNAT, and specifies that
the Stdcall calling sequence will be used, as defined by the NT API. Neverthe-
less, to ease building cross-platform bindings this convention will be handled as
a C calling convention on non-Windows platforms.

DLL

This is equivalent to Stdcall.

Win32

This is equivalent to Stdcall.

Stubbed

This is a special convention that indicates that the compiler should provide a
stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used
to parameterize conventions and allow additional synonyms to be specified. For example
if you have legacy code in which the convention identifier Fortran77 was used for Fortran,
you can use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

3.11.3 Building Mixed Ada and C++ Programs

A programmer inexperienced with mixed-language development may find that building an
application containing both Ada and C++ code can be a challenge. This section gives a few
hints that should make this task easier.

3.11.3.1 Interfacing to C++

GNAT supports interfacing with the G++ compiler (or any C++ compiler gener-
ating code that is compatible with the G++ Application Binary Interface —see
http://www.codesourcery.com/archives/cxx-abi).

Interfacing can be done at 3 levels: simple data, subprograms, and classes. In the first two
cases, GNAT offers a specific Convention C_Plus_Plus (or CPP) that behaves exactly like
Convention C. Usually, C++ mangles the names of subprograms. To generate proper man-
gled names automatically, see [Generating Ada Bindings for C and C++ headers], page 68).
This problem can also be addressed manually in two ways:

Chapter 3: The GNAT Compilation Model 58

* by modifying the C++ code in order to force a C convention using the extern "C"

syntax.

* by figuring out the mangled name (using e.g. nm) and using it as the Link Name
argument of the pragma import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such as
CPP_Constructor. See the GNAT Reference Manual for additional information.

3.11.3.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

* Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: The C++
linker can simply be called by using the C++ specific driver called g++.

Note that if the C++ code uses inline functions, you will need to compile your C++ code
with the -fkeep-inline-functions switch in order to provide an existing function
implementation that the Ada code can link with.

$ g++ -c -fkeep-inline-functions file1.C

$ g++ -c -fkeep-inline-functions file2.C

$ gnatmake ada_unit -largs file1.o file2.o --LINK=g++

* Using GNAT and G++ from two different GCC installations: If both compilers are on
the :envvar‘PATH‘, the previous method may be used. It is important to note that
environment variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT,
and GCC_ROOT will affect both compilers at the same time and may make one of the
two compilers operate improperly if set during invocation of the wrong compiler. It is
also very important that the linker uses the proper libgcc.a GCC library – that is,
the one from the C++ compiler installation. The implicit link command as suggested
in the gnatmake command from the former example can be replaced by an explicit link
command with the full-verbosity option in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++

If there is a problem due to interfering environment variables, it can be worked around
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $*

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script

* Using a non-GNU C++ compiler: The commands previously described can be used to
insure that the C++ linker is used. Nonetheless, you need to add a few more parameters
to the link command line, depending on the exception mechanism used.

Chapter 3: The GNAT Compilation Model 59

If the setjmp / longjmp exception mechanism is used, only the paths to the libgcc

libraries are required:

$ cat ./my_script

#!/bin/sh

CC $* gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a

$ gnatlink ada_unit file1.o file2.o --LINK=./my_script

where CC is the name of the non-GNU C++ compiler.

If the "zero cost" exception mechanism is used, and the platform supports automatic
registration of exception tables (e.g., Solaris), paths to more objects are required:

$ cat ./my_script

#!/bin/sh

CC gcc -print-file-name=crtbegin.o $* \\

gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a \\

gcc -print-file-name=crtend.o

$ gnatlink ada_unit file1.o file2.o --LINK=./my_script

If the "zero cost exception" mechanism is used, and the platform doesn’t support
automatic registration of exception tables (e.g., HP-UX or AIX), the simple approach
described above will not work and a pre-linking phase using GNAT will be necessary.

Another alternative is to use the gprbuild multi-language builder which has a large knowl-
edge base and knows how to link Ada and C++ code together automatically in most cases.

3.11.3.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve
procedural interfacing between Ada and C++ in both directions. The C++ class A has
two methods. The first method is exported to Ada by the means of an extern C wrapper
function. The second method calls an Ada subprogram. On the Ada side, the C++ calls
are modelled by a limited record with a layout comparable to the C++ class. The Ada
subprogram, in turn, calls the C++ method. So, starting from the C++ main program, the
process passes back and forth between the two languages.

Here are the compilation commands:

$ gnatmake -c simple_cpp_interface

$ g++ -c cpp_main.C

$ g++ -c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=g++ -lstdc++ ex7.o cpp_main.o

Here are the corresponding sources:

//cpp_main.C

#include "ex7.h"

extern "C" {

void adainit (void);

void adafinal (void);

void method1 (A *t);

Chapter 3: The GNAT Compilation Model 60

}

void method1 (A *t)

{

t->method1 ();

}

int main ()

{

A obj;

adainit ();

obj.method2 (3030);

adafinal ();

}

//ex7.h

class Origin {

public:

int o_value;

};

class A : public Origin {

public:

void method1 (void);

void method2 (int v);

A();

int a_value;

};

//ex7.C

#include "ex7.h"

#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::method1 (void)

{

a_value = 2020;

printf ("in A::method1, a_value = %d \\n",a_value);

}

void A::method2 (int v)

{

ada_method2 (this, v);

printf ("in A::method2, a_value = %d \\n",a_value);

}

Chapter 3: The GNAT Compilation Model 61

A::A(void)

{

a_value = 1010;

printf ("in A::A, a_value = %d \\n",a_value);

}

-- simple_cpp_interface.ads

with System;

package Simple_Cpp_Interface is

type A is limited

record

Vptr : System.Address;

O_Value : Integer;

A_Value : Integer;

end record;

pragma Convention (C, A);

procedure Method1 (This : in out A);

pragma Import (C, Method1);

procedure Ada_Method2 (This : in out A; V : Integer);

pragma Export (C, Ada_Method2);

end Simple_Cpp_Interface;

-- simple_cpp_interface.adb

package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is

begin

Method1 (This);

This.A_Value := V;

end Ada_Method2;

end Simple_Cpp_Interface;

3.11.3.4 Interfacing with C++ constructors

In order to interface with C++ constructors GNAT provides the pragma CPP_Constructor

(see the GNAT Reference Manual for additional information). In this section we present
some common uses of C++ constructors in mixed-languages programs in GNAT.

Let us assume that we need to interface with the following C++ class:

class Root {

public:

int a_value;

int b_value;

virtual int Get_Value ();

Root(); // Default constructor

Root(int v); // 1st non-default constructor

Chapter 3: The GNAT Compilation Model 62

Root(int v, int w); // 2nd non-default constructor

};

For this purpose we can write the following package spec (further information on how
to build this spec is available in [Interfacing with C++ at the Class Level], page 64 and
[Generating Ada Bindings for C and C++ headers], page 68).

with Interfaces.C; use Interfaces.C;

package Pkg_Root is

type Root is tagged limited record

A_Value : int;

B_Value : int;

end record;

pragma Import (CPP, Root);

function Get_Value (Obj : Root) return int;

pragma Import (CPP, Get_Value);

function Constructor return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ev");

function Constructor (v : Integer) return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ei");

function Constructor (v, w : Integer) return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Eii");

end Pkg_Root;

On the Ada side the constructor is represented by a function (whose name is arbitrary)
that returns the classwide type corresponding to the imported C++ class. Although the
constructor is described as a function, it is typically a procedure with an extra implicit
argument (the object being initialized) at the implementation level. GNAT issues the
appropriate call, whatever it is, to get the object properly initialized.

Constructors can only appear in the following contexts:

* On the right side of an initialization of an object of type T.

* On the right side of an initialization of a record component of type T.

* In an Ada 2005 limited aggregate.

* In an Ada 2005 nested limited aggregate.

* In an Ada 2005 limited aggregate that initializes an object built in place by an extended
return statement.

In a declaration of an object whose type is a class imported from C++, either the default
C++ constructor is implicitly called by GNAT, or else the required C++ constructor must
be explicitly called in the expression that initializes the object. For example:

Obj1 : Root;

Obj2 : Root := Constructor;

Obj3 : Root := Constructor (v => 10);

Obj4 : Root := Constructor (30, 40);

Chapter 3: The GNAT Compilation Model 63

The first two declarations are equivalent: in both cases the default C++ constructor is
invoked (in the former case the call to the constructor is implicit, and in the latter case
the call is explicit in the object declaration). Obj3 is initialized by the C++ non-default
constructor that takes an integer argument, and Obj4 is initialized by the non-default C++
constructor that takes two integers.

Let us derive the imported C++ class in the Ada side. For example:

type DT is new Root with record

C_Value : Natural := 2009;

end record;

In this case the components DT inherited from the C++ side must be initialized by a C++
constructor, and the additional Ada components of type DT are initialized by GNAT. The
initialization of such an object is done either by default, or by means of a function returning
an aggregate of type DT, or by means of an extension aggregate.

Obj5 : DT;

Obj6 : DT := Function_Returning_DT (50);

Obj7 : DT := (Constructor (30,40) with C_Value => 50);

The declaration of Obj5 invokes the default constructors: the C++ default constructor of
the parent type takes care of the initialization of the components inherited from Root, and
GNAT takes care of the default initialization of the additional Ada components of type DT
(that is, C_Value is initialized to value 2009). The order of invocation of the constructors is
consistent with the order of elaboration required by Ada and C++. That is, the constructor
of the parent type is always called before the constructor of the derived type.

Let us now consider a record that has components whose type is imported from C++. For
example:

type Rec1 is limited record

Data1 : Root := Constructor (10);

Value : Natural := 1000;

end record;

type Rec2 (D : Integer := 20) is limited record

Rec : Rec1;

Data2 : Root := Constructor (D, 30);

end record;

The initialization of an object of type Rec2 will call the non-default C++ constructors
specified for the imported components. For example:

Obj8 : Rec2 (40);

Using Ada 2005 we can use limited aggregates to initialize an object invoking C++ construc-
tors that differ from those specified in the type declarations. For example:

Obj9 : Rec2 := (Rec => (Data1 => Constructor (15, 16),

others => <>),

others => <>);

The above declaration uses an Ada 2005 limited aggregate to initialize Obj9, and the C++
constructor that has two integer arguments is invoked to initialize the Data1 component
instead of the constructor specified in the declaration of type Rec1. In Ada 2005 the box in

Chapter 3: The GNAT Compilation Model 64

the aggregate indicates that unspecified components are initialized using the expression (if
any) available in the component declaration. That is, in this case discriminant D is initialized
to value 20, Value is initialized to value 1000, and the non-default C++ constructor that
handles two integers takes care of initializing component Data2 with values 20,30.

In Ada 2005 we can use the extended return statement to build the Ada equivalent to C++
non-default constructors. For example:

function Constructor (V : Integer) return Rec2 is

begin

return Obj : Rec2 := (Rec => (Data1 => Constructor (V, 20),

others => <>),

others => <>) do

-- Further actions required for construction of

-- objects of type Rec2

...

end record;

end Constructor;

In this example the extended return statement construct is used to build in place the
returned object whose components are initialized by means of a limited aggregate. Any
further action associated with the constructor can be placed inside the construct.

3.11.3.5 Interfacing with C++ at the Class Level

In this section we demonstrate the GNAT features for interfacing with C++ by means of
an example making use of Ada 2005 abstract interface types. This example consists of a
classification of animals; classes have been used to model our main classification of animals,
and interfaces provide support for the management of secondary classifications. We first
demonstrate a case in which the types and constructors are defined on the C++ side and
imported from the Ada side, and latter the reverse case.

The root of our derivation will be the Animal class, with a single private attribute (the Age
of the animal), a constructor, and two public primitives to set and get the value of this
attribute.

class Animal {

public:

virtual void Set_Age (int New_Age);

virtual int Age ();

Animal() {Age_Count = 0;};

private:

int Age_Count;

};

Abstract interface types are defined in C++ by means of classes with pure virtual functions
and no data members. In our example we will use two interfaces that provide support for
the common management of Carnivore and Domestic animals:

class Carnivore {

public:

virtual int Number_Of_Teeth () = 0;

};

Chapter 3: The GNAT Compilation Model 65

class Domestic {

public:

virtual void Set_Owner (char* Name) = 0;

};

Using these declarations, we can now say that a Dog is an animal that is both Carnivore
and Domestic, that is:

class Dog : Animal, Carnivore, Domestic {

public:

virtual int Number_Of_Teeth ();

virtual void Set_Owner (char* Name);

Dog(); // Constructor

private:

int Tooth_Count;

char *Owner;

};

In the following examples we will assume that the previous declarations are located in
a file named animals.h. The following package demonstrates how to import these C++
declarations from the Ada side:

with Interfaces.C.Strings; use Interfaces.C.Strings;

package Animals is

type Carnivore is limited interface;

pragma Convention (C_Plus_Plus, Carnivore);

function Number_Of_Teeth (X : Carnivore)

return Natural is abstract;

type Domestic is limited interface;

pragma Convention (C_Plus_Plus, Domestic);

procedure Set_Owner

(X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged limited record

Age : Natural;

end record;

pragma Import (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

pragma Import (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;

pragma Import (C_Plus_Plus, Age);

function New_Animal return Animal;

pragma CPP_Constructor (New_Animal);

Chapter 3: The GNAT Compilation Model 66

pragma Import (CPP, New_Animal, "_ZN6AnimalC1Ev");

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : Natural;

Owner : Chars_Ptr;

end record;

pragma Import (C_Plus_Plus, Dog);

function Number_Of_Teeth (A : Dog) return Natural;

pragma Import (C_Plus_Plus, Number_Of_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);

pragma Import (C_Plus_Plus, Set_Owner);

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");

end Animals;

Thanks to the compatibility between GNAT run-time structures and the C++ ABI, inter-
facing with these C++ classes is easy. The only requirement is that all the primitives and
components must be declared exactly in the same order in the two languages.

Regarding the abstract interfaces, we must indicate to the GNAT compiler by means of
a pragma Convention (C_Plus_Plus), the convention used to pass the arguments to the
called primitives will be the same as for C++. For the imported classes we use pragma

Import with convention C_Plus_Plus to indicate that they have been defined on the C++
side; this is required because the dispatch table associated with these tagged types will be
built in the C++ side and therefore will not contain the predefined Ada primitives which
Ada would otherwise expect.

As the reader can see there is no need to indicate the C++ mangled names associated
with each subprogram because it is assumed that all the calls to these primitives will be
dispatching calls. The only exception is the constructor, which must be registered with the
compiler by means of pragma CPP_Constructor and needs to provide its associated C++
mangled name because the Ada compiler generates direct calls to it.

With the above packages we can now declare objects of type Dog on the Ada side and
dispatch calls to the corresponding subprograms on the C++ side. We can also extend the
tagged type Dog with further fields and primitives, and override some of its C++ primitives
on the Ada side. For example, here we have a type derivation defined on the Ada side that
inherits all the dispatching primitives of the ancestor from the C++ side.

with Animals; use Animals;

package Vaccinated_Animals is

type Vaccinated_Dog is new Dog with null record;

function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;

end Vaccinated_Animals;

It is important to note that, because of the ABI compatibility, the programmer does not
need to add any further information to indicate either the object layout or the dispatch
table entry associated with each dispatching operation.

Chapter 3: The GNAT Compilation Model 67

Now let us define all the types and constructors on the Ada side and export them to C++,
using the same hierarchy of our previous example:

with Interfaces.C.Strings;

use Interfaces.C.Strings;

package Animals is

type Carnivore is limited interface;

pragma Convention (C_Plus_Plus, Carnivore);

function Number_Of_Teeth (X : Carnivore)

return Natural is abstract;

type Domestic is limited interface;

pragma Convention (C_Plus_Plus, Domestic);

procedure Set_Owner

(X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record

Age : Natural;

end record;

pragma Convention (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

pragma Export (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;

pragma Export (C_Plus_Plus, Age);

function New_Animal return Animal’Class;

pragma Export (C_Plus_Plus, New_Animal);

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : Natural;

Owner : String (1 .. 30);

end record;

pragma Convention (C_Plus_Plus, Dog);

function Number_Of_Teeth (A : Dog) return Natural;

pragma Export (C_Plus_Plus, Number_Of_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);

pragma Export (C_Plus_Plus, Set_Owner);

function New_Dog return Dog’Class;

pragma Export (C_Plus_Plus, New_Dog);

end Animals;

Chapter 3: The GNAT Compilation Model 68

Compared with our previous example the only differences are the use of pragma Convention

(instead of pragma Import), and the use of pragma Export to indicate to the GNAT com-
piler that the primitives will be available to C++. Thanks to the ABI compatibility, on the
C++ side there is nothing else to be done; as explained above, the only requirement is that
all the primitives and components are declared in exactly the same order.

For completeness, let us see a brief C++ main program that uses the declarations available
in animals.h (presented in our first example) to import and use the declarations from the
Ada side, properly initializing and finalizing the Ada run-time system along the way:

#include "animals.h"

#include <iostream>

using namespace std;

void Check_Carnivore (Carnivore *obj) {...}

void Check_Domestic (Domestic *obj) {...}

void Check_Animal (Animal *obj) {...}

void Check_Dog (Dog *obj) {...}

extern "C" {

void adainit (void);

void adafinal (void);

Dog* new_dog ();

}

void test ()

{

Dog *obj = new_dog(); // Ada constructor

Check_Carnivore (obj); // Check secondary DT

Check_Domestic (obj); // Check secondary DT

Check_Animal (obj); // Check primary DT

Check_Dog (obj); // Check primary DT

}

int main ()

{

adainit (); test(); adafinal ();

return 0;

}

3.11.4 Generating Ada Bindings for C and C++ headers

GNAT includes a binding generator for C and C++ headers which is intended to do 95% of
the tedious work of generating Ada specs from C or C++ header files.

Note that this capability is not intended to generate 100% correct Ada specs, and will is
some cases require manual adjustments, although it can often be used out of the box in
practice.

Some of the known limitations include:

Chapter 3: The GNAT Compilation Model 69

* only very simple character constant macros are translated into Ada constants. Function
macros (macros with arguments) are partially translated as comments, to be completed
manually if needed.

* some extensions (e.g. vector types) are not supported

* pointers to pointers or complex structures are mapped to System.Address

* identifiers with identical name (except casing) will generate compilation errors (e.g.
shm_get vs SHM_GET).

The code is generated using Ada 2012 syntax, which makes it easier to interface with other
languages. In most cases you can still use the generated binding even if your code is compiled
using earlier versions of Ada (e.g. -gnat95).

3.11.4.1 Running the Binding Generator

The binding generator is part of the gcc compiler and can be invoked via the -fdump-ada-
spec switch, which will generate Ada spec files for the header files specified on the command
line, and all header files needed by these files transitively. For example:

$ g++ -c -fdump-ada-spec -C /usr/include/time.h

$ gcc -c *.ads

will generate, under GNU/Linux, the following files: time_h.ads, bits_time_h.ads,
stddef_h.ads, bits_types_h.ads which correspond to the files /usr/include/time.h,
/usr/include/bits/time.h, etc..., and will then compile these Ada specs in Ada 2005
mode.

The -C switch tells gcc to extract comments from headers, and will attempt to generate
corresponding Ada comments.

If you want to generate a single Ada file and not the transitive closure, you can use instead
the -fdump-ada-spec-slim switch.

You can optionally specify a parent unit, of which all generated units will be children, using
-fada-spec-parent=unit.

Note that we recommend when possible to use the g++ driver to generate bindings, even
for most C headers, since this will in general generate better Ada specs. For generating
bindings for C++ headers, it is mandatory to use the g++ command, or gcc -x c++ which is
equivalent in this case. If g++ cannot work on your C headers because of incompatibilities
between C and C++, then you can fallback to gcc instead.

For an example of better bindings generated from the C++ front-end, the name of the
parameters (when available) are actually ignored by the C front-end. Consider the following
C header:

extern void foo (int variable);

with the C front-end, variable is ignored, and the above is handled as:

extern void foo (int);

generating a generic:

procedure foo (param1 : int);

with the C++ front-end, the name is available, and we generate:

Chapter 3: The GNAT Compilation Model 70

procedure foo (variable : int);

In some cases, the generated bindings will be more complete or more meaningful when
defining some macros, which you can do via the -D switch. This is for example the case
with Xlib.h under GNU/Linux:

$ g++ -c -fdump-ada-spec -DXLIB_ILLEGAL_ACCESS -C /usr/include/X11/Xlib.h

The above will generate more complete bindings than a straight call without the -DXLIB_

ILLEGAL_ACCESS switch.

In other cases, it is not possible to parse a header file in a stand-alone manner, because
other include files need to be included first. In this case, the solution is to create a small
header file including the needed #include and possible #define directives. For example,
to generate Ada bindings for readline/readline.h, you need to first include stdio.h, so
you can create a file with the following two lines in e.g. readline1.h:

#include <stdio.h>

#include <readline/readline.h>

and then generate Ada bindings from this file:

$ g++ -c -fdump-ada-spec readline1.h

3.11.4.2 Generating Bindings for C++ Headers

Generating bindings for C++ headers is done using the same options, always with the g++
compiler. Note that generating Ada spec from C++ headers is a much more complex job
and support for C++ headers is much more limited that support for C headers. As a result,
you will need to modify the resulting bindings by hand more extensively when using C++
headers.

In this mode, C++ classes will be mapped to Ada tagged types, constructors will be mapped
using the CPP_Constructor pragma, and when possible, multiple inheritance of abstract
classes will be mapped to Ada interfaces (see the Interfacing to C++ section in the GNAT
Reference Manual for additional information on interfacing to C++).

For example, given the following C++ header file:

class Carnivore {

public:

virtual int Number_Of_Teeth () = 0;

};

class Domestic {

public:

virtual void Set_Owner (char* Name) = 0;

};

class Animal {

public:

int Age_Count;

virtual void Set_Age (int New_Age);

};

Chapter 3: The GNAT Compilation Model 71

class Dog : Animal, Carnivore, Domestic {

public:

int Tooth_Count;

char *Owner;

virtual int Number_Of_Teeth ();

virtual void Set_Owner (char* Name);

Dog();

};

The corresponding Ada code is generated:

package Class_Carnivore is

type Carnivore is limited interface;

pragma Import (CPP, Carnivore);

function Number_Of_Teeth (this : access Carnivore) return int is abstract;

end;

use Class_Carnivore;

package Class_Domestic is

type Domestic is limited interface;

pragma Import (CPP, Domestic);

procedure Set_Owner

(this : access Domestic;

Name : Interfaces.C.Strings.chars_ptr) is abstract;

end;

use Class_Domestic;

package Class_Animal is

type Animal is tagged limited record

Age_Count : aliased int;

end record;

pragma Import (CPP, Animal);

procedure Set_Age (this : access Animal; New_Age : int);

pragma Import (CPP, Set_Age, "_ZN6Animal7Set_AgeEi");

end;

use Class_Animal;

package Class_Dog is

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : aliased int;

Owner : Interfaces.C.Strings.chars_ptr;

end record;

pragma Import (CPP, Dog);

Chapter 3: The GNAT Compilation Model 72

function Number_Of_Teeth (this : access Dog) return int;

pragma Import (CPP, Number_Of_Teeth, "_ZN3Dog15Number_Of_TeethEv");

procedure Set_Owner

(this : access Dog; Name : Interfaces.C.Strings.chars_ptr);

pragma Import (CPP, Set_Owner, "_ZN3Dog9Set_OwnerEPc");

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC1Ev");

end;

use Class_Dog;

3.11.4.3 Switches

-fdump-ada-spec

Generate Ada spec files for the given header files transitively (including all
header files that these headers depend upon).

-fdump-ada-spec-slim

Generate Ada spec files for the header files specified on the command line only.

-fada-spec-parent=unit

Specifies that all files generated by -fdump-ada-spec are to be child units of
the specified parent unit.

-C

Extract comments from headers and generate Ada comments in the Ada spec
files.

3.11.5 Generating C Headers for Ada Specifications

GNAT includes a C header generator for Ada specifications which supports Ada types that
have a direct mapping to C types. This includes in particular support for:

* Scalar types

* Constrained arrays

* Records (untagged)

* Composition of the above types

* Constant declarations

* Object declarations

* Subprogram declarations

3.11.5.1 Running the C Header Generator

The C header generator is part of the GNAT compiler and can be invoked via the -gnatceg
combination of switches, which will generate a .h file corresponding to the given input file
(Ada spec or body). Note that only spec files are processed in any case, so giving a spec or
a body file as input is equivalent. For example:

Chapter 3: The GNAT Compilation Model 73

$ gcc -c -gnatceg pack1.ads

will generate a self-contained file called pack1.h including common definitions from the
Ada Standard package, followed by the definitions included in pack1.ads, as well as all the
other units withed by this file.

For instance, given the following Ada files:

package Pack2 is

type Int is range 1 .. 10;

end Pack2;

with Pack2;

package Pack1 is

type Rec is record

Field1, Field2 : Pack2.Int;

end record;

Global : Rec := (1, 2);

procedure Proc1 (R : Rec);

procedure Proc2 (R : in out Rec);

end Pack1;

The above gcc command will generate the following pack1.h file:

/* Standard definitions skipped */

#ifndef PACK2_ADS

#define PACK2_ADS

typedef short_short_integer pack2__TintB;

typedef pack2__TintB pack2__int;

#endif /* PACK2_ADS */

#ifndef PACK1_ADS

#define PACK1_ADS

typedef struct _pack1__rec {

pack2__int field1;

pack2__int field2;

} pack1__rec;

extern pack1__rec pack1__global;

extern void pack1__proc1(const pack1__rec r);

extern void pack1__proc2(pack1__rec *r);

#endif /* PACK1_ADS */

You can then include pack1.h from a C source file and use the types, call subprograms,
reference objects, and constants.

3.12 GNAT and Other Compilation Models

This section compares the GNAT model with the approaches taken in other environents,
first the C/C++ model and then the mechanism that has been used in other Ada systems,
in particular those traditionally used for Ada 83.

Chapter 3: The GNAT Compilation Model 74

3.12.1 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada with is similar in effect to the #include of a C
header.

One notable difference is that, in Ada, you may compile specs separately to check them for
semantic and syntactic accuracy. This is not always possible with C headers because they
are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There are
also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where gnatbind might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

3.12.2 Comparison between GNAT and Conventional Ada Library
Models

This section is intended for Ada programmers who have used an Ada compiler implementing
the traditional Ada library model, as described in the Ada Reference Manual.

In GNAT, there is no ’library’ in the normal sense. Instead, the set of source files themselves
acts as the library. Compiling Ada programs does not generate any centralized information,
but rather an object file and a ALI file, which are of interest only to the binder and linker.
In a traditional system, the compiler reads information not only from the source file being
compiled, but also from the centralized library. This means that the effect of a compilation
depends on what has been previously compiled. In particular:

* When a unit is withed, the unit seen by the compiler corresponds to the version of the
unit most recently compiled into the library.

* Inlining is effective only if the necessary body has already been compiled into the
library.

* Compiling a unit may obsolete other units in the library.

In GNAT, compiling one unit never affects the compilation of any other units because the
compiler reads only source files. Only changes to source files can affect the results of a
compilation. In particular:

* When a unit is withed, the unit seen by the compiler corresponds to the source version
of the unit that is currently accessible to the compiler.

* Inlining requires the appropriate source files for the package or subprogram bodies to
be available to the compiler. Inlining is always effective, independent of the order in
which units are compiled.

Chapter 3: The GNAT Compilation Model 75

* Compiling a unit never affects any other compilations. The editing of sources may
cause previous compilations to be out of date if they depended on the source file being
modified.

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which one is required to do one compilation before
another. What shows up as order of compilation requirements in the traditional Ada library
becomes, in GNAT, simple source dependencies; in other words, there is only a set of rules
saying what source files must be present when a file is compiled.

3.13 Using GNAT Files with External Tools

This section explains how files that are produced by GNAT may be used with tools designed
for other languages.

3.13.1 Using Other Utility Programs with GNAT

The object files generated by GNAT are in standard system format and in particular the
debugging information uses this format. This means programs generated by GNAT can be
used with existing utilities that depend on these formats.

In general, any utility program that works with C will also often work with Ada programs
generated by GNAT. This includes software utilities such as gprof (a profiling program),
gdb (the FSF debugger), and utilities such as Purify.

3.13.2 The External Symbol Naming Scheme of GNAT

In order to interpret the output from GNAT, when using tools that are originally intended
for use with other languages, it is useful to understand the conventions used to generate
link names from the Ada entity names.

All link names are in all lowercase letters. With the exception of library procedure names,
the mechanism used is simply to use the full expanded Ada name with dots replaced by
double underscores. For example, suppose we have the following package spec:

package QRS is

MN : Integer;

end QRS;

The variable MN has a full expanded Ada name of QRS.MN, so the corresponding link name
is qrs__mn. Of course if a pragma Export is used this may be overridden:

package Exports is

Var1 : Integer;

pragma Export (Var1, C, External_Name => "var1_name");

Var2 : Integer;

pragma Export (Var2, C, Link_Name => "var2_link_name");

end Exports;

In this case, the link name for Var1 is whatever link name the C compiler would assign
for the C function var1_name. This typically would be either var1_name or _var1_name,
depending on operating system conventions, but other possibilities exist. The link name for
Var2 is var2_link_name, and this is not operating system dependent.

Chapter 3: The GNAT Compilation Model 76

One exception occurs for library level procedures. A potential ambiguity arises between the
required name _main for the C main program, and the name we would otherwise assign to
an Ada library level procedure called Main (which might well not be the main program).

To avoid this ambiguity, we attach the prefix _ada_ to such names. So if we have a library
level procedure such as:

procedure Hello (S : String);

the external name of this procedure will be _ada_hello.

Chapter 4: Building Executable Programs with GNAT 77

4 Building Executable Programs with GNAT

This chapter describes first the gnatmake tool ([Building with gnatmake], page 77), which
automatically determines the set of sources needed by an Ada compilation unit and exe-
cutes the necessary (re)compilations, binding and linking. It also explains how to use each
tool individually: the compiler (gcc, see [Compiling with gcc], page 87), binder (gnatbind,
see [Binding with gnatbind], page 153), and linker (gnatlink, see [Linking with gnatlink],
page 166) to build executable programs. Finally, this chapter provides examples of how to
make use of the general GNU make mechanism in a GNAT context (see [Using the GNU
make Utility], page 169).

4.1 Building with gnatmake

A typical development cycle when working on an Ada program consists of the following
steps:

1. Edit some sources to fix bugs;

2. Add enhancements;

3. Compile all sources affected;

4. Rebind and relink; and

5. Test.

The third step in particular can be tricky, because not only do the modified files have to be
compiled, but any files depending on these files must also be recompiled. The dependency
rules in Ada can be quite complex, especially in the presence of overloading, use clauses,
generics and inlined subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It deter-
mines which sources need to be compiled, compiles them, and binds and links the resulting
object files.

Unlike some other Ada make programs, the dependencies are always accurately recomputed
from the new sources. The source based approach of the GNAT compilation model makes
this possible. This means that if changes to the source program cause corresponding changes
in dependencies, they will always be tracked exactly correctly by gnatmake.

Note that for advanced forms of project structure, we recommend creating a project file
as explained in the GNAT Project Manager chapter in the GPRbuild User’s Guide, and
using the gprbuild tool which supports building with project files and works similarly to
gnatmake.

4.1.1 Running gnatmake

The usual form of the gnatmake command is

$ gnatmake [<switches>] <file_name> [<file_names>] [<mode_switches>]

The only required argument is one file_name, which specifies a compilation unit that is a
main program. Several file_names can be specified: this will result in several executables
being built. If switches are present, they can be placed before the first file_name, between
file_names or after the last file_name. If mode_switches are present, they must always
be placed after the last file_name and all switches.

Chapter 4: Building Executable Programs with GNAT 78

If you are using standard file extensions (.adb and .ads), then the extension may be omitted
from the file_name arguments. However, if you are using non-standard extensions, then it
is required that the extension be given. A relative or absolute directory path can be specified
in a file_name, in which case, the input source file will be searched for in the specified
directory only. Otherwise, the input source file will first be searched in the directory where
gnatmake was invoked and if it is not found, it will be search on the source path of the
compiler as described in [Search Paths and the Run-Time Library (RTL)], page 89.

All gnatmake output (except when you specify -M) is sent to stderr. The output produced
by the -M switch is sent to stdout.

4.1.2 Switches for gnatmake

You may specify any of the following switches to gnatmake:

--version

Display Copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

--GCC=compiler_name

Program used for compiling. The default is gcc. You need to use quotes around
compiler_name if compiler_name contains spaces or other separator characters.
As an example --GCC="foo -x -y" will instruct gnatmake to use foo -x -y as
your compiler. A limitation of this syntax is that the name and path name of
the executable itself must not include any embedded spaces. Note that switch
-c is always inserted after your command name. Thus in the above example
the compiler command that will be used by gnatmake will be foo -c -x -y. If
several --GCC=compiler_name are used, only the last compiler_name is taken
into account. However, all the additional switches are also taken into account.
Thus, --GCC="foo -x -y" --GCC="bar -z -t" is equivalent to --GCC="bar -x

-y -z -t".

--GNATBIND=binder_name

Program used for binding. The default is gnatbind. You need to use quotes
around binder_name if binder_name contains spaces or other separator char-
acters. As an example --GNATBIND="bar -x -y" will instruct gnatmake to use
bar -x -y as your binder. Binder switches that are normally appended by
gnatmake to gnatbind are now appended to the end of bar -x -y. A limita-
tion of this syntax is that the name and path name of the executable itself must
not include any embedded spaces.

--GNATLINK=linker_name

Program used for linking. The default is gnatlink. You need to use quotes
around linker_name if linker_name contains spaces or other separator charac-
ters. As an example --GNATLINK="lan -x -y" will instruct gnatmake to use lan
-x -y as your linker. Linker switches that are normally appended by gnatmake

to gnatlink are now appended to the end of lan -x -y. A limitation of this
syntax is that the name and path name of the executable itself must not include
any embedded spaces.

Chapter 4: Building Executable Programs with GNAT 79

--create-map-file

When linking an executable, create a map file. The name of the map file has
the same name as the executable with extension ".map".

--create-map-file=mapfile

When linking an executable, create a map file with the specified name.

--create-missing-dirs

When using project files (-Pproject), automatically create missing object di-
rectories, library directories and exec directories.

--single-compile-per-obj-dir

Disallow simultaneous compilations in the same object directory when project
files are used.

--subdirs=subdir

Actual object directory of each project file is the subdirectory subdir of the
object directory specified or defaulted in the project file.

--unchecked-shared-lib-imports

By default, shared library projects are not allowed to import static library
projects. When this switch is used on the command line, this restriction is
relaxed.

--source-info=source info file

Specify a source info file. This switch is active only when project files are used.
If the source info file is specified as a relative path, then it is relative to the
object directory of the main project. If the source info file does not exist, then
after the Project Manager has successfully parsed and processed the project
files and found the sources, it creates the source info file. If the source info file
already exists and can be read successfully, then the Project Manager will get
all the needed information about the sources from the source info file and will
not look for them. This reduces the time to process the project files, especially
when looking for sources that take a long time. If the source info file exists but
cannot be parsed successfully, the Project Manager will attempt to recreate it.
If the Project Manager fails to create the source info file, a message is issued,
but gnatmake does not fail. gnatmake "trusts" the source info file. This means
that if the source files have changed (addition, deletion, moving to a different
source directory), then the source info file need to be deleted and recreated.

-a

Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked
files are files whose ALI file is write-protected. By default, gnatmake does not
check these files, because the assumption is that the GNAT internal files are
properly up to date, and also that any write protected ALI files have been
properly installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the binder. You
may have to specify this switch if you are working on GNAT itself. The switch
-a is also useful in conjunction with -f if you need to recompile an entire

Chapter 4: Building Executable Programs with GNAT 80

application, including run-time files, using special configuration pragmas, such
as a Normalize_Scalars pragma.

By default gnatmake -a compiles all GNAT internal files with gcc -c -gnatpg

rather than gcc -c.

-b

Bind only. Can be combined with -c to do compilation and binding, but no link.
Can be combined with -l to do binding and linking. When not combined with
-c all the units in the closure of the main program must have been previously
compiled and must be up to date. The root unit specified by file_name may
be given without extension, with the source extension or, if no GNAT Project
File is specified, with the ALI file extension.

-c

Compile only. Do not perform binding, except when -b is also specified. Do
not perform linking, except if both -b and -l are also specified. If the root
unit specified by file_name is not a main unit, this is the default. Otherwise
gnatmake will attempt binding and linking unless all objects are up to date and
the executable is more recent than the objects.

-C

Use a temporary mapping file. A mapping file is a way to communicate to the
compiler two mappings: from unit names to file names (without any directory
information) and from file names to path names (with full directory informa-
tion). A mapping file can make the compiler’s file searches faster, especially if
there are many source directories, or the sources are read over a slow network
connection. If -P is used, a mapping file is always used, so -C is unnecessary;
in this case the mapping file is initially populated based on the project file. If
-C is used without -P, the mapping file is initially empty. Each invocation of
the compiler will add any newly accessed sources to the mapping file.

-C=file

Use a specific mapping file. The file, specified as a path name (absolute or
relative) by this switch, should already exist, otherwise the switch is ineffective.
The specified mapping file will be communicated to the compiler. This switch is
not compatible with a project file (-P‘file‘) or with multiple compiling processes
(-jnnn, when nnn is greater than 1).

-d

Display progress for each source, up to date or not, as a single line:

completed x out of y (zz%)

If the file needs to be compiled this is displayed after the invocation of the
compiler. These lines are displayed even in quiet output mode.

-D dir

Put all object files and ALI file in directory dir. If the -D switch is not used,
all object files and ALI files go in the current working directory.

This switch cannot be used when using a project file.

Chapter 4: Building Executable Programs with GNAT 81

-eInnn

Indicates that the main source is a multi-unit source and the rank of the unit
in the source file is nnn. nnn needs to be a positive number and a valid index
in the source. This switch cannot be used when gnatmake is invoked for several
mains.

-eL

Follow all symbolic links when processing project files. This should be used
if your project uses symbolic links for files or directories, but is not needed in
other cases.

This also assumes that no directory matches the naming scheme for files (for
instance that you do not have a directory called "sources.ads" when using the
default GNAT naming scheme).

When you do not have to use this switch (i.e., by default), gnatmake is able
to save a lot of system calls (several per source file and object file), which can
result in a significant speed up to load and manipulate a project file, especially
when using source files from a remote system.

-eS

Output the commands for the compiler, the binder and the linker on standard
output, instead of standard error.

-f

Force recompilations. Recompile all sources, even though some object files may
be up to date, but don’t recompile predefined or GNAT internal files or locked
files (files with a write-protected ALI file), unless the -a switch is also specified.

-F

When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

-g

Enable debugging. This switch is simply passed to the compiler and to the
linker.

-i

In normal mode, gnatmake compiles all object files and ALI files into the current
directory. If the -i switch is used, then instead object files and ALI files that
already exist are overwritten in place. This means that once a large project is
organized into separate directories in the desired manner, then gnatmake will
automatically maintain and update this organization. If no ALI files are found
on the Ada object path (see [Search Paths and the Run-Time Library (RTL)],
page 89), the new object and ALI files are created in the directory containing
the source being compiled. If another organization is desired, where objects
and sources are kept in different directories, a useful technique is to create
dummy ALI files in the desired directories. When detecting such a dummy file,
gnatmake will be forced to recompile the corresponding source file, and it will

Chapter 4: Building Executable Programs with GNAT 82

be put the resulting object and ALI files in the directory where it found the
dummy file.

-jn

Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. If n is 0, then the maximum number of
parallel compilations is the number of core processors on the platform. In
the event of compilation errors, messages from various compilations might get
interspersed (but gnatmake will give you the full ordered list of failing compiles
at the end). If this is problematic, rerun the make process with n set to 1 to
get a clean list of messages.

-k

Keep going. Continue as much as possible after a compilation error. To ease
the programmer’s task in case of compilation errors, the list of sources for which
the compile fails is given when gnatmake terminates.

If gnatmake is invoked with several file_names and with this switch, if there
are compilation errors when building an executable, gnatmake will not attempt
to build the following executables.

-l

Link only. Can be combined with -b to binding and linking. Linking will not
be performed if combined with -c but not with -b. When not combined with
-b all the units in the closure of the main program must have been previously
compiled and must be up to date, and the main program needs to have been
bound. The root unit specified by file_name may be given without extension,
with the source extension or, if no GNAT Project File is specified, with the ALI
file extension.

-m

Specify that the minimum necessary amount of recompilations be performed.
In this mode gnatmake ignores time stamp differences when the only modifica-
tions to a source file consist in adding/removing comments, empty lines, spaces
or tabs. This means that if you have changed the comments in a source file or
have simply reformatted it, using this switch will tell gnatmake not to recompile
files that depend on it (provided other sources on which these files depend have
undergone no semantic modifications). Note that the debugging information
may be out of date with respect to the sources if the -m switch causes a com-
pilation to be switched, so the use of this switch represents a trade-off between
compilation time and accurate debugging information.

-M

Check if all objects are up to date. If they are, output the object dependences
to stdout in a form that can be directly exploited in a Makefile. By default,
each source file is prefixed with its (relative or absolute) directory name. This
name is whatever you specified in the various -aI and -I switches. If you use
gnatmake -M -q (see below), only the source file names, without relative paths,
are output. If you just specify the -M switch, dependencies of the GNAT internal

Chapter 4: Building Executable Programs with GNAT 83

system files are omitted. This is typically what you want. If you also specify
the -a switch, dependencies of the GNAT internal files are also listed. Note
that dependencies of the objects in external Ada libraries (see switch -aLdir

in the following list) are never reported.

-n

Don’t compile, bind, or link. Checks if all objects are up to date. If they
are not, the full name of the first file that needs to be recompiled is printed.
Repeated use of this option, followed by compiling the indicated source file, will
eventually result in recompiling all required units.

-o exec_name

Output executable name. The name of the final executable program will be
exec_name. If the -o switch is omitted the default name for the executable will
be the name of the input file in appropriate form for an executable file on the
host system.

This switch cannot be used when invoking gnatmake with several file_names.

-p

Same as --create-missing-dirs

-Pproject

Use project file project. Only one such switch can be used.

-q

Quiet. When this flag is not set, the commands carried out by gnatmake are
displayed.

-s

Recompile if compiler switches have changed since last compilation. All com-
piler switches but -I and -o are taken into account in the following way: orders
between different ’first letter’ switches are ignored, but orders between same
switches are taken into account. For example, -O -O2 is different than -O2 -O,
but -g -O is equivalent to -O -g.

This switch is recommended when Integrated Preprocessing is used.

-u

Unique. Recompile at most the main files. It implies -c. Combined with -f, it
is equivalent to calling the compiler directly. Note that using -u with a project
file and no main has a special meaning.

-U

When used without a project file or with one or several mains on the command
line, is equivalent to -u. When used with a project file and no main on the
command line, all sources of all project files are checked and compiled if not up
to date, and libraries are rebuilt, if necessary.

-v

Verbose. Display the reason for all recompilations gnatmake decides are neces-
sary, with the highest verbosity level.

Chapter 4: Building Executable Programs with GNAT 84

-vl

Verbosity level Low. Display fewer lines than in verbosity Medium.

-vm

Verbosity level Medium. Potentially display fewer lines than in verbosity High.

-vh

Verbosity level High. Equivalent to -v.

-vPx

Indicate the verbosity of the parsing of GNAT project files. See [Switches
Related to Project Files], page 322.

-x

Indicate that sources that are not part of any Project File may be compiled.
Normally, when using Project Files, only sources that are part of a Project
File may be compile. When this switch is used, a source outside of all Project
Files may be compiled. The ALI file and the object file will be put in the object
directory of the main Project. The compilation switches used will only be those
specified on the command line. Even when -x is used, mains specified on the
command line need to be sources of a project file.

-Xname=value

Indicate that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project
file. [Switches Related to Project Files], page 322.

-z

No main subprogram. Bind and link the program even if the unit name given
on the command line is a package name. The resulting executable will execute
the elaboration routines of the package and its closure, then the finalization
routines.

GCC switches

Any uppercase or multi-character switch that is not a gnatmake switch is passed to gcc

(e.g., -O, -gnato, etc.)

Source and library search path switches

-aIdir

When looking for source files also look in directory dir. The order in which
source files search is undertaken is described in [Search Paths and the Run-Time
Library (RTL)], page 89.

-aLdir

Consider dir as being an externally provided Ada library. Instructs gnatmake
to skip compilation units whose .ALI files have been located in directory dir.
This allows you to have missing bodies for the units in dir and to ignore out
of date bodies for the same units. You still need to specify the location of the

Chapter 4: Building Executable Programs with GNAT 85

specs for these units by using the switches -aIdir or -Idir. Note: this switch
is provided for compatibility with previous versions of gnatmake. The easier
method of causing standard libraries to be excluded from consideration is to
write-protect the corresponding ALI files.

-aOdir

When searching for library and object files, look in directory dir. The order
in which library files are searched is described in [Search Paths for gnatbind],
page 165.

-Adir

Equivalent to -aLdir -aIdir.

-Idir

Equivalent to -aOdir -aIdir.

-I-

Do not look for source files in the directory containing the source file named in
the command line. Do not look for ALI or object files in the directory where
gnatmake was invoked.

-Ldir

Add directory dir to the list of directories in which the linker will search for
libraries. This is equivalent to -largs -Ldir. Furthermore, under Windows,
the sources pointed to by the libraries path set in the registry are not searched
for.

-nostdinc

Do not look for source files in the system default directory.

-nostdlib

Do not look for library files in the system default directory.

--RTS=rts-path

Specifies the default location of the run-time library. GNAT looks for the run-
time in the following directories, and stops as soon as a valid run-time is found
(adainclude or ada_source_path, and adalib or ada_object_path present):

* <current directory>/$rts path

* <default-search-dir>/$rts path

* <default-search-dir>/rts-$rts path

* The selected path is handled like a normal RTS path.

4.1.3 Mode Switches for gnatmake

The mode switches (referred to as mode_switches) allow the inclusion of switches that are
to be passed to the compiler itself, the binder or the linker. The effect of a mode switch is
to cause all subsequent switches up to the end of the switch list, or up to the next mode
switch, to be interpreted as switches to be passed on to the designated component of GNAT.

-cargs switches

Compiler switches. Here switches is a list of switches that are valid switches
for gcc. They will be passed on to all compile steps performed by gnatmake.

Chapter 4: Building Executable Programs with GNAT 86

-bargs switches

Binder switches. Here switches is a list of switches that are valid switches for
gnatbind. They will be passed on to all bind steps performed by gnatmake.

-largs switches

Linker switches. Here switches is a list of switches that are valid switches for
gnatlink. They will be passed on to all link steps performed by gnatmake.

-margs switches

Make switches. The switches are directly interpreted by gnatmake, regardless
of any previous occurrence of -cargs, -bargs or -largs.

4.1.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the gnatmake com-
mand.

* If gnatmake finds no ALI files, it recompiles the main program and all other units
required by the main program. This means that gnatmake can be used for the initial
compile, as well as during subsequent steps of the development cycle.

* If you enter gnatmake foo.adb, where foo is a subunit or body of a generic unit,
gnatmake recompiles foo.adb (because it finds no ALI) and stops, issuing a warning.

* In gnatmake the switch -I is used to specify both source and library file paths. Use
-aI instead if you just want to specify source paths only and -aO if you want to specify
library paths only.

* gnatmake will ignore any files whose ALI file is write-protected. This may conveniently
be used to exclude standard libraries from consideration and in particular it means
that the use of the -f switch will not recompile these files unless -a is also specified.

* gnatmake has been designed to make the use of Ada libraries particularly convenient.
Assume you have an Ada library organized as follows: obj-dir contains the objects and
ALI files for of your Ada compilation units, whereas include-dir contains the specs of
these units, but no bodies. Then to compile a unit stored in main.adb, which uses this
Ada library you would just type:

$ gnatmake -aI‘include-dir‘ -aL‘obj-dir‘ main

* Using gnatmake along with the -m (minimal recompilation) switch provides a mech-
anism for avoiding unnecessary recompilations. Using this switch, you can update the
comments/format of your source files without having to recompile everything. Note,
however, that adding or deleting lines in a source files may render its debugging info
obsolete. If the file in question is a spec, the impact is rather limited, as that debugging
info will only be useful during the elaboration phase of your program. For bodies the
impact can be more significant. In all events, your debugger will warn you if a source
file is more recent than the corresponding object, and alert you to the fact that the
debugging information may be out of date.

4.1.5 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding
of the gnatmake approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

Chapter 4: Building Executable Programs with GNAT 87

First a definition: an object file is considered up to date if the corresponding ALI file exists
and if all the source files listed in the dependency section of this ALI file have time stamps
matching those in the ALI file. This means that neither the source file itself nor any files
that it depends on have been modified, and hence there is no need to recompile this file.

gnatmake works by first checking if the specified main unit is up to date. If so, no com-
pilations are required for the main unit. If not, gnatmake compiles the main program to
build a new ALI file that reflects the latest sources. Then the ALI file of the main unit is
examined to find all the source files on which the main program depends, and gnatmake

recursively applies the above procedure on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI file if
they are known to be correct. Otherwise it always recompiles to determine a new, guar-
anteed accurate set of dependencies. As a result the program is compiled ’upside down’
from what may be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which they depend. The
ability of GNAT to compile in any order is critical in allowing an order of compilation to
be chosen that guarantees that gnatmake will recompute a correct set of new dependencies
if necessary.

When invoking gnatmake with several file_names, if a unit is imported by several of the
executables, it will be recompiled at most once.

Note: when using non-standard naming conventions ([Using Other File Names], page 12),
changing through a configuration pragmas file the version of a source and invoking gnatmake
to recompile may have no effect, if the previous version of the source is still accessible by
gnatmake. It may be necessary to use the switch -f.

4.1.6 Examples of gnatmake Usage

gnatmake hello.adb
Compile all files necessary to bind and link the main program hello.adb (con-
taining unit Hello) and bind and link the resulting object files to generate an
executable file hello.

gnatmake main1 main2 main3
Compile all files necessary to bind and link the main programs main1.adb

(containing unit Main1), main2.adb (containing unit Main2) and main3.adb

(containing unit Main3) and bind and link the resulting object files to generate
three executable files main1, main2 and main3.

gnatmake -q Main Unit -cargs -O2 -bargs -l
Compile all files necessary to bind and link the main program unit Main_Unit
(from file main_unit.adb). All compilations will be done with optimization
level 2 and the order of elaboration will be listed by the binder. gnatmake will
operate in quiet mode, not displaying commands it is executing.

4.2 Compiling with gcc

This section discusses how to compile Ada programs using the gcc command. It also
describes the set of switches that can be used to control the behavior of the compiler.

Chapter 4: Building Executable Programs with GNAT 88

4.2.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program
using the gcc command. You must compile the following files:

* the body file (.adb) for a library level subprogram or generic subprogram

* the spec file (.ads) for a library level package or generic package that has no body

* the body file (.adb) for a library level package or generic package that has a body

You need not compile the following files

* the spec of a library unit which has a body

* subunits

because they are compiled as part of compiling related units. GNAT package specs when
the corresponding body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get one of the following error messages
(where fff is the name of the file you compiled):

cannot generate code for file ‘‘fff‘‘ (package spec)

to check package spec, use -gnatc

cannot generate code for file ‘‘fff‘‘ (missing subunits)

to check parent unit, use -gnatc

cannot generate code for file ‘‘fff‘‘ (subprogram spec)

to check subprogram spec, use -gnatc

cannot generate code for file ‘‘fff‘‘ (subunit)

to check subunit, use -gnatc

As indicated by the above error messages, if you want to submit one of these files to the
compiler to check for correct semantics without generating code, then use the -gnatc switch.

The basic command for compiling a file containing an Ada unit is:

$ gcc -c [switches] <file name>

where file name is the name of the Ada file (usually having an extension .ads for a spec
or .adb for a body). You specify the -c switch to tell gcc to compile, but not link, the
file. The result of a successful compilation is an object file, which has the same name as the
source file but an extension of .o and an Ada Library Information (ALI) file, which also
has the same name as the source file, but with .ali as the extension. GNAT creates these
two output files in the current directory, but you may specify a source file in any directory
using an absolute or relative path specification containing the directory information.

TESTING: the --foobarNN switch

gcc is actually a driver program that looks at the extensions of the file arguments and
loads the appropriate compiler. For example, the GNU C compiler is cc1, and the Ada
compiler is gnat1. These programs are in directories known to the driver program (in some
configurations via environment variables you set), but need not be in your path. The gcc

driver also calls the assembler and any other utilities needed to complete the generation of
the required object files.

Chapter 4: Building Executable Programs with GNAT 89

It is possible to supply several file names on the same gcc command. This causes gcc to
call the appropriate compiler for each file. For example, the following command lists two
separate files to be compiled:

$ gcc -c x.adb y.adb

calls gnat1 (the Ada compiler) twice to compile x.adb and y.adb. The compiler generates
two object files x.o and y.o and the two ALI files x.ali and y.ali.

Any switches apply to all the files listed, see [Compiler Switches], page 90 for a list of
available gcc switches.

4.2.2 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files
for units that are needed by the unit being compiled. Search paths are used to guide this
process.

The compiler compiles one source file whose name must be given explicitly on the command
line. In other words, no searching is done for this file. To find all other source files that are
needed (the most common being the specs of units), the compiler examines the following
directories, in the following order:

* The directory containing the source file of the main unit being compiled (the file name
on the command line).

* Each directory named by an -I switch given on the gcc command line, in the order
given.

* Each of the directories listed in the text file whose name is given by the ADA_PRJ_

INCLUDE_FILE environment variable. ADA_PRJ_INCLUDE_FILE is normally set by gnat-
make or by the gnat driver when project files are used. It should not normally be set
by other means.

* Each of the directories listed in the value of the ADA_INCLUDE_PATH environment vari-
able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version).

* The content of the ada_source_path file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
source files. [Installing a library], page 33

Specifying the switch -I- inhibits the use of the directory containing the source file named
in the command line. You can still have this directory on your search path, but in this case
it must be explicitly requested with a -I switch.

Specifying the switch -nostdinc inhibits the search of the default location for the GNAT
Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory. Caution:
The object file can be redirected with the -o switch; however, gcc and gnat1 have not been
coordinated on this so the ALI file will not go to the right place. Therefore, you should
avoid using the -o switch.

The packages Ada, System, and Interfaces and their children make up the GNAT RTL,
together with the simple System.IO package used in the "Hello World" example. The
sources for these units are needed by the compiler and are kept together in one directory.
Not all of the bodies are needed, but all of the sources are kept together anyway. In a

Chapter 4: Building Executable Programs with GNAT 90

normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and Interfaces), the GNAT
distribution provides a fourth hierarchy, consisting of child units of GNAT. This is a collection
of generally useful types, subprograms, etc. See the GNAT Reference Manual for further
details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.2.3 Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure, it would be contained
in the file hello.ads; yet this file would not have to be explicitly compiled. This is the
result of the model we chose to implement library management. Some of the consequences
of this model are as follows:

* There is no point in compiling specs (except for package specs with no bodies) because
these are compiled as needed by clients. If you attempt a useless compilation, you
will receive an error message. It is also useless to compile subunits because they are
compiled as needed by the parent.

* There are no order of compilation requirements: performing a compilation never obso-
letes anything. The only way you can obsolete something and require recompilations
is to modify one of the source files on which it depends.

* There is no library as such, apart from the ALI files ([The Ada Library Information
Files], page 29, for information on the format of these files). For now we find it
convenient to create separate ALI files, but eventually the information therein may
be incorporated into the object file directly.

* When you compile a unit, the source files for the specs of all units that it withs, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by
the search-paths mechanism described above), or you will receive a fatal error message.

4.2.4 Examples

The following are some typical Ada compilation command line examples:

$ gcc -c xyz.adb

Compile body in file xyz.adb with all default options.

$ gcc -c -O2 -gnata xyz-def.adb

Compile the child unit package in file xyz-def.adb with extensive optimizations, and
pragma Assert/Debug statements enabled.

$ gcc -c -gnatc abc-def.adb

Compile the subunit in file abc-def.adb in semantic-checking-only mode.

4.3 Compiler Switches

The gcc command accepts switches that control the compilation process. These switches
are fully described in this section: first an alphabetical listing of all switches with a brief
description, and then functionally grouped sets of switches with more detailed information.

Chapter 4: Building Executable Programs with GNAT 91

More switches exist for GCC than those documented here, especially for specific targets.
However, their use is not recommended as they may change code generation in ways that
are incompatible with the Ada run-time library, or can cause inconsistencies between com-
pilation units.

4.3.1 Alphabetical List of All Switches

-b target

Compile your program to run on target, which is the name of a system con-
figuration. You must have a GNAT cross-compiler built if target is not the
same as your host system.

-Bdir

Load compiler executables (for example, gnat1, the Ada compiler) from dir

instead of the default location. Only use this switch when multiple versions
of the GNAT compiler are available. See the "Options for Directory Search"
section in the Using the GNU Compiler Collection (GCC) manual for further
details. You would normally use the -b or -V switch instead.

-c

Compile. Always use this switch when compiling Ada programs.

Note: for some other languages when using gcc, notably in the case of C and
C++, it is possible to use use gcc without a -c switch to compile and link in one
step. In the case of GNAT, you cannot use this approach, because the binder
must be run and gcc cannot be used to run the GNAT binder.

-fcallgraph-info[=su,da]

Makes the compiler output callgraph information for the program, on a per-
file basis. The information is generated in the VCG format. It can be deco-
rated with additional, per-node and/or per-edge information, if a list of comma-
separated markers is additionally specified. When the su marker is specified,
the callgraph is decorated with stack usage information; it is equivalent to -

fstack-usage. When the da marker is specified, the callgraph is decorated
with information about dynamically allocated objects.

-fdump-scos

Generates SCO (Source Coverage Obligation) information in the ALI file. This
information is used by advanced coverage tools. See unit SCOs in the compiler
sources for details in files scos.ads and scos.adb.

-fgnat-encodings=[all|gdb|minimal]

This switch controls the balance between GNAT encodings and standard
DWARF emitted in the debug information.

-flto[=n]

Enables Link Time Optimization. This switch must be used in conjunction
with the -Ox switches (but not with the -gnatn switch since it is a full replace-
ment for the latter) and instructs the compiler to defer most optimizations
until the link stage. The advantage of this approach is that the compiler can
do a whole-program analysis and choose the best interprocedural optimization

Chapter 4: Building Executable Programs with GNAT 92

strategy based on a complete view of the program, instead of a fragmentary
view with the usual approach. This can also speed up the compilation of big
programs and reduce the size of the executable, compared with a traditional
per-unit compilation with inlining across units enabled by the -gnatn switch.
The drawback of this approach is that it may require more memory and that
the debugging information generated by -g with it might be hardly usable. The
switch, as well as the accompanying -Ox switches, must be specified both for
the compilation and the link phases. If the n parameter is specified, the opti-
mization and final code generation at link time are executed using n parallel
jobs by means of an installed make program.

-fno-inline

Suppresses all inlining, unless requested with pragma Inline_Always. The
effect is enforced regardless of other optimization or inlining switches. Note
that inlining can also be suppressed on a finer-grained basis with pragma No_

Inline.

-fno-inline-functions

Suppresses automatic inlining of subprograms, which is enabled if -O3 is used.

-fno-inline-small-functions

Suppresses automatic inlining of small subprograms, which is enabled if -O2 is
used.

-fno-inline-functions-called-once

Suppresses inlining of subprograms local to the unit and called once from within
it, which is enabled if -O1 is used.

-fno-ivopts

Suppresses high-level loop induction variable optimizations, which are enabled
if -O1 is used. These optimizations are generally profitable but, for some specific
cases of loops with numerous uses of the iteration variable that follow a common
pattern, they may end up destroying the regularity that could be exploited at
a lower level and thus producing inferior code.

-fno-strict-aliasing

Causes the compiler to avoid assumptions regarding non-aliasing of objects of
different types. See [Optimization and Strict Aliasing], page 209 for details.

-fno-strict-overflow

Causes the compiler to avoid assumptions regarding the rules of signed integer
overflow. These rules specify that signed integer overflow will result in a Con-
straint Error exception at run time and are enforced in default mode by the
compiler, so this switch should not be necessary in normal operating mode. It
might be useful in conjunction with -gnato0 for very peculiar cases of low-level
programming.

-fstack-check

Activates stack checking. See [Stack Overflow Checking], page 225 for details.

-fstack-usage

Makes the compiler output stack usage information for the program, on a per-
subprogram basis. See [Static Stack Usage Analysis], page 226 for details.

Chapter 4: Building Executable Programs with GNAT 93

-g

Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can
be read by the debugger. You must use the -g switch if you plan on using the
debugger.

-gnat05

Allow full Ada 2005 features.

-gnat12

Allow full Ada 2012 features.

-gnat2005

Allow full Ada 2005 features (same as -gnat05)

-gnat2012

Allow full Ada 2012 features (same as -gnat12)

-gnat83

Enforce Ada 83 restrictions.

-gnat95

Enforce Ada 95 restrictions.

Note: for compatibility with some Ada 95 compilers which support only the
overriding keyword of Ada 2005, the -gnatd.D switch can be used along with
-gnat95 to achieve a similar effect with GNAT.

-gnatd.D instructs GNAT to consider overriding as a keyword and handle its
associated semantic checks, even in Ada 95 mode.

-gnata

Assertions enabled. Pragma Assert and pragma Debug to be activated. Note
that these pragmas can also be controlled using the configuration pragmas
Assertion_Policy and Debug_Policy. It also activates pragmas Check,
Precondition, and Postcondition. Note that these pragmas can also be
controlled using the configuration pragma Check_Policy. In Ada 2012, it
also activates all assertions defined in the RM as aspects: preconditions,
postconditions, type invariants and (sub)type predicates. In all Ada modes,
corresponding pragmas for type invariants and (sub)type predicates are also
activated. The default is that all these assertions are disabled, and have no
effect, other than being checked for syntactic validity, and in the case of
subtype predicates, constructions such as membership tests still test predicates
even if assertions are turned off.

-gnatA

Avoid processing gnat.adc. If a gnat.adc file is present, it will be ignored.

-gnatb

Generate brief messages to stderr even if verbose mode set.

Chapter 4: Building Executable Programs with GNAT 94

-gnatB

Assume no invalid (bad) values except for ’Valid attribute use ([Validity Check-
ing], page 129).

-gnatc

Check syntax and semantics only (no code generation attempted). When the
compiler is invoked by gnatmake, if the switch -gnatc is only given to the
compiler (after -cargs or in package Compiler of the project file, gnatmake
will fail because it will not find the object file after compilation. If gnatmake
is called with -gnatc as a builder switch (before -cargs or in package Builder
of the project file) then gnatmake will not fail because it will not look for the
object files after compilation, and it will not try to build and link.

-gnatC

Generate CodePeer intermediate format (no code generation attempted). This
switch will generate an intermediate representation suitable for use by CodePeer
(.scil files). This switch is not compatible with code generation (it will, among
other things, disable some switches such as -gnatn, and enable others such as
-gnata).

-gnatd

Specify debug options for the compiler. The string of characters after the -

gnatd specify the specific debug options. The possible characters are 0-9, a-z,
A-Z, optionally preceded by a dot. See compiler source file debug.adb for
details of the implemented debug options. Certain debug options are relevant
to applications programmers, and these are documented at appropriate points
in this users guide.

-gnatD

Create expanded source files for source level debugging. This switch also sup-
presses generation of cross-reference information (see -gnatx). Note that this
switch is not allowed if a previous -gnatR switch has been given, since these
two switches are not compatible.

-gnateA

Check that the actual parameters of a subprogram call are not aliases of one
another. To qualify as aliasing, the actuals must denote objects of a composite
type, their memory locations must be identical or overlapping, and at least one
of the corresponding formal parameters must be of mode OUT or IN OUT.

type Rec_Typ is record

Data : Integer := 0;

end record;

function Self (Val : Rec_Typ) return Rec_Typ is

begin

return Val;

end Self;

Chapter 4: Building Executable Programs with GNAT 95

procedure Detect_Aliasing (Val_1 : in out Rec_Typ; Val_2 : Rec_Typ) is

begin

null;

end Detect_Aliasing;

Obj : Rec_Typ;

Detect_Aliasing (Obj, Obj);

Detect_Aliasing (Obj, Self (Obj));

In the example above, the first call to Detect_Aliasing fails with a Program_

Error at run time because the actuals for Val_1 and Val_2 denote the same ob-
ject. The second call executes without raising an exception because Self(Obj)
produces an anonymous object which does not share the memory location of
Obj.

-gnateb

Store configuration files by their basename in ALI files. This switch is used
for instance by gprbuild for distributed builds in order to prevent issues where
machine-specific absolute paths could end up being stored in ALI files.

-gnatec=path

Specify a configuration pragma file (the equal sign is optional) ([The Configu-
ration Pragmas Files], page 27).

-gnateC

Generate CodePeer messages in a compiler-like format. This switch is only
effective if -gnatcC is also specified and requires an installation of CodePeer.

-gnated

Disable atomic synchronization

-gnateDsymbol[=value]

Defines a symbol, associated with value, for preprocessing. ([Integrated Pre-
processing], page 48).

-gnateE

Generate extra information in exception messages. In particular, display extra
column information and the value and range associated with index and range
check failures, and extra column information for access checks. In cases where
the compiler is able to determine at compile time that a check will fail, it gives
a warning, and the extra information is not produced at run time.

-gnatef

Display full source path name in brief error messages.

-gnateF

Check for overflow on all floating-point operations, including those for uncon-
strained predefined types. See description of pragma Check_Float_Overflow

in GNAT RM.

Chapter 4: Building Executable Programs with GNAT 96

-gnateg -gnatceg

The -gnatc switch must always be specified before this switch, e.g. -

gnatceg. Generate a C header from the Ada input file. See [Generating
C Headers for Ada Specifications], page 72 for more information.

-gnateG

Save result of preprocessing in a text file.

-gnateinnn

Set maximum number of instantiations during compilation of a single unit to
nnn. This may be useful in increasing the default maximum of 8000 for the rare
case when a single unit legitimately exceeds this limit.

-gnateInnn

Indicates that the source is a multi-unit source and that the index of the unit
to compile is nnn. nnn needs to be a positive number and need to be a valid
index in the multi-unit source.

-gnatel

This switch can be used with the static elaboration model to issue info mes-
sages showing where implicit pragma Elaborate and pragma Elaborate_All

are generated. This is useful in diagnosing elaboration circularities caused by
these implicit pragmas when using the static elaboration model. See See the
section in this guide on elaboration checking for further details. These messages
are not generated by default, and are intended only for temporary use when
debugging circularity problems.

-gnateL

This switch turns off the info messages about implicit elaboration pragmas.

-gnatem=path

Specify a mapping file (the equal sign is optional) ([Units to Sources Mapping
Files], page 152).

-gnatep=file

Specify a preprocessing data file (the equal sign is optional) ([Integrated Pre-
processing], page 48).

-gnateP

Turn categorization dependency errors into warnings. Ada requires that units
that WITH one another have compatible categories, for example a Pure unit
cannot WITH a Preelaborate unit. If this switch is used, these errors become
warnings (which can be ignored, or suppressed in the usual manner). This can
be useful in some specialized circumstances such as the temporary use of special
test software.

-gnateS

Synonym of -fdump-scos, kept for backwards compatibility.

-gnatet=path

Generate target dependent information. The format of the output file is de-
scribed in the section about switch -gnateT.

Chapter 4: Building Executable Programs with GNAT 97

-gnateT=path

Read target dependent information, such as endianness or sizes and alignments
of base type. If this switch is passed, the default target dependent information
of the compiler is replaced by the one read from the input file. This is used by
tools other than the compiler, e.g. to do semantic analysis of programs that
will run on some other target than the machine on which the tool is run.

The following target dependent values should be defined, where Nat denotes a
natural integer value, Pos denotes a positive integer value, and fields marked
with a question mark are boolean fields, where a value of 0 is False, and a value
of 1 is True:

Bits_BE : Nat; -- Bits stored big-endian?

Bits_Per_Unit : Pos; -- Bits in a storage unit

Bits_Per_Word : Pos; -- Bits in a word

Bytes_BE : Nat; -- Bytes stored big-endian?

Char_Size : Pos; -- Standard.Character’Size

Double_Float_Alignment : Nat; -- Alignment of double float

Double_Scalar_Alignment : Nat; -- Alignment of double length scalar

Double_Size : Pos; -- Standard.Long_Float’Size

Float_Size : Pos; -- Standard.Float’Size

Float_Words_BE : Nat; -- Float words stored big-endian?

Int_Size : Pos; -- Standard.Integer’Size

Long_Double_Size : Pos; -- Standard.Long_Long_Float’Size

Long_Long_Size : Pos; -- Standard.Long_Long_Integer’Size

Long_Size : Pos; -- Standard.Long_Integer’Size

Maximum_Alignment : Pos; -- Maximum permitted alignment

Max_Unaligned_Field : Pos; -- Maximum size for unaligned bit field

Pointer_Size : Pos; -- System.Address’Size

Short_Enums : Nat; -- Foreign enums use short size?

Short_Size : Pos; -- Standard.Short_Integer’Size

Strict_Alignment : Nat; -- Strict alignment?

System_Allocator_Alignment : Nat; -- Alignment for malloc calls

Wchar_T_Size : Pos; -- Interfaces.C.wchar_t’Size

Words_BE : Nat; -- Words stored big-endian?

Bits_Per_Unit is the number of bits in a storage unit, the equivalent of GCC
macro BITS_PER_UNIT documented as follows: Define this macro to be the
number of bits in an addressable storage unit (byte); normally 8.

Bits_Per_Word is the number of bits in a machine word, the equivalent of
GCC macro BITS_PER_WORD documented as follows: Number of bits in a word;
normally 32.

Double_Float_Alignment, if not zero, is the maximum alignment that the
compiler can choose by default for a 64-bit floating-point type or object.

Double_Scalar_Alignment, if not zero, is the maximum alignment that the
compiler can choose by default for a 64-bit or larger scalar type or object.

Maximum_Alignment is the maximum alignment that the compiler can choose by
default for a type or object, which is also the maximum alignment that can be

Chapter 4: Building Executable Programs with GNAT 98

specified in GNAT. It is computed for GCC backends as BIGGEST_ALIGNMENT
/ BITS_PER_UNIT where GCC macro BIGGEST_ALIGNMENT is documented as
follows: Biggest alignment that any data type can require on this machine, in
bits.

Max_Unaligned_Field is the maximum size for unaligned bit field, which is
64 for the majority of GCC targets (but can be different on some targets like
AAMP).

Strict_Alignment is the equivalent of GCC macro STRICT_ALIGNMENT docu-
mented as follows: Define this macro to be the value 1 if instructions will fail
to work if given data not on the nominal alignment. If instructions will merely
go slower in that case, define this macro as 0.

System_Allocator_Alignment is the guaranteed alignment of data returned
by calls to malloc.

The format of the input file is as follows. First come the values of the variables
defined above, with one line per value:

name value

where name is the name of the parameter, spelled out in full, and cased as in
the above list, and value is an unsigned decimal integer. Two or more blanks
separates the name from the value.

All the variables must be present, in alphabetical order (i.e. the same order as
the list above).

Then there is a blank line to separate the two parts of the file. Then come
the lines showing the floating-point types to be registered, with one line per
registered mode:

name digs float_rep size alignment

where name is the string name of the type (which can have single spaces embed-
ded in the name (e.g. long double), digs is the number of digits for the floating-
point type, float_rep is the float representation (I/V/A for IEEE-754-Binary,
Vax Native, AAMP), size is the size in bits, alignment is the alignment in
bits. The name is followed by at least two blanks, fields are separated by at
least one blank, and a LF character immediately follows the alignment field.

Here is an example of a target parameterization file:

Bits_BE 0

Bits_Per_Unit 8

Bits_Per_Word 64

Bytes_BE 0

Char_Size 8

Double_Float_Alignment 0

Double_Scalar_Alignment 0

Double_Size 64

Float_Size 32

Float_Words_BE 0

Int_Size 64

Long_Double_Size 128

Chapter 4: Building Executable Programs with GNAT 99

Long_Long_Size 64

Long_Size 64

Maximum_Alignment 16

Max_Unaligned_Field 64

Pointer_Size 64

Short_Size 16

Strict_Alignment 0

System_Allocator_Alignment 16

Wchar_T_Size 32

Words_BE 0

float 15 I 64 64

double 15 I 64 64

long double 18 I 80 128

TF 33 I 128 128

-gnateu

Ignore unrecognized validity, warning, and style switches that appear after this
switch is given. This may be useful when compiling sources developed on a later
version of the compiler with an earlier version. Of course the earlier version
must support this switch.

-gnateV

Check that all actual parameters of a subprogram call are valid according to
the rules of validity checking ([Validity Checking], page 129).

-gnateY

Ignore all STYLE CHECKS pragmas. Full legality checks are still carried out,
but the pragmas have no effect on what style checks are active. This allows all
style checking options to be controlled from the command line.

-gnatE

Dynamic elaboration checking mode enabled. For further details see
[Elaboration Order Handling in GNAT], page 275.

-gnatf

Full errors. Multiple errors per line, all undefined references, do not attempt to
suppress cascaded errors.

-gnatF

Externals names are folded to all uppercase.

-gnatg

Internal GNAT implementation mode. This should not be used for applica-
tions programs, it is intended only for use by the compiler and its run-time
library. For documentation, see the GNAT sources. Note that -gnatg implies
-gnatw.ge and -gnatyg so that all standard warnings and all standard style
options are turned on. All warnings and style messages are treated as errors.

-gnatG=nn

List generated expanded code in source form.

Chapter 4: Building Executable Programs with GNAT 100

-gnath

Output usage information. The output is written to stdout.

-gnatH

Legacy elaboration-checking mode enabled. When this switch is in effect, the
pre-18.x access-before-elaboration model becomes the de facto model. For fur-
ther details see [Elaboration Order Handling in GNAT], page 275.

-gnatic

Identifier character set (c = 1/2/3/4/8/9/p/f/n/w). For details of the possible
selections for c, see [Character Set Control], page 144.

-gnatI

Ignore representation clauses. When this switch is used, representation
clauses are treated as comments. This is useful when initially porting code
where you want to ignore rep clause problems, and also for compiling foreign
code (particularly for use with ASIS). The representation clauses that are
ignored are: enumeration representation clause, record representation clause,
and attribute definition clause for the following attributes: Address,
Alignment, Bit Order, Component Size, Machine Radix, Object Size,
Scalar Storage Order, Size, Small, Stream Size, and Value Size. Pragma
Default Scalar Storage Order is also ignored. Note that this option should be
used only for compiling – the code is likely to malfunction at run time.

-gnatjnn

Reformat error messages to fit on nn character lines

-gnatJ

Permissive elaboration-checking mode enabled. When this switch is in effect,
the post-18.x access-before-elaboration model ignores potential issues with:

- Accept statements

- Activations of tasks defined in instances

- Assertion pragmas

- Calls from within an instance to its enclosing context

- Calls through generic formal parameters

- Calls to subprograms defined in instances

- Entry calls

- Indirect calls using ’Access

- Requeue statements

- Select statements

- Synchronous task suspension

and does not emit compile-time diagnostics or run-time checks. For further
details see [Elaboration Order Handling in GNAT], page 275.

-gnatk=n

Limit file names to n (1-999) characters (k = krunch).

Chapter 4: Building Executable Programs with GNAT 101

-gnatl

Output full source listing with embedded error messages.

-gnatL

Used in conjunction with -gnatG or -gnatD to intersperse original source lines
(as comment lines with line numbers) in the expanded source output.

-gnatm=n

Limit number of detected error or warning messages to n where n is in the range
1..999999. The default setting if no switch is given is 9999. If the number of
warnings reaches this limit, then a message is output and further warnings are
suppressed, but the compilation is continued. If the number of error messages
reaches this limit, then a message is output and the compilation is abandoned.
The equal sign here is optional. A value of zero means that no limit applies.

-gnatn[12]

Activate inlining across units for subprograms for which pragma Inline is
specified. This inlining is performed by the GCC back-end. An optional digit
sets the inlining level: 1 for moderate inlining across units or 2 for full inlining
across units. If no inlining level is specified, the compiler will pick it based on
the optimization level.

-gnatN

Activate front end inlining for subprograms for which pragma Inline is spec-
ified. This inlining is performed by the front end and will be visible in the
-gnatG output.

When using a gcc-based back end (in practice this means using any version of
GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
-gnatN is deprecated, and the use of -gnatn is preferred. Historically front
end inlining was more extensive than the gcc back end inlining, but that is no
longer the case.

-gnato0

Suppresses overflow checking. This causes the behavior of the compiler to match
the default for older versions where overflow checking was suppressed by default.
This is equivalent to having pragma Suppress (Overflow_Check) in a config-
uration pragma file.

-gnato??

Set default mode for handling generation of code to avoid intermediate arith-
metic overflow. Here ?? is two digits, a single digit, or nothing. Each digit is
one of the digits 1 through 3:

Digit Interpretation

1 All intermediate overflows checked against base type (STRICT)

2 Minimize intermediate overflows (MINIMIZED)

Chapter 4: Building Executable Programs with GNAT 102

3 Eliminate intermediate overflows (ELIMINATED)

If only one digit appears, then it applies to all cases; if two digits are given, then
the first applies outside assertions, pre/postconditions, and type invariants, and
the second applies within assertions, pre/postconditions, and type invariants.

If no digits follow the -gnato, then it is equivalent to -gnato11, causing all
intermediate overflows to be handled in strict mode.

This switch also causes arithmetic overflow checking to be performed (as though
pragma Unsuppress (Overflow_Check) had been specified).

The default if no option -gnato is given is that overflow handling is in STRICT

mode (computations done using the base type), and that overflow checking is
enabled.

Note that division by zero is a separate check that is not controlled by this
switch (divide-by-zero checking is on by default).

See also [Specifying the Desired Mode], page 219.

-gnatp

Suppress all checks. See [Run-Time Checks], page 140 for details. This switch
has no effect if cancelled by a subsequent -gnat-p switch.

-gnat-p

Cancel effect of previous -gnatp switch.

-gnatq

Don’t quit. Try semantics, even if parse errors.

-gnatQ

Don’t quit. Generate ALI and tree files even if illegalities. Note that code
generation is still suppressed in the presence of any errors, so even with -gnatQ

no object file is generated.

-gnatr

Treat pragma Restrictions as Restriction Warnings.

-gnatR[0|1|2|3|4][e][j][m][s]

Output representation information for declared types, objects and subprograms.
Note that this switch is not allowed if a previous -gnatD switch has been given,
since these two switches are not compatible.

-gnats

Syntax check only.

-gnatS

Print package Standard.

-gnatTnnn

All compiler tables start at nnn times usual starting size.

-gnatu

List units for this compilation.

Chapter 4: Building Executable Programs with GNAT 103

-gnatU

Tag all error messages with the unique string ’error:’

-gnatv

Verbose mode. Full error output with source lines to stdout.

-gnatV

Control level of validity checking ([Validity Checking], page 129).

-gnatwxxx

Warning mode where xxx is a string of option letters that denotes the exact
warnings that are enabled or disabled ([Warning Message Control], page 108).

-gnatWe

Wide character encoding method (e=n/h/u/s/e/8).

-gnatx

Suppress generation of cross-reference information.

-gnatX

Enable GNAT implementation extensions and latest Ada version.

-gnaty

Enable built-in style checks ([Style Checking], page 132).

-gnatzm

Distribution stub generation and compilation (m=r/c for receiver/caller stubs).

-Idir

Direct GNAT to search the dir directory for source files needed by the current
compilation (see [Search Paths and the Run-Time Library (RTL)], page 89).

-I-

Except for the source file named in the command line, do not look for source
files in the directory containing the source file named in the command line (see
[Search Paths and the Run-Time Library (RTL)], page 89).

-o file

This switch is used in gcc to redirect the generated object file and its associated
ALI file. Beware of this switch with GNAT, because it may cause the object
file and ALI file to have different names which in turn may confuse the binder
and the linker.

-nostdinc

Inhibit the search of the default location for the GNAT Run Time Library
(RTL) source files.

-nostdlib

Inhibit the search of the default location for the GNAT Run Time Library
(RTL) ALI files.

Chapter 4: Building Executable Programs with GNAT 104

-O[n]

n controls the optimization level:

n Effect

0 No optimization, the default setting if no -O appears

1 Normal optimization, the default if you specify -O without an operand. A good compro-
mise between code quality and compilation time.

2 Extensive optimization, may improve execution time, possibly at the cost of substantially
increased compilation time.

3 Same as -O2, and also includes inline expansion for small subprograms in the same unit.

s Optimize space usage

See also [Optimization Levels], page 202.

-pass-exit-codes

Catch exit codes from the compiler and use the most meaningful as exit status.

--RTS=rts-path

Specifies the default location of the run-time library. Same meaning as the
equivalent gnatmake flag ([Switches for gnatmake], page 78).

-S

Used in place of -c to cause the assembler source file to be generated, using .s

as the extension, instead of the object file. This may be useful if you need to
examine the generated assembly code.

-fverbose-asm

Used in conjunction with -S to cause the generated assembly code file to be
annotated with variable names, making it significantly easier to follow.

-v

Show commands generated by the gcc driver. Normally used only for debug-
ging purposes or if you need to be sure what version of the compiler you are
executing.

-V ver

Execute ver version of the compiler. This is the gcc version, not the GNAT
version.

-w

Turn off warnings generated by the back end of the compiler. Use of this switch
also causes the default for front end warnings to be set to suppress (as though
-gnatws had appeared at the start of the options).

You may combine a sequence of GNAT switches into a single switch. For example, the
combined switch

Chapter 4: Building Executable Programs with GNAT 105

-gnatofi3

is equivalent to specifying the following sequence of switches:

-gnato -gnatf -gnati3

The following restrictions apply to the combination of switches in this manner:

* The switch -gnatc if combined with other switches must come first in the string.

* The switch -gnats if combined with other switches must come first in the string.

* The switches -gnatzc and -gnatzr may not be combined with any other switches, and
only one of them may appear in the command line.

* The switch -gnat-p may not be combined with any other switch.

* Once a ’y’ appears in the string (that is a use of the -gnaty switch), then all further
characters in the switch are interpreted as style modifiers (see description of -gnaty).

* Once a ’d’ appears in the string (that is a use of the -gnatd switch), then all further
characters in the switch are interpreted as debug flags (see description of -gnatd).

* Once a ’w’ appears in the string (that is a use of the -gnatw switch), then all further
characters in the switch are interpreted as warning mode modifiers (see description of
-gnatw).

* Once a ’V’ appears in the string (that is a use of the -gnatV switch), then all fur-
ther characters in the switch are interpreted as validity checking options ([Validity
Checking], page 129).

* Option ’em’, ’ec’, ’ep’, ’l=’ and ’R’ must be the last options in a combined list of
options.

4.3.2 Output and Error Message Control

The standard default format for error messages is called ’brief format’. Brief format mes-
sages are written to stderr (the standard error file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:4:20: ";" should be "is"

The first integer after the file name is the line number in the file, and the second integer is
the column number within the line. GNAT Studio can parse the error messages and point
to the referenced character. The following switches provide control over the error message
format:

-gnatv

The v stands for verbose. The effect of this setting is to write long-format error
messages to stdout (the standard output file. The same program compiled
with the -gnatv switch would generate:

3. funcion X (Q : Integer)

|

>>> Incorrect spelling of keyword "function"

4. return Integer;

|

>>> ";" should be "is"

The vertical bar indicates the location of the error, and the >>> prefix can be
used to search for error messages. When this switch is used the only source
lines output are those with errors.

Chapter 4: Building Executable Programs with GNAT 106

-gnatl

The l stands for list. This switch causes a full listing of the file to be generated.
In the case where a body is compiled, the corresponding spec is also listed, along
with any subunits. Typical output from compiling a package body p.adb might
look like:

Compiling: p.adb

1. package body p is

2. procedure a;

3. procedure a is separate;

4. begin

5. null

|

>>> missing ";"

6. end;

Compiling: p.ads

1. package p is

2. pragma Elaborate_Body

|

>>> missing ";"

3. end p;

Compiling: p-a.adb

1. separate p

|

>>> missing "("

2. procedure a is

3. begin

4. null

|

>>> missing ";"

5. end;

When you specify the -gnatv or -gnatl switches and standard output is redi-
rected, a brief summary is written to stderr (standard error) giving the number
of error messages and warning messages generated.

-gnatl=fname

This has the same effect as -gnatl except that the output is written to a file
instead of to standard output. If the given name fname does not start with
a period, then it is the full name of the file to be written. If fname is an

Chapter 4: Building Executable Programs with GNAT 107

extension, it is appended to the name of the file being compiled. For example,
if file xyz.adb is compiled with -gnatl=.lst, then the output is written to file
xyz.adb.lst.

-gnatU

This switch forces all error messages to be preceded by the unique string ’error:’.
This means that error messages take a few more characters in space, but allows
easy searching for and identification of error messages.

-gnatb

The b stands for brief. This switch causes GNAT to generate the brief format
error messages to stderr (the standard error file) as well as the verbose format
message or full listing (which as usual is written to stdout (the standard output
file).

-gnatm=n

The m stands for maximum. n is a decimal integer in the range of 1 to 999999 and
limits the number of error or warning messages to be generated. For example,
using -gnatm2 might yield

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:5:35: missing ".."

fatal error: maximum number of errors detected

compilation abandoned

The default setting if no switch is given is 9999. If the number of warnings
reaches this limit, then a message is output and further warnings are suppressed,
but the compilation is continued. If the number of error messages reaches this
limit, then a message is output and the compilation is abandoned. A value of
zero means that no limit applies.

Note that the equal sign is optional, so the switches -gnatm2 and -gnatm=2 are
equivalent.

-gnatf

The f stands for full. Normally, the compiler suppresses error messages that are
likely to be redundant. This switch causes all error messages to be generated.
In particular, in the case of references to undefined variables. If a given variable
is referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional references to
the variable V. Compiling the same program with the -gnatf switch yields

e.adb:7:07: "V" is undefined

e.adb:8:07: "V" is undefined

e.adb:8:12: "V" is undefined

e.adb:8:16: "V" is undefined

e.adb:9:07: "V" is undefined

e.adb:9:12: "V" is undefined

The -gnatf switch also generates additional information for some error mes-
sages. Some examples are:

Chapter 4: Building Executable Programs with GNAT 108

* Details on possibly non-portable unchecked conversion

* List possible interpretations for ambiguous calls

* Additional details on incorrect parameters

-gnatjnn

In normal operation mode (or if -gnatj0 is used), then error messages with
continuation lines are treated as though the continuation lines were separate
messages (and so a warning with two continuation lines counts as three warn-
ings, and is listed as three separate messages).

If the -gnatjnn switch is used with a positive value for nn, then messages
are output in a different manner. A message and all its continuation lines are
treated as a unit, and count as only one warning or message in the statistics
totals. Furthermore, the message is reformatted so that no line is longer than
nn characters.

-gnatq

The q stands for quit (really ’don’t quit’). In normal operation mode, the com-
piler first parses the program and determines if there are any syntax errors. If
there are, appropriate error messages are generated and compilation is imme-
diately terminated. This switch tells GNAT to continue with semantic analysis
even if syntax errors have been found. This may enable the detection of more
errors in a single run. On the other hand, the semantic analyzer is more likely
to encounter some internal fatal error when given a syntactically invalid tree.

-gnatQ

In normal operation mode, the ALI file is not generated if any illegalities are
detected in the program. The use of -gnatQ forces generation of the ALI file.
This file is marked as being in error, so it cannot be used for binding purposes,
but it does contain reasonably complete cross-reference information, and thus
may be useful for use by tools (e.g., semantic browsing tools or integrated de-
velopment environments) that are driven from the ALI file. This switch implies
-gnatq, since the semantic phase must be run to get a meaningful ALI file.

When -gnatQ is used and the generated ALI file is marked as being in error,
gnatmake will attempt to recompile the source when it finds such an ALI file,
including with switch -gnatc.

Note that -gnatQ has no effect if -gnats is specified, since ALI files are never
generated if -gnats is set.

4.3.3 Warning Message Control

In addition to error messages, which correspond to illegalities as defined in the Ada Refer-
ence Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message
to alert you to a possible error. Second, if the compiler detects a situation that is sure to
raise an exception at run time, it generates a warning message. The following shows an
example of warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error

Chapter 4: Building Executable Programs with GNAT 109

e.adb:10:17: warning: static value out of range

e.adb:10:17: warning: "Constraint_Error" will be raised at run time

GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you
do an out-of-range assignment with the deliberate intention of raising a Constraint_Error

exception, then the warning that may be issued does not indicate an error. Some of the
situations for which GNAT issues warnings (at least some of the time) are given in the
following list. This list is not complete, and new warnings are often added to subsequent
versions of GNAT. The list is intended to give a general idea of the kinds of warnings that
are generated.

* Possible infinitely recursive calls

* Out-of-range values being assigned

* Possible order of elaboration problems

* Size not a multiple of alignment for a record type

* Assertions (pragma Assert) that are sure to fail

* Unreachable code

* Address clauses with possibly unaligned values, or where an attempt is made to overlay
a smaller variable with a larger one.

* Fixed-point type declarations with a null range

* Direct IO or Sequential IO instantiated with a type that has access values

* Variables that are never assigned a value

* Variables that are referenced before being initialized

* Task entries with no corresponding accept statement

* Duplicate accepts for the same task entry in a select

* Objects that take too much storage

* Unchecked conversion between types of differing sizes

* Missing return statement along some execution path in a function

* Incorrect (unrecognized) pragmas

* Incorrect external names

* Allocation from empty storage pool

* Potentially blocking operation in protected type

* Suspicious parenthesization of expressions

* Mismatching bounds in an aggregate

* Attempt to return local value by reference

* Premature instantiation of a generic body

* Attempt to pack aliased components

* Out of bounds array subscripts

* Wrong length on string assignment

* Violations of style rules if style checking is enabled

* Unused with clauses

Chapter 4: Building Executable Programs with GNAT 110

* Bit_Order usage that does not have any effect

* Standard.Duration used to resolve universal fixed expression

* Dereference of possibly null value

* Declaration that is likely to cause storage error

* Internal GNAT unit withed by application unit

* Values known to be out of range at compile time

* Unreferenced or unmodified variables. Note that a special exemption applies to vari-
ables which contain any of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED, in
any casing. Such variables are considered likely to be intentionally used in a situa-
tion where otherwise a warning would be given, so warnings of this kind are always
suppressed for such variables.

* Address overlays that could clobber memory

* Unexpected initialization when address clause present

* Bad alignment for address clause

* Useless type conversions

* Redundant assignment statements and other redundant constructs

* Useless exception handlers

* Accidental hiding of name by child unit

* Access before elaboration detected at compile time

* A range in a for loop that is known to be null or might be null

The following section lists compiler switches that are available to control the handling of
warning messages. It is also possible to exercise much finer control over what warnings
are issued and suppressed using the GNAT pragma Warnings (see the description of the
pragma in the GNAT Reference manual).

-gnatwa

Activate most optional warnings.

This switch activates most optional warning messages. See the remaining list
in this section for details on optional warning messages that can be individually
controlled. The warnings that are not turned on by this switch are:

* -gnatwd (implicit dereferencing)

* -gnatw.d (tag warnings with -gnatw switch)

* -gnatwh (hiding)

* -gnatw.h (holes in record layouts)

* -gnatw.j (late primitives of tagged types)

* -gnatw.k (redefinition of names in standard)

* -gnatwl (elaboration warnings)

* -gnatw.l (inherited aspects)

* -gnatw.n (atomic synchronization)

* -gnatwo (address clause overlay)

* -gnatw.o (values set by out parameters ignored)

Chapter 4: Building Executable Programs with GNAT 111

* -gnatw.q (questionable layout of record types)

* -gnatw_r (out-of-order record representation clauses)

* -gnatw.s (overridden size clause)

* -gnatwt (tracking of deleted conditional code)

* -gnatw.u (unordered enumeration)

* -gnatw.w (use of Warnings Off)

* -gnatw.y (reasons for package needing body)

All other optional warnings are turned on.

-gnatwA

Suppress all optional errors.

This switch suppresses all optional warning messages, see remaining list in
this section for details on optional warning messages that can be individually
controlled. Note that unlike switch -gnatws, the use of switch -gnatwA does
not suppress warnings that are normally given unconditionally and cannot be
individually controlled (for example, the warning about a missing exit path in
a function). Also, again unlike switch -gnatws, warnings suppressed by the use
of switch -gnatwA can be individually turned back on. For example the use of
switch -gnatwA followed by switch -gnatwd will suppress all optional warnings
except the warnings for implicit dereferencing.

-gnatw.a

Activate warnings on failing assertions.

This switch activates warnings for assertions where the compiler can tell at
compile time that the assertion will fail. Note that this warning is given even
if assertions are disabled. The default is that such warnings are generated.

-gnatw.A

Suppress warnings on failing assertions.

This switch suppresses warnings for assertions where the compiler can tell at
compile time that the assertion will fail.

-gnatw_a

Activate warnings on anonymous allocators.

This switch activates warnings for allocators of anonymous access types, which
can involve run-time accessibility checks and lead to unexpected accessibility
violations. For more details on the rules involved, see RM 3.10.2 (14).

-gnatw_A

Supress warnings on anonymous allocators.

This switch suppresses warnings for anonymous access type allocators.

-gnatwb

Activate warnings on bad fixed values.

This switch activates warnings for static fixed-point expressions whose value
is not an exact multiple of Small. Such values are implementation dependent,

Chapter 4: Building Executable Programs with GNAT 112

since an implementation is free to choose either of the multiples that surround
the value. GNAT always chooses the closer one, but this is not required be-
havior, and it is better to specify a value that is an exact multiple, ensuring
predictable execution. The default is that such warnings are not generated.

-gnatwB

Suppress warnings on bad fixed values.

This switch suppresses warnings for static fixed-point expressions whose value
is not an exact multiple of Small.

-gnatw.b

Activate warnings on biased representation.

This switch activates warnings when a size clause, value size clause, component
clause, or component size clause forces the use of biased representation for an
integer type (e.g. representing a range of 10..11 in a single bit by using 0/1 to
represent 10/11). The default is that such warnings are generated.

-gnatw.B

Suppress warnings on biased representation.

This switch suppresses warnings for representation clauses that force the use of
biased representation.

-gnatwc

Activate warnings on conditionals.

This switch activates warnings for conditional expressions used in tests that are
known to be True or False at compile time. The default is that such warnings
are not generated. Note that this warning does not get issued for the use of
boolean variables or constants whose values are known at compile time, since
this is a standard technique for conditional compilation in Ada, and this would
generate too many false positive warnings.

This warning option also activates a special test for comparisons using the
operators ’>=’ and’ <=’. If the compiler can tell that only the equality condition
is possible, then it will warn that the ’>’ or ’<’ part of the test is useless and
that the operator could be replaced by ’=’. An example would be comparing a
Natural variable <= 0.

This warning option also generates warnings if one or both tests is optimized
away in a membership test for integer values if the result can be determined at
compile time. Range tests on enumeration types are not included, since it is
common for such tests to include an end point.

This warning can also be turned on using -gnatwa.

-gnatwC

Suppress warnings on conditionals.

This switch suppresses warnings for conditional expressions used in tests that
are known to be True or False at compile time.

-gnatw.c

Chapter 4: Building Executable Programs with GNAT 113

Activate warnings on missing component clauses.

This switch activates warnings for record components where a record represen-
tation clause is present and has component clauses for the majority, but not
all, of the components. A warning is given for each component for which no
component clause is present.

-gnatw.C

Suppress warnings on missing component clauses.

This switch suppresses warnings for record components that are missing a com-
ponent clause in the situation described above.

-gnatw_c

Activate warnings on unknown condition in Compile Time Warning.

This switch activates warnings on a pragma Compile Time Warning or Com-
pile Time Error whose condition has a value that is not known at compile time.
The default is that such warnings are generated.

-gnatw_C

Suppress warnings on unknown condition in Compile Time Warning.

This switch supresses warnings on a pragma Compile Time Warning or Com-
pile Time Error whose condition has a value that is not known at compile time.

-gnatwd

Activate warnings on implicit dereferencing.

If this switch is set, then the use of a prefix of an access type in an indexed
component, slice, or selected component without an explicit .all will generate
a warning. With this warning enabled, access checks occur only at points where
an explicit .all appears in the source code (assuming no warnings are generated
as a result of this switch). The default is that such warnings are not generated.

-gnatwD

Suppress warnings on implicit dereferencing.

This switch suppresses warnings for implicit dereferences in indexed compo-
nents, slices, and selected components.

-gnatw.d

Activate tagging of warning and info messages.

If this switch is set, then warning messages are tagged, with one of the following
strings:

- [-gnatw?] Used to tag warnings controlled by the switch
-gnatwx where x is a letter a-z.

- [-gnatw.?] Used to tag warnings controlled by the switch
-gnatw.x where x is a letter a-z.

- [-gnatel] Used to tag elaboration information (info) mes-
sages generated when the static model of elaboration is
used and the -gnatel switch is set.

Chapter 4: Building Executable Programs with GNAT 114

- [restriction warning] Used to tag warning messages for
restriction violations, activated by use of the pragma
Restriction_Warnings.

- [warning-as-error] Used to tag warning messages that
have been converted to error messages by use of the
pragma Warning As Error. Note that such warnings are
prefixed by the string "error: " rather than "warning:
".

- [enabled by default] Used to tag all other warnings that
are always given by default, unless warnings are com-
pletely suppressed using pragma Warnings(Off) or the
switch -gnatws.

-gnatw.D

Deactivate tagging of warning and info messages messages.

If this switch is set, then warning messages return to the default mode in which
warnings and info messages are not tagged as described above for -gnatw.d.

-gnatwe

Treat warnings and style checks as errors.

This switch causes warning messages and style check messages to be treated as
errors. The warning string still appears, but the warning messages are counted
as errors, and prevent the generation of an object file. Note that this is the only
-gnatw switch that affects the handling of style check messages. Note also that
this switch has no effect on info (information) messages, which are not treated
as errors if this switch is present.

-gnatw.e

Activate every optional warning.

This switch activates all optional warnings, including those which are not acti-
vated by -gnatwa. The use of this switch is not recommended for normal use.
If you turn this switch on, it is almost certain that you will get large numbers of
useless warnings. The warnings that are excluded from -gnatwa are typically
highly specialized warnings that are suitable for use only in code that has been
specifically designed according to specialized coding rules.

-gnatwE

Treat all run-time exception warnings as errors.

This switch causes warning messages regarding errors that will be raised during
run-time execution to be treated as errors.

-gnatwf

Activate warnings on unreferenced formals.

This switch causes a warning to be generated if a formal parameter is not
referenced in the body of the subprogram. This warning can also be turned on
using -gnatwu. The default is that these warnings are not generated.

Chapter 4: Building Executable Programs with GNAT 115

-gnatwF

Suppress warnings on unreferenced formals.

This switch suppresses warnings for unreferenced formal parameters. Note that
the combination -gnatwu followed by -gnatwF has the effect of warning on
unreferenced entities other than subprogram formals.

-gnatwg

Activate warnings on unrecognized pragmas.

This switch causes a warning to be generated if an unrecognized pragma is
encountered. Apart from issuing this warning, the pragma is ignored and has
no effect. The default is that such warnings are issued (satisfying the Ada
Reference Manual requirement that such warnings appear).

-gnatwG

Suppress warnings on unrecognized pragmas.

This switch suppresses warnings for unrecognized pragmas.

-gnatw.g

Warnings used for GNAT sources.

This switch sets the warning categories that are used by the standard GNAT
style. Currently this is equivalent to -gnatwAao.q.s.CI.V.X.Z but more warn-
ings may be added in the future without advanced notice.

-gnatwh

Activate warnings on hiding.

This switch activates warnings on hiding declarations that are considered po-
tentially confusing. Not all cases of hiding cause warnings; for example an
overriding declaration hides an implicit declaration, which is just normal code.
The default is that warnings on hiding are not generated.

-gnatwH

Suppress warnings on hiding.

This switch suppresses warnings on hiding declarations.

-gnatw.h

Activate warnings on holes/gaps in records.

This switch activates warnings on component clauses in record representation
clauses that leave holes (gaps) in the record layout. If this warning option is
active, then record representation clauses should specify a contiguous layout,
adding unused fill fields if needed.

-gnatw.H

Suppress warnings on holes/gaps in records.

This switch suppresses warnings on component clauses in record representation
clauses that leave holes (haps) in the record layout.

-gnatwi

Activate warnings on implementation units.

Chapter 4: Building Executable Programs with GNAT 116

This switch activates warnings for a with of an internal GNAT implementation
unit, defined as any unit from the Ada, Interfaces, GNAT, or System hierarchies
that is not documented in either the Ada Reference Manual or the GNAT
Programmer’s Reference Manual. Such units are intended only for internal
implementation purposes and should not be withed by user programs. The
default is that such warnings are generated

-gnatwI

Disable warnings on implementation units.

This switch disables warnings for a with of an internal GNAT implementation
unit.

-gnatw.i

Activate warnings on overlapping actuals.

This switch enables a warning on statically detectable overlapping actuals in a
subprogram call, when one of the actuals is an in-out parameter, and the types
of the actuals are not by-copy types. This warning is off by default.

-gnatw.I

Disable warnings on overlapping actuals.

This switch disables warnings on overlapping actuals in a call..

-gnatwj

Activate warnings on obsolescent features (Annex J).

If this warning option is activated, then warnings are generated for calls to sub-
programs marked with pragma Obsolescent and for use of features in Annex
J of the Ada Reference Manual. In the case of Annex J, not all features are
flagged. In particular use of the renamed packages (like Text_IO) and use of
package ASCII are not flagged, since these are very common and would generate
many annoying positive warnings. The default is that such warnings are not
generated.

In addition to the above cases, warnings are also generated for GNAT features
that have been provided in past versions but which have been superseded (typ-
ically by features in the new Ada standard). For example, pragma Ravenscar

will be flagged since its function is replaced by pragma Profile(Ravenscar),
and pragma Interface_Name will be flagged since its function is replaced by
pragma Import.

Note that this warning option functions differently from the restriction No_

Obsolescent_Features in two respects. First, the restriction applies only to
annex J features. Second, the restriction does flag uses of package ASCII.

-gnatwJ

Suppress warnings on obsolescent features (Annex J).

This switch disables warnings on use of obsolescent features.

-gnatw.j

Activate warnings on late declarations of tagged type primitives.

Chapter 4: Building Executable Programs with GNAT 117

This switch activates warnings on visible primitives added to a tagged type
after deriving a private extension from it.

-gnatw.J

Suppress warnings on late declarations of tagged type primitives.

This switch suppresses warnings on visible primitives added to a tagged type
after deriving a private extension from it.

-gnatwk

Activate warnings on variables that could be constants.

This switch activates warnings for variables that are initialized but never mod-
ified, and then could be declared constants. The default is that such warnings
are not given.

-gnatwK

Suppress warnings on variables that could be constants.

This switch disables warnings on variables that could be declared constants.

-gnatw.k

Activate warnings on redefinition of names in standard.

This switch activates warnings for declarations that declare a name that is
defined in package Standard. Such declarations can be confusing, especially
since the names in package Standard continue to be directly visible, meaning
that use visibiliy on such redeclared names does not work as expected. Names
of discriminants and components in records are not included in this check.

-gnatw.K

Suppress warnings on redefinition of names in standard.

This switch disables warnings for declarations that declare a name that is de-
fined in package Standard.

-gnatwl

Activate warnings for elaboration pragmas.

This switch activates warnings for possible elaboration problems, including sus-
picious use of Elaborate pragmas, when using the static elaboration model,
and possible situations that may raise Program_Error when using the dynamic
elaboration model. See the section in this guide on elaboration checking for
further details. The default is that such warnings are not generated.

-gnatwL

Suppress warnings for elaboration pragmas.

This switch suppresses warnings for possible elaboration problems.

-gnatw.l

List inherited aspects.

This switch causes the compiler to list inherited invariants, preconditions,
and postconditions from Type Invariant’Class, Invariant’Class, Pre’Class, and
Post’Class aspects. Also list inherited subtype predicates.

Chapter 4: Building Executable Programs with GNAT 118

-gnatw.L

Suppress listing of inherited aspects.

This switch suppresses listing of inherited aspects.

-gnatwm

Activate warnings on modified but unreferenced variables.

This switch activates warnings for variables that are assigned (using an initial-
ization value or with one or more assignment statements) but whose value is
never read. The warning is suppressed for volatile variables and also for vari-
ables that are renamings of other variables or for which an address clause is
given. The default is that these warnings are not given.

-gnatwM

Disable warnings on modified but unreferenced variables.

This switch disables warnings for variables that are assigned or initialized, but
never read.

-gnatw.m

Activate warnings on suspicious modulus values.

This switch activates warnings for modulus values that seem suspicious. The
cases caught are where the size is the same as the modulus (e.g. a modulus
of 7 with a size of 7 bits), and modulus values of 32 or 64 with no size clause.
The guess in both cases is that 2**x was intended rather than x. In addition
expressions of the form 2*x for small x generate a warning (the almost cer-
tainly accurate guess being that 2**x was intended). The default is that these
warnings are given.

-gnatw.M

Disable warnings on suspicious modulus values.

This switch disables warnings for suspicious modulus values.

-gnatwn

Set normal warnings mode.

This switch sets normal warning mode, in which enabled warnings are issued
and treated as warnings rather than errors. This is the default mode. the switch
-gnatwn can be used to cancel the effect of an explicit -gnatws or -gnatwe. It
also cancels the effect of the implicit -gnatwe that is activated by the use of
-gnatg.

-gnatw.n

Activate warnings on atomic synchronization.

This switch actives warnings when an access to an atomic variable requires the
generation of atomic synchronization code. These warnings are off by default.

-gnatw.N

Suppress warnings on atomic synchronization.

This switch suppresses warnings when an access to an atomic variable requires
the generation of atomic synchronization code.

Chapter 4: Building Executable Programs with GNAT 119

-gnatwo

Activate warnings on address clause overlays.

This switch activates warnings for possibly unintended initialization effects of
defining address clauses that cause one variable to overlap another. The default
is that such warnings are generated.

-gnatwO

Suppress warnings on address clause overlays.

This switch suppresses warnings on possibly unintended initialization effects of
defining address clauses that cause one variable to overlap another.

-gnatw.o

Activate warnings on modified but unreferenced out parameters.

This switch activates warnings for variables that are modified by using them as
actuals for a call to a procedure with an out mode formal, where the resulting
assigned value is never read. It is applicable in the case where there is more
than one out mode formal. If there is only one out mode formal, the warning
is issued by default (controlled by -gnatwu). The warning is suppressed for
volatile variables and also for variables that are renamings of other variables or
for which an address clause is given. The default is that these warnings are not
given.

-gnatw.O

Disable warnings on modified but unreferenced out parameters.

This switch suppresses warnings for variables that are modified by using them
as actuals for a call to a procedure with an out mode formal, where the resulting
assigned value is never read.

-gnatwp

Activate warnings on ineffective pragma Inlines.

This switch activates warnings for failure of front end inlining (activated by
-gnatN) to inline a particular call. There are many reasons for not being able
to inline a call, including most commonly that the call is too complex to inline.
The default is that such warnings are not given. Warnings on ineffective inlining
by the gcc back-end can be activated separately, using the gcc switch -Winline.

-gnatwP

Suppress warnings on ineffective pragma Inlines.

This switch suppresses warnings on ineffective pragma Inlines. If the inlining
mechanism cannot inline a call, it will simply ignore the request silently.

-gnatw.p

Activate warnings on parameter ordering.

This switch activates warnings for cases of suspicious parameter ordering when
the list of arguments are all simple identifiers that match the names of the
formals, but are in a different order. The warning is suppressed if any use of
named parameter notation is used, so this is the appropriate way to suppress

Chapter 4: Building Executable Programs with GNAT 120

a false positive (and serves to emphasize that the "misordering" is deliberate).
The default is that such warnings are not given.

-gnatw.P

Suppress warnings on parameter ordering.

This switch suppresses warnings on cases of suspicious parameter ordering.

-gnatwq

Activate warnings on questionable missing parentheses.

This switch activates warnings for cases where parentheses are not used and
the result is potential ambiguity from a readers point of view. For example
(not a > b) when a and b are modular means ((not a) > b) and very likely the
programmer intended (not (a > b)). Similarly (-x mod 5) means (-(x mod 5))
and quite likely ((-x) mod 5) was intended. In such situations it seems best to
follow the rule of always parenthesizing to make the association clear, and this
warning switch warns if such parentheses are not present. The default is that
these warnings are given.

-gnatwQ

Suppress warnings on questionable missing parentheses.

This switch suppresses warnings for cases where the association is not clear and
the use of parentheses is preferred.

-gnatw.q

Activate warnings on questionable layout of record types.

This switch activates warnings for cases where the default layout of a record
type, that is to say the layout of its components in textual order of the source
code, would very likely cause inefficiencies in the code generated by the compiler,
both in terms of space and speed during execution. One warning is issued for
each problematic component without representation clause in the nonvariant
part and then in each variant recursively, if any.

The purpose of these warnings is neither to prescribe an optimal layout nor
to force the use of representation clauses, but rather to get rid of the most
blatant inefficiencies in the layout. Therefore, the default layout is matched
against the following synthetic ordered layout and the deviations are flagged on
a component-by-component basis:

* first all components or groups of components whose length is fixed and a
multiple of the storage unit,

* then the remaining components whose length is fixed and not a multiple
of the storage unit,

* then the remaining components whose length doesn’t depend on discrimi-
nants (that is to say, with variable but uniform length for all objects),

* then all components whose length depends on discriminants,

* finally the variant part (if any),

for the nonvariant part and for each variant recursively, if any.

Chapter 4: Building Executable Programs with GNAT 121

The exact wording of the warning depends on whether the compiler is allowed
to reorder the components in the record type or precluded from doing it by
means of pragma No_Component_Reordering.

The default is that these warnings are not given.

-gnatw.Q

Suppress warnings on questionable layout of record types.

This switch suppresses warnings for cases where the default layout of a record
type would very likely cause inefficiencies.

-gnatwr

Activate warnings on redundant constructs.

This switch activates warnings for redundant constructs. The following is the
current list of constructs regarded as redundant:

* Assignment of an item to itself.

* Type conversion that converts an expression to its own type.

* Use of the attribute Base where typ’Base is the same as typ.

* Use of pragma Pack when all components are placed by a record represen-
tation clause.

* Exception handler containing only a reraise statement (raise with no
operand) which has no effect.

* Use of the operator abs on an operand that is known at compile time to
be non-negative

* Comparison of an object or (unary or binary) operation of boolean type to
an explicit True value.

The default is that warnings for redundant constructs are not given.

-gnatwR

Suppress warnings on redundant constructs.

This switch suppresses warnings for redundant constructs.

-gnatw.r

Activate warnings for object renaming function.

This switch activates warnings for an object renaming that renames a function
call, which is equivalent to a constant declaration (as opposed to renaming the
function itself). The default is that these warnings are given.

-gnatw.R

Suppress warnings for object renaming function.

This switch suppresses warnings for object renaming function.

-gnatw_r

Activate warnings for out-of-order record representation clauses.

This switch activates warnings for record representation clauses, if the order
of component declarations, component clauses, and bit-level layout do not all
agree. The default is that these warnings are not given.

Chapter 4: Building Executable Programs with GNAT 122

-gnatw_R

Suppress warnings for out-of-order record representation clauses.

-gnatws

Suppress all warnings.

This switch completely suppresses the output of all warning messages from the
GNAT front end, including both warnings that can be controlled by switches
described in this section, and those that are normally given unconditionally.
The effect of this suppress action can only be cancelled by a subsequent use of
the switch -gnatwn.

Note that switch -gnatws does not suppress warnings from the gcc back end.
To suppress these back end warnings as well, use the switch -w in addition to
-gnatws. Also this switch has no effect on the handling of style check messages.

-gnatw.s

Activate warnings on overridden size clauses.

This switch activates warnings on component clauses in record representation
clauses where the length given overrides that specified by an explicit size clause
for the component type. A warning is similarly given in the array case if a spec-
ified component size overrides an explicit size clause for the array component
type.

-gnatw.S

Suppress warnings on overridden size clauses.

This switch suppresses warnings on component clauses in record representation
clauses that override size clauses, and similar warnings when an array compo-
nent size overrides a size clause.

-gnatwt

Activate warnings for tracking of deleted conditional code.

This switch activates warnings for tracking of code in conditionals (IF and
CASE statements) that is detected to be dead code which cannot be executed,
and which is removed by the front end. This warning is off by default. This
may be useful for detecting deactivated code in certified applications.

-gnatwT

Suppress warnings for tracking of deleted conditional code.

This switch suppresses warnings for tracking of deleted conditional code.

-gnatw.t

Activate warnings on suspicious contracts.

This switch activates warnings on suspicious contracts. This includes warn-
ings on suspicious postconditions (whether a pragma Postcondition or a Post

aspect in Ada 2012) and suspicious contract cases (pragma or aspect Contract_
Cases). A function postcondition or contract case is suspicious when no post-
condition or contract case for this function mentions the result of the function.
A procedure postcondition or contract case is suspicious when it only refers

Chapter 4: Building Executable Programs with GNAT 123

to the pre-state of the procedure, because in that case it should rather be ex-
pressed as a precondition. This switch also controls warnings on suspicious
cases of expressions typically found in contracts like quantified expressions and
uses of Update attribute. The default is that such warnings are generated.

-gnatw.T

Suppress warnings on suspicious contracts.

This switch suppresses warnings on suspicious contracts.

-gnatwu

Activate warnings on unused entities.

This switch activates warnings to be generated for entities that are declared but
not referenced, and for units that are withed and not referenced. In the case of
packages, a warning is also generated if no entities in the package are referenced.
This means that if a with’ed package is referenced but the only references are
in use clauses or renames declarations, a warning is still generated. A warning
is also generated for a generic package that is withed but never instantiated.
In the case where a package or subprogram body is compiled, and there is a
with on the corresponding spec that is only referenced in the body, a warning
is also generated, noting that the with can be moved to the body. The default
is that such warnings are not generated. This switch also activates warnings on
unreferenced formals (it includes the effect of -gnatwf).

-gnatwU

Suppress warnings on unused entities.

This switch suppresses warnings for unused entities and packages. It also turns
off warnings on unreferenced formals (and thus includes the effect of -gnatwF).

-gnatw.u

Activate warnings on unordered enumeration types.

This switch causes enumeration types to be considered as conceptually un-
ordered, unless an explicit pragma Ordered is given for the type. The effect
is to generate warnings in clients that use explicit comparisons or subranges,
since these constructs both treat objects of the type as ordered. (A client is
defined as a unit that is other than the unit in which the type is declared, or
its body or subunits.) Please refer to the description of pragma Ordered in the
GNAT Reference Manual for further details. The default is that such warnings
are not generated.

-gnatw.U

Deactivate warnings on unordered enumeration types.

This switch causes all enumeration types to be considered as ordered, so that
no warnings are given for comparisons or subranges for any type.

-gnatwv

Activate warnings on unassigned variables.

This switch activates warnings for access to variables which may not be properly
initialized. The default is that such warnings are generated. This switch will

Chapter 4: Building Executable Programs with GNAT 124

also be emitted when initializing an array or record object via the following
aggregate:

Array_Or_Record : XXX := (others => <>);

unless the relevant type fully initializes all components.

-gnatwV

Suppress warnings on unassigned variables.

This switch suppresses warnings for access to variables which may not be prop-
erly initialized.

-gnatw.v

Activate info messages for non-default bit order.

This switch activates messages (labeled "info", they are not warnings, just
informational messages) about the effects of non-default bit-order on records
to which a component clause is applied. The effect of specifying non-default
bit ordering is a bit subtle (and changed with Ada 2005), so these messages,
which are given by default, are useful in understanding the exact consequences
of using this feature.

-gnatw.V

Suppress info messages for non-default bit order.

This switch suppresses information messages for the effects of specifying non-
default bit order on record components with component clauses.

-gnatww

Activate warnings on wrong low bound assumption.

This switch activates warnings for indexing an unconstrained string parameter
with a literal or S’Length. This is a case where the code is assuming that the
low bound is one, which is in general not true (for example when a slice is
passed). The default is that such warnings are generated.

-gnatwW

Suppress warnings on wrong low bound assumption.

This switch suppresses warnings for indexing an unconstrained string parameter
with a literal or S’Length. Note that this warning can also be suppressed in a
particular case by adding an assertion that the lower bound is 1, as shown in
the following example:

procedure K (S : String) is

pragma Assert (S’First = 1);

...

-gnatw.w

Activate warnings on Warnings Off pragmas.

This switch activates warnings for use of pragma Warnings (Off, entity)

where either the pragma is entirely useless (because it suppresses no warnings),
or it could be replaced by pragma Unreferenced or pragma Unmodified. Also
activates warnings for the case of Warnings (Off, String), where either there is

Chapter 4: Building Executable Programs with GNAT 125

no matching Warnings (On, String), or the Warnings (Off) did not suppress
any warning. The default is that these warnings are not given.

-gnatw.W

Suppress warnings on unnecessary Warnings Off pragmas.

This switch suppresses warnings for use of pragma Warnings (Off, ...).

-gnatwx

Activate warnings on Export/Import pragmas.

This switch activates warnings on Export/Import pragmas when the compiler
detects a possible conflict between the Ada and foreign language calling se-
quences. For example, the use of default parameters in a convention C proce-
dure is dubious because the C compiler cannot supply the proper default, so a
warning is issued. The default is that such warnings are generated.

-gnatwX

Suppress warnings on Export/Import pragmas.

This switch suppresses warnings on Export/Import pragmas. The sense of this
is that you are telling the compiler that you know what you are doing in writing
the pragma, and it should not complain at you.

-gnatw.x

Activate warnings for No Exception Propagation mode.

This switch activates warnings for exception usage when pragma Restrictions
(No Exception Propagation) is in effect. Warnings are given for implicit or
explicit exception raises which are not covered by a local handler, and for ex-
ception handlers which do not cover a local raise. The default is that these
warnings are given for units that contain exception handlers.

-gnatw.X

Disable warnings for No Exception Propagation mode.

This switch disables warnings for exception usage when pragma Restrictions
(No Exception Propagation) is in effect.

-gnatwy

Activate warnings for Ada compatibility issues.

For the most part, newer versions of Ada are upwards compatible with older
versions. For example, Ada 2005 programs will almost always work when com-
piled as Ada 2012. However there are some exceptions (for example the fact
that some is now a reserved word in Ada 2012). This switch activates several
warnings to help in identifying and correcting such incompatibilities. The de-
fault is that these warnings are generated. Note that at one point Ada 2005
was called Ada 0Y, hence the choice of character.

-gnatwY

Disable warnings for Ada compatibility issues.

This switch suppresses the warnings intended to help in identifying incompati-
bilities between Ada language versions.

Chapter 4: Building Executable Programs with GNAT 126

-gnatw.y

Activate information messages for why package spec needs body.

There are a number of cases in which a package spec needs a body. For example,
the use of pragma Elaborate Body, or the declaration of a procedure specifi-
cation requiring a completion. This switch causes information messages to be
output showing why a package specification requires a body. This can be useful
in the case of a large package specification which is unexpectedly requiring a
body. The default is that such information messages are not output.

-gnatw.Y

Disable information messages for why package spec needs body.

This switch suppresses the output of information messages showing why a pack-
age specification needs a body.

-gnatwz

Activate warnings on unchecked conversions.

This switch activates warnings for unchecked conversions where the types are
known at compile time to have different sizes. The default is that such warn-
ings are generated. Warnings are also generated for subprogram pointers with
different conventions.

-gnatwZ

Suppress warnings on unchecked conversions.

This switch suppresses warnings for unchecked conversions where the types are
known at compile time to have different sizes or conventions.

-gnatw.z

Activate warnings for size not a multiple of alignment.

This switch activates warnings for cases of array and record types with specified
Size and Alignment attributes where the size is not a multiple of the alignment,
resulting in an object size that is greater than the specified size. The default is
that such warnings are generated.

-gnatw.Z

Suppress warnings for size not a multiple of alignment.

This switch suppresses warnings for cases of array and record types with spec-
ified Size and Alignment attributes where the size is not a multiple of the
alignment, resulting in an object size that is greater than the specified size.
The warning can also be suppressed by giving an explicit Object_Size value.

-Wunused

The warnings controlled by the -gnatw switch are generated by the front end
of the compiler. The GCC back end can provide additional warnings and they
are controlled by the -W switch. For example, -Wunused activates back end
warnings for entities that are declared but not referenced.

Chapter 4: Building Executable Programs with GNAT 127

-Wuninitialized

Similarly, -Wuninitialized activates the back end warning for uninitialized
variables. This switch must be used in conjunction with an optimization level
greater than zero.

-Wstack-usage=len

Warn if the stack usage of a subprogram might be larger than len bytes. See
[Static Stack Usage Analysis], page 226 for details.

-Wall

This switch enables most warnings from the GCC back end. The code generator
detects a number of warning situations that are missed by the GNAT front end,
and this switch can be used to activate them. The use of this switch also sets the
default front end warning mode to -gnatwa, that is, most front end warnings
activated as well.

-w

Conversely, this switch suppresses warnings from the GCC back end. The use
of this switch also sets the default front end warning mode to -gnatws, that is,
front end warnings suppressed as well.

-Werror

This switch causes warnings from the GCC back end to be treated as errors.
The warning string still appears, but the warning messages are counted as
errors, and prevent the generation of an object file.

A string of warning parameters can be used in the same parameter. For example:

-gnatwaGe

will turn on all optional warnings except for unrecognized pragma warnings, and also specify
that warnings should be treated as errors.

When no switch -gnatw is used, this is equivalent to:

* -gnatw.a

* -gnatwB

* -gnatw.b

* -gnatwC

* -gnatw.C

* -gnatwD

* -gnatw.D

* -gnatwF

* -gnatw.F

* -gnatwg

* -gnatwH

* -gnatw.H

* -gnatwi

* -gnatwJ

Chapter 4: Building Executable Programs with GNAT 128

* -gnatw.J

* -gnatwK

* -gnatw.K

* -gnatwL

* -gnatw.L

* -gnatwM

* -gnatw.m

* -gnatwn

* -gnatw.N

* -gnatwo

* -gnatw.O

* -gnatwP

* -gnatw.P

* -gnatwq

* -gnatw.Q

* -gnatwR

* -gnatw.R

* -gnatw.S

* -gnatwT

* -gnatw.t

* -gnatwU

* -gnatw.U

* -gnatwv

* -gnatw.v

* -gnatww

* -gnatw.W

* -gnatwx

* -gnatw.X

* -gnatwy

* -gnatw.Y

* -gnatwz

* -gnatw.z

4.3.4 Debugging and Assertion Control

-gnata

The -gnata option is equivalent to the following Assertion_Policy pragma:

pragma Assertion_Policy (Check);

Which is a shorthand for:

Chapter 4: Building Executable Programs with GNAT 129

pragma Assertion_Policy

(Assert => Check,

Static_Predicate => Check,

Dynamic_Predicate => Check,

Pre => Check,

Pre’Class => Check,

Post => Check,

Post’Class => Check,

Type_Invariant => Check,

Type_Invariant’Class => Check);

The pragmas Assert and Debug normally have no effect and are ignored. This
switch, where a stands for ’assert’, causes pragmas Assert and Debug to be
activated. This switch also causes preconditions, postconditions, subtype pred-
icates, and type invariants to be activated.

The pragmas have the form:

pragma Assert (<Boolean-expression> [, <static-string-expression>])

pragma Debug (<procedure call>)

pragma Type_Invariant (<type-local-name>, <Boolean-expression>)

pragma Predicate (<type-local-name>, <Boolean-expression>)

pragma Precondition (<Boolean-expression>, <string-expression>)

pragma Postcondition (<Boolean-expression>, <string-expression>)

The aspects have the form:

with [Pre|Post|Type_Invariant|Dynamic_Predicate|Static_Predicate]

=> <Boolean-expression>;

The Assert pragma causes Boolean-expression to be tested. If the result
is True, the pragma has no effect (other than possible side effects from eval-
uating the expression). If the result is False, the exception Assert_Failure

declared in the package System.Assertions is raised (passing static-string-
expression, if present, as the message associated with the exception). If no
string expression is given, the default is a string containing the file name and
line number of the pragma.

The Debug pragma causes procedure to be called. Note that pragma Debug

may appear within a declaration sequence, allowing debugging procedures to
be called between declarations.

For the aspect specification, the Boolean-expression is evaluated. If the result
is True, the aspect has no effect. If the result is False, the exception Assert_

Failure is raised.

4.3.5 Validity Checking

The Ada Reference Manual defines the concept of invalid values (see RM 13.9.1). The
primary source of invalid values is uninitialized variables. A scalar variable that is left
uninitialized may contain an invalid value; the concept of invalid does not apply to access
or composite types.

It is an error to read an invalid value, but the RM does not require run-time checks to
detect such errors, except for some minimal checking to prevent erroneous execution (i.e.

Chapter 4: Building Executable Programs with GNAT 130

unpredictable behavior). This corresponds to the -gnatVd switch below, which is the de-
fault. For example, by default, if the expression of a case statement is invalid, it will raise
Constraint Error rather than causing a wild jump, and if an array index on the left-hand
side of an assignment is invalid, it will raise Constraint Error rather than overwriting an
arbitrary memory location.

The -gnatVamay be used to enable additional validity checks, which are not required by the
RM. These checks are often very expensive (which is why the RM does not require them).
These checks are useful in tracking down uninitialized variables, but they are not usually
recommended for production builds, and in particular we do not recommend using these
extra validity checking options in combination with optimization, since this can confuse
the optimizer. If performance is a consideration, leading to the need to optimize, then the
validity checking options should not be used.

The other -gnatVx switches below allow finer-grained control; you can enable whichever
validity checks you desire. However, for most debugging purposes, -gnatVa is sufficient, and
the default -gnatVd (i.e. standard Ada behavior) is usually sufficient for non-debugging
use.

The -gnatB switch tells the compiler to assume that all values are valid (that is, within their
declared subtype range) except in the context of a use of the Valid attribute. This means
the compiler can generate more efficient code, since the range of values is better known
at compile time. However, an uninitialized variable can cause wild jumps and memory
corruption in this mode.

The -gnatVx switch allows control over the validity checking mode as described below. The
x argument is a string of letters that indicate validity checks that are performed or not
performed in addition to the default checks required by Ada as described above.

-gnatVa

All validity checks.

All validity checks are turned on. That is, -gnatVa is equivalent to
gnatVcdfimoprst.

-gnatVc

Validity checks for copies.

The right hand side of assignments, and the initializing values of object decla-
rations are validity checked.

-gnatVd

Default (RM) validity checks.

Some validity checks are done by default following normal Ada semantics (RM
13.9.1 (9-11)). A check is done in case statements that the expression is within
the range of the subtype. If it is not, Constraint Error is raised. For assignments
to array components, a check is done that the expression used as index is within
the range. If it is not, Constraint Error is raised. Both these validity checks
may be turned off using switch -gnatVD. They are turned on by default. If
-gnatVD is specified, a subsequent switch -gnatVd will leave the checks turned
on. Switch -gnatVD should be used only if you are sure that all such expressions
have valid values. If you use this switch and invalid values are present, then
the program is erroneous, and wild jumps or memory overwriting may occur.

Chapter 4: Building Executable Programs with GNAT 131

-gnatVe

Validity checks for elementary components.

In the absence of this switch, assignments to record or array components are not
validity checked, even if validity checks for assignments generally (-gnatVc) are
turned on. In Ada, assignment of composite values do not require valid data, but
assignment of individual components does. So for example, there is a difference
between copying the elements of an array with a slice assignment, compared
to assigning element by element in a loop. This switch allows you to turn off
validity checking for components, even when they are assigned component by
component.

-gnatVf

Validity checks for floating-point values.

In the absence of this switch, validity checking occurs only for discrete values. If
-gnatVf is specified, then validity checking also applies for floating-point values,
and NaNs and infinities are considered invalid, as well as out of range values
for constrained types. Note that this means that standard IEEE infinity mode
is not allowed. The exact contexts in which floating-point values are checked
depends on the setting of other options. For example, -gnatVif or -gnatVfi
(the order does not matter) specifies that floating-point parameters of mode in
should be validity checked.

-gnatVi

Validity checks for ‘‘in‘‘ mode parameters.

Arguments for parameters of mode in are validity checked in function and
procedure calls at the point of call.

-gnatVm

Validity checks for ‘‘in out‘‘ mode parameters.

Arguments for parameters of mode in out are validity checked in procedure
calls at the point of call. The ’m’ here stands for modify, since this concerns
parameters that can be modified by the call. Note that there is no specific
option to test out parameters, but any reference within the subprogram will be
tested in the usual manner, and if an invalid value is copied back, any reference
to it will be subject to validity checking.

-gnatVn

No validity checks.

This switch turns off all validity checking, including the default checking for
case statements and left hand side subscripts. Note that the use of the switch -

gnatp suppresses all run-time checks, including validity checks, and thus implies
-gnatVn. When this switch is used, it cancels any other -gnatV previously
issued.

-gnatVo

Validity checks for operator and attribute operands.

Chapter 4: Building Executable Programs with GNAT 132

Arguments for predefined operators and attributes are validity checked. This
includes all operators in package Standard, the shift operators defined as in-
trinsic in package Interfaces and operands for attributes such as Pos. Checks
are also made on individual component values for composite comparisons, and
on the expressions in type conversions and qualified expressions. Checks are
also made on explicit ranges using .. (e.g., slices, loops etc).

-gnatVp

Validity checks for parameters.

This controls the treatment of parameters within a subprogram (as opposed to
-gnatVi and -gnatVm which control validity testing of parameters on a call. If
either of these call options is used, then normally an assumption is made within
a subprogram that the input arguments have been validity checking at the point
of call, and do not need checking again within a subprogram). If -gnatVp is
set, then this assumption is not made, and parameters are not assumed to be
valid, so their validity will be checked (or rechecked) within the subprogram.

-gnatVr

Validity checks for function returns.

The expression in return statements in functions is validity checked.

-gnatVs

Validity checks for subscripts.

All subscripts expressions are checked for validity, whether they appear on the
right side or left side (in default mode only left side subscripts are validity
checked).

-gnatVt

Validity checks for tests.

Expressions used as conditions in if, while or exit statements are checked, as
well as guard expressions in entry calls.

The -gnatV switch may be followed by a string of letters to turn on a series of validity
checking options. For example, -gnatVcr specifies that in addition to the default validity
checking, copies and function return expressions are to be validity checked. In order to make
it easier to specify the desired combination of effects, the upper case letters CDFIMORST may
be used to turn off the corresponding lower case option. Thus -gnatVaM turns on all validity
checking options except for checking of in out parameters.

The specification of additional validity checking generates extra code (and in the case of
-gnatVa the code expansion can be substantial). However, these additional checks can be
very useful in detecting uninitialized variables, incorrect use of unchecked conversion, and
other errors leading to invalid values. The use of pragma Initialize_Scalars is useful
in conjunction with the extra validity checking, since this ensures that wherever possible
uninitialized variables have invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

Chapter 4: Building Executable Programs with GNAT 133

4.3.6 Style Checking

The -gnatyx switch causes the compiler to enforce specified style rules. A limited set of
style rules has been used in writing the GNAT sources themselves. This switch allows user
programs to activate all or some of these checks. If the source program fails a specified style
check, an appropriate message is given, preceded by the character sequence ’(style)’. This
message does not prevent successful compilation (unless the -gnatwe switch is used).

Note that this is by no means intended to be a general facility for checking arbitrary coding
standards. It is simply an embedding of the style rules we have chosen for the GNAT
sources. If you are starting a project which does not have established style standards, you
may find it useful to adopt the entire set of GNAT coding standards, or some subset of
them.

The string x is a sequence of letters or digits indicating the particular style checks to be
performed. The following checks are defined:

-gnaty0

Specify indentation level.

If a digit from 1-9 appears in the string after -gnaty then proper indentation
is checked, with the digit indicating the indentation level required. A value of
zero turns off this style check. The general style of required indentation is as
specified by the examples in the Ada Reference Manual. Full line comments
must be aligned with the -- starting on a column that is a multiple of the
alignment level, or they may be aligned the same way as the following non-
blank line (this is useful when full line comments appear in the middle of a
statement, or they may be aligned with the source line on the previous non-
blank line.

-gnatya

Check attribute casing.

Attribute names, including the case of keywords such as digits used as at-
tributes names, must be written in mixed case, that is, the initial letter and
any letter following an underscore must be uppercase. All other letters must
be lowercase.

-gnatyA

Use of array index numbers in array attributes.

When using the array attributes First, Last, Range, or Length, the index
number must be omitted for one-dimensional arrays and is required for multi-
dimensional arrays.

-gnatyb

Blanks not allowed at statement end.

Trailing blanks are not allowed at the end of statements. The purpose of this
rule, together with h (no horizontal tabs), is to enforce a canonical format for
the use of blanks to separate source tokens.

-gnatyB

Check Boolean operators.

Chapter 4: Building Executable Programs with GNAT 134

The use of AND/OR operators is not permitted except in the cases of modular
operands, array operands, and simple stand-alone boolean variables or boolean
constants. In all other cases and then/or else are required.

-gnatyc

Check comments, double space.

Comments must meet the following set of rules:

* The -- that starts the column must either start in column one, or else at
least one blank must precede this sequence.

* Comments that follow other tokens on a line must have at least one blank
following the -- at the start of the comment.

* Full line comments must have at least two blanks following the -- that
starts the comment, with the following exceptions.

* A line consisting only of the -- characters, possibly preceded by blanks is
permitted.

* A comment starting with --x where x is a special character is permitted.
This allows proper processing of the output from specialized tools such as
gnatprep (where --! is used) and in earlier versions of the SPARK anno-
tation language (where --# is used). For the purposes of this rule, a special
character is defined as being in one of the ASCII ranges 16#21#...16#2F#
or 16#3A#...16#3F#. Note that this usage is not permitted in GNAT
implementation units (i.e., when -gnatg is used).

* A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of
minus signs are used to form the top and bottom of the box.

* A comment that starts and ends with -- is permitted as long as at least one
blank follows the initial --. Together with the preceding rule, this allows
the construction of box comments, as shown in the following example:

-- This is a box comment --

-- with two text lines. --

-gnatyC

Check comments, single space.

This is identical to c except that only one space is required following the -- of
a comment instead of two.

-gnatyd

Check no DOS line terminators present.

All lines must be terminated by a single ASCII.LF character (in particular the
DOS line terminator sequence CR/LF is not allowed).

-gnatyD

Check declared identifiers in mixed case.

Declared identifiers must be in mixed case, as in This Is An Identifier. Use
-gnatyr in addition to ensure that references match declarations.

Chapter 4: Building Executable Programs with GNAT 135

-gnatye

Check end/exit labels.

Optional labels on end statements ending subprograms and on exit statements
exiting named loops, are required to be present.

-gnatyf

No form feeds or vertical tabs.

Neither form feeds nor vertical tab characters are permitted in the source text.

-gnatyg

GNAT style mode.

The set of style check switches is set to match that used by the GNAT sources.
This may be useful when developing code that is eventually intended to be
incorporated into GNAT. Currently this is equivalent to -gnatyydISux) but
additional style switches may be added to this set in the future without advance
notice.

-gnatyh

No horizontal tabs.

Horizontal tab characters are not permitted in the source text. Together with
the b (no blanks at end of line) check, this enforces a canonical form for the
use of blanks to separate source tokens.

-gnatyi

Check if-then layout.

The keyword then must appear either on the same line as corresponding if, or
on a line on its own, lined up under the if.

-gnatyI

check mode IN keywords.

Mode in (the default mode) is not allowed to be given explicitly. in out is fine,
but not in on its own.

-gnatyk

Check keyword casing.

All keywords must be in lower case (with the exception of keywords such as
digits used as attribute names to which this check does not apply). A single
error is reported for each line breaking this rule even if multiple casing issues
exist on a same line.

-gnatyl

Check layout.

Layout of statement and declaration constructs must follow the recommenda-
tions in the Ada Reference Manual, as indicated by the form of the syntax
rules. For example an else keyword must be lined up with the corresponding
if keyword.

There are two respects in which the style rule enforced by this check option
are more liberal than those in the Ada Reference Manual. First in the case of

Chapter 4: Building Executable Programs with GNAT 136

record declarations, it is permissible to put the record keyword on the same
line as the type keyword, and then the end in end record must line up under
type. This is also permitted when the type declaration is split on two lines.
For example, any of the following three layouts is acceptable:

type q is record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;

Second, in the case of a block statement, a permitted alternative is to put the
block label on the same line as the declare or begin keyword, and then line
the end keyword up under the block label. For example both the following are
permitted:

Block : declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Block :

declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

The same alternative format is allowed for loops. For example, both of the
following are permitted:

Clear : while J < 10 loop

A (J) := 0;

end loop Clear;

Clear :

while J < 10 loop

A (J) := 0;

end loop Clear;

Chapter 4: Building Executable Programs with GNAT 137

-gnatyL

Set maximum nesting level.

The maximum level of nesting of constructs (including subprograms, loops,
blocks, packages, and conditionals) may not exceed the given value nnn. A
value of zero disconnects this style check.

-gnatym

Check maximum line length.

The length of source lines must not exceed 79 characters, including any trailing
blanks. The value of 79 allows convenient display on an 80 character wide
device or window, allowing for possible special treatment of 80 character lines.
Note that this count is of characters in the source text. This means that a tab
character counts as one character in this count and a wide character sequence
counts as a single character (however many bytes are needed in the encoding).

-gnatyM

Set maximum line length.

The length of lines must not exceed the given value nnn. The maximum value
that can be specified is 32767. If neither style option for setting the line length
is used, then the default is 255. This also controls the maximum length of
lexical elements, where the only restriction is that they must fit on a single line.

-gnatyn

Check casing of entities in Standard.

Any identifier from Standard must be cased to match the presentation in the
Ada Reference Manual (for example, Integer and ASCII.NUL).

-gnatyN

Turn off all style checks.

All style check options are turned off.

-gnatyo

Check order of subprogram bodies.

All subprogram bodies in a given scope (e.g., a package body) must be in
alphabetical order. The ordering rule uses normal Ada rules for comparing
strings, ignoring casing of letters, except that if there is a trailing numeric
suffix, then the value of this suffix is used in the ordering (e.g., Junk2 comes
before Junk10).

-gnatyO

Check that overriding subprograms are explicitly marked as such.

This applies to all subprograms of a derived type that override a primitive op-
eration of the type, for both tagged and untagged types. In particular, the dec-
laration of a primitive operation of a type extension that overrides an inherited
operation must carry an overriding indicator. Another case is the declaration of
a function that overrides a predefined operator (such as an equality operator).

Chapter 4: Building Executable Programs with GNAT 138

-gnatyp

Check pragma casing.

Pragma names must be written in mixed case, that is, the initial letter and
any letter following an underscore must be uppercase. All other letters must
be lowercase. An exception is that SPARK Mode is allowed as an alternative
for Spark Mode.

-gnatyr

Check references.

All identifier references must be cased in the same way as the corresponding
declaration. No specific casing style is imposed on identifiers. The only require-
ment is for consistency of references with declarations.

-gnatys

Check separate specs.

Separate declarations (’specs’) are required for subprograms (a body is not al-
lowed to serve as its own declaration). The only exception is that parameterless
library level procedures are not required to have a separate declaration. This
exception covers the most frequent form of main program procedures.

-gnatyS

Check no statements after then/else.

No statements are allowed on the same line as a then or else keyword following
the keyword in an if statement. or else and and then are not affected, and a
special exception allows a pragma to appear after else.

-gnatyt

Check token spacing.

The following token spacing rules are enforced:

* The keywords abs and not must be followed by a space.

* The token => must be surrounded by spaces.

* The token <> must be preceded by a space or a left parenthesis.

* Binary operators other than ** must be surrounded by spaces. There is
no restriction on the layout of the ** binary operator.

* Colon must be surrounded by spaces.

* Colon-equal (assignment, initialization) must be surrounded by spaces.

* Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

* If the token preceding a left parenthesis ends with a letter or digit, then a
space must separate the two tokens.

* If the token following a right parenthesis starts with a letter or digit, then
a space must separate the two tokens.

* A right parenthesis must either be the first non-blank character on a line,
or it must be preceded by a non-blank character.

Chapter 4: Building Executable Programs with GNAT 139

* A semicolon must not be preceded by a space, and must not be followed
by a non-blank character.

* A unary plus or minus may not be followed by a space.

* A vertical bar must be surrounded by spaces.

Exactly one blank (and no other white space) must appear between a not token
and a following in token.

-gnatyu

Check unnecessary blank lines.

Unnecessary blank lines are not allowed. A blank line is considered unnecessary
if it appears at the end of the file, or if more than one blank line occurs in
sequence.

-gnatyx

Check extra parentheses.

Unnecessary extra level of parentheses (C-style) are not allowed around condi-
tions in if statements, while statements and exit statements.

-gnatyy

Set all standard style check options.

This is equivalent to gnaty3aAbcefhiklmnprst, that is all checking options en-
abled with the exception of -gnatyB, -gnatyd, -gnatyI, -gnatyLnnn, -gnatyo,
-gnatyO, -gnatyS, -gnatyu, and -gnatyx.

-gnaty-

Remove style check options.

This causes any subsequent options in the string to act as canceling the corre-
sponding style check option. To cancel maximum nesting level control, use the
L parameter without any integer value after that, because any digit following -
in the parameter string of the -gnaty option will be treated as canceling the
indentation check. The same is true for the M parameter. y and N parameters
are not allowed after -.

-gnaty+

Enable style check options.

This causes any subsequent options in the string to enable the corresponding
style check option. That is, it cancels the effect of a previous -, if any.

In the above rules, appearing in column one is always permitted, that is, counts as meeting
either a requirement for a required preceding space, or as meeting a requirement for no
preceding space.

Appearing at the end of a line is also always permitted, that is, counts as meeting either a
requirement for a following space, or as meeting a requirement for no following space.

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always ’(style)’. Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object

Chapter 4: Building Executable Programs with GNAT 140

file. The -gnatwe switch can be used to treat warning messages, including style messages,
as fatal errors.

The switch -gnaty on its own (that is not followed by any letters or digits) is equivalent to
the use of -gnatyy as described above, that is all built-in standard style check options are
enabled.

The switch -gnatyN clears any previously set style checks.

4.3.7 Run-Time Checks

By default, the following checks are suppressed: stack overflow checks, and checks for access
before elaboration on subprogram calls. All other checks, including overflow checks, range
checks and array bounds checks, are turned on by default. The following gcc switches refine
this default behavior.

-gnatp

This switch causes the unit to be compiled as though pragma Suppress (All_

checks) had been present in the source. Validity checks are also eliminated
(in other words -gnatp also implies -gnatVn. Use this switch to improve the
performance of the code at the expense of safety in the presence of invalid data
or program bugs.

Note that when checks are suppressed, the compiler is allowed, but not required,
to omit the checking code. If the run-time cost of the checking code is zero
or near-zero, the compiler will generate it even if checks are suppressed. In
particular, if the compiler can prove that a certain check will necessarily fail, it
will generate code to do an unconditional ’raise’, even if checks are suppressed.
The compiler warns in this case. Another case in which checks may not be
eliminated is when they are embedded in certain run-time routines such as
math library routines.

Of course, run-time checks are omitted whenever the compiler can prove that
they will not fail, whether or not checks are suppressed.

Note that if you suppress a check that would have failed, program execution
is erroneous, which means the behavior is totally unpredictable. The program
might crash, or print wrong answers, or do anything else. It might even do
exactly what you wanted it to do (and then it might start failing mysteriously
next week or next year). The compiler will generate code based on the assump-
tion that the condition being checked is true, which can result in erroneous
execution if that assumption is wrong.

The checks subject to suppression include all the checks defined by the Ada
standard, the additional implementation defined checks Alignment_Check,
Duplicated_Tag_Check, Predicate_Check, Container_Checks, Tampering_
Check, and Validity_Check, as well as any checks introduced using pragma

Check_Name. Note that Atomic_Synchronization is not automatically
suppressed by use of this option.

If the code depends on certain checks being active, you can use pragma
Unsuppress either as a configuration pragma or as a local pragma to make
sure that a specified check is performed even if gnatp is specified.

The -gnatp switch has no effect if a subsequent -gnat-p switch appears.

Chapter 4: Building Executable Programs with GNAT 141

-gnat-p

This switch cancels the effect of a previous gnatp switch.

-gnato??

This switch controls the mode used for computing intermediate arithmetic in-
teger operations, and also enables overflow checking. For a full description
of overflow mode and checking control, see the ’Overflow Check Handling in
GNAT’ appendix in this User’s Guide.

Overflow checks are always enabled by this switch. The argument controls the
mode, using the codes

1 = STRICT
In STRICT mode, intermediate operations are always done us-
ing the base type, and overflow checking ensures that the result
is within the base type range.

2 = MINIMIZED
In MINIMIZED mode, overflows in intermediate operations are
avoided where possible by using a larger integer type for the compu-
tation (typically Long_Long_Integer). Overflow checking ensures
that the result fits in this larger integer type.

3 = ELIMINATED
In ELIMINATED mode, overflows in intermediate operations are
avoided by using multi-precision arithmetic. In this case, overflow
checking has no effect on intermediate operations (since overflow is
impossible).

If two digits are present after -gnato then the first digit sets the mode for ex-
pressions outside assertions, and the second digit sets the mode for expressions
within assertions. Here assertions is used in the technical sense (which includes
for example precondition and postcondition expressions).

If one digit is present, the corresponding mode is applicable to both expressions
within and outside assertion expressions.

If no digits are present, the default is to enable overflow checks and set STRICT
mode for both kinds of expressions. This is compatible with the use of -gnato
in previous versions of GNAT.

Note that the -gnato?? switch does not affect the code generated for any
floating-point operations; it applies only to integer semantics. For floating-
point, GNAT has the Machine_Overflows attribute set to False and the nor-
mal mode of operation is to generate IEEE NaN and infinite values on overflow
or invalid operations (such as dividing 0.0 by 0.0).

The reason that we distinguish overflow checking from other kinds of range
constraint checking is that a failure of an overflow check, unlike for example
the failure of a range check, can result in an incorrect value, but cannot cause
random memory destruction (like an out of range subscript), or a wild jump
(from an out of range case value). Overflow checking is also quite expensive in
time and space, since in general it requires the use of double length arithmetic.

Chapter 4: Building Executable Programs with GNAT 142

Note again that the default is -gnato11 (equivalent to -gnato1), so overflow
checking is performed in STRICT mode by default.

-gnatE

Enables dynamic checks for access-before-elaboration on subprogram calls and
generic instantiations. Note that -gnatE is not necessary for safety, because in
the default mode, GNAT ensures statically that the checks would not fail. For
full details of the effect and use of this switch, [Compiling with gcc], page 87.

-fstack-check

Activates stack overflow checking. For full details of the effect and use of this
switch see [Stack Overflow Checking], page 225.

The setting of these switches only controls the default setting of the checks. You may modify
them using either Suppress (to remove checks) or Unsuppress (to add back suppressed
checks) pragmas in the program source.

4.3.8 Using gcc for Syntax Checking

-gnats

The s stands for ’syntax’.

Run GNAT in syntax checking only mode. For example, the command

$ gcc -c -gnats x.adb

compiles file x.adb in syntax-check-only mode. You can check a series of files
in a single command , and can use wildcards to specify such a group of files.
Note that you must specify the -c (compile only) flag in addition to the -gnats
flag.

You may use other switches in conjunction with -gnats. In particular, -gnatl
and -gnatv are useful to control the format of any generated error messages.

When the source file is empty or contains only empty lines and/or comments,
the output is a warning:

$ gcc -c -gnats -x ada toto.txt

toto.txt:1:01: warning: empty file, contains no compilation units

$

Otherwise, the output is simply the error messages, if any. No object file or
ALI file is generated by a syntax-only compilation. Also, no units other than
the one specified are accessed. For example, if a unit X withs a unit Y, compiling
unit X in syntax check only mode does not access the source file containing unit
Y.

Normally, GNAT allows only a single unit in a source file. However, this restric-
tion does not apply in syntax-check-only mode, and it is possible to check a file
containing multiple compilation units concatenated together. This is primarily
used by the gnatchop utility ([Renaming Files with gnatchop], page 20).

4.3.9 Using gcc for Semantic Checking

-gnatc

Chapter 4: Building Executable Programs with GNAT 143

The c stands for ’check’. Causes the compiler to operate in semantic check
mode, with full checking for all illegalities specified in the Ada Reference Man-
ual, but without generation of any object code (no object file is generated).

Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

* The needed source files must be accessible (see [Search Paths and the Run-
Time Library (RTL)], page 89).

* Each file must contain only one compilation unit.

* The file name and unit name must match ([File Naming Rules], page 11).

The output consists of error messages as appropriate. No object file is gener-
ated. An ALI file is generated for use in the context of cross-reference tools,
but this file is marked as not being suitable for binding (since no object file is
generated). The checking corresponds exactly to the notion of legality in the
Ada Reference Manual.

Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate
body is present).

4.3.10 Compiling Different Versions of Ada

The switches described in this section allow you to explicitly specify the version of the Ada
language that your programs are written in. The default mode is Ada 2012, but you can
also specify Ada 95, Ada 2005 mode, or indicate Ada 83 compatibility mode.

-gnat83 (Ada 83 Compatibility Mode)
Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch speci-
fies that the program is to be compiled in Ada 83 mode. With -gnat83, GNAT
rejects most post-Ada 83 extensions and applies Ada 83 semantics where this
can be done easily. It is not possible to guarantee this switch does a perfect
job; some subtle tests, such as are found in earlier ACVC tests (and that have
been removed from the ACATS suite for Ada 95), might not compile correctly.
Nevertheless, this switch may be useful in some circumstances, for example
where, due to contractual reasons, existing code needs to be maintained using
only Ada 83 features.

With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 / Ada 2005 reserved words, and
the use of packages with optional bodies), it is not necessary to specify the -

gnat83 switch when compiling Ada 83 programs, because, with rare exceptions,
Ada 95 and Ada 2005 are upwardly compatible with Ada 83. Thus a correct
Ada 83 program is usually also a correct program in these later versions of the
language standard. For further information please refer to the Compatibility
and Porting Guide chapter in the GNAT Reference Manual.

-gnat95 (Ada 95 mode)
This switch directs the compiler to implement the Ada 95 version of the lan-
guage. Since Ada 95 is almost completely upwards compatible with Ada 83,
Ada 83 programs may generally be compiled using this switch (see the descrip-
tion of the -gnat83 switch for further information about Ada 83 mode). If

Chapter 4: Building Executable Programs with GNAT 144

an Ada 2005 program is compiled in Ada 95 mode, uses of the new Ada 2005
features will cause error messages or warnings.

This switch also can be used to cancel the effect of a previous -gnat83, -

gnat05/2005, or -gnat12/2012 switch earlier in the command line.

-gnat05 or -gnat2005 (Ada 2005 mode)
This switch directs the compiler to implement the Ada 2005 version of the
language, as documented in the official Ada standards document. Since Ada
2005 is almost completely upwards compatible with Ada 95 (and thus also with
Ada 83), Ada 83 and Ada 95 programs may generally be compiled using this
switch (see the description of the -gnat83 and -gnat95 switches for further
information).

-gnat12 or -gnat2012 (Ada 2012 mode)
This switch directs the compiler to implement the Ada 2012 version of the
language (also the default). Since Ada 2012 is almost completely upwards
compatible with Ada 2005 (and thus also with Ada 83, and Ada 95), Ada 83
and Ada 95 programs may generally be compiled using this switch (see the
description of the -gnat83, -gnat95, and -gnat05/2005 switches for further
information).

-gnatX (Enable GNAT Extensions)
This switch directs the compiler to implement the latest version of the language
(currently Ada 2012) and also to enable certain GNAT implementation exten-
sions that are not part of any Ada standard. For a full list of these extensions,
see the GNAT reference manual.

4.3.11 Character Set Control

-gnatic

Normally GNAT recognizes the Latin-1 character set in source program identi-
fiers, as described in the Ada Reference Manual. This switch causes GNAT to
recognize alternate character sets in identifiers. c is a single character indicating
the character set, as follows:

1 ISO 8859-1 (Latin-1) identifiers

2 ISO 8859-2 (Latin-2) letters allowed in identifiers

3 ISO 8859-3 (Latin-3) letters allowed in identifiers

4 ISO 8859-4 (Latin-4) letters allowed in identifiers

5 ISO 8859-5 (Cyrillic) letters allowed in identifiers

9 ISO 8859-15 (Latin-9) letters allowed in identifiers

p IBM PC letters (code page 437) allowed in identifiers

Chapter 4: Building Executable Programs with GNAT 145

8 IBM PC letters (code page 850) allowed in identifiers

f Full upper-half codes allowed in identifiers

n No upper-half codes allowed in identifiers

w Wide-character codes (that is, codes greater than 255) allowed in
identifiers

See [Foreign Language Representation], page 8 for full details on the implemen-
tation of these character sets.

-gnatWe

Specify the method of encoding for wide characters. e is one of the following:

h Hex encoding (brackets coding also recognized)

u Upper half encoding (brackets encoding also recognized)

s Shift/JIS encoding (brackets encoding also recognized)

e EUC encoding (brackets encoding also recognized)

8 UTF-8 encoding (brackets encoding also recognized)

b Brackets encoding only (default value)

For full details on these encoding methods see [Wide Character Encodings],
page 9. Note that brackets coding is always accepted, even if one of the other
options is specified, so for example -gnatW8 specifies that both brackets and
UTF-8 encodings will be recognized. The units that are with’ed directly or
indirectly will be scanned using the specified representation scheme, and so if
one of the non-brackets scheme is used, it must be used consistently throughout
the program. However, since brackets encoding is always recognized, it may be
conveniently used in standard libraries, allowing these libraries to be used with
any of the available coding schemes.

Note that brackets encoding only applies to program text. Within comments,
brackets are considered to be normal graphic characters, and bracket sequences
are never recognized as wide characters.

If no -gnatW? parameter is present, then the default representation is normally
Brackets encoding only. However, if the first three characters of the file are
16#EF# 16#BB# 16#BF# (the standard byte order mark or BOM for UTF-
8), then these three characters are skipped and the default representation for
the file is set to UTF-8.

Note that the wide character representation that is specified (explicitly or
by default) for the main program also acts as the default encoding used for
Wide Text IO files if not specifically overridden by a WCEM form parameter.

Chapter 4: Building Executable Programs with GNAT 146

When no -gnatW? is specified, then characters (other than wide characters represented
using brackets notation) are treated as 8-bit Latin-1 codes. The codes recognized are the
Latin-1 graphic characters, and ASCII format effectors (CR, LF, HT, VT). Other lower
half control characters in the range 16#00#..16#1F# are not accepted in program text or
in comments. Upper half control characters (16#80#..16#9F#) are rejected in program
text, but allowed and ignored in comments. Note in particular that the Next Line (NEL)
character whose encoding is 16#85# is not recognized as an end of line in this default mode.
If your source program contains instances of the NEL character used as a line terminator,
you must use UTF-8 encoding for the whole source program. In default mode, all lines
must be ended by a standard end of line sequence (CR, CR/LF, or LF).

Note that the convention of simply accepting all upper half characters in comments means
that programs that use standard ASCII for program text, but UTF-8 encoding for comments
are accepted in default mode, providing that the comments are ended by an appropriate
(CR, or CR/LF, or LF) line terminator. This is a common mode for many programs with
foreign language comments.

4.3.12 File Naming Control

-gnatkn

Activates file name ’krunching’. n, a decimal integer in the range 1-999, indi-
cates the maximum allowable length of a file name (not including the .ads or
.adb extension). The default is not to enable file name krunching.

For the source file naming rules, [File Naming Rules], page 11.

4.3.13 Subprogram Inlining Control

-gnatn[12]

The n here is intended to suggest the first syllable of the word ’inline’. GNAT
recognizes and processes Inline pragmas. However, for inlining to actually
occur, optimization must be enabled and, by default, inlining of subprograms
across units is not performed. If you want to additionally enable inlining of
subprograms specified by pragma Inline across units, you must also specify
this switch.

In the absence of this switch, GNAT does not attempt inlining across units and
does not access the bodies of subprograms for which pragma Inline is specified
if they are not in the current unit.

You can optionally specify the inlining level: 1 for moderate inlining across
units, which is a good compromise between compilation times and performances
at run time, or 2 for full inlining across units, which may bring about longer
compilation times. If no inlining level is specified, the compiler will pick it
based on the optimization level: 1 for -O1, -O2 or -Os and 2 for -O3.

If you specify this switch the compiler will access these bodies, creating an
extra source dependency for the resulting object file, and where possible, the
call will be inlined. For further details on when inlining is possible see [Inlining
of Subprograms], page 204.

-gnatN

Chapter 4: Building Executable Programs with GNAT 147

This switch activates front-end inlining which also generates additional depen-
dencies.

When using a gcc-based back end (in practice this means using any version of
GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
-gnatN is deprecated, and the use of -gnatn is preferred. Historically front
end inlining was more extensive than the gcc back end inlining, but that is no
longer the case.

4.3.14 Auxiliary Output Control

-gnatu

Print a list of units required by this compilation on stdout. The listing includes
all units on which the unit being compiled depends either directly or indirectly.

-pass-exit-codes

If this switch is not used, the exit code returned by gcc when compiling multiple
files indicates whether all source files have been successfully used to generate
object files or not.

When -pass-exit-codes is used, gcc exits with an extended exit status and
allows an integrated development environment to better react to a compilation
failure. Those exit status are:

5 There was an error in at least one source file.

3 At least one source file did not generate an object file.

2 The compiler died unexpectedly (internal error for example).

0 An object file has been generated for every source file.

4.3.15 Debugging Control

-gnatdx

Activate internal debugging switches. x is a letter or digit, or string of letters
or digits, which specifies the type of debugging outputs desired. Normally these
are used only for internal development or system debugging purposes. You can
find full documentation for these switches in the body of the Debug unit in the
compiler source file debug.adb.

-gnatG[=nn]

This switch causes the compiler to generate auxiliary output containing a
pseudo-source listing of the generated expanded code. Like most Ada com-
pilers, GNAT works by first transforming the high level Ada code into lower
level constructs. For example, tasking operations are transformed into calls
to the tasking run-time routines. A unique capability of GNAT is to list this
expanded code in a form very close to normal Ada source. This is very useful
in understanding the implications of various Ada usage on the efficiency of the
generated code. There are many cases in Ada (e.g., the use of controlled types),

Chapter 4: Building Executable Programs with GNAT 148

where simple Ada statements can generate a lot of run-time code. By using
-gnatG you can identify these cases, and consider whether it may be desirable
to modify the coding approach to improve efficiency.

The optional parameter nn if present after -gnatG specifies an alternative max-
imum line length that overrides the normal default of 72. This value is in the
range 40-999999, values less than 40 being silently reset to 40. The equal sign
is optional.

The format of the output is very similar to standard Ada source, and is easily
understood by an Ada programmer. The following special syntactic additions
correspond to low level features used in the generated code that do not have
any exact analogies in pure Ada source form. The following is a partial list of
these special constructions. See the spec of package Sprint in file sprint.ads
for a full list.

If the switch -gnatL is used in conjunction with -gnatG, then the original
source lines are interspersed in the expanded source (as comment lines with the
original line number).

new xxx [storage_pool = yyy]

Shows the storage pool being used for an allocator.

at end procedure-name;

Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)

Conditional expression equivalent to the x?y:z construction in C.

target^(source)

A conversion with floating-point truncation instead of rounding.

target?(source)

A conversion that bypasses normal Ada semantic checking. In par-
ticular enumeration types and fixed-point types are treated simply
as integers.

target?^(source)

Combines the above two cases.

x #/ y

x #mod y

x # y

x #rem y

A division or multiplication of fixed-point values which are treated
as integers without any kind of scaling.

free expr [storage_pool = xxx]

Shows the storage pool associated with a free statement.

[subtype or type declaration]

Used to list an equivalent declaration for an internally generated
type that is referenced elsewhere in the listing.

Chapter 4: Building Executable Programs with GNAT 149

freeze type-name [actions]

Shows the point at which type-name is frozen, with possible asso-
ciated actions to be performed at the freeze point.

reference itype

Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)

Intrinsic function call.

label-name : label

Declaration of label labelname.

#$ subprogram-name

An implicit call to a run-time support routine (to meet the require-
ment of H.3.1(9) in a convenient manner).

expr && expr && expr ... && expr

A multiple concatenation (same effect as expr & expr & expr, but
handled more efficiently).

[constraint_error]

Raise the Constraint_Error exception.

expression’reference

A pointer to the result of evaluating {expression}.

target-type!(source-expression)

An unchecked conversion of source-expression to target-type.

[numerator/denominator]

Used to represent internal real literals (that) have no exact rep-
resentation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).

-gnatD[=nn]

When used in conjunction with -gnatG, this switch causes the expanded source,
as described above for -gnatG to be written to files with names xxx.dg, where
xxx is the normal file name, instead of to the standard output file. For example,
if the source file name is hello.adb, then a file hello.adb.dg will be written.
The debugging information generated by the gcc -g switch will refer to the
generated xxx.dg file. This allows you to do source level debugging using the
generated code which is sometimes useful for complex code, for example to find
out exactly which part of a complex construction raised an exception. This
switch also suppresses generation of cross-reference information (see -gnatx)
since otherwise the cross-reference information would refer to the .dg file, which
would cause confusion since this is not the original source file.

Note that -gnatD actually implies -gnatG automatically, so it is not necessary
to give both options. In other words -gnatD is equivalent to -gnatDG).

If the switch -gnatL is used in conjunction with -gnatDG, then the original
source lines are interspersed in the expanded source (as comment lines with the
original line number).

Chapter 4: Building Executable Programs with GNAT 150

The optional parameter nn if present after -gnatD specifies an alternative max-
imum line length that overrides the normal default of 72. This value is in the
range 40-999999, values less than 40 being silently reset to 40. The equal sign
is optional.

-gnatr

This switch causes pragma Restrictions to be treated as Restriction Warnings
so that violation of restrictions causes warnings rather than illegalities. This
is useful during the development process when new restrictions are added or
investigated. The switch also causes pragma Profile to be treated as Pro-
file Warnings, and pragma Restricted Run Time and pragma Ravenscar set
restriction warnings rather than restrictions.

-gnatR[0|1|2|3|4][e][j][m][s]

This switch controls output from the compiler of a listing showing representa-
tion information for declared types, objects and subprograms. For -gnatR0, no
information is output (equivalent to omitting the -gnatR switch). For -gnatR1
(which is the default, so -gnatR with no parameter has the same effect), size
and alignment information is listed for declared array and record types.

For -gnatR2, size and alignment information is listed for all declared types
and objects. The Linker_Section is also listed for any entity for which the
Linker_Section is set explicitly or implicitly (the latter case occurs for objects
of a type for which a Linker_Section is set).

For -gnatR3, symbolic expressions for values that are computed at run time for
records are included. These symbolic expressions have a mostly obvious format
with #n being used to represent the value of the n’th discriminant. See source
files repinfo.ads/adb in the GNAT sources for full details on the format of
-gnatR3 output.

For -gnatR4, information for relevant compiler-generated types is also listed,
i.e. when they are structurally part of other declared types and objects.

If the switch is followed by an e (e.g. -gnatR2e), then extended representation
information for record sub-components of records is included.

If the switch is followed by an m (e.g. -gnatRm), then subprogram conventions
and parameter passing mechanisms for all the subprograms are included.

If the switch is followed by a j (e.g., -gnatRj), then the output is in the JSON
data interchange format specified by the ECMA-404 standard. The semantic
description of this JSON output is available in the specification of the Repinfo
unit present in the compiler sources.

If the switch is followed by an s (e.g., -gnatR3s), then the output is to a file
with the name file.rep where file is the name of the corresponding source
file, except if j is also specified, in which case the file name is file.json.

Note that it is possible for record components to have zero size. In this case,
the component clause uses an obvious extension of permitted Ada syntax, for
example at 0 range 0 .. -1.

-gnatS

Chapter 4: Building Executable Programs with GNAT 151

The use of the switch -gnatS for an Ada compilation will cause the compiler to
output a representation of package Standard in a form very close to standard
Ada. It is not quite possible to do this entirely in standard Ada (since new
numeric base types cannot be created in standard Ada), but the output is easily
readable to any Ada programmer, and is useful to determine the characteristics
of target dependent types in package Standard.

-gnatx

Normally the compiler generates full cross-referencing information in the ALI

file. This information is used by a number of tools, including gnatfind and
gnatxref. The -gnatx switch suppresses this information. This saves some
space and may slightly speed up compilation, but means that these tools cannot
be used.

-fgnat-encodings=[all|gdb|minimal]

This switch controls the balance between GNAT encodings and standard
DWARF emitted in the debug information.

Historically, old debug formats like stabs were not powerful enough to express
some Ada types (for instance, variant records or fixed-point types). To work
around this, GNAT introduced proprietary encodings that embed the missing
information ("GNAT encodings").

Recent versions of the DWARF debug information format are now able to cor-
rectly describe most of these Ada constructs ("standard DWARF"). As third-
party tools started to use this format, GNAT has been enhanced to generate
it. However, most tools (including GDB) are still relying on GNAT encodings.

To support all tools, GNAT needs to be versatile about the balance between
generation of GNAT encodings and standard DWARF. This is what -fgnat-
encodings is about.

* =all: Emit all GNAT encodings, and then emit as much standard DWARF
as possible so it does not conflict with GNAT encodings.

* =gdb: Emit as much standard DWARF as possible as long as the current
GDB handles it. Emit GNAT encodings for the rest.

* =minimal: Emit as much standard DWARF as possible and emit GNAT
encodings for the rest.

4.3.16 Exception Handling Control

GNAT uses two methods for handling exceptions at run time. The setjmp/longjmpmethod
saves the context when entering a frame with an exception handler. Then when an exception
is raised, the context can be restored immediately, without the need for tracing stack frames.
This method provides very fast exception propagation, but introduces significant overhead
for the use of exception handlers, even if no exception is raised.

The other approach is called ’zero cost’ exception handling. With this method, the compiler
builds static tables to describe the exception ranges. No dynamic code is required when
entering a frame containing an exception handler. When an exception is raised, the tables
are used to control a back trace of the subprogram invocation stack to locate the required
exception handler. This method has considerably poorer performance for the propagation

Chapter 4: Building Executable Programs with GNAT 152

of exceptions, but there is no overhead for exception handlers if no exception is raised.
Note that in this mode and in the context of mixed Ada and C/C++ programming, to
propagate an exception through a C/C++ code, the C/C++ code must be compiled with the
-funwind-tables GCC’s option.

The following switches may be used to control which of the two exception handling methods
is used.

--RTS=sjlj

This switch causes the setjmp/longjmp run-time (when available) to be used
for exception handling. If the default mechanism for the target is zero cost
exceptions, then this switch can be used to modify this default, and must be
used for all units in the partition. This option is rarely used. One case in which
it may be advantageous is if you have an application where exception raising is
common and the overall performance of the application is improved by favoring
exception propagation.

--RTS=zcx

This switch causes the zero cost approach to be used for exception handling. If
this is the default mechanism for the target (see below), then this switch is un-
needed. If the default mechanism for the target is setjmp/longjmp exceptions,
then this switch can be used to modify this default, and must be used for all
units in the partition. This option can only be used if the zero cost approach
is available for the target in use, otherwise it will generate an error.

The same option --RTS must be used both for gcc and gnatbind. Passing this option to
gnatmake ([Switches for gnatmake], page 78) will ensure the required consistency through
the compilation and binding steps.

4.3.17 Units to Sources Mapping Files

-gnatem=path

A mapping file is a way to communicate to the compiler two mappings: from
unit names to file names (without any directory information) and from file
names to path names (with full directory information). These mappings are
used by the compiler to short-circuit the path search.

The use of mapping files is not required for correct operation of the compiler,
but mapping files can improve efficiency, particularly when sources are read over
a slow network connection. In normal operation, you need not be concerned
with the format or use of mapping files, and the -gnatem switch is not a switch
that you would use explicitly. It is intended primarily for use by automatic
tools such as gnatmake running under the project file facility. The description
here of the format of mapping files is provided for completeness and for possible
use by other tools.

A mapping file is a sequence of sets of three lines. In each set, the first line is
the unit name, in lower case, with %s appended for specs and %b appended for
bodies; the second line is the file name; and the third line is the path name.

Example:

main%b

Chapter 4: Building Executable Programs with GNAT 153

main.2.ada

/gnat/project1/sources/main.2.ada

When the switch -gnatem is specified, the compiler will create in memory the
two mappings from the specified file. If there is any problem (nonexistent file,
truncated file or duplicate entries), no mapping will be created.

Several -gnatem switches may be specified; however, only the last one on the
command line will be taken into account.

When using a project file, gnatmake creates a temporary mapping file and
communicates it to the compiler using this switch.

4.3.18 Code Generation Control

The GCC technology provides a wide range of target dependent -m switches for controlling
details of code generation with respect to different versions of architectures. This includes
variations in instruction sets (e.g., different members of the power pc family), and different
requirements for optimal arrangement of instructions (e.g., different members of the x86
family). The list of available -m switches may be found in the GCC documentation.

Use of these -m switches may in some cases result in improved code performance.

The GNAT technology is tested and qualified without any -m switches, so generally the
most reliable approach is to avoid the use of these switches. However, we generally expect
most of these switches to work successfully with GNAT, and many customers have reported
successful use of these options.

Our general advice is to avoid the use of -m switches unless special needs lead to requirements
in this area. In particular, there is no point in using -m switches to improve performance
unless you actually see a performance improvement.

4.4 Linker Switches

Linker switches can be specified after -largs builder switch.

-fuse-ld=name

Linker to be used. The default is bfd for ld.bfd, the alternative being gold

for ld.gold. The later is a more recent and faster linker, but only available on
GNU/Linux platforms.

4.5 Binding with gnatbind

This chapter describes the GNAT binder, gnatbind, which is used to bind compiled GNAT
objects.

The gnatbind program performs four separate functions:

* Checks that a program is consistent, in accordance with the rules in Chapter 10 of the
Ada Reference Manual. In particular, error messages are generated if a program uses
inconsistent versions of a given unit.

* Checks that an acceptable order of elaboration exists for the program and issues an
error message if it cannot find an order of elaboration that satisfies the rules in Chapter
10 of the Ada Language Manual.

Chapter 4: Building Executable Programs with GNAT 154

* Generates a main program incorporating the given elaboration order. This program is
a small Ada package (body and spec) that must be subsequently compiled using the
GNAT compiler. The necessary compilation step is usually performed automatically by
gnatlink. The two most important functions of this program are to call the elaboration
routines of units in an appropriate order and to call the main program.

* Determines the set of object files required by the given main program. This information
is output in the forms of comments in the generated program, to be read by the
gnatlink utility used to link the Ada application.

4.5.1 Running gnatbind

The form of the gnatbind command is

$ gnatbind [switches] mainprog[.ali] [switches]

where mainprog.adb is the Ada file containing the main program unit body. gnatbind con-
structs an Ada package in two files whose names are b~mainprog.ads, and b~mainprog.adb.
For example, if given the parameter hello.ali, for a main program contained in file
hello.adb, the binder output files would be b~hello.ads and b~hello.adb.

When doing consistency checking, the binder takes into consideration any source files it
can locate. For example, if the binder determines that the given main program requires
the package Pack, whose .ALI file is pack.ali and whose corresponding source spec file
is pack.ads, it attempts to locate the source file pack.ads (using the same search path
conventions as previously described for the gcc command). If it can locate this source file,
it checks that the time stamps or source checksums of the source and its references to in
ALI files match. In other words, any ALI files that mentions this spec must have resulted
from compiling this version of the source file (or in the case where the source checksums
match, a version close enough that the difference does not matter).

The effect of this consistency checking, which includes source files, is that the binder ensures
that the program is consistent with the latest version of the source files that can be located
at bind time. Editing a source file without compiling files that depend on the source file
cause error messages to be generated by the binder.

For example, suppose you have a main program hello.adb and a package P, from file p.ads
and you perform the following steps:

* Enter gcc -c hello.adb to compile the main program.

* Enter gcc -c p.ads to compile package P.

* Edit file p.ads.

* Enter gnatbind hello.

At this point, the file p.ali contains an out-of-date time stamp because the file p.ads has
been edited. The attempt at binding fails, and the binder generates the following error
messages:

error: "hello.adb" must be recompiled ("p.ads" has been modified)

error: "p.ads" has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind can succeed, generating
a main program. You need not normally be concerned with the contents of this file, but for
reference purposes a sample binder output file is given in [Example of Binder Output File],
page 259.

Chapter 4: Building Executable Programs with GNAT 155

In most normal usage, the default mode of gnatbind which is to generate the main package
in Ada, as described in the previous section. In particular, this means that any Ada
programmer can read and understand the generated main program. It can also be debugged
just like any other Ada code provided the -g switch is used for gnatbind and gnatlink.

4.5.2 Switches for gnatbind

The following switches are available with gnatbind; details will be presented in subsequent
sections.

--version

Display Copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

-a

Indicates that, if supported by the platform, the adainit procedure should be
treated as an initialisation routine by the linker (a constructor). This is intended
to be used by the Project Manager to automatically initialize shared Stand-
Alone Libraries.

-aO

Specify directory to be searched for ALI files.

-aI

Specify directory to be searched for source file.

-A[=filename]

Output ALI list (to standard output or to the named file).

-b

Generate brief messages to stderr even if verbose mode set.

-c

Check only, no generation of binder output file.

-dnn[k|m]

This switch can be used to change the default task stack size value to a specified
size nn, which is expressed in bytes by default, or in kilobytes when suffixed
with k or in megabytes when suffixed with m. In the absence of a [k|m] suffix,
this switch is equivalent, in effect, to completing all task specs with

pragma Storage_Size (nn);

When they do not already have such a pragma.

-Dnn[k|m]

Set the default secondary stack size to nn. The suffix indicates whether the size
is in bytes (no suffix), kilobytes (k suffix) or megabytes (m suffix).

The secondary stack holds objects of unconstrained types that are returned by
functions, for example unconstrained Strings. The size of the secondary stack
can be dynamic or fixed depending on the target.

Chapter 4: Building Executable Programs with GNAT 156

For most targets, the secondary stack grows on demand and is implemented
as a chain of blocks in the heap. In this case, the default secondary stack size
determines the initial size of the secondary stack for each task and the smallest
amount the secondary stack can grow by.

For Ravenscar, ZFP, and Cert run-times the size of the secondary stack is
fixed. This switch can be used to change the default size of these stacks. The
default secondary stack size can be overridden on a per-task basis if individual
tasks have different secondary stack requirements. This is achieved through the
Secondary Stack Size aspect that takes the size of the secondary stack in bytes.

-e

Output complete list of elaboration-order dependencies.

-Ea

Store tracebacks in exception occurrences when the target supports it. The "a"
is for "address"; tracebacks will contain hexadecimal addresses, unless symbolic
tracebacks are enabled.

See also the packages GNAT.Traceback and GNAT.Traceback.Symbolic for
more information. Note that on x86 ports, you must not use -fomit-frame-

pointer gcc option.

-Es

Store tracebacks in exception occurrences when the target supports it. The "s"
is for "symbolic"; symbolic tracebacks are enabled.

-E

Currently the same as -Ea.

-felab-order

Force elaboration order. For further details see [Elaboration Control], page 162
and [Elaboration Order Handling in GNAT], page 275.

-F

Force the checks of elaboration flags. gnatbind does not normally generate
checks of elaboration flags for the main executable, except when a Stand-Alone
Library is used. However, there are cases when this cannot be detected by gnat-
bind. An example is importing an interface of a Stand-Alone Library through
a pragma Import and only specifying through a linker switch this Stand-Alone
Library. This switch is used to guarantee that elaboration flag checks are gen-
erated.

-h

Output usage (help) information.

-H

Legacy elaboration order model enabled. For further details see [Elaboration
Order Handling in GNAT], page 275.

-H32

Use 32-bit allocations for __gnat_malloc (and thus for access types). For
further details see [Dynamic Allocation Control], page 163.

Chapter 4: Building Executable Programs with GNAT 157

-H64

Use 64-bit allocations for __gnat_malloc (and thus for access types). For
further details see [Dynamic Allocation Control], page 163.

-I

Specify directory to be searched for source and ALI files.

-I-

Do not look for sources in the current directory where gnatbind was invoked,
and do not look for ALI files in the directory containing the ALI file named in
the gnatbind command line.

-l

Output chosen elaboration order.

-Lxxx

Bind the units for library building. In this case the adainit and adafinal

procedures ([Binding with Non-Ada Main Programs], page 164) are renamed to
xxxinit and xxxfinal. Implies -n. ([GNAT and Libraries], page 30, for more
details.)

-Mxyz

Rename generated main program from main to xyz. This option is supported
on cross environments only.

-mn

Limit number of detected errors or warnings to n, where n is in the range
1..999999. The default value if no switch is given is 9999. If the number of
warnings reaches this limit, then a message is output and further warnings are
suppressed, the bind continues in this case. If the number of errors reaches this
limit, then a message is output and the bind is abandoned. A value of zero
means that no limit is enforced. The equal sign is optional.

-minimal

Generate a binder file suitable for space-constrained applications. When ac-
tive, binder-generated objects not required for program operation are no longer
generated. Warning: this option comes with the following limitations:

* Starting the program’s execution in the debugger will cause it to stop at
the start of the main function instead of the main subprogram. This can
be worked around by manually inserting a breakpoint on that subprogram
and resuming the program’s execution until reaching that breakpoint.

* Programs using GNAT.Compiler Version will not link.

-n

No main program.

-nostdinc

Do not look for sources in the system default directory.

-nostdlib

Do not look for library files in the system default directory.

Chapter 4: Building Executable Programs with GNAT 158

--RTS=rts-path

Specifies the default location of the run-time library. Same meaning as the
equivalent gnatmake flag ([Switches for gnatmake], page 78).

-o file

Name the output file file (default is b~‘xxx.adb‘). Note that if this option is
used, then linking must be done manually, gnatlink cannot be used.

-O[=filename]

Output object list (to standard output or to the named file).

-p

Pessimistic (worst-case) elaboration order.

-P

Generate binder file suitable for CodePeer.

-R

Output closure source list, which includes all non-run-time units that are in-
cluded in the bind.

-Ra

Like -R but the list includes run-time units.

-s

Require all source files to be present.

-Sxxx

Specifies the value to be used when detecting uninitialized scalar objects with
pragma Initialize Scalars. The xxx string specified with the switch is one of:

* in for an invalid value.

If zero is invalid for the discrete type in question, then the scalar value is
set to all zero bits. For signed discrete types, the largest possible negative
value of the underlying scalar is set (i.e. a one bit followed by all zero
bits). For unsigned discrete types, the underlying scalar value is set to all
one bits. For floating-point types, a NaN value is set (see body of package
System.Scalar Values for exact values).

* lo for low value.

If zero is invalid for the discrete type in question, then the scalar value is
set to all zero bits. For signed discrete types, the largest possible negative
value of the underlying scalar is set (i.e. a one bit followed by all zero
bits). For unsigned discrete types, the underlying scalar value is set to
all zero bits. For floating-point, a small value is set (see body of package
System.Scalar Values for exact values).

* hi for high value.

If zero is invalid for the discrete type in question, then the scalar value is
set to all one bits. For signed discrete types, the largest possible positive
value of the underlying scalar is set (i.e. a zero bit followed by all one

Chapter 4: Building Executable Programs with GNAT 159

bits). For unsigned discrete types, the underlying scalar value is set to
all one bits. For floating-point, a large value is set (see body of package
System.Scalar Values for exact values).

* xx for hex value (two hex digits).

The underlying scalar is set to a value consisting of repeated bytes, whose
value corresponds to the given value. For example if BF is given, then a
32-bit scalar value will be set to the bit patterm 16#BFBFBFBF#.

In addition, you can specify -Sev to indicate that the value is to be set at run
time. In this case, the program will look for an environment variable of the
form GNAT_INIT_SCALARS=yy, where yy is one of in/lo/hi/xx with the same
meanings as above. If no environment variable is found, or if it does not have
a valid value, then the default is in (invalid values).

-static

Link against a static GNAT run-time.

-shared

Link against a shared GNAT run-time when available.

-t

Tolerate time stamp and other consistency errors.

-Tn

Set the time slice value to n milliseconds. If the system supports the specifica-
tion of a specific time slice value, then the indicated value is used. If the system
does not support specific time slice values, but does support some general no-
tion of round-robin scheduling, then any nonzero value will activate round-robin
scheduling.

A value of zero is treated specially. It turns off time slicing, and in addition,
indicates to the tasking run-time that the semantics should match as closely as
possible the Annex D requirements of the Ada RM, and in particular sets the
default scheduling policy to FIFO_Within_Priorities.

-un

Enable dynamic stack usage, with n results stored and displayed at program
termination. A result is generated when a task terminates. Results that can’t
be stored are displayed on the fly, at task termination. This option is currently
not supported on Itanium platforms. (See [Dynamic Stack Usage Analysis],
page 226 for details.)

-v

Verbose mode. Write error messages, header, summary output to stdout.

-Vkey=value

Store the given association of key to value in the bind environment. Values
stored this way can be retrieved at run time using GNAT.Bind_Environment.

-wx

Warning mode; x = s/e for suppress/treat as error.

Chapter 4: Building Executable Programs with GNAT 160

-Wxe

Override default wide character encoding for standard Text IO files.

-x

Exclude source files (check object consistency only).

-xdr

Use the target-independent XDR protocol for stream oriented attributes instead
of the default implementation which is based on direct binary representations
and is therefore target-and endianness-dependent. However it does not support
128-bit integer types and the exception Ada.IO_Exceptions.Device_Error is
raised if any attempt is made at streaming 128-bit integer types with it.

-Xnnn

Set default exit status value, normally 0 for POSIX compliance.

-y

Enable leap seconds support in Ada.Calendar and its children.

-z

No main subprogram.

You may obtain this listing of switches by running gnatbind with no arguments.

4.5.2.1 Consistency-Checking Modes

As described earlier, by default gnatbind checks that object files are consistent with one
another and are consistent with any source files it can locate. The following switches control
binder access to sources.

-s

Require source files to be present. In this mode, the binder must be able to
locate all source files that are referenced, in order to check their consistency.
In normal mode, if a source file cannot be located it is simply ignored. If you
specify this switch, a missing source file is an error.

-Wxe

Override default wide character encoding for standard Text IO files.
Normally the default wide character encoding method used for standard
[Wide [Wide]]Text IO files is taken from the encoding specified for the main
source input (see description of switch -gnatWx for the compiler). The use
of this switch for the binder (which has the same set of possible arguments)
overrides this default as specified.

-x

Exclude source files. In this mode, the binder only checks that ALI files are
consistent with one another. Source files are not accessed. The binder runs
faster in this mode, and there is still a guarantee that the resulting program
is self-consistent. If a source file has been edited since it was last compiled,
and you specify this switch, the binder will not detect that the object file is
out of date with respect to the source file. Note that this is the mode that

Chapter 4: Building Executable Programs with GNAT 161

is automatically used by gnatmake because in this case the checking against
sources has already been performed by gnatmake in the course of compilation
(i.e., before binding).

4.5.2.2 Binder Error Message Control

The following switches provide control over the generation of error messages from the binder:

-v

Verbose mode. In the normal mode, brief error messages are generated to
stderr. If this switch is present, a header is written to stdout and any er-
ror messages are directed to stdout. All that is written to stderr is a brief
summary message.

-b

Generate brief error messages to stderr even if verbose mode is specified. This
is relevant only when used with the -v switch.

-mn

Limits the number of error messages to n, a decimal integer in the range 1-999.
The binder terminates immediately if this limit is reached.

-Mxxx

Renames the generated main program from main to xxx. This is useful in the
case of some cross-building environments, where the actual main program is
separate from the one generated by gnatbind.

-ws

Suppress all warning messages.

-we

Treat any warning messages as fatal errors.

-t

The binder performs a number of consistency checks including:

* Check that time stamps of a given source unit are consistent

* Check that checksums of a given source unit are consistent

* Check that consistent versions of GNAT were used for compilation

* Check consistency of configuration pragmas as required

Normally failure of such checks, in accordance with the consistency requirements
of the Ada Reference Manual, causes error messages to be generated which abort
the binder and prevent the output of a binder file and subsequent link to obtain
an executable.

The -t switch converts these error messages into warnings, so that binding
and linking can continue to completion even in the presence of such errors.
The result may be a failed link (due to missing symbols), or a non-functional
executable which has undefined semantics.

Chapter 4: Building Executable Programs with GNAT 162

� �
Note: This means that -t should be used only in unusual situations, with
extreme care.
 	

4.5.2.3 Elaboration Control

The following switches provide additional control over the elaboration order. For further
details see [Elaboration Order Handling in GNAT], page 275.

-felab-order

Force elaboration order.

elab-order should be the name of a "forced elaboration order file", that is,
a text file containing library item names, one per line. A name of the form
"some.unit%s" or "some.unit (spec)" denotes the spec of Some.Unit. A name of
the form "some.unit%b" or "some.unit (body)" denotes the body of Some.Unit.
Each pair of lines is taken to mean that there is an elaboration dependence of
the second line on the first. For example, if the file contains:

this (spec)

this (body)

that (spec)

that (body)

then the spec of This will be elaborated before the body of This, and the
body of This will be elaborated before the spec of That, and the spec of That
will be elaborated before the body of That. The first and last of these three
dependences are already required by Ada rules, so this file is really just forcing
the body of This to be elaborated before the spec of That.

The given order must be consistent with Ada rules, or else gnatbind will give
elaboration cycle errors. For example, if you say x (body) should be elaborated
before x (spec), there will be a cycle, because Ada rules require x (spec) to be
elaborated before x (body); you can’t have the spec and body both elaborated
before each other.

If you later add "with That;" to the body of This, there will be a cycle, in
which case you should erase either "this (body)" or "that (spec)" from the
above forced elaboration order file.

Blank lines and Ada-style comments are ignored. Unit names that do not exist
in the program are ignored. Units in the GNAT predefined library are also
ignored.

-p

Pessimistic elaboration order

This switch is only applicable to the pre-20.x legacy elaboration models. The
post-20.x elaboration model uses a more informed approach of ordering the
units.

Normally the binder attempts to choose an elaboration order that is likely
to minimize the likelihood of an elaboration order error resulting in raising a
Program_Error exception. This switch reverses the action of the binder, and
requests that it deliberately choose an order that is likely to maximize the

Chapter 4: Building Executable Programs with GNAT 163

likelihood of an elaboration error. This is useful in ensuring portability and
avoiding dependence on accidental fortuitous elaboration ordering.

Normally it only makes sense to use the -p switch if dynamic elaboration check-
ing is used (-gnatE switch used for compilation). This is because in the default
static elaboration mode, all necessary Elaborate and Elaborate_All pragmas
are implicitly inserted. These implicit pragmas are still respected by the binder
in -p mode, so a safe elaboration order is assured.

Note that -p is not intended for production use; it is more for
debugging/experimental use.

4.5.2.4 Output Control

The following switches allow additional control over the output generated by the binder.

-c

Check only. Do not generate the binder output file. In this mode the binder
performs all error checks but does not generate an output file.

-e

Output complete list of elaboration-order dependencies, showing the reason for
each dependency. This output can be rather extensive but may be useful in
diagnosing problems with elaboration order. The output is written to stdout.

-h

Output usage information. The output is written to stdout.

-K

Output linker options to stdout. Includes library search paths, contents of
pragmas Ident and Linker Options, and libraries added by gnatbind.

-l

Output chosen elaboration order. The output is written to stdout.

-O

Output full names of all the object files that must be linked to provide the Ada
component of the program. The output is written to stdout. This list includes
the files explicitly supplied and referenced by the user as well as implicitly
referenced run-time unit files. The latter are omitted if the corresponding units
reside in shared libraries. The directory names for the run-time units depend
on the system configuration.

-o file

Set name of output file to file instead of the normal b~‘mainprog.adb‘ default.
Note that file denote the Ada binder generated body filename. Note that if
this option is used, then linking must be done manually. It is not possible to
use gnatlink in this case, since it cannot locate the binder file.

-r

Generate list of pragma Restrictions that could be applied to the current
unit. This is useful for code audit purposes, and also may be used to improve
code generation in some cases.

Chapter 4: Building Executable Programs with GNAT 164

4.5.2.5 Dynamic Allocation Control

The heap control switches – -H32 and -H64 – determine whether dynamic allocation uses 32-
bit or 64-bit memory. They only affect compiler-generated allocations via __gnat_malloc;
explicit calls to malloc and related functions from the C run-time library are unaffected.

-H32

Allocate memory on 32-bit heap

-H64

Allocate memory on 64-bit heap. This is the default unless explicitly overridden
by a ’Size clause on the access type.

These switches are only effective on VMS platforms.

4.5.2.6 Binding with Non-Ada Main Programs

The description so far has assumed that the main program is in Ada, and that the task of
the binder is to generate a corresponding function main that invokes this Ada main program.
GNAT also supports the building of executable programs where the main program is not in
Ada, but some of the called routines are written in Ada and compiled using GNAT ([Mixed
Language Programming], page 51). The following switch is used in this situation:

-n

No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of generating
a main program, the binder generates a file containing the following callable routines:

adainit

You must call this routine to initialize the Ada part of the
program by calling the necessary elaboration routines. A
call to adainit is required before the first call to an Ada
subprogram.

Note that it is assumed that the basic execution environment
must be setup to be appropriate for Ada execution at the
point where the first Ada subprogram is called. In particular,
if the Ada code will do any floating-point operations, then
the FPU must be setup in an appropriate manner. For the
case of the x86, for example, full precision mode is required.
The procedure GNAT.Float Control.Reset may be used to
ensure that the FPU is in the right state.

adafinal

You must call this routine to perform any library-level final-
ization required by the Ada subprograms. A call to adafinal
is required after the last call to an Ada subprogram, and be-
fore the program terminates.

If the -n switch is given, more than one ALI file may appear on the command line for
gnatbind. The normal closure calculation is performed for each of the specified units.

Chapter 4: Building Executable Programs with GNAT 165

Calculating the closure means finding out the set of units involved by tracing with references.
The reason it is necessary to be able to specify more than one ALI file is that a given program
may invoke two or more quite separate groups of Ada units.

The binder takes the name of its output file from the last specified ALI file, unless overridden
by the use of the -o file.

The output is an Ada unit in source form that can be compiled with GNAT. This compilation
occurs automatically as part of the gnatlink processing.

Currently the GNAT run-time requires a FPU using 80 bits mode precision. Under targets
where this is not the default it is required to call GNAT.Float Control.Reset before using
floating point numbers (this include float computation, float input and output) in the Ada
code. A side effect is that this could be the wrong mode for the foreign code where floating
point computation could be broken after this call.

4.5.2.7 Binding Programs with No Main Subprogram

It is possible to have an Ada program which does not have a main subprogram. This
program will call the elaboration routines of all the packages, then the finalization routines.

The following switch is used to bind programs organized in this manner:

-z

Normally the binder checks that the unit name given on the command line
corresponds to a suitable main subprogram. When this switch is used, a list of
ALI files can be given, and the execution of the program consists of elaboration
of these units in an appropriate order. Note that the default wide character
encoding method for standard Text IO files is always set to Brackets if this
switch is set (you can use the binder switch -Wx to override this default).

4.5.3 Command-Line Access

The package Ada.Command_Line provides access to the command-line arguments and pro-
gram name. In order for this interface to operate correctly, the two variables

int gnat_argc;

char **gnat_argv;

are declared in one of the GNAT library routines. These variables must be set from the
actual argc and argv values passed to the main program. With no n present, gnatbind
generates the C main program to automatically set these variables. If the n switch is
used, there is no automatic way to set these variables. If they are not set, the proce-
dures in Ada.Command_Line will not be available, and any attempt to use them will raise
Constraint_Error. If command line access is required, your main program must set gnat_
argc and gnat_argv from the argc and argv values passed to it.

4.5.4 Search Paths for gnatbind

The binder takes the name of an ALI file as its argument and needs to locate source files
as well as other ALI files to verify object consistency.

For source files, it follows exactly the same search rules as gcc (see [Search Paths and the
Run-Time Library (RTL)], page 89). For ALI files the directories searched are:

Chapter 4: Building Executable Programs with GNAT 166

* The directory containing the ALI file named in the command line, unless the switch
-I- is specified.

* All directories specified by -I switches on the gnatbind command line, in the order
given.

* Each of the directories listed in the text file whose name is given by the ADA_PRJ_

OBJECTS_FILE environment variable.

ADA_PRJ_OBJECTS_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

* Each of the directories listed in the value of the ADA_OBJECTS_PATH environment vari-
able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version of GNAT).

* The content of the ada_object_path file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run-Time Library (RTL)
unless the switch -nostdlib is specified. See [Installing a library], page 33

In the binder the switch -I is used to specify both source and library file paths. Use -aI

instead if you want to specify source paths only, and -aO if you want to specify library paths
only. This means that for the binder -Idir is equivalent to -aIdir -aO‘dir. The binder
generates the bind file (a C language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT Run-
Time Library, together with the package GNAT and its children, which contain a set of
useful additional library functions provided by GNAT. The sources for these units are
needed by the compiler and are kept together in one directory. The ALI files and object
files generated by compiling the RTL are needed by the binder and the linker and are kept
together in one directory, typically different from the directory containing the sources. In a
normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.5.5 Examples of gnatbind Usage

Here are some examples of gnatbind invovations:

gnatbind hello

The main program Hello (source program in hello.adb) is bound
using the standard switch settings. The generated main program is
b~hello.adb. This is the normal, default use of the binder.

gnatbind hello -o mainprog.adb

The main program Hello (source program in hello.adb) is bound
using the standard switch settings. The generated main program is
mainprog.adb with the associated spec in mainprog.ads. Note that
you must specify the body here not the spec. Note that if this option
is used, then linking must be done manually, since gnatlink will not be
able to find the generated file.

Chapter 4: Building Executable Programs with GNAT 167

4.6 Linking with gnatlink

This chapter discusses gnatlink, a tool that links an Ada program and builds an executable
file. This utility invokes the system linker (via the gcc command) with a correct list of
object files and library references. gnatlink automatically determines the list of files and
references for the Ada part of a program. It uses the binder file generated by the gnatbind
to determine this list.

4.6.1 Running gnatlink

The form of the gnatlink command is

$ gnatlink [switches] mainprog [.ali]

[non-Ada objects] [linker options]

The arguments of gnatlink (switches, main ALI file, non-Ada objects or linker options)
may be in any order, provided that no non-Ada object may be mistaken for a main ALI

file. Any file name F without the .ali extension will be taken as the main ALI file if a file
exists whose name is the concatenation of F and .ali.

mainprog.ali references the ALI file of the main program. The .ali extension of this
file can be omitted. From this reference, gnatlink locates the corresponding binder file
b~mainprog.adb and, using the information in this file along with the list of non-Ada
objects and linker options, constructs a linker command file to create the executable.

The arguments other than the gnatlink switches and the main ALI file are passed to the
linker uninterpreted. They typically include the names of object files for units written in
other languages than Ada and any library references required to resolve references in any
of these foreign language units, or in Import pragmas in any Ada units.

linker options is an optional list of linker specific switches. The default linker called by
gnatlink is gcc which in turn calls the appropriate system linker.

One useful option for the linker is -s: it reduces the size of the executable by removing all
symbol table and relocation information from the executable.

Standard options for the linker such as -lmy_lib or -Ldir can be added as is. For options
that are not recognized by gcc as linker options, use the gcc switches -Xlinker or -Wl,.

Refer to the GCC documentation for details.

Here is an example showing how to generate a linker map:

$ gnatlink my_prog -Wl,-Map,MAPFILE

Using linker options it is possible to set the program stack and heap size. See [Setting
Stack Size from gnatlink], page 257 and [Setting Heap Size from gnatlink], page 257.

gnatlink determines the list of objects required by the Ada program and prepends them
to the list of objects passed to the linker. gnatlink also gathers any arguments set by the
use of pragma Linker_Options and adds them to the list of arguments presented to the
linker.

4.6.2 Switches for gnatlink

The following switches are available with the gnatlink utility:

--version

Display Copyright and version, then exit disregarding all other options.

Chapter 4: Building Executable Programs with GNAT 168

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

-f

On some targets, the command line length is limited, and gnatlink will gen-
erate a separate file for the linker if the list of object files is too long. The -f

switch forces this file to be generated even if the limit is not exceeded. This
is useful in some cases to deal with special situations where the command line
length is exceeded.

-g

The option to include debugging information causes the Ada bind file (in other
words, b~mainprog.adb) to be compiled with -g. In addition, the binder
does not delete the b~mainprog.adb, b~mainprog.o and b~mainprog.ali files.
Without -g, the binder removes these files by default.

-n

Do not compile the file generated by the binder. This may be used when a link
is rerun with different options, but there is no need to recompile the binder file.

-v

Verbose mode. Causes additional information to be output, including a full list
of the included object files. This switch option is most useful when you want
to see what set of object files are being used in the link step.

-v -v

Very verbose mode. Requests that the compiler operate in verbose mode when
it compiles the binder file, and that the system linker run in verbose mode.

-o exec-name

exec-name specifies an alternate name for the generated executable program.
If this switch is omitted, the executable has the same name as the main unit.
For example, gnatlink try.ali creates an executable called try.

-Bdir

Load compiler executables (for example, gnat1, the Ada compiler) from dir

instead of the default location. Only use this switch when multiple versions
of the GNAT compiler are available. See the Directory Options section in
The GNU Compiler Collection for further details. You would normally use
the -b or -V switch instead.

-M

When linking an executable, create a map file. The name of the map file has
the same name as the executable with extension ".map".

-M=mapfile

When linking an executable, create a map file. The name of the map file is
mapfile.

Chapter 4: Building Executable Programs with GNAT 169

--GCC=compiler_name

Program used for compiling the binder file. The default is gcc. You need to
use quotes around compiler_name if compiler_name contains spaces or other
separator characters. As an example --GCC="foo -x -y" will instruct gnatlink
to use foo -x -y as your compiler. Note that switch -c is always inserted after
your command name. Thus in the above example the compiler command that
will be used by gnatlink will be foo -c -x -y. A limitation of this syntax is
that the name and path name of the executable itself must not include any
embedded spaces. If the compiler executable is different from the default one
(gcc or <prefix>-gcc), then the back-end switches in the ALI file are not used
to compile the binder generated source. For example, this is the case with
--GCC="foo -x -y". But the back end switches will be used for --GCC="gcc

-gnatv". If several --GCC=compiler_name are used, only the last compiler_
name is taken into account. However, all the additional switches are also taken
into account. Thus, --GCC="foo -x -y" --GCC="bar -z -t" is equivalent to
--GCC="bar -x -y -z -t".

--LINK=name

name is the name of the linker to be invoked. This is especially useful in mixed
language programs since languages such as C++ require their own linker to be
used. When this switch is omitted, the default name for the linker is gcc.
When this switch is used, the specified linker is called instead of gcc with
exactly the same parameters that would have been passed to gcc so if the
desired linker requires different parameters it is necessary to use a wrapper
script that massages the parameters before invoking the real linker. It may be
useful to control the exact invocation by using the verbose switch.

4.7 Using the GNU make Utility

This chapter offers some examples of makefiles that solve specific problems. It does not
explain how to write a makefile, nor does it try to replace the gnatmake utility ([Building
with gnatmake], page 77).

All the examples in this section are specific to the GNU version of make. Although make is
a standard utility, and the basic language is the same, these examples use some advanced
features found only in GNU make.

4.7.1 Using gnatmake in a Makefile

Complex project organizations can be handled in a very powerful way by using GNU make
combined with gnatmake. For instance, here is a Makefile which allows you to build each
subsystem of a big project into a separate shared library. Such a makefile allows you to
significantly reduce the link time of very big applications while maintaining full coherence
at each step of the build process.

The list of dependencies are handled automatically by gnatmake. The Makefile is simply
used to call gnatmake in each of the appropriate directories.

Note that you should also read the example on how to automatically create the list of
directories ([Automatically Creating a List of Directories], page 171) which might help you
in case your project has a lot of subdirectories.

Chapter 4: Building Executable Programs with GNAT 170

This Makefile is intended to be used with the following directory

configuration:

- The sources are split into a series of csc (computer software components)

Each of these csc is put in its own directory.

Their name are referenced by the directory names.

They will be compiled into shared library (although this would also work

with static libraries

- The main program (and possibly other packages that do not belong to any

csc is put in the top level directory (where the Makefile is).

toplevel_dir __ first_csc (sources) __ lib (will contain the library)

_ second_csc (sources) __ lib (will contain the library)

_ ...

Although this Makefile is build for shared library, it is easy to modify

to build partial link objects instead (modify the lines with -shared and

gnatlink below)

##

With this makefile, you can change any file in the system or add any new

file, and everything will be recompiled correctly (only the relevant shared

objects will be recompiled, and the main program will be re-linked).

The list of computer software component for your project. This might be

generated automatically.

CSC_LIST=aa bb cc

Name of the main program (no extension)

MAIN=main

If we need to build objects with -fPIC, uncomment the following line

#NEED_FPIC=-fPIC

The following variable should give the directory containing libgnat.so

You can get this directory through ’gnatls -v’. This is usually the last

directory in the Object_Path.

GLIB=...

The directories for the libraries

(This macro expands the list of CSC to the list of shared libraries, you

could simply use the expanded form:

LIB_DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so

LIB_DIR=${foreach dir,${CSC_LIST},${dir}/lib/lib${dir}.so}

${MAIN}: objects ${LIB_DIR}

gnatbind ${MAIN} ${CSC_LIST:%=-aO%/lib} -shared

gnatlink ${MAIN} ${CSC_LIST:%=-l%}

objects::

recompile the sources

Chapter 4: Building Executable Programs with GNAT 171

gnatmake -c -i ${MAIN}.adb ${NEED_FPIC} ${CSC_LIST:%=-I%}

Note: In a future version of GNAT, the following commands will be simplified

by a new tool, gnatmlib

${LIB_DIR}:

mkdir -p ${dir $@ }

cd ${dir $@ } && gcc -shared -o ${notdir $@ } ../*.o -L${GLIB} -lgnat

cd ${dir $@ } && cp -f ../*.ali .

The dependencies for the modules

Note that we have to force the expansion of *.o, since in some cases

make won’t be able to do it itself.

aa/lib/libaa.so: ${wildcard aa/*.o}

bb/lib/libbb.so: ${wildcard bb/*.o}

cc/lib/libcc.so: ${wildcard cc/*.o}

Make sure all of the shared libraries are in the path before starting the

program

run::

LD_LIBRARY_PATH=‘pwd‘/aa/lib:‘pwd‘/bb/lib:‘pwd‘/cc/lib ./${MAIN}

clean::

${RM} -rf ${CSC_LIST:%=%/lib}

${RM} ${CSC_LIST:%=%/*.ali}

${RM} ${CSC_LIST:%=%/*.o}

${RM} *.o *.ali ${MAIN}

4.7.2 Automatically Creating a List of Directories

In most makefiles, you will have to specify a list of directories, and store it in a variable. For
small projects, it is often easier to specify each of them by hand, since you then have full
control over what is the proper order for these directories, which ones should be included.

However, in larger projects, which might involve hundreds of subdirectories, it might be
more convenient to generate this list automatically.

The example below presents two methods. The first one, although less general, gives you
more control over the list. It involves wildcard characters, that are automatically expanded
by make. Its shortcoming is that you need to explicitly specify some of the organization
of your project, such as for instance the directory tree depth, whether some directories are
found in a separate tree, etc.

The second method is the most general one. It requires an external program, called find,
which is standard on all Unix systems. All the directories found under a given root directory
will be added to the list.

The examples below are based on the following directory hierarchy:

All the directories can contain any number of files

ROOT_DIRECTORY -> a -> aa -> aaa

-> ab

-> ac

Chapter 4: Building Executable Programs with GNAT 172

-> b -> ba -> baa

-> bb

-> bc

This Makefile creates a variable called DIRS, that can be reused any time

you need this list (see the other examples in this section)

The root of your project’s directory hierarchy

ROOT_DIRECTORY=.

####

First method: specify explicitly the list of directories

This allows you to specify any subset of all the directories you need.

####

DIRS := a/aa/ a/ab/ b/ba/

####

Second method: use wildcards

Note that the argument(s) to wildcard below should end with a ’/’.

Since wildcards also return file names, we have to filter them out

to avoid duplicate directory names.

We thus use make’s ‘‘dir‘‘ and ‘‘sort‘‘ functions.

It sets DIRs to the following value (note that the directories aaa and baa

are not given, unless you change the arguments to wildcard).

DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/

####

DIRS := ${sort ${dir ${wildcard ${ROOT_DIRECTORY}/*/

${ROOT_DIRECTORY}/*/*/}}}

####

Third method: use an external program

This command is much faster if run on local disks, avoiding NFS slowdowns.

This is the most complete command: it sets DIRs to the following value:

DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc

####

DIRS := ${shell find ${ROOT_DIRECTORY} -type d -print}

4.7.3 Generating the Command Line Switches

Once you have created the list of directories as explained in the previous section
([Automatically Creating a List of Directories], page 171), you can easily generate the
command line arguments to pass to gnatmake.

For the sake of completeness, this example assumes that the source path is not the same as
the object path, and that you have two separate lists of directories.

see "Automatically creating a list of directories" to create

Chapter 4: Building Executable Programs with GNAT 173

these variables

SOURCE_DIRS=

OBJECT_DIRS=

GNATMAKE_SWITCHES := ${patsubst %,-aI%,${SOURCE_DIRS}}

GNATMAKE_SWITCHES += ${patsubst %,-aO%,${OBJECT_DIRS}}

all:

gnatmake ${GNATMAKE_SWITCHES} main_unit

4.7.4 Overcoming Command Line Length Limits

One problem that might be encountered on big projects is that many operating systems
limit the length of the command line. It is thus hard to give gnatmake the list of source
and object directories.

This example shows how you can set up environment variables, which will make gnatmake
behave exactly as if the directories had been specified on the command line, but have a
much higher length limit (or even none on most systems).

It assumes that you have created a list of directories in your Makefile, using one of the
methods presented in [Automatically Creating a List of Directories], page 171. For the sake
of completeness, we assume that the object path (where the ALI files are found) is different
from the sources patch.

Note a small trick in the Makefile below: for efficiency reasons, we create two temporary
variables (SOURCE LIST and OBJECT LIST), that are expanded immediately by make.
This way we overcome the standard make behavior which is to expand the variables only
when they are actually used.

On Windows, if you are using the standard Windows command shell, you must replace
colons with semicolons in the assignments to these variables.

In this example, we create both ADA_INCLUDE_PATH and ADA_OBJECTS_PATH.

This is the same thing as putting the -I arguments on the command line.

(the equivalent of using -aI on the command line would be to define

only ADA_INCLUDE_PATH, the equivalent of -aO is ADA_OBJECTS_PATH).

You can of course have different values for these variables.

#

Note also that we need to keep the previous values of these variables, since

they might have been set before running ’make’ to specify where the GNAT

library is installed.

see "Automatically creating a list of directories" to create these

variables

SOURCE_DIRS=

OBJECT_DIRS=

empty:=

space:=${empty} ${empty}

SOURCE_LIST := ${subst ${space},:,${SOURCE_DIRS}}

OBJECT_LIST := ${subst ${space},:,${OBJECT_DIRS}}

Chapter 4: Building Executable Programs with GNAT 174

ADA_INCLUDE_PATH += ${SOURCE_LIST}

ADA_OBJECTS_PATH += ${OBJECT_LIST}

export ADA_INCLUDE_PATH

export ADA_OBJECTS_PATH

all:

gnatmake main_unit

Chapter 5: GNAT Utility Programs 175

5 GNAT Utility Programs

This chapter describes a number of utility programs:

* [The File Cleanup Utility gnatclean], page 175

* [The GNAT Library Browser gnatls], page 177

Other GNAT utilities are described elsewhere in this manual:

* [Handling Arbitrary File Naming Conventions with gnatname], page 15

* [File Name Krunching with gnatkr], page 18

* [Renaming Files with gnatchop], page 20

* [Preprocessing with gnatprep], page 44

5.1 The File Cleanup Utility gnatclean

gnatclean is a tool that allows the deletion of files produced by the compiler, binder and
linker, including ALI files, object files, tree files, expanded source files, library files, interface
copy source files, binder generated files and executable files.

5.1.1 Running gnatclean

The gnatclean command has the form:

$ gnatclean switches names

where names is a list of source file names. Suffixes .ads and adb may be omitted. If a
project file is specified using switch -P, then names may be completely omitted.

In normal mode, gnatclean delete the files produced by the compiler and, if switch -c is
not specified, by the binder and the linker. In informative-only mode, specified by switch
-n, the list of files that would have been deleted in normal mode is listed, but no file is
actually deleted.

5.1.2 Switches for gnatclean

gnatclean recognizes the following switches:

--version

Display copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

--subdirs=subdir

Actual object directory of each project file is the subdirectory subdir of the
object directory specified or defaulted in the project file.

--unchecked-shared-lib-imports

By default, shared library projects are not allowed to import static library
projects. When this switch is used on the command line, this restriction is
relaxed.

Chapter 5: GNAT Utility Programs 176

-c

Only attempt to delete the files produced by the compiler, not those produced
by the binder or the linker. The files that are not to be deleted are library files,
interface copy files, binder generated files and executable files.

-D dir

Indicate that ALI and object files should normally be found in directory dir.

-F

When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

-h

Output a message explaining the usage of gnatclean.

-n

Informative-only mode. Do not delete any files. Output the list of the files that
would have been deleted if this switch was not specified.

-Pproject

Use project file project. Only one such switch can be used. When cleaning a
project file, the files produced by the compilation of the immediate sources or
inherited sources of the project files are to be deleted. This is not depending
on the presence or not of executable names on the command line.

-q

Quiet output. If there are no errors, do not output anything, except in verbose
mode (switch -v) or in informative-only mode (switch -n).

-r

When a project file is specified (using switch -P), clean all imported and ex-
tended project files, recursively. If this switch is not specified, only the files
related to the main project file are to be deleted. This switch has no effect if
no project file is specified.

-v

Verbose mode.

-vPx

Indicates the verbosity of the parsing of GNAT project files. [Switches Related
to Project Files], page 322.

-Xname=value

Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project
file. See [Switches Related to Project Files], page 322.

-aOdir

When searching for ALI and object files, look in directory dir.

Chapter 5: GNAT Utility Programs 177

-Idir

Equivalent to -aOdir.

-I-

Do not look for ALI or object files in the directory where gnatclean was in-
voked.

5.2 The GNAT Library Browser gnatls

gnatls is a tool that outputs information about compiled units. It gives the relationship
between objects, unit names and source files. It can also be used to check the source
dependencies of a unit as well as various characteristics.

5.2.1 Running gnatls

The gnatls command has the form

$ gnatls switches object_or_ali_file

The main argument is the list of object or ali files (see [The Ada Library Information
Files], page 29) for which information is requested.

In normal mode, without additional option, gnatls produces a four-column listing. Each
line represents information for a specific object. The first column gives the full path of
the object, the second column gives the name of the principal unit in this object, the third
column gives the status of the source and the fourth column gives the full path of the source
representing this unit. Here is a simple example of use:

$ gnatls *.o

./demo1.o demo1 DIF demo1.adb

./demo2.o demo2 OK demo2.adb

./hello.o h1 OK hello.adb

./instr-child.o instr.child MOK instr-child.adb

./instr.o instr OK instr.adb

./tef.o tef DIF tef.adb

./text_io_example.o text_io_example OK text_io_example.adb

./tgef.o tgef DIF tgef.adb

The first line can be interpreted as follows: the main unit which is contained in object file
demo1.o is demo1, whose main source is in demo1.adb. Furthermore, the version of the
source used for the compilation of demo1 has been modified (DIF). Each source file has a
status qualifier which can be:

OK (unchanged)
The version of the source file used for the compilation of the specified unit
corresponds exactly to the actual source file.

MOK (slightly modified)
The version of the source file used for the compilation of the specified unit
differs from the actual source file but not enough to require recompilation. If
you use gnatmake with the option -m (minimal recompilation), a file marked
MOK will not be recompiled.

Chapter 5: GNAT Utility Programs 178

DIF (modified)
No version of the source found on the path corresponds to the source used to
build this object.

??? (file not found)
No source file was found for this unit.

HID (hidden, unchanged version not first on PATH)
The version of the source that corresponds exactly to the source used for com-
pilation has been found on the path but it is hidden by another version of the
same source that has been modified.

5.2.2 Switches for gnatls

gnatls recognizes the following switches:

--version

Display copyright and version, then exit disregarding all other options.

--help

If --version was not used, display usage, then exit disregarding all other op-
tions.

-a

Consider all units, including those of the predefined Ada library. Especially
useful with -d.

-d

List sources from which specified units depend on.

-h

Output the list of options.

-o

Only output information about object files.

-s

Only output information about source files.

-u

Only output information about compilation units.

-files=file

Take as arguments the files listed in text file file. Text file file may contain
empty lines that are ignored. Each nonempty line should contain the name of
an existing file. Several such switches may be specified simultaneously.

-aOdir, -aIdir, -Idir, -I-, -nostdinc
Source path manipulation. Same meaning as the equivalent gnatmake flags
([Switches for gnatmake], page 78).

-aPdir

Add dir at the beginning of the project search dir.

Chapter 5: GNAT Utility Programs 179

--RTS=rts-path

Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag ([Switches for gnatmake], page 78).

-v

Verbose mode. Output the complete source, object and project paths. Do not
use the default column layout but instead use long format giving as much as
information possible on each requested units, including special characteristics
such as:

* Preelaborable: The unit is preelaborable in the Ada sense.

* No Elab Code: No elaboration code has been produced by the compiler
for this unit.

* Pure: The unit is pure in the Ada sense.

* Elaborate Body : The unit contains a pragma Elaborate Body.

* Remote Types: The unit contains a pragma Remote Types.

* Shared Passive: The unit contains a pragma Shared Passive.

* Predefined : This unit is part of the predefined environment and cannot be
modified by the user.

* Remote Call Interface: The unit contains a pragma Re-
mote Call Interface.

5.2.3 Example of gnatls Usage

Example of using the verbose switch. Note how the source and object paths are affected by
the -I switch.

$ gnatls -v -I.. demo1.o

GNATLS 5.03w (20041123-34)

Copyright 1997-2004 Free Software Foundation, Inc.

Source Search Path:

<Current_Directory>

../

/home/comar/local/adainclude/

Object Search Path:

<Current_Directory>

../

/home/comar/local/lib/gcc-lib/x86-linux/3.4.3/adalib/

Project Search Path:

<Current_Directory>

/home/comar/local/lib/gnat/

./demo1.o

Unit =>

Chapter 5: GNAT Utility Programs 180

Name => demo1

Kind => subprogram body

Flags => No_Elab_Code

Source => demo1.adb modified

The following is an example of use of the dependency list. Note the use of the -s switch
which gives a straight list of source files. This can be useful for building specialized scripts.

$ gnatls -d demo2.o

./demo2.o demo2 OK demo2.adb

OK gen_list.ads

OK gen_list.adb

OK instr.ads

OK instr-child.ads

$ gnatls -d -s -a demo1.o

demo1.adb

/home/comar/local/adainclude/ada.ads

/home/comar/local/adainclude/a-finali.ads

/home/comar/local/adainclude/a-filico.ads

/home/comar/local/adainclude/a-stream.ads

/home/comar/local/adainclude/a-tags.ads

gen_list.ads

gen_list.adb

/home/comar/local/adainclude/gnat.ads

/home/comar/local/adainclude/g-io.ads

instr.ads

/home/comar/local/adainclude/system.ads

/home/comar/local/adainclude/s-exctab.ads

/home/comar/local/adainclude/s-finimp.ads

/home/comar/local/adainclude/s-finroo.ads

/home/comar/local/adainclude/s-secsta.ads

/home/comar/local/adainclude/s-stalib.ads

/home/comar/local/adainclude/s-stoele.ads

/home/comar/local/adainclude/s-stratt.ads

/home/comar/local/adainclude/s-tasoli.ads

/home/comar/local/adainclude/s-unstyp.ads

/home/comar/local/adainclude/unchconv.ads

Chapter 6: GNAT and Program Execution 181

6 GNAT and Program Execution

This chapter covers several topics:

* [Running and Debugging Ada Programs], page 181

* [Profiling], page 198

* [Improving Performance], page 200

* [Overflow Check Handling in GNAT], page 216

* [Performing Dimensionality Analysis in GNAT], page 221

* [Stack Related Facilities], page 225

* [Memory Management Issues], page 227

6.1 Running and Debugging Ada Programs

This section discusses how to debug Ada programs.

An incorrect Ada program may be handled in three ways by the GNAT compiler:

* The illegality may be a violation of the static semantics of Ada. In that case GNAT
diagnoses the constructs in the program that are illegal. It is then a straightforward
matter for the user to modify those parts of the program.

* The illegality may be a violation of the dynamic semantics of Ada. In that case the
program compiles and executes, but may generate incorrect results, or may terminate
abnormally with some exception.

* When presented with a program that contains convoluted errors, GNAT itself may
terminate abnormally without providing full diagnostics on the incorrect user program.

6.1.1 The GNAT Debugger GDB

GDB is a general purpose, platform-independent debugger that can be used to debug mixed-
language programs compiled with gcc, and in particular is capable of debugging Ada pro-
grams compiled with GNAT. The latest versions of GDB are Ada-aware and can handle
complex Ada data structures.

See Debugging with GDB, for full details on the usage of GDB, including a section on its
usage on programs. This manual should be consulted for full details. The section that
follows is a brief introduction to the philosophy and use of GDB.

When GNAT programs are compiled, the compiler optionally writes debugging information
into the generated object file, including information on line numbers, and on declared types
and variables. This information is separate from the generated code. It makes the object
files considerably larger, but it does not add to the size of the actual executable that will be
loaded into memory, and has no impact on run-time performance. The generation of debug
information is triggered by the use of the -g switch in the gcc or gnatmake command used
to carry out the compilations. It is important to emphasize that the use of these options
does not change the generated code.

The debugging information is written in standard system formats that are used by many
tools, including debuggers and profilers. The format of the information is typically designed
to describe C types and semantics, but GNAT implements a translation scheme which allows
full details about Ada types and variables to be encoded into these standard C formats.

Chapter 6: GNAT and Program Execution 182

Details of this encoding scheme may be found in the file exp dbug.ads in the GNAT source
distribution. However, the details of this encoding are, in general, of no interest to a user,
since GDB automatically performs the necessary decoding.

When a program is bound and linked, the debugging information is collected from the object
files, and stored in the executable image of the program. Again, this process significantly
increases the size of the generated executable file, but it does not increase the size of the
executable program itself. Furthermore, if this program is run in the normal manner, it runs
exactly as if the debug information were not present, and takes no more actual memory.

However, if the program is run under control of GDB, the debugger is activated. The image
of the program is loaded, at which point it is ready to run. If a run command is given,
then the program will run exactly as it would have if GDB were not present. This is a
crucial part of the GDB design philosophy. GDB is entirely non-intrusive until a breakpoint
is encountered. If no breakpoint is ever hit, the program will run exactly as it would if no
debugger were present. When a breakpoint is hit, GDB accesses the debugging information
and can respond to user commands to inspect variables, and more generally to report on
the state of execution.

6.1.2 Running GDB

This section describes how to initiate the debugger.

The debugger can be launched from a GNAT Studio menu or directly from the command
line. The description below covers the latter use. All the commands shown can be used
in the GNAT Studio debug console window, but there are usually more GUI-based ways to
achieve the same effect.

The command to run GDB is

$ gdb program

where program is the name of the executable file. This activates the debugger and results in
a prompt for debugger commands. The simplest command is simply run, which causes the
program to run exactly as if the debugger were not present. The following section describes
some of the additional commands that can be given to GDB.

6.1.3 Introduction to GDB Commands

GDB contains a large repertoire of commands. See Debugging with GDB for extensive docu-
mentation on the use of these commands, together with examples of their use. Furthermore,
the command help invoked from within GDB activates a simple help facility which summa-
rizes the available commands and their options. In this section we summarize a few of the
most commonly used commands to give an idea of what GDB is about. You should create
a simple program with debugging information and experiment with the use of these GDB

commands on the program as you read through the following section.

*

set args arguments

The arguments list above is a list of arguments to be passed to the program
on a subsequent run command, just as though the arguments had been
entered on a normal invocation of the program. The set args command
is not needed if the program does not require arguments.

Chapter 6: GNAT and Program Execution 183

*

run

The run command causes execution of the program to start from the begin-
ning. If the program is already running, that is to say if you are currently
positioned at a breakpoint, then a prompt will ask for confirmation that
you want to abandon the current execution and restart.

*

breakpoint location

The breakpoint command sets a breakpoint, that is to say a point at which
execution will halt and GDB will await further commands. location is either
a line number within a file, given in the format file:linenumber, or it is
the name of a subprogram. If you request that a breakpoint be set on a
subprogram that is overloaded, a prompt will ask you to specify on which
of those subprograms you want to breakpoint. You can also specify that
all of them should be breakpointed. If the program is run and execution
encounters the breakpoint, then the program stops and GDB signals that
the breakpoint was encountered by printing the line of code before which
the program is halted.

*

catch exception name

This command causes the program execution to stop whenever exception
name is raised. If name is omitted, then the execution is suspended when
any exception is raised.

*

print expression

This will print the value of the given expression. Most simple Ada expres-
sion formats are properly handled by GDB, so the expression can contain
function calls, variables, operators, and attribute references.

*

continue

Continues execution following a breakpoint, until the next breakpoint or
the termination of the program.

*

step

Executes a single line after a breakpoint. If the next statement is a sub-
program call, execution continues into (the first statement of) the called
subprogram.

*

next

Executes a single line. If this line is a subprogram call, executes and returns
from the call.

Chapter 6: GNAT and Program Execution 184

*

list

Lists a few lines around the current source location. In practice, it is
usually more convenient to have a separate edit window open with the
relevant source file displayed. Successive applications of this command
print subsequent lines. The command can be given an argument which is a
line number, in which case it displays a few lines around the specified one.

*

backtrace

Displays a backtrace of the call chain. This command is typically used after
a breakpoint has occurred, to examine the sequence of calls that leads to
the current breakpoint. The display includes one line for each activation
record (frame) corresponding to an active subprogram.

*

up

At a breakpoint, GDB can display the values of variables local to the current
frame. The command up can be used to examine the contents of other
active frames, by moving the focus up the stack, that is to say from callee
to caller, one frame at a time.

*

down

Moves the focus of GDB down from the frame currently being examined to
the frame of its callee (the reverse of the previous command),

*

frame n

Inspect the frame with the given number. The value 0 denotes the frame
of the current breakpoint, that is to say the top of the call stack.

*

kill

Kills the child process in which the program is running under GDB. This
may be useful for several purposes:

* It allows you to recompile and relink your program, since on many
systems you cannot regenerate an executable file while it is running in
a process.

* You can run your program outside the debugger, on systems that do
not permit executing a program outside GDB while breakpoints are
set within GDB.

* It allows you to debug a core dump rather than a running process.

The above list is a very short introduction to the commands that GDB provides. Important
additional capabilities, including conditional breakpoints, the ability to execute command
sequences on a breakpoint, the ability to debug at the machine instruction level and many

Chapter 6: GNAT and Program Execution 185

other features are described in detail in Debugging with GDB. Note that most commands
can be abbreviated (for example, c for continue, bt for backtrace).

6.1.4 Using Ada Expressions

GDB supports a fairly large subset of Ada expression syntax, with some extensions. The
philosophy behind the design of this subset is

* That GDB should provide basic literals and access to operations for
arithmetic, dereferencing, field selection, indexing, and subprogram
calls, leaving more sophisticated computations to subprograms writ-
ten into the program (which therefore may be called from GDB).

* That type safety and strict adherence to Ada language restrictions
are not particularly relevant in a debugging context.

* That brevity is important to the GDB user.

Thus, for brevity, the debugger acts as if there were implicit with and use clauses in effect
for all user-written packages, thus making it unnecessary to fully qualify most names with
their packages, regardless of context. Where this causes ambiguity, GDB asks the user’s
intent.

For details on the supported Ada syntax, see Debugging with GDB.

6.1.5 Calling User-Defined Subprograms

An important capability of GDB is the ability to call user-defined subprograms while debug-
ging. This is achieved simply by entering a subprogram call statement in the form:

call subprogram-name (parameters)

The keyword call can be omitted in the normal case where the subprogram-name does not
coincide with any of the predefined GDB commands.

The effect is to invoke the given subprogram, passing it the list of parameters that is
supplied. The parameters can be expressions and can include variables from the program
being debugged. The subprogram must be defined at the library level within your program,
and GDB will call the subprogram within the environment of your program execution (which
means that the subprogram is free to access or even modify variables within your program).

The most important use of this facility is in allowing the inclusion of debugging routines
that are tailored to particular data structures in your program. Such debugging routines
can be written to provide a suitably high-level description of an abstract type, rather than
a low-level dump of its physical layout. After all, the standard GDB print command only
knows the physical layout of your types, not their abstract meaning. Debugging routines
can provide information at the desired semantic level and are thus enormously useful.

For example, when debugging GNAT itself, it is crucial to have access to the contents of
the tree nodes used to represent the program internally. But tree nodes are represented
simply by an integer value (which in turn is an index into a table of nodes). Using the print
command on a tree node would simply print this integer value, which is not very useful. But
the PN routine (defined in file treepr.adb in the GNAT sources) takes a tree node as input,
and displays a useful high level representation of the tree node, which includes the syntactic
category of the node, its position in the source, the integers that denote descendant nodes

Chapter 6: GNAT and Program Execution 186

and parent node, as well as varied semantic information. To study this example in more
detail, you might want to look at the body of the PN procedure in the stated file.

Another useful application of this capability is to deal with situations of complex data
which are not handled suitably by GDB. For example, if you specify Convention Fortran
for a multi-dimensional array, GDB does not know that the ordering of array elements has
been switched and will not properly address the array elements. In such a case, instead of
trying to print the elements directly from GDB, you can write a callable procedure that
prints the elements in the desired format.

6.1.6 Using the next Command in a Function

When you use the next command in a function, the current source location will advance to
the next statement as usual. A special case arises in the case of a return statement.

Part of the code for a return statement is the ’epilogue’ of the function. This is the code
that returns to the caller. There is only one copy of this epilogue code, and it is typically
associated with the last return statement in the function if there is more than one return. In
some implementations, this epilogue is associated with the first statement of the function.

The result is that if you use the next command from a return statement that is not the last
return statement of the function you may see a strange apparent jump to the last return
statement or to the start of the function. You should simply ignore this odd jump. The
value returned is always that from the first return statement that was stepped through.

6.1.7 Stopping When Ada Exceptions Are Raised

You can set catchpoints that stop the program execution when your program raises selected
exceptions.

*

catch exception

Set a catchpoint that stops execution whenever (any task in the) program
raises any exception.

*

catch exception name

Set a catchpoint that stops execution whenever (any task in the) program
raises the exception name.

*

catch exception unhandled

Set a catchpoint that stops executing whenever (any task in the) program
raises an exception for which there is no handler.

*

info exceptions, info exceptions regexp

The info exceptions command permits the user to examine all defined
exceptions within Ada programs. With a regular expression, regexp, as
argument, prints out only those exceptions whose name matches regexp.

Chapter 6: GNAT and Program Execution 187

6.1.8 Ada Tasks

GDB allows the following task-related commands:

*

info tasks

This command shows a list of current Ada tasks, as in the following exam-
ple:

(gdb) info tasks

ID TID P-ID Thread Pri State Name

1 8088000 0 807e000 15 Child Activation Wait main_task

2 80a4000 1 80ae000 15 Accept/Select Wait b

3 809a800 1 80a4800 15 Child Activation Wait a

* 4 80ae800 3 80b8000 15 Running c

In this listing, the asterisk before the first task indicates it to be the cur-
rently running task. The first column lists the task ID that is used to refer
to tasks in the following commands.

* break‘‘*linespec* ‘‘task taskid, break linespec task taskid if ...

These commands are like the break ... thread linespec spec-
ifies source lines.

Use the qualifier task taskid with a breakpoint command to spec-
ify that you only want GDB to stop the program when a particular
Ada task reaches this breakpoint. taskid is one of the numeric task
identifiers assigned by GDB, shown in the first column of the info

tasks display.

If you do not specify task taskid when you set a breakpoint, the
breakpoint applies to all tasks of your program.

You can use the task qualifier on conditional breakpoints as well; in
this case, place task taskid before the breakpoint condition (before
the if).

* task taskno

This command allows switching to the task referred by taskno. In
particular, this allows browsing of the backtrace of the specified task.
It is advisable to switch back to the original task before continuing
execution otherwise the scheduling of the program may be perturbed.

For more detailed information on the tasking support, see Debugging with GDB.

6.1.9 Debugging Generic Units

GNAT always uses code expansion for generic instantiation. This means that each time
an instantiation occurs, a complete copy of the original code is made, with appropriate
substitutions of formals by actuals.

It is not possible to refer to the original generic entities in GDB, but it is always possible
to debug a particular instance of a generic, by using the appropriate expanded names. For
example, if we have

Chapter 6: GNAT and Program Execution 188

procedure g is

generic package k is

procedure kp (v1 : in out integer);

end k;

package body k is

procedure kp (v1 : in out integer) is

begin

v1 := v1 + 1;

end kp;

end k;

package k1 is new k;

package k2 is new k;

var : integer := 1;

begin

k1.kp (var);

k2.kp (var);

k1.kp (var);

k2.kp (var);

end;

Then to break on a call to procedure kp in the k2 instance, simply use the command:

(gdb) break g.k2.kp

When the breakpoint occurs, you can step through the code of the instance in the normal
manner and examine the values of local variables, as for other units.

6.1.10 Remote Debugging with gdbserver

On platforms where gdbserver is supported, it is possible to use this tool to debug your
application remotely. This can be useful in situations where the program needs to be run
on a target host that is different from the host used for development, particularly when the
target has a limited amount of resources (either CPU and/or memory).

To do so, start your program using gdbserver on the target machine. gdbserver then auto-
matically suspends the execution of your program at its entry point, waiting for a debugger
to connect to it. The following commands starts an application and tells gdbserver to wait
for a connection with the debugger on localhost port 4444.

$ gdbserver localhost:4444 program

Process program created; pid = 5685

Listening on port 4444

Once gdbserver has started listening, we can tell the debugger to establish a connection
with this gdbserver, and then start the same debugging session as if the program was being
debugged on the same host, directly under the control of GDB.

$ gdb program

Chapter 6: GNAT and Program Execution 189

(gdb) target remote targethost:4444

Remote debugging using targethost:4444

0x00007f29936d0af0 in ?? () from /lib64/ld-linux-x86-64.so.

(gdb) b foo.adb:3

Breakpoint 1 at 0x401f0c: file foo.adb, line 3.

(gdb) continue

Continuing.

Breakpoint 1, foo () at foo.adb:4

4 end foo;

It is also possible to use gdbserver to attach to an already running program, in which
case the execution of that program is simply suspended until the connection between the
debugger and gdbserver is established.

For more information on how to use gdbserver, see the Using the gdbserver Program section
in Debugging with GDB. GNAT provides support for gdbserver on x86-linux, x86-windows
and x86 64-linux.

6.1.11 GNAT Abnormal Termination or Failure to Terminate

When presented with programs that contain serious errors in syntax or semantics, GNAT
may on rare occasions experience problems in operation, such as aborting with a segmenta-
tion fault or illegal memory access, raising an internal exception, terminating abnormally,
or failing to terminate at all. In such cases, you can activate various features of GNAT
that can help you pinpoint the construct in your program that is the likely source of the
problem.

The following strategies are presented in increasing order of difficulty, corresponding to your
experience in using GNAT and your familiarity with compiler internals.

* Run gcc with the -gnatf. This first switch causes all errors on a given line to be
reported. In its absence, only the first error on a line is displayed.

The -gnatdO switch causes errors to be displayed as soon as they are encountered,
rather than after compilation is terminated. If GNAT terminates prematurely or goes
into an infinite loop, the last error message displayed may help to pinpoint the culprit.

* Run gcc with the -v (verbose) switch. In this mode, gcc produces ongoing information
about the progress of the compilation and provides the name of each procedure as code
is generated. This switch allows you to find which Ada procedure was being compiled
when it encountered a code generation problem.

* Run gcc with the -gnatdc switch. This is a GNAT specific switch that does for the
front-end what -v does for the back end. The system prints the name of each unit,
either a compilation unit or nested unit, as it is being analyzed.

* Finally, you can start gdb directly on the gnat1 executable. gnat1 is the front-end of
GNAT, and can be run independently (normally it is just called from gcc). You can
use gdb on gnat1 as you would on a C program (but [The GNAT Debugger GDB],
page 181 for caveats). The where command is the first line of attack; the variable
lineno (seen by print lineno), used by the second phase of gnat1 and by the gcc

backend, indicates the source line at which the execution stopped, and input_file

name indicates the name of the source file.

Chapter 6: GNAT and Program Execution 190

6.1.12 Naming Conventions for GNAT Source Files

In order to examine the workings of the GNAT system, the following brief description of
its organization may be helpful:

* Files with prefix sc contain the lexical scanner.

* All files prefixed with par are components of the parser. The numbers correspond to
chapters of the Ada Reference Manual. For example, parsing of select statements can
be found in par-ch9.adb.

* All files prefixed with sem perform semantic analysis. The numbers correspond to
chapters of the Ada standard. For example, all issues involving context clauses can be
found in sem_ch10.adb. In addition, some features of the language require sufficient
special processing to justify their own semantic files: sem aggr for aggregates, sem disp
for dynamic dispatching, etc.

* All files prefixed with exp perform normalization and expansion of the intermediate rep-
resentation (abstract syntax tree, or AST). these files use the same numbering scheme
as the parser and semantics files. For example, the construction of record initialization
procedures is done in exp_ch3.adb.

* The files prefixed with bind implement the binder, which verifies the consistency of the
compilation, determines an order of elaboration, and generates the bind file.

* The files atree.ads and atree.adb detail the low-level data structures used by the
front-end.

* The files sinfo.ads and sinfo.adb detail the structure of the abstract syntax tree as
produced by the parser.

* The files einfo.ads and einfo.adb detail the attributes of all entities, computed
during semantic analysis.

* Library management issues are dealt with in files with prefix lib.

* Ada files with the prefix a- are children of Ada, as defined in Annex A.

* Files with prefix i- are children of Interfaces, as defined in Annex B.

* Files with prefix s- are children of System. This includes both language-defined chil-
dren and GNAT run-time routines.

* Files with prefix g- are children of GNAT. These are useful general-purpose packages,
fully documented in their specs. All the other .c files are modifications of common gcc

files.

6.1.13 Getting Internal Debugging Information

Most compilers have internal debugging switches and modes. GNAT does also, except
GNAT internal debugging switches and modes are not secret. A summary and full descrip-
tion of all the compiler and binder debug flags are in the file debug.adb. You must obtain
the sources of the compiler to see the full detailed effects of these flags.

The switches that print the source of the program (reconstructed from the internal tree)
are of general interest for user programs, as are the options to print the full internal tree,
and the entity table (the symbol table information). The reconstructed source provides a
readable version of the program after the front-end has completed analysis and expansion,
and is useful when studying the performance of specific constructs. For example, constraint

Chapter 6: GNAT and Program Execution 191

checks are indicated, complex aggregates are replaced with loops and assignments, and
tasking primitives are replaced with run-time calls.

6.1.14 Stack Traceback

Traceback is a mechanism to display the sequence of subprogram calls that leads to a
specified execution point in a program. Often (but not always) the execution point is
an instruction at which an exception has been raised. This mechanism is also known as
stack unwinding because it obtains its information by scanning the run-time stack and
recovering the activation records of all active subprograms. Stack unwinding is one of the
most important tools for program debugging.

The first entry stored in traceback corresponds to the deepest calling level, that is to say the
subprogram currently executing the instruction from which we want to obtain the traceback.

Note that there is no runtime performance penalty when stack traceback is enabled, and
no exception is raised during program execution.

6.1.14.1 Non-Symbolic Traceback

Note: this feature is not supported on all platforms. See GNAT.Traceback spec in g-

traceb.ads for a complete list of supported platforms.

Tracebacks From an Unhandled Exception

A runtime non-symbolic traceback is a list of addresses of call instructions. To enable this
feature you must use the -E gnatbind option. With this option a stack traceback is stored
as part of exception information. You can retrieve this information using the addr2line

tool.

Here is a simple example:

procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

$ gnatmake stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Chapter 6: GNAT and Program Execution 192

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

As we see the traceback lists a sequence of addresses for the unhandled exception
CONSTRAINT_ERROR raised in procedure P1. It is easy to guess that this exception come
from procedure P1. To translate these addresses into the source lines where the calls
appear, the addr2line tool, described below, is invaluable. The use of this tool requires
the program to be compiled with debug information.

$ gnatmake -g stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

$ addr2line --exe=stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4

0x4011f1 0x77e892a4

00401373 at d:/stb/stb.adb:5

0040138B at d:/stb/stb.adb:10

0040139C at d:/stb/stb.adb:14

00401335 at d:/stb/b~stb.adb:104

004011C4 at /build/.../crt1.c:200

004011F1 at /build/.../crt1.c:222

77E892A4 in ?? at ??:0

The addr2line tool has several other useful options:

--functions to get the function name corresponding to any location

--demangle=gnat to use the gnat decoding mode for the function names. Note that for
binutils version 2.9.x the option is simply --demangle.

$ addr2line --exe=stb --functions --demangle=gnat 0x401373 0x40138b

0x40139c 0x401335 0x4011c4 0x4011f1

00401373 in stb.p1 at d:/stb/stb.adb:5

0040138B in stb.p2 at d:/stb/stb.adb:10

0040139C in stb at d:/stb/stb.adb:14

00401335 in main at d:/stb/b~stb.adb:104

004011C4 in <__mingw_CRTStartup> at /build/.../crt1.c:200

004011F1 in <mainCRTStartup> at /build/.../crt1.c:222

From this traceback we can see that the exception was raised in stb.adb at line 5, which
was reached from a procedure call in stb.adb at line 10, and so on. The b~std.adb is the
binder file, which contains the call to the main program. [Running gnatbind], page 154.

Chapter 6: GNAT and Program Execution 193

The remaining entries are assorted runtime routines, and the output will vary from platform
to platform.

It is also possible to use GDB with these traceback addresses to debug the program. For
example, we can break at a given code location, as reported in the stack traceback:

$ gdb -nw stb

Furthermore, this feature is not implemented inside Windows DLL. Only the non-symbolic
traceback is reported in this case.

(gdb) break *0x401373

Breakpoint 1 at 0x401373: file stb.adb, line 5.

It is important to note that the stack traceback addresses do not change when debug
information is included. This is particularly useful because it makes it possible to release
software without debug information (to minimize object size), get a field report that includes
a stack traceback whenever an internal bug occurs, and then be able to retrieve the sequence
of calls with the same program compiled with debug information.

Tracebacks From Exception Occurrences

Non-symbolic tracebacks are obtained by using the -E binder argument. The stack traceback
is attached to the exception information string, and can be retrieved in an exception handler
within the Ada program, by means of the Ada facilities defined in Ada.Exceptions. Here
is a simple example:

with Ada.Text_IO;

with Ada.Exceptions;

procedure STB is

use Ada;

use Ada.Exceptions;

procedure P1 is

K : Positive := 1;

begin

K := K - 1;

exception

when E : others =>

Text_IO.Put_Line (Exception_Information (E));

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

Chapter 6: GNAT and Program Execution 194

This program will output:

$ stb

Exception name: CONSTRAINT_ERROR

Message: stb.adb:12

Call stack traceback locations:

0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4

Tracebacks From Anywhere in a Program

It is also possible to retrieve a stack traceback from anywhere in a program. For this you
need to use the GNAT.Traceback API. This package includes a procedure called Call_Chain

that computes a complete stack traceback, as well as useful display procedures described
below. It is not necessary to use the -E gnatbind option in this case, because the stack
traceback mechanism is invoked explicitly.

In the following example we compute a traceback at a specific location in the program, and
we display it using GNAT.Debug_Utilities.Image to convert addresses to strings:

with Ada.Text_IO;

with GNAT.Traceback;

with GNAT.Debug_Utilities;

procedure STB is

use Ada;

use GNAT;

use GNAT.Traceback;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put ("In STB.P1 : ");

for K in 1 .. Len loop

Text_IO.Put (Debug_Utilities.Image (TB (K)));

Text_IO.Put (’ ’);

end loop;

Text_IO.New_Line;

end P1;

procedure P2 is

begin

Chapter 6: GNAT and Program Execution 195

P1;

end P2;

begin

P2;

end STB;

$ gnatmake -g stb

$ stb

In STB.P1 : 16#0040_F1E4# 16#0040_14F2# 16#0040_170B# 16#0040_171C#

16#0040_1461# 16#0040_11C4# 16#0040_11F1# 16#77E8_92A4#

You can then get further information by invoking the addr2line tool as described earlier
(note that the hexadecimal addresses need to be specified in C format, with a leading ’0x’).

6.1.14.2 Symbolic Traceback

A symbolic traceback is a stack traceback in which procedure names are associated with
each code location.

Note that this feature is not supported on all platforms. See GNAT.Traceback.Symbolic

spec in g-trasym.ads for a complete list of currently supported platforms.

Note that the symbolic traceback requires that the program be compiled with debug infor-
mation. If it is not compiled with debug information only the non-symbolic information
will be valid.

Tracebacks From Exception Occurrences

Here is an example:

with Ada.Text_IO;

with GNAT.Traceback.Symbolic;

procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

procedure P3 is

begin

P2;

end P3;

Chapter 6: GNAT and Program Execution 196

begin

P3;

exception

when E : others =>

Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));

end STB;

$ gnatmake -g .\stb -bargs -E

$ stb

0040149F in stb.p1 at stb.adb:8

004014B7 in stb.p2 at stb.adb:13

004014CF in stb.p3 at stb.adb:18

004015DD in ada.stb at stb.adb:22

00401461 in main at b~stb.adb:168

004011C4 in __mingw_CRTStartup at crt1.c:200

004011F1 in mainCRTStartup at crt1.c:222

77E892A4 in ?? at ??:0

In the above example the .\ syntax in the gnatmake command is currently required by
addr2line for files that are in the current working directory. Moreover, the exact sequence
of linker options may vary from platform to platform. The above -largs section is for
Windows platforms. By contrast, under Unix there is no need for the -largs section.
Differences across platforms are due to details of linker implementation.

Tracebacks From Anywhere in a Program

It is possible to get a symbolic stack traceback from anywhere in a program, just as for
non-symbolic tracebacks. The first step is to obtain a non-symbolic traceback, and then
call Symbolic_Traceback to compute the symbolic information. Here is an example:

with Ada.Text_IO;

with GNAT.Traceback;

with GNAT.Traceback.Symbolic;

procedure STB is

use Ada;

use GNAT.Traceback;

use GNAT.Traceback.Symbolic;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));

end P1;

Chapter 6: GNAT and Program Execution 197

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

Automatic Symbolic Tracebacks

Symbolic tracebacks may also be enabled by using the -Es switch to gnatbind (as in
gprbuild -g ... -bargs -Es). This will cause the Exception Information to contain a
symbolic traceback, which will also be printed if an unhandled exception terminates the
program.

6.1.15 Pretty-Printers for the GNAT runtime

As discussed in Calling User-Defined Subprograms, GDB’s print command only knows
about the physical layout of program data structures and therefore normally displays only
low-level dumps, which are often hard to understand.

An example of this is when trying to display the contents of an Ada standard container,
such as Ada.Containers.Ordered_Maps.Map:

with Ada.Containers.Ordered_Maps;

procedure PP is

package Int_To_Nat is

new Ada.Containers.Ordered_Maps (Integer, Natural);

Map : Int_To_Nat.Map;

begin

Map.Insert (1, 10);

Map.Insert (2, 20);

Map.Insert (3, 30);

Map.Clear; -- BREAK HERE

end PP;

When this program is built with debugging information and run under GDB up to the
Map.Clear statement, trying to print Map will yield information that is only relevant to the
developers of our standard containers:

(gdb) print map

$1 = (

tree => (

first => 0x64e010,

last => 0x64e070,

root => 0x64e040,

length => 3,

Chapter 6: GNAT and Program Execution 198

tc => (

busy => 0,

lock => 0

)

)

)

Fortunately, GDB has a feature called pretty-printers1, which allows customizing how GDB
displays data structures. The GDB shipped with GNAT embeds such pretty-printers for the
most common containers in the standard library. To enable them, either run the following
command manually under GDB or add it to your .gdbinit file:

python import gnatdbg; gnatdbg.setup()

Once this is done, GDB’s print command will automatically use these pretty-printers when
appropriate. Using the previous example:

(gdb) print map

$1 = pp.int_to_nat.map of length 3 = {

[1] = 10,

[2] = 20,

[3] = 30

}

Pretty-printers are invoked each time GDB tries to display a value, including when dis-
playing the arguments of a called subprogram (in GDB’s backtrace command) or when
printing the value returned by a function (in GDB’s finish command).

To display a value without involving pretty-printers, print can be invoked with its /r

option:

(gdb) print/r map

$1 = (

tree => (...

Finer control of pretty-printers is also possible: see GDB’s online documentation2 for more
information.

6.2 Profiling

This section describes how to use the gprof profiler tool on Ada programs.

6.2.1 Profiling an Ada Program with gprof

This section is not meant to be an exhaustive documentation of gprof. Full documentation
for it can be found in the GNU Profiler User’s Guide documentation that is part of this
GNAT distribution.

Profiling a program helps determine the parts of a program that are executed most often,
and are therefore the most time-consuming.

gprof is the standard GNU profiling tool; it has been enhanced to better handle Ada
programs and multitasking. It is currently supported on the following platforms

1 http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty 002dPrinter-Introduction
2 http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty 002dPrinter-Commands

Chapter 6: GNAT and Program Execution 199

* linux x86/x86 64

* windows x86

In order to profile a program using gprof, several steps are needed:

1. Instrument the code, which requires a full recompilation of the project with the proper
switches.

2. Execute the program under the analysis conditions, i.e. with the desired input.

3. Analyze the results using the gprof tool.

The following sections detail the different steps, and indicate how to interpret the results.

6.2.1.1 Compilation for profiling

In order to profile a program the first step is to tell the compiler to generate the necessary
profiling information. The compiler switch to be used is -pg, which must be added to other
compilation switches. This switch needs to be specified both during compilation and link
stages, and can be specified once when using gnatmake:

$ gnatmake -f -pg -P my_project

Note that only the objects that were compiled with the -pg switch will be profiled; if you
need to profile your whole project, use the -f gnatmake switch to force full recompilation.

6.2.1.2 Program execution

Once the program has been compiled for profiling, you can run it as usual.

The only constraint imposed by profiling is that the program must terminate normally. An
interrupted program (via a Ctrl-C, kill, etc.) will not be properly analyzed.

Once the program completes execution, a data file called gmon.out is generated in the direc-
tory where the program was launched from. If this file already exists, it will be overwritten.

6.2.1.3 Running gprof

The gprof tool is called as follow:

$ gprof my_prog gmon.out

or simply:

$ gprof my_prog

The complete form of the gprof command line is the following:

$ gprof [switches] [executable [data-file]]

gprof supports numerous switches. The order of these switch does not matter. The full
list of options can be found in the GNU Profiler User’s Guide documentation that comes
with this documentation.

The following is the subset of those switches that is most relevant:

--demangle[=style], --no-demangle
These options control whether symbol names should be demangled when print-
ing output. The default is to demangle C++ symbols. The --no-demangle

option may be used to turn off demangling. Different compilers have different
mangling styles. The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler, in particular Ada symbols
generated by GNAT can be demangled using --demangle=gnat.

Chapter 6: GNAT and Program Execution 200

-e function_name

The -e function option tells gprof not to print information about the function
function_name (and its children...) in the call graph. The function will still
be listed as a child of any functions that call it, but its index number will be
shown as [not printed]. More than one -e option may be given; only one
function_name may be indicated with each -e option.

-E function_name

The -E function option works like the -e option, but execution time spent in
the function (and children who were not called from anywhere else), will not
be used to compute the percentages-of-time for the call graph. More than one
-E option may be given; only one function_name may be indicated with each
-E‘ option.

-f function_name

The -f function option causes gprof to limit the call graph to the function
function_name and its children (and their children...). More than one -f option
may be given; only one function_name may be indicated with each -f option.

-F function_name

The -F function option works like the -f option, but only time spent in the
function and its children (and their children...) will be used to determine total-
time and percentages-of-time for the call graph. More than one -F option may
be given; only one function_name may be indicated with each -F option. The
-F option overrides the -E option.

6.2.1.4 Interpretation of profiling results

The results of the profiling analysis are represented by two arrays: the ’flat profile’ and the
’call graph’. Full documentation of those outputs can be found in the GNU Profiler User’s
Guide.

The flat profile shows the time spent in each function of the program, and how many time
it has been called. This allows you to locate easily the most time-consuming functions.

The call graph shows, for each subprogram, the subprograms that call it, and the sub-
programs that it calls. It also provides an estimate of the time spent in each of those
callers/called subprograms.

6.3 Improving Performance

This section presents several topics related to program performance. It first describes some
of the tradeoffs that need to be considered and some of the techniques for making your
program run faster.

It then documents the unused subprogram/data elimination feature, which can reduce the
size of program executables.

6.3.1 Performance Considerations

The GNAT system provides a number of options that allow a trade-off between

* performance of the generated code

* speed of compilation

Chapter 6: GNAT and Program Execution 201

* minimization of dependences and recompilation

* the degree of run-time checking.

The defaults (if no options are selected) aim at improving the speed of compilation and
minimizing dependences, at the expense of performance of the generated code:

* no optimization

* no inlining of subprogram calls

* all run-time checks enabled except overflow and elaboration checks

These options are suitable for most program development purposes. This section describes
how you can modify these choices, and also provides some guidelines on debugging optimized
code.

6.3.1.1 Controlling Run-Time Checks

By default, GNAT generates all run-time checks, except stack overflow checks, and checks
for access before elaboration on subprogram calls. The latter are not required in default
mode, because all necessary checking is done at compile time.

The gnat switch, -gnatp allows this default to be modified. See [Run-Time Checks],
page 140.

Our experience is that the default is suitable for most development purposes.

Elaboration checks are off by default, and also not needed by default, since GNAT uses
a static elaboration analysis approach that avoids the need for run-time checking. This
manual contains a full chapter discussing the issue of elaboration checks, and if the default
is not satisfactory for your use, you should read this chapter.

For validity checks, the minimal checks required by the Ada Reference Manual (for case
statements and assignments to array elements) are on by default. These can be suppressed
by use of the -gnatVn switch. Note that in Ada 83, there were no validity checks, so
if the Ada 83 mode is acceptable (or when comparing GNAT performance with an Ada
83 compiler), it may be reasonable to routinely use -gnatVn. Validity checks are also
suppressed entirely if -gnatp is used.

Note that the setting of the switches controls the default setting of the checks. They may
be modified using either pragma Suppress (to remove checks) or pragma Unsuppress (to
add back suppressed checks) in the program source.

6.3.1.2 Use of Restrictions

The use of pragma Restrictions allows you to control which features are permitted in your
program. Apart from the obvious point that if you avoid relatively expensive features like
finalization (enforceable by the use of pragma Restrictions (No Finalization), the use of this
pragma does not affect the generated code in most cases.

One notable exception to this rule is that the possibility of task abort results in some
distributed overhead, particularly if finalization or exception handlers are used. The reason
is that certain sections of code have to be marked as non-abortable.

If you use neither the abort statement, nor asynchronous transfer of control (select ...

then abort), then this distributed overhead is removed, which may have a general positive

Chapter 6: GNAT and Program Execution 202

effect in improving overall performance. Especially code involving frequent use of task-
ing constructs and controlled types will show much improved performance. The relevant
restrictions pragmas are

pragma Restrictions (No_Abort_Statements);

pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);

It is recommended that these restriction pragmas be used if possible. Note that this also
means that you can write code without worrying about the possibility of an immediate
abort at any point.

6.3.1.3 Optimization Levels

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the subprogram
and get exactly the results you would expect from the source code.

Turning on optimization makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

If you use multiple -O options, with or without level numbers, the last such option is the
one that is effective.

The default is optimization off. This results in the fastest compile times, but GNAT makes
absolutely no attempt to optimize, and the generated programs are considerably larger and
slower than when optimization is enabled. You can use the -O switch (the permitted forms
are -O0, -O1 -O2, -O3, and -Os) to gcc to control the optimization level:

*

-O0

No optimization (the default); generates unoptimized code but has the
fastest compilation time.

Note that many other compilers do substantial optimization even if ’no
optimization’ is specified. With gcc, it is very unusual to use -O0 for
production if execution time is of any concern, since -O0 means (almost)
no optimization. This difference between gcc and other compilers should
be kept in mind when doing performance comparisons.

*

-O1

Moderate optimization; optimizes reasonably well but does not degrade
compilation time significantly.

*

-O2

Full optimization; generates highly optimized code and has the slowest
compilation time.

*

Chapter 6: GNAT and Program Execution 203

-O3

Full optimization as in -O2; also uses more aggressive automatic inlining
of subprograms within a unit ([Inlining of Subprograms], page 204) and
attempts to vectorize loops.

*

-Os

Optimize space usage (code and data) of resulting program.

Higher optimization levels perform more global transformations on the program and apply
more expensive analysis algorithms in order to generate faster and more compact code. The
price in compilation time, and the resulting improvement in execution time, both depend
on the particular application and the hardware environment. You should experiment to
find the best level for your application.

Since the precise set of optimizations done at each level will vary from release to release
(and sometime from target to target), it is best to think of the optimization settings in
general terms. See the Options That Control Optimization section in Using the GNU
Compiler Collection (GCC) for details about the -O settings and a number of -f options
that individually enable or disable specific optimizations.

Unlike some other compilation systems, gcc has been tested extensively at all optimization
levels. There are some bugs which appear only with optimization turned on, but there
have also been bugs which show up only in unoptimized code. Selecting a lower level of
optimization does not improve the reliability of the code generator, which in practice is
highly reliable at all optimization levels.

Note regarding the use of -O3: The use of this optimization level ought not to be automat-
ically preferred over that of level -O2, since it often results in larger executables which may
run more slowly. See further discussion of this point in [Inlining of Subprograms], page 204.

6.3.1.4 Debugging Optimized Code

Although it is possible to do a reasonable amount of debugging at nonzero optimization
levels, the higher the level the more likely that source-level constructs will have been elimi-
nated by optimization. For example, if a loop is strength-reduced, the loop control variable
may be completely eliminated and thus cannot be displayed in the debugger. This can only
happen at -O2 or -O3. Explicit temporary variables that you code might be eliminated at
level -O1 or higher.

The use of the -g switch, which is needed for source-level debugging, affects the size of
the program executable on disk, and indeed the debugging information can be quite large.
However, it has no effect on the generated code (and thus does not degrade performance)

Since the compiler generates debugging tables for a compilation unit before it performs opti-
mizations, the optimizing transformations may invalidate some of the debugging data. You
therefore need to anticipate certain anomalous situations that may arise while debugging
optimized code. These are the most common cases:

* The ’hopping Program Counter’: Repeated step or next commands show the PC
bouncing back and forth in the code. This may result from any of the following opti-
mizations:

Chapter 6: GNAT and Program Execution 204

- Common subexpression elimination: using a single instance of code for a quantity
that the source computes several times. As a result you may not be able to stop
on what looks like a statement.

- Invariant code motion: moving an expression that does not change within a loop,
to the beginning of the loop.

- Instruction scheduling: moving instructions so as to overlap loads and stores (typ-
ically) with other code, or in general to move computations of values closer to their
uses. Often this causes you to pass an assignment statement without the assign-
ment happening and then later bounce back to the statement when the value is
actually needed. Placing a breakpoint on a line of code and then stepping over it
may, therefore, not always cause all the expected side-effects.

* The ’big leap’: More commonly known as cross-jumping, in which two identical pieces
of code are merged and the program counter suddenly jumps to a statement that is not
supposed to be executed, simply because it (and the code following) translates to the
same thing as the code that was supposed to be executed. This effect is typically seen
in sequences that end in a jump, such as a goto, a return, or a break in a C switch

statement.

* The ’roving variable’: The symptom is an unexpected value in a variable. There are
various reasons for this effect:

- In a subprogram prologue, a parameter may not yet have been moved to its ’home’.

- A variable may be dead, and its register re-used. This is probably the most
common cause.

- As mentioned above, the assignment of a value to a variable may have been moved.

- A variable may be eliminated entirely by value propagation or other means. In
this case, GCC may incorrectly generate debugging information for the variable

In general, when an unexpected value appears for a local variable or parameter you
should first ascertain if that value was actually computed by your program, as opposed
to being incorrectly reported by the debugger. Record fields or array elements in an
object designated by an access value are generally less of a problem, once you have
ascertained that the access value is sensible. Typically, this means checking variables
in the preceding code and in the calling subprogram to verify that the value observed
is explainable from other values (one must apply the procedure recursively to those
other values); or re-running the code and stopping a little earlier (perhaps before the
call) and stepping to better see how the variable obtained the value in question; or
continuing to step from the point of the strange value to see if code motion had simply
moved the variable’s assignments later.

In light of such anomalies, a recommended technique is to use -O0 early in the software
development cycle, when extensive debugging capabilities are most needed, and then move
to -O1 and later -O2 as the debugger becomes less critical. Whether to use the -g switch in
the release version is a release management issue. Note that if you use -g you can then use
the strip program on the resulting executable, which removes both debugging information
and global symbols.

6.3.1.5 Inlining of Subprograms

A call to a subprogram in the current unit is inlined if all the following conditions are met:

Chapter 6: GNAT and Program Execution 205

* The optimization level is at least -O1.

* The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

* Any one of the following applies: pragma Inline is applied to the subprogram; the
subprogram is local to the unit and called once from within it; the subprogram is small
and optimization level -O2 is specified; optimization level -O3 is specified.

Calls to subprograms in withed units are normally not inlined. To achieve actual inlining
(that is, replacement of the call by the code in the body of the subprogram), the following
conditions must all be true:

* The optimization level is at least -O1.

* The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

* There is a pragma Inline for the subprogram.

* The -gnatn switch is used on the command line.

Even if all these conditions are met, it may not be possible for the compiler to inline the
call, due to the length of the body, or features in the body that make it impossible for the
compiler to do the inlining.

Note that specifying the -gnatn switch causes additional compilation dependencies. Con-
sider the following:

package R is

procedure Q;

pragma Inline (Q);

end R;

package body R is

...

end R;

with R;

procedure Main is

begin

...

R.Q;

end Main;

With the default behavior (no -gnatn switch specified), the compilation of the Main proce-
dure depends only on its own source, main.adb, and the spec of the package in file r.ads.
This means that editing the body of R does not require recompiling Main.

On the other hand, the call R.Q is not inlined under these circumstances. If the -gnatn

switch is present when Main is compiled, the call will be inlined if the body of Q is small
enough, but now Main depends on the body of R in r.adb as well as on the spec. This
means that if this body is edited, the main program must be recompiled. Note that this
extra dependency occurs whether or not the call is in fact inlined by gcc.

The use of front end inlining with -gnatN generates similar additional dependencies.

Chapter 6: GNAT and Program Execution 206

Note: The -fno-inline switch overrides all other conditions and ensures that no inlining
occurs, unless requested with pragma Inline Always for gcc back-ends. The extra depen-
dences resulting from -gnatn will still be active, even if this switch is used to suppress the
resulting inlining actions.

Note: The -fno-inline-functions switch can be used to prevent automatic inlining of
subprograms if -O3 is used.

Note: The -fno-inline-small-functions switch can be used to prevent automatic inlin-
ing of small subprograms if -O2 is used.

Note: The -fno-inline-functions-called-once switch can be used to prevent inlining
of subprograms local to the unit and called once from within it if -O1 is used.

Note regarding the use of -O3: -gnatn is made up of two sub-switches -gnatn1 and -gnatn2

that can be directly specified in lieu of it, -gnatn being translated into one of them based on
the optimization level. With -O2 or below, -gnatn is equivalent to -gnatn1 which activates
pragma Inline with moderate inlining across modules. With -O3, -gnatn is equivalent to
-gnatn2 which activates pragma Inline with full inlining across modules. If you have used
pragma Inline in appropriate cases, then it is usually much better to use -O2 and -gnatn

and avoid the use of -O3 which has the additional effect of inlining subprograms you did not
think should be inlined. We have found that the use of -O3 may slow down the compilation
and increase the code size by performing excessive inlining, leading to increased instruction
cache pressure from the increased code size and thus minor performance improvements. So
the bottom line here is that you should not automatically assume that -O3 is better than
-O2, and indeed you should use -O3 only if tests show that it actually improves performance
for your program.

6.3.1.6 Floating Point Operations

On almost all targets, GNAT maps Float and Long Float to the 32-bit and 64-bit stan-
dard IEEE floating-point representations, and operations will use standard IEEE arith-
metic as provided by the processor. On most, but not all, architectures, the attribute
Machine Overflows is False for these types, meaning that the semantics of overflow is
implementation-defined. In the case of GNAT, these semantics correspond to the normal
IEEE treatment of infinities and NaN (not a number) values. For example, 1.0 / 0.0 yields
plus infinitiy and 0.0 / 0.0 yields a NaN. By avoiding explicit overflow checks, the perfor-
mance is greatly improved on many targets. However, if required, floating-point overflow
can be enabled by the use of the pragma Check Float Overflow.

Another consideration that applies specifically to x86 32-bit architectures is which form of
floating-point arithmetic is used. By default the operations use the old style x86 floating-
point, which implements an 80-bit extended precision form (on these architectures the type
Long Long Float corresponds to that form). In addition, generation of efficient code in this
mode means that the extended precision form will be used for intermediate results. This
may be helpful in improving the final precision of a complex expression. However it means
that the results obtained on the x86 will be different from those on other architectures, and
for some algorithms, the extra intermediate precision can be detrimental.

In addition to this old-style floating-point, all modern x86 chips implement an alternative
floating-point operation model referred to as SSE2. In this model there is no extended form,
and furthermore execution performance is significantly enhanced. To force GNAT to use
this more modern form, use both of the switches:

Chapter 6: GNAT and Program Execution 207

-msse2 -mfpmath=sse

A unit compiled with these switches will automatically use the more efficient SSE2 instruc-
tion set for Float and Long Float operations. Note that the ABI has the same form for
both floating-point models, so it is permissible to mix units compiled with and without
these switches.

6.3.1.7 Vectorization of loops

You can take advantage of the auto-vectorizer present in the gcc back end to vectorize loops
with GNAT. The corresponding command line switch is -ftree-vectorize but, as it is
enabled by default at -O3 and other aggressive optimizations helpful for vectorization also
are enabled by default at this level, using -O3 directly is recommended.

You also need to make sure that the target architecture features a supported SIMD in-
struction set. For example, for the x86 architecture, you should at least specify -msse2

to get significant vectorization (but you don’t need to specify it for x86-64 as it is part of
the base 64-bit architecture). Similarly, for the PowerPC architecture, you should specify
-maltivec.

The preferred loop form for vectorization is the for iteration scheme. Loops with a while

iteration scheme can also be vectorized if they are very simple, but the vectorizer will quickly
give up otherwise. With either iteration scheme, the flow of control must be straight, in
particular no exit statement may appear in the loop body. The loop may however contain
a single nested loop, if it can be vectorized when considered alone:

A : array (1..4, 1..4) of Long_Float;

S : array (1..4) of Long_Float;

procedure Sum is

begin

for I in A’Range(1) loop

for J in A’Range(2) loop

S (I) := S (I) + A (I, J);

end loop;

end loop;

end Sum;

The vectorizable operations depend on the targeted SIMD instruction set, but the adding
and some of the multiplying operators are generally supported, as well as the logical oper-
ators for modular types. Note that compiling with -gnatp might well reveal cases where
some checks do thwart vectorization.

Type conversions may also prevent vectorization if they involve semantics that are not
directly supported by the code generator or the SIMD instruction set. A typical example
is direct conversion from floating-point to integer types. The solution in this case is to use
the following idiom:

Integer (S’Truncation (F))

if S is the subtype of floating-point object F.

In most cases, the vectorizable loops are loops that iterate over arrays. All kinds of array
types are supported, i.e. constrained array types with static bounds:

Chapter 6: GNAT and Program Execution 208

type Array_Type is array (1 .. 4) of Long_Float;

constrained array types with dynamic bounds:

type Array_Type is array (1 .. Q.N) of Long_Float;

type Array_Type is array (Q.K .. 4) of Long_Float;

type Array_Type is array (Q.K .. Q.N) of Long_Float;

or unconstrained array types:

type Array_Type is array (Positive range <>) of Long_Float;

The quality of the generated code decreases when the dynamic aspect of the array type
increases, the worst code being generated for unconstrained array types. This is so because,
the less information the compiler has about the bounds of the array, the more fallback code
it needs to generate in order to fix things up at run time.

It is possible to specify that a given loop should be subject to vectorization preferably to
other optimizations by means of pragma Loop_Optimize:

pragma Loop_Optimize (Vector);

placed immediately within the loop will convey the appropriate hint to the compiler for this
loop.

It is also possible to help the compiler generate better vectorized code for a given loop by
asserting that there are no loop-carried dependencies in the loop. Consider for example the
procedure:

type Arr is array (1 .. 4) of Long_Float;

procedure Add (X, Y : not null access Arr; R : not null access Arr) is

begin

for I in Arr’Range loop

R(I) := X(I) + Y(I);

end loop;

end;

By default, the compiler cannot unconditionally vectorize the loop because assigning to a
component of the array designated by R in one iteration could change the value read from
the components of the array designated by X or Y in a later iteration. As a result, the
compiler will generate two versions of the loop in the object code, one vectorized and the
other not vectorized, as well as a test to select the appropriate version at run time. This
can be overcome by another hint:

pragma Loop_Optimize (Ivdep);

placed immediately within the loop will tell the compiler that it can safely omit the non-
vectorized version of the loop as well as the run-time test.

6.3.1.8 Other Optimization Switches

Since GNAT uses the gcc back end, all the specialized gcc optimization switches are poten-
tially usable. These switches have not been extensively tested with GNAT but can generally
be expected to work. Examples of switches in this category are -funroll-loops and the
various target-specific -m options (in particular, it has been observed that -march=xxx

Chapter 6: GNAT and Program Execution 209

can significantly improve performance on appropriate machines). For full details of these
switches, see the Submodel Options section in the Hardware Models and Configurations
chapter of Using the GNU Compiler Collection (GCC).

6.3.1.9 Optimization and Strict Aliasing

The strong typing capabilities of Ada allow an optimizer to generate efficient code in situ-
ations where other languages would be forced to make worst case assumptions preventing
such optimizations. Consider the following example:

procedure R is

type Int1 is new Integer;

type Int2 is new Integer;

type Int1A is access Int1;

type Int2A is access Int2;

Int1V : Int1A;

Int2V : Int2A;

...

begin

...

for J in Data’Range loop

if Data (J) = Int1V.all then

Int2V.all := Int2V.all + 1;

end if;

end loop;

...

end R;

In this example, since the variable Int1V can only access objects of type Int1, and Int2V can
only access objects of type Int2, there is no possibility that the assignment to Int2V.all

affects the value of Int1V.all. This means that the compiler optimizer can "know" that
the value Int1V.all is constant for all iterations of the loop and avoid the extra memory
reference required to dereference it each time through the loop.

This kind of optimization, called strict aliasing analysis, is triggered by specifying an op-
timization level of -O2 or higher or -Os and allows GNAT to generate more efficient code
when access values are involved.

However, although this optimization is always correct in terms of the formal semantics of
the Ada Reference Manual, difficulties can arise if features like Unchecked_Conversion are
used to break the typing system. Consider the following complete program example:

package p1 is

type int1 is new integer;

type int2 is new integer;

type a1 is access int1;

type a2 is access int2;

end p1;

with p1; use p1;

package p2 is

Chapter 6: GNAT and Program Execution 210

function to_a2 (Input : a1) return a2;

end p2;

with Unchecked_Conversion;

package body p2 is

function to_a2 (Input : a1) return a2 is

function to_a2u is

new Unchecked_Conversion (a1, a2);

begin

return to_a2u (Input);

end to_a2;

end p2;

with p2; use p2;

with p1; use p1;

with Text_IO; use Text_IO;

procedure m is

v1 : a1 := new int1;

v2 : a2 := to_a2 (v1);

begin

v1.all := 1;

v2.all := 0;

put_line (int1’image (v1.all));

end;

This program prints out 0 in -O0 or -O1 mode, but it prints out 1 in -O2 mode. That’s
because in strict aliasing mode, the compiler can and does assume that the assignment to
v2.all could not affect the value of v1.all, since different types are involved.

This behavior is not a case of non-conformance with the standard, since the Ada RM
specifies that an unchecked conversion where the resulting bit pattern is not a correct value
of the target type can result in an abnormal value and attempting to reference an abnormal
value makes the execution of a program erroneous. That’s the case here since the result does
not point to an object of type int2. This means that the effect is entirely unpredictable.

However, although that explanation may satisfy a language lawyer, in practice an applica-
tions programmer expects an unchecked conversion involving pointers to create true aliases
and the behavior of printing 1 seems plain wrong. In this case, the strict aliasing optimiza-
tion is unwelcome.

Indeed the compiler recognizes this possibility, and the unchecked conversion generates a
warning:

p2.adb:5:07: warning: possible aliasing problem with type "a2"

p2.adb:5:07: warning: use -fno-strict-aliasing switch for references

p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"

Unfortunately the problem is recognized when compiling the body of package p2, but the
actual "bad" code is generated while compiling the body of m and this latter compilation
does not see the suspicious Unchecked_Conversion.

Chapter 6: GNAT and Program Execution 211

As implied by the warning message, there are approaches you can use to avoid the unwanted
strict aliasing optimization in a case like this.

One possibility is to simply avoid the use of -O2, but that is a bit drastic, since it throws
away a number of useful optimizations that do not involve strict aliasing assumptions.

A less drastic approach is to compile the program using the option -fno-strict-aliasing.
Actually it is only the unit containing the dereferencing of the suspicious pointer that needs
to be compiled. So in this case, if we compile unit m with this switch, then we get the
expected value of zero printed. Analyzing which units might need the switch can be painful,
so a more reasonable approach is to compile the entire program with options -O2 and -

fno-strict-aliasing. If the performance is satisfactory with this combination of options,
then the advantage is that the entire issue of possible "wrong" optimization due to strict
aliasing is avoided.

To avoid the use of compiler switches, the configuration pragma No_Strict_Aliasing with
no parameters may be used to specify that for all access types, the strict aliasing optimiza-
tion should be suppressed.

However, these approaches are still overkill, in that they causes all manipulations of all
access values to be deoptimized. A more refined approach is to concentrate attention on
the specific access type identified as problematic.

First, if a careful analysis of uses of the pointer shows that there are no possible prob-
lematic references, then the warning can be suppressed by bracketing the instantiation of
Unchecked_Conversion to turn the warning off:

pragma Warnings (Off);

function to_a2u is

new Unchecked_Conversion (a1, a2);

pragma Warnings (On);

Of course that approach is not appropriate for this particular example, since indeed there
is a problematic reference. In this case we can take one of two other approaches.

The first possibility is to move the instantiation of unchecked conversion to the unit in which
the type is declared. In this example, we would move the instantiation of Unchecked_
Conversion from the body of package p2 to the spec of package p1. Now the warning
disappears. That’s because any use of the access type knows there is a suspicious unchecked
conversion, and the strict aliasing optimization is automatically suppressed for the type.

If it is not practical to move the unchecked conversion to the same unit in which the
destination access type is declared (perhaps because the source type is not visible in that
unit), you may use pragma No_Strict_Aliasing for the type. This pragma must occur in
the same declarative sequence as the declaration of the access type:

type a2 is access int2;

pragma No_Strict_Aliasing (a2);

Here again, the compiler now knows that the strict aliasing optimization should be sup-
pressed for any reference to type a2 and the expected behavior is obtained.

Finally, note that although the compiler can generate warnings for simple cases of unchecked
conversions, there are tricker and more indirect ways of creating type incorrect aliases
which the compiler cannot detect. Examples are the use of address overlays and unchecked
conversions involving composite types containing access types as components. In such cases,

Chapter 6: GNAT and Program Execution 212

no warnings are generated, but there can still be aliasing problems. One safe coding practice
is to forbid the use of address clauses for type overlaying, and to allow unchecked conversion
only for primitive types. This is not really a significant restriction since any possible desired
effect can be achieved by unchecked conversion of access values.

The aliasing analysis done in strict aliasing mode can certainly have significant benefits.
We have seen cases of large scale application code where the time is increased by up to
5% by turning this optimization off. If you have code that includes significant usage of
unchecked conversion, you might want to just stick with -O1 and avoid the entire issue. If
you get adequate performance at this level of optimization level, that’s probably the safest
approach. If tests show that you really need higher levels of optimization, then you can
experiment with -O2 and -O2 -fno-strict-aliasing to see how much effect this has on
size and speed of the code. If you really need to use -O2 with strict aliasing in effect, then
you should review any uses of unchecked conversion of access types, particularly if you are
getting the warnings described above.

6.3.1.10 Aliased Variables and Optimization

There are scenarios in which programs may use low level techniques to modify variables that
otherwise might be considered to be unassigned. For example, a variable can be passed to
a procedure by reference, which takes the address of the parameter and uses the address
to modify the variable’s value, even though it is passed as an IN parameter. Consider the
following example:

procedure P is

Max_Length : constant Natural := 16;

type Char_Ptr is access all Character;

procedure Get_String(Buffer: Char_Ptr; Size : Integer);

pragma Import (C, Get_String, "get_string");

Name : aliased String (1 .. Max_Length) := (others => ’ ’);

Temp : Char_Ptr;

function Addr (S : String) return Char_Ptr is

function To_Char_Ptr is

new Ada.Unchecked_Conversion (System.Address, Char_Ptr);

begin

return To_Char_Ptr (S (S’First)’Address);

end;

begin

Temp := Addr (Name);

Get_String (Temp, Max_Length);

end;

where Get String is a C function that uses the address in Temp to modify the variable
Name. This code is dubious, and arguably erroneous, and the compiler would be entitled to
assume that Name is never modified, and generate code accordingly.

Chapter 6: GNAT and Program Execution 213

However, in practice, this would cause some existing code that seems to work with no
optimization to start failing at high levels of optimzization.

What the compiler does for such cases is to assume that marking a variable as aliased
indicates that some "funny business" may be going on. The optimizer recognizes the aliased
keyword and inhibits optimizations that assume the value cannot be assigned. This means
that the above example will in fact "work" reliably, that is, it will produce the expected
results.

6.3.1.11 Atomic Variables and Optimization

There are two considerations with regard to performance when atomic variables are used.

First, the RM only guarantees that access to atomic variables be atomic, it has nothing to
say about how this is achieved, though there is a strong implication that this should not be
achieved by explicit locking code. Indeed GNAT will never generate any locking code for
atomic variable access (it will simply reject any attempt to make a variable or type atomic
if the atomic access cannot be achieved without such locking code).

That being said, it is important to understand that you cannot assume that the entire
variable will always be accessed. Consider this example:

type R is record

A,B,C,D : Character;

end record;

for R’Size use 32;

for R’Alignment use 4;

RV : R;

pragma Atomic (RV);

X : Character;

...

X := RV.B;

You cannot assume that the reference to RV.B will read the entire 32-bit variable with a
single load instruction. It is perfectly legitimate if the hardware allows it to do a byte read
of just the B field. This read is still atomic, which is all the RM requires. GNAT can and
does take advantage of this, depending on the architecture and optimization level. Any
assumption to the contrary is non-portable and risky. Even if you examine the assembly
language and see a full 32-bit load, this might change in a future version of the compiler.

If your application requires that all accesses to RV in this example be full 32-bit loads, you
need to make a copy for the access as in:

declare

RV_Copy : constant R := RV;

begin

X := RV_Copy.B;

end;

Now the reference to RV must read the whole variable. Actually one can imagine some
compiler which figures out that the whole copy is not required (because only the B field is
actually accessed), but GNAT certainly won’t do that, and we don’t know of any compiler

Chapter 6: GNAT and Program Execution 214

that would not handle this right, and the above code will in practice work portably across
all architectures (that permit the Atomic declaration).

The second issue with atomic variables has to do with the possible requirement of gener-
ating synchronization code. For more details on this, consult the sections on the pragmas
Enable/Disable Atomic Synchronization in the GNAT Reference Manual. If performance
is critical, and such synchronization code is not required, it may be useful to disable it.

6.3.1.12 Passive Task Optimization

A passive task is one which is sufficiently simple that in theory a compiler could recognize
it an implement it efficiently without creating a new thread. The original design of Ada
83 had in mind this kind of passive task optimization, but only a few Ada 83 compilers
attempted it. The problem was that it was difficult to determine the exact conditions under
which the optimization was possible. The result is a very fragile optimization where a very
minor change in the program can suddenly silently make a task non-optimizable.

With the revisiting of this issue in Ada 95, there was general agreement that this approach
was fundamentally flawed, and the notion of protected types was introduced. When using
protected types, the restrictions are well defined, and you KNOW that the operations will
be optimized, and furthermore this optimized performance is fully portable.

Although it would theoretically be possible for GNAT to attempt to do this optimization,
but it really doesn’t make sense in the context of Ada 95, and none of the Ada 95 compilers
implement this optimization as far as we know. In particular GNAT never attempts to
perform this optimization.

In any new Ada 95 code that is written, you should always use protected types in place of
tasks that might be able to be optimized in this manner. Of course this does not help if you
have legacy Ada 83 code that depends on this optimization, but it is unusual to encounter
a case where the performance gains from this optimization are significant.

Your program should work correctly without this optimization. If you have performance
problems, then the most practical approach is to figure out exactly where these performance
problems arise, and update those particular tasks to be protected types. Note that typically
clients of the tasks who call entries, will not have to be modified, only the task definition
itself.

6.3.2 Text_IO Suggestions

The Ada.Text_IO package has fairly high overheads due in part to the requirement of
maintaining page and line counts. If performance is critical, a recommendation is to use
Stream_IO instead of Text_IO for volume output, since this package has less overhead.

If Text_IO must be used, note that by default output to the standard output and standard
error files is unbuffered (this provides better behavior when output statements are used for
debugging, or if the progress of a program is observed by tracking the output, e.g. by using
the Unix tail -f command to watch redirected output.

If you are generating large volumes of output with Text_IO and performance is an important
factor, use a designated file instead of the standard output file, or change the standard
output file to be buffered using Interfaces.C_Streams.setvbuf.

Chapter 6: GNAT and Program Execution 215

6.3.3 Reducing Size of Executables with Unused
Subprogram/Data Elimination

This section describes how you can eliminate unused subprograms and data from your
executable just by setting options at compilation time.

6.3.3.1 About unused subprogram/data elimination

By default, an executable contains all code and data of its composing objects (directly linked
or coming from statically linked libraries), even data or code never used by this executable.

This feature will allow you to eliminate such unused code from your executable, making it
smaller (in disk and in memory).

This functionality is available on all Linux platforms except for the IA-64 architecture and
on all cross platforms using the ELF binary file format. In both cases GNU binutils version
2.16 or later are required to enable it.

6.3.3.2 Compilation options

The operation of eliminating the unused code and data from the final executable is directly
performed by the linker.

In order to do this, it has to work with objects compiled with the following options: -

ffunction-sections -fdata-sections.

These options are usable with C and Ada files. They will place respectively each function
or data in a separate section in the resulting object file.

Once the objects and static libraries are created with these options, the linker can perform
the dead code elimination. You can do this by setting the -Wl,--gc-sections option to
gcc command or in the -largs section of gnatmake. This will perform a garbage collection
of code and data never referenced.

If the linker performs a partial link (-r linker option), then you will need to provide the
entry point using the -e / --entry linker option.

Note that objects compiled without the -ffunction-sections and -fdata-sections op-
tions can still be linked with the executable. However, no dead code elimination will be
performed on those objects (they will be linked as is).

The GNAT static library is now compiled with -ffunction-sections and -fdata-sections on
some platforms. This allows you to eliminate the unused code and data of the GNAT library
from your executable.

6.3.3.3 Example of unused subprogram/data elimination

Here is a simple example:

with Aux;

procedure Test is

begin

Aux.Used (10);

end Test;

package Aux is

Used_Data : Integer;

Chapter 6: GNAT and Program Execution 216

Unused_Data : Integer;

procedure Used (Data : Integer);

procedure Unused (Data : Integer);

end Aux;

package body Aux is

procedure Used (Data : Integer) is

begin

Used_Data := Data;

end Used;

procedure Unused (Data : Integer) is

begin

Unused_Data := Data;

end Unused;

end Aux;

Unused and Unused_Data are never referenced in this code excerpt, and hence they may be
safely removed from the final executable.

$ gnatmake test

$ nm test | grep used

020015f0 T aux__unused

02005d88 B aux__unused_data

020015cc T aux__used

02005d84 B aux__used_data

$ gnatmake test -cargs -fdata-sections -ffunction-sections \\

-largs -Wl,--gc-sections

$ nm test | grep used

02005350 T aux__used

0201ffe0 B aux__used_data

It can be observed that the procedure Unused and the object Unused_Data are removed by
the linker when using the appropriate options.

6.4 Overflow Check Handling in GNAT

This section explains how to control the handling of overflow checks.

6.4.1 Background

Overflow checks are checks that the compiler may make to ensure that intermediate results
are not out of range. For example:

A : Integer;

...

A := A + 1;

Chapter 6: GNAT and Program Execution 217

If A has the value Integer’Last, then the addition may cause overflow since the result is
out of range of the type Integer. In this case Constraint_Error will be raised if checks
are enabled.

A trickier situation arises in examples like the following:

A, C : Integer;

...

A := (A + 1) + C;

where A is Integer’Last and C is -1. Now the final result of the expression on the right hand
side is Integer’Last which is in range, but the question arises whether the intermediate
addition of (A + 1) raises an overflow error.

The (perhaps surprising) answer is that the Ada language definition does not answer this
question. Instead it leaves it up to the implementation to do one of two things if overflow
checks are enabled.

* raise an exception (Constraint_Error), or

* yield the correct mathematical result which is then used in subsequent operations.

If the compiler chooses the first approach, then the assignment of this example will indeed
raise Constraint_Error if overflow checking is enabled, or result in erroneous execution if
overflow checks are suppressed.

But if the compiler chooses the second approach, then it can perform both additions yielding
the correct mathematical result, which is in range, so no exception will be raised, and the
right result is obtained, regardless of whether overflow checks are suppressed.

Note that in the first example an exception will be raised in either case, since if the compiler
gives the correct mathematical result for the addition, it will be out of range of the target
type of the assignment, and thus fails the range check.

This lack of specified behavior in the handling of overflow for intermediate results is a source
of non-portability, and can thus be problematic when programs are ported. Most typically
this arises in a situation where the original compiler did not raise an exception, and then
the application is moved to a compiler where the check is performed on the intermediate
result and an unexpected exception is raised.

Furthermore, when using Ada 2012’s preconditions and other assertion forms, another issue
arises. Consider:

procedure P (A, B : Integer) with

Pre => A + B <= Integer’Last;

One often wants to regard arithmetic in a context like this from a mathematical point of
view. So for example, if the two actual parameters for a call to P are both Integer’Last,
then the precondition should be regarded as False. If we are executing in a mode with run-
time checks enabled for preconditions, then we would like this precondition to fail, rather
than raising an exception because of the intermediate overflow.

However, the language definition leaves the specification of whether the above condition fails
(raising Assert_Error) or causes an intermediate overflow (raising Constraint_Error) up
to the implementation.

The situation is worse in a case such as the following:

Chapter 6: GNAT and Program Execution 218

procedure Q (A, B, C : Integer) with

Pre => A + B + C <= Integer’Last;

Consider the call

Q (A => Integer’Last, B => 1, C => -1);

From a mathematical point of view the precondition is True, but at run time we may (but
are not guaranteed to) get an exception raised because of the intermediate overflow (and
we really would prefer this precondition to be considered True at run time).

6.4.2 Management of Overflows in GNAT

To deal with the portability issue, and with the problem of mathematical versus run-time
interpretation of the expressions in assertions, GNAT provides comprehensive control over
the handling of intermediate overflow. GNAT can operate in three modes, and furthemore,
permits separate selection of operating modes for the expressions within assertions (here the
term ’assertions’ is used in the technical sense, which includes preconditions and so forth)
and for expressions appearing outside assertions.

The three modes are:

* Use base type for intermediate operations (STRICT)

In this mode, all intermediate results for predefined arithmetic operators are computed
using the base type, and the result must be in range of the base type. If this is not the
case then either an exception is raised (if overflow checks are enabled) or the execution
is erroneous (if overflow checks are suppressed). This is the normal default mode.

* Most intermediate overflows avoided (MINIMIZED)

In this mode, the compiler attempts to avoid intermediate overflows by using a larger
integer type, typically Long_Long_Integer, as the type in which arithmetic is per-
formed for predefined arithmetic operators. This may be slightly more expensive at
run time (compared to suppressing intermediate overflow checks), though the cost is
negligible on modern 64-bit machines. For the examples given earlier, no intermedi-
ate overflows would have resulted in exceptions, since the intermediate results are all
in the range of Long_Long_Integer (typically 64-bits on nearly all implementations
of GNAT). In addition, if checks are enabled, this reduces the number of checks that
must be made, so this choice may actually result in an improvement in space and time
behavior.

However, there are cases where Long_Long_Integer is not large enough, consider the
following example:

procedure R (A, B, C, D : Integer) with

Pre => (A**2 * B**2) / (C**2 * D**2) <= 10;

where A= B= C= D= Integer’Last. Now the intermediate results are out of the range
of Long_Long_Integer even though the final result is in range and the precondition is
True (from a mathematical point of view). In such a case, operating in this mode, an
overflow occurs for the intermediate computation (which is why this mode says most
intermediate overflows are avoided). In this case, an exception is raised if overflow
checks are enabled, and the execution is erroneous if overflow checks are suppressed.

* All intermediate overflows avoided (ELIMINATED)

In this mode, the compiler avoids all intermediate overflows by using arbitrary precision
arithmetic as required. In this mode, the above example with A**2 * B**2 would not

Chapter 6: GNAT and Program Execution 219

cause intermediate overflow, because the intermediate result would be evaluated using
sufficient precision, and the result of evaluating the precondition would be True.

This mode has the advantage of avoiding any intermediate overflows, but at the expense
of significant run-time overhead, including the use of a library (included automatically
in this mode) for multiple-precision arithmetic.

This mode provides cleaner semantics for assertions, since now the run-time behavior
emulates true arithmetic behavior for the predefined arithmetic operators, meaning
that there is never a conflict between the mathematical view of the assertion, and its
run-time behavior.

Note that in this mode, the behavior is unaffected by whether or not overflow checks
are suppressed, since overflow does not occur. It is possible for gigantic intermediate
expressions to raise Storage_Error as a result of attempting to compute the results of
such expressions (e.g. Integer’Last ** Integer’Last) but overflow is impossible.

Note that these modes apply only to the evaluation of predefined arithmetic, membership,
and comparison operators for signed integer arithmetic.

For fixed-point arithmetic, checks can be suppressed. But if checks are enabled then fixed-
point values are always checked for overflow against the base type for intermediate expres-
sions (that is such checks always operate in the equivalent of STRICT mode).

For floating-point, on nearly all architectures, Machine_Overflows is False, and IEEE in-
finities are generated, so overflow exceptions are never raised. If you want to avoid infinities,
and check that final results of expressions are in range, then you can declare a constrained
floating-point type, and range checks will be carried out in the normal manner (with infinite
values always failing all range checks).

6.4.3 Specifying the Desired Mode

The desired mode of for handling intermediate overflow can be specified using either the
Overflow_Mode pragma or an equivalent compiler switch. The pragma has the form

pragma Overflow_Mode ([General =>] MODE [, [Assertions =>] MODE]);

where MODE is one of

* STRICT: intermediate overflows checked (using base type)

* MINIMIZED: minimize intermediate overflows

* ELIMINATED: eliminate intermediate overflows

The case is ignored, so MINIMIZED, Minimized and minimized all have the same effect.

If only the General parameter is present, then the given MODE applies to expressions both
within and outside assertions. If both arguments are present, then General applies to
expressions outside assertions, and Assertions applies to expressions within assertions.
For example:

pragma Overflow_Mode

(General => Minimized, Assertions => Eliminated);

specifies that general expressions outside assertions be evaluated in ’minimize intermediate
overflows’ mode, and expressions within assertions be evaluated in ’eliminate intermediate
overflows’ mode. This is often a reasonable choice, avoiding excessive overhead outside
assertions, but assuring a high degree of portability when importing code from another

Chapter 6: GNAT and Program Execution 220

compiler, while incurring the extra overhead for assertion expressions to ensure that the
behavior at run time matches the expected mathematical behavior.

The Overflow_Mode pragma has the same scoping and placement rules as pragma Suppress,
so it can occur either as a configuration pragma, specifying a default for the whole program,
or in a declarative scope, where it applies to the remaining declarations and statements in
that scope.

Note that pragma Overflow_Mode does not affect whether overflow checks are enabled or
suppressed. It only controls the method used to compute intermediate values. To control
whether overflow checking is enabled or suppressed, use pragma Suppress or Unsuppress
in the usual manner.

Additionally, a compiler switch -gnato? or -gnato?? can be used to control the checking
mode default (which can be subsequently overridden using pragmas).

Here ? is one of the digits 1 through 3:

1 use base type for intermediate operations (STRICT)

2 minimize intermediate overflows (MINIMIZED)

3 eliminate intermediate overflows (ELIMINATED)

As with the pragma, if only one digit appears then it applies to all cases; if two digits are
given, then the first applies outside assertions, and the second within assertions. Thus the
equivalent of the example pragma above would be -gnato23.

If no digits follow the -gnato, then it is equivalent to -gnato11, causing all intermediate
operations to be computed using the base type (STRICT mode).

6.4.4 Default Settings

The default mode for overflow checks is

General => Strict

which causes all computations both inside and outside assertions to use the base type.

This retains compatibility with previous versions of GNAT which suppressed overflow checks
by default and always used the base type for computation of intermediate results.

The switch -gnato (with no digits following) is equivalent to

General => Strict

which causes overflow checking of all intermediate overflows both inside and outside asser-
tions against the base type.

The pragma Suppress (Overflow_Check) disables overflow checking, but it has no effect
on the method used for computing intermediate results.

The pragma Unsuppress (Overflow_Check) enables overflow checking, but it has no effect
on the method used for computing intermediate results.

6.4.5 Implementation Notes

In practice on typical 64-bit machines, the MINIMIZED mode is reasonably efficient, and can
be generally used. It also helps to ensure compatibility with code imported from some other
compiler to GNAT.

Chapter 6: GNAT and Program Execution 221

Setting all intermediate overflows checking (CHECKED mode) makes sense if you want to
make sure that your code is compatible with any other possible Ada implementation. This
may be useful in ensuring portability for code that is to be exported to some other compiler
than GNAT.

The Ada standard allows the reassociation of expressions at the same precedence level
if no parentheses are present. For example, A+B+C parses as though it were (A+B)+C,
but the compiler can reintepret this as A+(B+C), possibly introducing or eliminating an
overflow exception. The GNAT compiler never takes advantage of this freedom, and the
expression A+B+C will be evaluated as (A+B)+C. If you need the other order, you can write
the parentheses explicitly A+(B+C) and GNAT will respect this order.

The use of ELIMINATEDmode will cause the compiler to automatically include an appropriate
arbitrary precision integer arithmetic package. The compiler will make calls to this package,
though only in cases where it cannot be sure that Long_Long_Integer is sufficient to guard
against intermediate overflows. This package does not use dynamic allocation, but it does
use the secondary stack, so an appropriate secondary stack package must be present (this
is always true for standard full Ada, but may require specific steps for restricted run times
such as ZFP).

Although ELIMINATED mode causes expressions to use arbitrary precision arithmetic, avoid-
ing overflow, the final result must be in an appropriate range. This is true even if the
final result is of type [Long_[Long_]]Integer’Base, which still has the same bounds as
its associated constrained type at run-time.

Currently, the ELIMINATED mode is only available on target platforms for which Long_Long_

Integer is 64-bits (nearly all GNAT platforms).

6.5 Performing Dimensionality Analysis in GNAT

The GNAT compiler supports dimensionality checking. The user can specify physical units
for objects, and the compiler will verify that uses of these objects are compatible with their
dimensions, in a fashion that is familiar to engineering practice. The dimensions of algebraic
expressions (including powers with static exponents) are computed from their constituents.

This feature depends on Ada 2012 aspect specifications, and is available from version 7.0.1
of GNAT onwards. The GNAT-specific aspect Dimension_System allows you to define a
system of units; the aspect Dimension then allows the user to declare dimensioned quantities
within a given system. (These aspects are described in the Implementation Defined Aspects
chapter of the GNAT Reference Manual).

The major advantage of this model is that it does not require the declaration of multiple
operators for all possible combinations of types: it is only necessary to use the proper
subtypes in object declarations.

The simplest way to impose dimensionality checking on a computation is to make use of
one of the instantiations of the package System.Dim.Generic_Mks, which are part of the
GNAT library. This generic package defines a floating-point type MKS_Type, for which a
sequence of dimension names are specified, together with their conventional abbreviations.
The following should be read together with the full specification of the package, in file
s-digemk.ads.

type Mks_Type is new Float_Type

Chapter 6: GNAT and Program Execution 222

with

Dimension_System => (

(Unit_Name => Meter, Unit_Symbol => ’m’, Dim_Symbol => ’L’),

(Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => ’M’),

(Unit_Name => Second, Unit_Symbol => ’s’, Dim_Symbol => ’T’),

(Unit_Name => Ampere, Unit_Symbol => ’A’, Dim_Symbol => ’I’),

(Unit_Name => Kelvin, Unit_Symbol => ’K’, Dim_Symbol => "Theta"),

(Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => ’N’),

(Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => ’J’));

The package then defines a series of subtypes that correspond to these conventional units.
For example:

subtype Length is Mks_Type

with

Dimension => (Symbol => ’m’, Meter => 1, others => 0);

and similarly for Mass, Time, Electric_Current, Thermodynamic_Temperature, Amount_
Of_Substance, and Luminous_Intensity (the standard set of units of the SI system).

The package also defines conventional names for values of each unit, for example:

m : constant Length := 1.0;

kg : constant Mass := 1.0;

s : constant Time := 1.0;

A : constant Electric_Current := 1.0;

as well as useful multiples of these units:

cm : constant Length := 1.0E-02;

g : constant Mass := 1.0E-03;

min : constant Time := 60.0;

day : constant Time := 60.0 * 24.0 * min;

...

There are three instantiations of System.Dim.Generic_Mks defined in the GNAT library:

* System.Dim.Float_Mks based on Float defined in s-diflmk.ads.

* System.Dim.Long_Mks based on Long_Float defined in s-dilomk.ads.

* System.Dim.Mks based on Long_Long_Float defined in s-dimmks.ads.

Using one of these packages, you can then define a derived unit by providing the aspect
that specifies its dimensions within the MKS system, as well as the string to be used for
output of a value of that unit:

subtype Acceleration is Mks_Type

with Dimension => ("m/sec^2",

Meter => 1,

Second => -2,

others => 0);

Here is a complete example of use:

with System.Dim.MKS; use System.Dim.Mks;

with System.Dim.Mks_IO; use System.Dim.Mks_IO;

with Text_IO; use Text_IO;

Chapter 6: GNAT and Program Execution 223

procedure Free_Fall is

subtype Acceleration is Mks_Type

with Dimension => ("m/sec^2", 1, 0, -2, others => 0);

G : constant acceleration := 9.81 * m / (s ** 2);

T : Time := 10.0*s;

Distance : Length;

begin

Put ("Gravitational constant: ");

Put (G, Aft => 2, Exp => 0); Put_Line ("");

Distance := 0.5 * G * T ** 2;

Put ("distance travelled in 10 seconds of free fall ");

Put (Distance, Aft => 2, Exp => 0);

Put_Line ("");

end Free_Fall;

Execution of this program yields:

Gravitational constant: 9.81 m/sec^2

distance travelled in 10 seconds of free fall 490.50 m

However, incorrect assignments such as:

Distance := 5.0;

Distance := 5.0 * kg;

are rejected with the following diagnoses:

Distance := 5.0;

>>> dimensions mismatch in assignment

>>> left-hand side has dimension [L]

>>> right-hand side is dimensionless

Distance := 5.0 * kg:

>>> dimensions mismatch in assignment

>>> left-hand side has dimension [L]

>>> right-hand side has dimension [M]

The dimensions of an expression are properly displayed, even if there is no explicit subtype
for it. If we add to the program:

Put ("Final velocity: ");

Put (G * T, Aft =>2, Exp =>0);

Put_Line ("");

then the output includes:

Final velocity: 98.10 m.s**(-1)

The type Mks_Type is said to be a dimensionable type since it has a Dimension_System

aspect, and the subtypes Length, Mass, etc., are said to be dimensioned subtypes since each
one has a Dimension aspect.

The Dimension aspect of a dimensioned subtype S defines a mapping from the base type’s
Unit Names to integer (or, more generally, rational) values. This mapping is the dimension
vector (also referred to as the dimensionality) for that subtype, denoted by DV(S), and

Chapter 6: GNAT and Program Execution 224

thus for each object of that subtype. Intuitively, the value specified for each Unit_Name is
the exponent associated with that unit; a zero value means that the unit is not used. For
example:

declare

Acc : Acceleration;

...

begin

...

end;

Here DV(Acc) = DV(Acceleration) = (Meter=>1, Kilogram=>0, Second=>-2,

Ampere=>0, Kelvin=>0, Mole=>0, Candela=>0). Symbolically, we can express this as
Meter / Second**2.

The dimension vector of an arithmetic expression is synthesized from the dimension vectors
of its components, with compile-time dimensionality checks that help prevent mismatches
such as using an Acceleration where a Length is required.

The dimension vector of the result of an arithmetic expression expr, or DV(expr), is defined
as follows, assuming conventional mathematical definitions for the vector operations that
are used:

* If expr is of the type universal real, or is not of a dimensioned subtype, then expr is
dimensionless; DV(expr) is the empty vector.

* DV(op expr), where op is a unary operator, is DV(expr)

* DV(expr1 op expr2) where op is "+" or "-" is DV(expr1) provided that DV(expr1) =
DV(expr2). If this condition is not met then the construct is illegal.

* DV(expr1 * expr2) is DV(expr1) + DV(expr2), and DV(expr1 / expr2) = DV(expr1) -
DV(expr2). In this context if one of the exprs is dimensionless then its empty dimension
vector is treated as (others => 0).

* DV(expr ** power) is power * DV(expr), provided that power is a static rational value.
If this condition is not met then the construct is illegal.

Note that, by the above rules, it is illegal to use binary "+" or "-" to combine a dimensioned
and dimensionless value. Thus an expression such as acc-10.0 is illegal, where acc is an
object of subtype Acceleration.

The dimensionality checks for relationals use the same rules as for "+" and "-", except when
comparing to a literal; thus

acc > len

is equivalent to

acc-len > 0.0

and is thus illegal, but

acc > 10.0

is accepted with a warning. Analogously a conditional expression requires the same dimen-
sion vector for each branch (with no exception for literals).

The dimension vector of a type conversion T(expr) is defined as follows, based on the nature
of T:

Chapter 6: GNAT and Program Execution 225

* If T is a dimensioned subtype then DV(T(expr)) is DV(T) provided that either expr is
dimensionless or DV(T) = DV(expr). The conversion is illegal if expr is dimensioned and
DV(expr) /= DV(T). Note that vector equality does not require that the corresponding
Unit Names be the same.

As a consequence of the above rule, it is possible to convert between different dimension
systems that follow the same international system of units, with the seven physical
components given in the standard order (length, mass, time, etc.). Thus a length in
meters can be converted to a length in inches (with a suitable conversion factor) but
cannot be converted, for example, to a mass in pounds.

* If T is the base type for expr (and the dimensionless root type of the dimension system),
then DV(T(expr)) is DV(expr). Thus, if expr is of a dimensioned subtype of T, the
conversion may be regarded as a "view conversion" that preserves dimensionality.

This rule makes it possible to write generic code that can be instantiated with com-
patible dimensioned subtypes. The generic unit will contain conversions that will con-
sequently be present in instantiations, but conversions to the base type will preserve
dimensionality and make it possible to write generic code that is correct with respect
to dimensionality.

* Otherwise (i.e., T is neither a dimensioned subtype nor a dimensionable base type),
DV(T(expr)) is the empty vector. Thus a dimensioned value can be explicitly converted
to a non-dimensioned subtype, which of course then escapes dimensionality analysis.

The dimension vector for a type qualification T’(expr) is the same as for the type conversion
T(expr).

An assignment statement

Source := Target;

requires DV(Source) = DV(Target), and analogously for parameter passing (the dimen-
sion vector for the actual parameter must be equal to the dimension vector for the formal
parameter).

6.6 Stack Related Facilities

This section describes some useful tools associated with stack checking and analysis. In
particular, it deals with dynamic and static stack usage measurements.

6.6.1 Stack Overflow Checking

For most operating systems, gcc does not perform stack overflow checking by default. This
means that if the main environment task or some other task exceeds the available stack
space, then unpredictable behavior will occur. Most native systems offer some level of
protection by adding a guard page at the end of each task stack. This mechanism is usually
not enough for dealing properly with stack overflow situations because a large local variable
could "jump" above the guard page. Furthermore, when the guard page is hit, there may
not be any space left on the stack for executing the exception propagation code. Enabling
stack checking avoids such situations.

To activate stack checking, compile all units with the gcc option -fstack-check. For
example:

Chapter 6: GNAT and Program Execution 226

$ gcc -c -fstack-check package1.adb

Units compiled with this option will generate extra instructions to check that any use of
the stack (for procedure calls or for declaring local variables in declare blocks) does not
exceed the available stack space. If the space is exceeded, then a Storage_Error exception
is raised.

For declared tasks, the default stack size is defined by the GNAT runtime, whose size may
be modified at bind time through the -d bind switch ([Switches for gnatbind], page 155).
Task specific stack sizes may be set using the Storage_Size pragma.

For the environment task, the stack size is determined by the operating system. Conse-
quently, to modify the size of the environment task please refer to your operating system
documentation.

6.6.2 Static Stack Usage Analysis

A unit compiled with -fstack-usage will generate an extra file that specifies the maximum
amount of stack used, on a per-function basis. The file has the same basename as the target
object file with a .su extension. Each line of this file is made up of three fields:

* The name of the function.

* A number of bytes.

* One or more qualifiers: static, dynamic, bounded.

The second field corresponds to the size of the known part of the function frame.

The qualifier static means that the function frame size is purely static. It usually means
that all local variables have a static size. In this case, the second field is a reliable measure
of the function stack utilization.

The qualifier dynamic means that the function frame size is not static. It happens mainly
when some local variables have a dynamic size. When this qualifier appears alone, the
second field is not a reliable measure of the function stack analysis. When it is qualified
with bounded, it means that the second field is a reliable maximum of the function stack
utilization.

A unit compiled with -Wstack-usage will issue a warning for each subprogram whose stack
usage might be larger than the specified amount of bytes. The wording is in keeping with
the qualifier documented above.

6.6.3 Dynamic Stack Usage Analysis

It is possible to measure the maximum amount of stack used by a task, by adding a switch
to gnatbind, as:

$ gnatbind -u0 file

With this option, at each task termination, its stack usage is output on stderr. Note
that this switch is not compatible with tools like Valgrind and DrMemory; they will report
errors.

It is not always convenient to output the stack usage when the program is still running.
Hence, it is possible to delay this output until program termination. for a given number of
tasks specified as the argument of the -u option. For instance:

Chapter 6: GNAT and Program Execution 227

$ gnatbind -u100 file

will buffer the stack usage information of the first 100 tasks to terminate and output this
info at program termination. Results are displayed in four columns:

Index | Task Name | Stack Size | Stack Usage

where:

* Index is a number associated with each task.

* Task Name is the name of the task analyzed.

* Stack Size is the maximum size for the stack.

* Stack Usage is the measure done by the stack analyzer. In order to prevent overflow,
the stack is not entirely analyzed, and it’s not possible to know exactly how much has
actually been used.

By default the environment task stack, the stack that contains the main unit, is not pro-
cessed. To enable processing of the environment task stack, the environment variable
GNAT STACK LIMIT needs to be set to the maximum size of the environment task stack.
This amount is given in kilobytes. For example:

$ set GNAT_STACK_LIMIT 1600

would specify to the analyzer that the environment task stack has a limit of 1.6 megabytes.
Any stack usage beyond this will be ignored by the analysis.

The package GNAT.Task_Stack_Usage provides facilities to get stack-usage reports at run
time. See its body for the details.

6.7 Memory Management Issues

This section describes some useful memory pools provided in the GNAT library and in
particular the GNAT Debug Pool facility, which can be used to detect incorrect uses of
access values (including ’dangling references’).

6.7.1 Some Useful Memory Pools

The System.Pool_Global package offers the Unbounded No Reclaim Pool storage pool.
Allocations use the standard system call malloc while deallocations use the standard system
call free. No reclamation is performed when the pool goes out of scope. For performance
reasons, the standard default Ada allocators/deallocators do not use any explicit storage
pools but if they did, they could use this storage pool without any change in behavior.
That is why this storage pool is used when the user manages to make the default implicit
allocator explicit as in this example:

type T1 is access Something;

-- no Storage pool is defined for T2

type T2 is access Something_Else;

for T2’Storage_Pool use T1’Storage_Pool;

-- the above is equivalent to

for T2’Storage_Pool use System.Pool_Global.Global_Pool_Object;

The System.Pool_Local package offers the Unbounded_Reclaim_Pool storage pool. The
allocation strategy is similar to Pool_Local except that the all storage allocated with this

Chapter 6: GNAT and Program Execution 228

pool is reclaimed when the pool object goes out of scope. This pool provides a explicit
mechanism similar to the implicit one provided by several Ada 83 compilers for allocations
performed through a local access type and whose purpose was to reclaim memory when
exiting the scope of a given local access. As an example, the following program does not
leak memory even though it does not perform explicit deallocation:

with System.Pool_Local;

procedure Pooloc1 is

procedure Internal is

type A is access Integer;

X : System.Pool_Local.Unbounded_Reclaim_Pool;

for A’Storage_Pool use X;

v : A;

begin

for I in 1 .. 50 loop

v := new Integer;

end loop;

end Internal;

begin

for I in 1 .. 100 loop

Internal;

end loop;

end Pooloc1;

The System.Pool_Size package implements the Stack_Bounded_Pool used when Storage_

Size is specified for an access type. The whole storage for the pool is allocated at once,
usually on the stack at the point where the access type is elaborated. It is automatically
reclaimed when exiting the scope where the access type is defined. This package is not
intended to be used directly by the user and it is implicitly used for each such declaration:

type T1 is access Something;

for T1’Storage_Size use 10_000;

6.7.2 The GNAT Debug Pool Facility

The use of unchecked deallocation and unchecked conversion can easily lead to incorrect
memory references. The problems generated by such references are usually difficult to tackle
because the symptoms can be very remote from the origin of the problem. In such cases, it
is very helpful to detect the problem as early as possible. This is the purpose of the Storage
Pool provided by GNAT.Debug_Pools.

In order to use the GNAT specific debugging pool, the user must associate a debug pool
object with each of the access types that may be related to suspected memory problems.
See Ada Reference Manual 13.11.

type Ptr is access Some_Type;

Pool : GNAT.Debug_Pools.Debug_Pool;

for Ptr’Storage_Pool use Pool;

GNAT.Debug_Pools is derived from a GNAT-specific kind of pool: the Checked_Pool. Such
pools, like standard Ada storage pools, allow the user to redefine allocation and deallocation
strategies. They also provide a checkpoint for each dereference, through the use of the

Chapter 6: GNAT and Program Execution 229

primitive operation Dereference which is implicitly called at each dereference of an access
value.

Once an access type has been associated with a debug pool, operations on values of the
type may raise four distinct exceptions, which correspond to four potential kinds of memory
corruption:

* GNAT.Debug_Pools.Accessing_Not_Allocated_Storage

* GNAT.Debug_Pools.Accessing_Deallocated_Storage

* GNAT.Debug_Pools.Freeing_Not_Allocated_Storage

* GNAT.Debug_Pools.Freeing_Deallocated_Storage

For types associated with a Debug Pool, dynamic allocation is performed using the standard
GNAT allocation routine. References to all allocated chunks of memory are kept in an
internal dictionary. Several deallocation strategies are provided, whereupon the user can
choose to release the memory to the system, keep it allocated for further invalid access
checks, or fill it with an easily recognizable pattern for debug sessions. The memory pattern
is the old IBM hexadecimal convention: 16#DEADBEEF#.

See the documentation in the file g-debpoo.ads for more information on the various strate-
gies.

Upon each dereference, a check is made that the access value denotes a properly allocated
memory location. Here is a complete example of use of Debug_Pools, that includes typical
instances of memory corruption:

with Gnat.Io; use Gnat.Io;

with Unchecked_Deallocation;

with Unchecked_Conversion;

with GNAT.Debug_Pools;

with System.Storage_Elements;

with Ada.Exceptions; use Ada.Exceptions;

procedure Debug_Pool_Test is

type T is access Integer;

type U is access all T;

P : GNAT.Debug_Pools.Debug_Pool;

for T’Storage_Pool use P;

procedure Free is new Unchecked_Deallocation (Integer, T);

function UC is new Unchecked_Conversion (U, T);

A, B : aliased T;

procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);

begin

Info (P);

A := new Integer;

B := new Integer;

B := A;

Chapter 6: GNAT and Program Execution 230

Info (P);

Free (A);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

B := UC(A’Access);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

Info (P);

end Debug_Pool_Test;

The debug pool mechanism provides the following precise diagnostics on the execution of
this erroneous program:

Debug Pool info:

Total allocated bytes : 0

Total deallocated bytes : 0

Current Water Mark: 0

High Water Mark: 0

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 0

Current Water Mark: 8

High Water Mark: 8

raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 4

Chapter 6: GNAT and Program Execution 231

Current Water Mark: 4

High Water Mark: 8

Chapter 7: Platform-Specific Information 232

7 Platform-Specific Information

This appendix contains information relating to the implementation of run-time libraries on
various platforms and also covers topics related to the GNAT implementation on Windows
and Mac OS.

7.1 Run-Time Libraries

The GNAT run-time implementation may vary with respect to both the underlying threads
library and the exception-handling scheme. For threads support, the default run-time will
bind to the thread package of the underlying operating system.

For exception handling, either or both of two models are supplied:

* Zero-Cost Exceptions ("ZCX"), which uses binder-generated tables that are interro-
gated at run time to locate a handler.

* setjmp / longjmp (’SJLJ’), which uses dynamically-set data to establish the set of
handlers

Most programs should experience a substantial speed improvement by being compiled with
a ZCX run-time. This is especially true for tasking applications or applications with many
exception handlers. Note however that the ZCX run-time does not support asynchronous
abort of tasks (abort and select-then-abort constructs) and will instead implement abort
by polling points in the runtime. You can also add additional polling points explicitly if
needed in your application via pragma Abort_Defer.

This section summarizes which combinations of threads and exception support are supplied
on various GNAT platforms.

7.1.1 Summary of Run-Time Configurations

Platform Run-Time Tasking Exceptions

GNU/Linux rts-native (default) pthread library ZCX

rts-sjlj pthread library SJLJ

Windows rts-native (default) native Win32 threads ZCX

rts-sjlj native Win32
threads

SJLJ

Mac OS rts-native pthread library ZCX

7.2 Specifying a Run-Time Library

The adainclude subdirectory containing the sources of the GNAT run-time library, and the
adalib subdirectory containing the ALI files and the static and/or shared GNAT library,
are located in the gcc target-dependent area:

Chapter 7: Platform-Specific Information 233

target=$prefix/lib/gcc/gcc-*dumpmachine*/gcc-*dumpversion*/

As indicated above, on some platforms several run-time libraries are supplied. These li-
braries are installed in the target dependent area and contain a complete source and binary
subdirectory. The detailed description below explains the differences between the different
libraries in terms of their thread support.

The default run-time library (when GNAT is installed) is rts-native. This default run-time
is selected by the means of soft links. For example on x86-linux:

$(target-dir)

__/ / \ ___

_______/ / \ _________________

/ / \ \

/ / \ \

ADAINCLUDE ADALIB rts-native rts-sjlj

: : / \ / \

: : / \ / \

: : / \ / \

: : / \ / \

+-------------> adainclude adalib adainclude adalib

: ^

: :

+---------------------+

Run-Time Library Directory Structure

(Upper-case names and dotted/dashed arrows represent soft links)

If the rts-sjlj library is to be selected on a permanent basis, these soft links can be modified
with the following commands:

$ cd $target

$ rm -f adainclude adalib

$ ln -s rts-sjlj/adainclude adainclude

$ ln -s rts-sjlj/adalib adalib

Alternatively, you can specify rts-sjlj/adainclude in the file $target/ada_source_path
and rts-sjlj/adalib in $target/ada_object_path.

Selecting another run-time library temporarily can be achieved by using the --RTS switch,
e.g., --RTS=sjlj

7.2.1 Choosing the Scheduling Policy

When using a POSIX threads implementation, you have a choice of several scheduling
policies: SCHED_FIFO, SCHED_RR and SCHED_OTHER.

Typically, the default is SCHED_OTHER, while using SCHED_FIFO or SCHED_RR requires special
(e.g., root) privileges.

By default, GNAT uses the SCHED_OTHER policy. To specify SCHED_FIFO, you can use one
of the following:

* pragma Time_Slice (0.0)

* the corresponding binder option -T0

Chapter 7: Platform-Specific Information 234

* pragma Task_Dispatching_Policy (FIFO_Within_Priorities)

To specify SCHED_RR, you should use pragma Time_Slice with a value greater than 0.0, or
else use the corresponding -T binder option.

To make sure a program is running as root, you can put something like this in a library
package body in your application:

function geteuid return Integer;

pragma Import (C, geteuid, "geteuid");

Ignore : constant Boolean :=

(if geteuid = 0 then True else raise Program_Error with "must be root");

It gets the effective user id, and if it’s not 0 (i.e. root), it raises Program Error.

7.3 GNU/Linux Topics

This section describes topics that are specific to GNU/Linux platforms.

7.3.1 Required Packages on GNU/Linux

GNAT requires the C library developer’s package to be installed. The name of of that
package depends on your GNU/Linux distribution:

* RedHat, SUSE: glibc-devel;

* Debian, Ubuntu: libc6-dev (normally installed by default).

If using the 32-bit version of GNAT on a 64-bit version of GNU/Linux, you’ll need the
32-bit version of the following packages:

* RedHat, SUSE: glibc.i686, glibc-devel.i686, ncurses-libs.i686

* Debian, Ubuntu: libc6:i386, libc6-dev:i386, lib32ncursesw5

Other GNU/Linux distributions might be choosing a different name for those packages.

7.4 Microsoft Windows Topics

This section describes topics that are specific to the Microsoft Windows platforms.

7.4.1 Using GNAT on Windows

One of the strengths of the GNAT technology is that its tool set (gcc, gnatbind, gnatlink,
gnatmake, the gdb debugger, etc.) is used in the same way regardless of the platform.

On Windows this tool set is complemented by a number of Microsoft-specific tools that
have been provided to facilitate interoperability with Windows when this is required. With
these tools:

* You can build applications using the CONSOLE or WINDOWS subsystems.

* You can use any Dynamically Linked Library (DLL) in your Ada code (both relocatable
and non-relocatable DLLs are supported).

* You can build Ada DLLs for use in other applications. These applications can be
written in a language other than Ada (e.g., C, C++, etc). Again both relocatable and
non-relocatable Ada DLLs are supported.

* You can include Windows resources in your Ada application.

Chapter 7: Platform-Specific Information 235

* You can use or create COM/DCOM objects.

Immediately below are listed all known general GNAT-for-Windows restrictions. Other
restrictions about specific features like Windows Resources and DLLs are listed in separate
sections below.

* It is not possible to use GetLastError and SetLastError when tasking, protected
records, or exceptions are used. In these cases, in order to implement Ada semantics,
the GNAT run-time system calls certain Win32 routines that set the last error variable
to 0 upon success. It should be possible to use GetLastError and SetLastError when
tasking, protected record, and exception features are not used, but it is not guaranteed
to work.

* It is not possible to link against Microsoft C++ libraries except for import libraries.
Interfacing must be done by the mean of DLLs.

* It is possible to link against Microsoft C libraries. Yet the preferred solution is to
use C/C++ compiler that comes with GNAT, since it doesn’t require having two dif-
ferent development environments and makes the inter-language debugging experience
smoother.

* When the compilation environment is located on FAT32 drives, users may experience
recompilations of the source files that have not changed if Daylight Saving Time (DST)
state has changed since the last time files were compiled. NTFS drives do not have
this problem.

* No components of the GNAT toolset use any entries in the Windows registry. The only
entries that can be created are file associations and PATH settings, provided the user
has chosen to create them at installation time, as well as some minimal book-keeping
information needed to correctly uninstall or integrate different GNAT products.

7.4.2 Using a network installation of GNAT

Make sure the system on which GNAT is installed is accessible from the current machine, i.e.,
the install location is shared over the network. Shared resources are accessed on Windows
by means of UNC paths, which have the format \\\\server\\sharename\\path

In order to use such a network installation, simply add the UNC path of the bin directory of
your GNAT installation in front of your PATH. For example, if GNAT is installed in \GNAT

directory of a share location called c-drive on a machine LOKI, the following command
will make it available:

$ path \\loki\c-drive\gnat\bin;%path%‘

Be aware that every compilation using the network installation results in the transfer of
large amounts of data across the network and will likely cause serious performance penalty.

7.4.3 CONSOLE and WINDOWS subsystems

There are two main subsystems under Windows. The CONSOLE subsystem (which is the
default subsystem) will always create a console when launching the application. This is not
something desirable when the application has a Windows GUI. To get rid of this console the
application must be using the WINDOWS subsystem. To do so the -mwindows linker option
must be specified.

$ gnatmake winprog -largs -mwindows

Chapter 7: Platform-Specific Information 236

7.4.4 Temporary Files

It is possible to control where temporary files gets created by setting the TMP environment
variable. The file will be created:

* Under the directory pointed to by the TMP environment variable if this directory exists.

* Under c:\temp, if the TMP environment variable is not set (or not pointing to a direc-
tory) and if this directory exists.

* Under the current working directory otherwise.

This allows you to determine exactly where the temporary file will be created. This is
particularly useful in networked environments where you may not have write access to some
directories.

7.4.5 Disabling Command Line Argument Expansion

By default, an executable compiled for the Windows platform will do the following post-
processing on the arguments passed on the command line:

* If the argument contains the characters * and/or ?, then file expansion will be at-
tempted. For example, if the current directory contains a.txt and b.txt, then when
calling:

$ my_ada_program *.txt

The following arguments will effectively be passed to the main program (for example
when using Ada.Command_Line.Argument):

Ada.Command_Line.Argument (1) -> "a.txt"

Ada.Command_Line.Argument (2) -> "b.txt"

* Filename expansion can be disabled for a given argument by using single quotes. Thus,
calling:

$ my_ada_program ’*.txt’

will result in:

Ada.Command_Line.Argument (1) -> "*.txt"

Note that if the program is launched from a shell such as Cygwin Bash then quote removal
might be performed by the shell.

In some contexts it might be useful to disable this feature (for example if the program
performs its own argument expansion). In order to do this, a C symbol needs to be defined
and set to 0. You can do this by adding the following code fragment in one of your Ada
units:

Do_Argv_Expansion : Integer := 0;

pragma Export (C, Do_Argv_Expansion, "__gnat_do_argv_expansion");

The results of previous examples will be respectively:

Ada.Command_Line.Argument (1) -> "*.txt"

and:

Ada.Command_Line.Argument (1) -> "’*.txt’"

Chapter 7: Platform-Specific Information 237

7.4.6 Windows Socket Timeouts

Microsoft Windows desktops older than 8.0 and Microsoft Windows Servers older than
2019 set a socket timeout 500 milliseconds longer than the value set by setsockopt with
SO_RCVTIMEO and SO_SNDTIMEO options. The GNAT runtime makes a correction for the
difference in the corresponding Windows versions. For Windows Server starting with version
2019, the user must provide a manifest file for the GNAT runtime to be able to recognize
that the Windows version does not need the timeout correction. The manifest file should
be located in the same directory as the executable file, and its file name must match the
executable name suffixed by .manifest. For example, if the executable name is sock_

wto.exe, then the manifest file name has to be sock_wto.exe.manifest. The manifest file
must contain at least the following data:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">

<application>

<!-- Windows Vista -->

<supportedOS Id="{e2011457-1546-43c5-a5fe-008deee3d3f0}"/>

<!-- Windows 7 -->

<supportedOS Id="{35138b9a-5d96-4fbd-8e2d-a2440225f93a}"/>

<!-- Windows 8 -->

<supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}"/>

<!-- Windows 8.1 -->

<supportedOS Id="{1f676c76-80e1-4239-95bb-83d0f6d0da78}"/>

<!-- Windows 10 -->

<supportedOS Id="{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a}"/>

</application>

</compatibility>

</assembly>

Without the manifest file, the socket timeout is going to be overcorrected on these Windows
Server versions and the actual time is going to be 500 milliseconds shorter than what
was set with GNAT.Sockets.Set Socket Option. Note that on Microsoft Windows versions
where correction is necessary, there is no way to set a socket timeout shorter than 500 ms.
If a socket timeout shorter than 500 ms is needed on these Windows versions, a call to
Check Selector should be added before any socket read or write operations.

7.4.7 Mixed-Language Programming on Windows

Developing pure Ada applications on Windows is no different than on other GNAT-
supported platforms. However, when developing or porting an application that contains
a mix of Ada and C/C++, the choice of your Windows C/C++ development environment
conditions your overall interoperability strategy.

If you use gcc or Microsoft C to compile the non-Ada part of your application, there are no
Windows-specific restrictions that affect the overall interoperability with your Ada code. If
you do want to use the Microsoft tools for your C++ code, you have two choices:

* Encapsulate your C++ code in a DLL to be linked with your Ada application. In this
case, use the Microsoft or whatever environment to build the DLL and use GNAT to
build your executable ([Using DLLs with GNAT], page 241).

Chapter 7: Platform-Specific Information 238

* Or you can encapsulate your Ada code in a DLL to be linked with the other part of your
application. In this case, use GNAT to build the DLL ([Building DLLs with GNAT
Project files], page 244) and use the Microsoft or whatever environment to build your
executable.

In addition to the description about C main in [Mixed Language Programming], page 51
section, if the C main uses a stand-alone library it is required on x86-windows to setup the
SEH context. For this the C main must looks like this:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern void __gnat_initialize(void*);

extern void call_to_ada (void);

int main (int argc, char *argv[])

{

int SEH [2];

/* Initialize the SEH context */

__gnat_initialize (&SEH);

adainit();

/* Then call Ada services in the stand-alone library */

call_to_ada();

adafinal();

}

Note that this is not needed on x86 64-windows where the Windows native SEH support is
used.

7.4.7.1 Windows Calling Conventions

This section pertain only to Win32. On Win64 there is a single native calling convention.
All convention specifiers are ignored on this platform.

When a subprogram F (caller) calls a subprogram G (callee), there are several ways to push
G’s parameters on the stack and there are several possible scenarios to clean up the stack
upon G’s return. A calling convention is an agreed upon software protocol whereby the
responsibilities between the caller (F) and the callee (G) are clearly defined. Several calling
conventions are available for Windows:

* C (Microsoft defined)

* Stdcall (Microsoft defined)

* Win32 (GNAT specific)

* DLL (GNAT specific)

Chapter 7: Platform-Specific Information 239

7.4.7.2 C Calling Convention

This is the default calling convention used when interfacing to C/C++ routines compiled
with either gcc or Microsoft Visual C++.

In the C calling convention subprogram parameters are pushed on the stack by the caller
from right to left. The caller itself is in charge of cleaning up the stack after the call. In
addition, the name of a routine with C calling convention is mangled by adding a leading
underscore.

The name to use on the Ada side when importing (or exporting) a routine with C calling
convention is the name of the routine. For instance the C function:

int get_val (long);

should be imported from Ada as follows:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (C, Get_Val, External_Name => "get_val");

Note that in this particular case the External_Name parameter could have been omitted
since, when missing, this parameter is taken to be the name of the Ada entity in lower case.
When the Link_Name parameter is missing, as in the above example, this parameter is set
to be the External_Name with a leading underscore.

When importing a variable defined in C, you should always use the C calling convention
unless the object containing the variable is part of a DLL (in which case you should use the
Stdcall calling convention, [Stdcall Calling Convention], page 239).

7.4.7.3 Stdcall Calling Convention

This convention, which was the calling convention used for Pascal programs, is used by
Microsoft for all the routines in the Win32 API for efficiency reasons. It must be used to
import any routine for which this convention was specified.

In the Stdcall calling convention subprogram parameters are pushed on the stack by the
caller from right to left. The callee (and not the caller) is in charge of cleaning the stack on
routine exit. In addition, the name of a routine with Stdcall calling convention is mangled
by adding a leading underscore (as for the C calling convention) and a trailing @nn, where
nn is the overall size (in bytes) of the parameters passed to the routine.

The name to use on the Ada side when importing a C routine with a Stdcall calling
convention is the name of the C routine. The leading underscore and trailing @nn are added
automatically by the compiler. For instance the Win32 function:

APIENTRY int get_val (long);

should be imported from Ada as follows:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val);

-- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@4"

As for the C calling convention, when the External_Name parameter is missing, it is taken
to be the name of the Ada entity in lower case. If instead of writing the above import
pragma you write:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");

Chapter 7: Platform-Specific Information 240

then the imported routine is _retrieve_val@4. However, if instead of specifying the
External_Name parameter you specify the Link_Name as in the following example:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");

then the imported routine is retrieve_val, that is, there is no decoration at all. No leading
underscore and no Stdcall suffix @nn.

This is especially important as in some special cases a DLL’s entry point name lacks a
trailing @nn while the exported name generated for a call has it.

It is also possible to import variables defined in a DLL by using an import pragma for a
variable. As an example, if a DLL contains a variable defined as:

int my_var;

then, to access this variable from Ada you should write:

My_Var : Interfaces.C.int;

pragma Import (Stdcall, My_Var);

Note that to ease building cross-platform bindings this convention will be handled as a C

calling convention on non-Windows platforms.

7.4.7.4 Win32 Calling Convention

This convention, which is GNAT-specific is fully equivalent to the Stdcall calling conven-
tion described above.

7.4.7.5 DLL Calling Convention

This convention, which is GNAT-specific is fully equivalent to the Stdcall calling conven-
tion described above.

7.4.7.6 Introduction to Dynamic Link Libraries (DLLs)

A Dynamically Linked Library (DLL) is a library that can be shared by several applications
running under Windows. A DLL can contain any number of routines and variables.

One advantage of DLLs is that you can change and enhance them without forcing all the
applications that depend on them to be relinked or recompiled. However, you should be
aware than all calls to DLL routines are slower since, as you will understand below, such
calls are indirect.

To illustrate the remainder of this section, suppose that an application wants to use the
services of a DLL API.dll. To use the services provided by API.dll you must statically
link against the DLL or an import library which contains a jump table with an entry for
each routine and variable exported by the DLL. In the Microsoft world this import library
is called API.lib. When using GNAT this import library is called either libAPI.dll.a,
libapi.dll.a, libAPI.a or libapi.a (names are case insensitive).

After you have linked your application with the DLL or the import library and you run
your application, here is what happens:

* Your application is loaded into memory.

* The DLL API.dll is mapped into the address space of your application. This means
that:

Chapter 7: Platform-Specific Information 241

- The DLL will use the stack of the calling thread.

- The DLL will use the virtual address space of the calling process.

- The DLL will allocate memory from the virtual address space of the calling process.

- Handles (pointers) can be safely exchanged between routines in the DLL routines
and routines in the application using the DLL.

* The entries in the jump table (from the import library libAPI.dll.a or API.lib or
automatically created when linking against a DLL) which is part of your application
are initialized with the addresses of the routines and variables in API.dll.

* If present in API.dll, routines DllMain or DllMainCRTStartup are invoked. These
routines typically contain the initialization code needed for the well-being of the rou-
tines and variables exported by the DLL.

There is an additional point which is worth mentioning. In the Windows world there are
two kind of DLLs: relocatable and non-relocatable DLLs. Non-relocatable DLLs can only
be loaded at a very specific address in the target application address space. If the addresses
of two non-relocatable DLLs overlap and these happen to be used by the same application,
a conflict will occur and the application will run incorrectly. Hence, when possible, it is
always preferable to use and build relocatable DLLs. Both relocatable and non-relocatable
DLLs are supported by GNAT. Note that the -s linker option (see GNU Linker User’s
Guide) removes the debugging symbols from the DLL but the DLL can still be relocated.

As a side note, an interesting difference between Microsoft DLLs and Unix shared libraries,
is the fact that on most Unix systems all public routines are exported by default in a
Unix shared library, while under Windows it is possible (but not required) to list exported
routines in a definition file (see [The Definition File], page 242).

7.4.7.7 Using DLLs with GNAT

To use the services of a DLL, say API.dll, in your Ada application you must have:

* The Ada spec for the routines and/or variables you want to access in API.dll. If not
available this Ada spec must be built from the C/C++ header files provided with the
DLL.

* The import library (libAPI.dll.a or API.lib). As previously mentioned an import
library is a statically linked library containing the import table which will be filled
at load time to point to the actual API.dll routines. Sometimes you don’t have an
import library for the DLL you want to use. The following sections will explain how
to build one. Note that this is optional.

* The actual DLL, API.dll.

Once you have all the above, to compile an Ada application that uses the services of API.dll
and whose main subprogram is My_Ada_App, you simply issue the command

$ gnatmake my_ada_app -largs -lAPI

The argument -largs -lAPI at the end of the gnatmake command tells the GNAT linker
to look for an import library. The linker will look for a library name in this specific order:

* libAPI.dll.a

* API.dll.a

* libAPI.a

Chapter 7: Platform-Specific Information 242

* API.lib

* libAPI.dll

* API.dll

The first three are the GNU style import libraries. The third is the Microsoft style import
libraries. The last two are the actual DLL names.

Note that if the Ada package spec for API.dll contains the following pragma

pragma Linker_Options ("-lAPI");

you do not have to add -largs -lAPI at the end of the gnatmake command.

If any one of the items above is missing you will have to create it yourself. The following
sections explain how to do so using as an example a fictitious DLL called API.dll.

7.4.7.8 Creating an Ada Spec for the DLL Services

A DLL typically comes with a C/C++ header file which provides the definitions of the
routines and variables exported by the DLL. The Ada equivalent of this header file is a
package spec that contains definitions for the imported entities. If the DLL you intend
to use does not come with an Ada spec you have to generate one such spec yourself. For
example if the header file of API.dll is a file api.h containing the following two definitions:

int some_var;

int get (char *);

then the equivalent Ada spec could be:

with Interfaces.C.Strings;

package API is

use Interfaces;

Some_Var : C.int;

function Get (Str : C.Strings.Chars_Ptr) return C.int;

private

pragma Import (C, Get);

pragma Import (DLL, Some_Var);

end API;

7.4.7.9 Creating an Import Library

If a Microsoft-style import library API.lib or a GNAT-style import library libAPI.dll.a

or libAPI.a is available with API.dll you can skip this section. You can also skip this
section if API.dll or libAPI.dll is built with GNU tools as in this case it is possible to
link directly against the DLL. Otherwise read on.

The Definition File

As previously mentioned, and unlike Unix systems, the list of symbols that are exported
from a DLL must be provided explicitly in Windows. The main goal of a definition file is
precisely that: list the symbols exported by a DLL. A definition file (usually a file with a
.def suffix) has the following structure:

Chapter 7: Platform-Specific Information 243

[LIBRARY ‘‘name‘‘]

[DESCRIPTION ‘‘string‘‘]

EXPORTS

‘‘symbol1‘‘

‘‘symbol2‘‘

...

LIBRARY name
This section, which is optional, gives the name of the DLL.

DESCRIPTION string
This section, which is optional, gives a description string that will be embedded
in the import library.

EXPORTS
This section gives the list of exported symbols (procedures, functions or vari-
ables). For instance in the case of API.dll the EXPORTS section of API.def
looks like:

EXPORTS

some_var

get

Note that you must specify the correct suffix (@nn) (see [Windows Calling Conventions],
page 238) for a Stdcall calling convention function in the exported symbols list.

There can actually be other sections in a definition file, but these sections are not relevant

to the discussion at hand.

Creating a Definition File Automatically

You can automatically create the definition file API.def (see [The Definition File], page 242)
from a DLL. For that use the dlltool program as follows:

$ dlltool API.dll -z API.def --export-all-symbols

Note that if some routines in the DLL have the Stdcall convention
([Windows Calling Conventions], page 238) with stripped @nn suffix then
you’ll have to edit api.def to add it, and specify -k to gnatdll when
creating the import library.

Here are some hints to find the right @nn suffix.

- If you have the Microsoft import library (.lib), it is possible to get the
right symbols by using Microsoft dumpbin tool (see the corresponding
Microsoft documentation for further details).

$ dumpbin /exports api.lib

- If you have a message about a missing symbol at link time the com-
piler tells you what symbol is expected. You just have to go back to
the definition file and add the right suffix.

GNAT-Style Import Library

To create a static import library from API.dll with the GNAT tools you should create the
.def file, then use gnatdll tool (see [Using gnatdll], page 249) as follows:

Chapter 7: Platform-Specific Information 244

$ gnatdll -e API.def -d API.dll

gnatdll takes as input a definition file API.def and the name of the
DLL containing the services listed in the definition file API.dll. The
name of the static import library generated is computed from the name
of the definition file as follows: if the definition file name is xyz.def, the
import library name will be libxyz.a. Note that in the previous example
option -e could have been removed because the name of the definition
file (before the .def suffix) is the same as the name of the DLL ([Using
gnatdll], page 249 for more information about gnatdll).

Microsoft-Style Import Library

A Microsoft import library is needed only if you plan to make an Ada DLL available to
applications developed with Microsoft tools ([Mixed-Language Programming on Windows],
page 237).

To create a Microsoft-style import library for API.dll you should create the .def file, then
build the actual import library using Microsoft’s lib utility:

$ lib -machine:IX86 -def:API.def -out:API.lib

If you use the above command the definition file API.def must contain
a line giving the name of the DLL:

LIBRARY "API"

See the Microsoft documentation for further details about the usage of
lib.

7.4.7.10 Building DLLs with GNAT Project files

There is nothing specific to Windows in the build process. See the Library Projects section
in the GNAT Project Manager chapter of the GPRbuild User’s Guide.

Due to a system limitation, it is not possible under Windows to create threads when inside
the DllMain routine which is used for auto-initialization of shared libraries, so it is not
possible to have library level tasks in SALs.

7.4.7.11 Building DLLs with GNAT

This section explain how to build DLLs using the GNAT built-in DLL support. With the
following procedure it is straight forward to build and use DLLs with GNAT.

* Building object files. The first step is to build all objects files that are to be included
into the DLL. This is done by using the standard gnatmake tool.

* Building the DLL. To build the DLL you must use the gcc -shared and -shared-

libgcc options. It is quite simple to use this method:

$ gcc -shared -shared-libgcc -o api.dll obj1.o obj2.o ...

It is important to note that in this case all symbols found in the object files are auto-
matically exported. It is possible to restrict the set of symbols to export by passing to
gcc a definition file (see [The Definition File], page 242). For example:

$ gcc -shared -shared-libgcc -o api.dll api.def obj1.o obj2.o ...

If you use a definition file you must export the elaboration procedures for every package
that required one. Elaboration procedures are named using the package name followed
by " E".

Chapter 7: Platform-Specific Information 245

* Preparing DLL to be used. For the DLL to be used by client programs the bodies must
be hidden from it and the .ali set with read-only attribute. This is very important
otherwise GNAT will recompile all packages and will not actually use the code in the
DLL. For example:

$ mkdir apilib

$ copy *.ads *.ali api.dll apilib

$ attrib +R apilib*.ali

At this point it is possible to use the DLL by directly linking against it. Note that you
must use the GNAT shared runtime when using GNAT shared libraries. This is achieved
by using the -shared binder option.

$ gnatmake main -Iapilib -bargs -shared -largs -Lapilib -lAPI

7.4.7.12 Building DLLs with gnatdll

Note that it is preferred to use GNAT Project files ([Building DLLs with GNAT Project
files], page 244) or the built-in GNAT DLL support ([Building DLLs with GNAT], page 244)
or to build DLLs.

This section explains how to build DLLs containing Ada code using gnatdll. These DLLs
will be referred to as Ada DLLs in the remainder of this section.

The steps required to build an Ada DLL that is to be used by Ada as well as non-Ada
applications are as follows:

* You need to mark each Ada entity exported by the DLL with a C or Stdcall calling
convention to avoid any Ada name mangling for the entities exported by the DLL (see
[Exporting Ada Entities], page 246). You can skip this step if you plan to use the Ada
DLL only from Ada applications.

* Your Ada code must export an initialization routine which calls the routine adainit

generated by gnatbind to perform the elaboration of the Ada code in the DLL ([Ada
DLLs and Elaboration], page 247). The initialization routine exported by the Ada DLL
must be invoked by the clients of the DLL to initialize the DLL.

* When useful, the DLL should also export a finalization routine which calls routine
adafinal generated by gnatbind to perform the finalization of the Ada code in the
DLL ([Ada DLLs and Finalization], page 248). The finalization routine exported by
the Ada DLL must be invoked by the clients of the DLL when the DLL services are no
further needed.

* You must provide a spec for the services exported by the Ada DLL in each of the
programming languages to which you plan to make the DLL available.

* You must provide a definition file listing the exported entities ([The Definition File],
page 242).

* Finally you must use gnatdll to produce the DLL and the import library ([Using
gnatdll], page 249).

Note that a relocatable DLL stripped using the strip binutils tool will not be relocatable
anymore. To build a DLL without debug information pass -largs -s to gnatdll. This
restriction does not apply to a DLL built using a Library Project. See the Library Projects
section in the GNAT Project Manager chapter of the GPRbuild User’s Guide.

Chapter 7: Platform-Specific Information 246

7.4.7.13 Limitations When Using Ada DLLs from Ada

When using Ada DLLs from Ada applications there is a limitation users should be aware
of. Because on Windows the GNAT run-time is not in a DLL of its own, each Ada DLL
includes a part of the GNAT run-time. Specifically, each Ada DLL includes the services of
the GNAT run-time that are necessary to the Ada code inside the DLL. As a result, when
an Ada program uses an Ada DLL there are two independent GNAT run-times: one in the
Ada DLL and one in the main program.

It is therefore not possible to exchange GNAT run-time objects between the Ada DLL
and the main Ada program. Example of GNAT run-time objects are file handles (e.g.,
Text_IO.File_Type), tasks types, protected objects types, etc.

It is completely safe to exchange plain elementary, array or record types, Windows object
handles, etc.

7.4.7.14 Exporting Ada Entities

Building a DLL is a way to encapsulate a set of services usable from any application. As a
result, the Ada entities exported by a DLL should be exported with the C or Stdcall calling
conventions to avoid any Ada name mangling. As an example here is an Ada package API,
spec and body, exporting two procedures, a function, and a variable:

with Interfaces.C; use Interfaces;

package API is

Count : C.int := 0;

function Factorial (Val : C.int) return C.int;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization & Finalization routines. More in the next section.

private

pragma Export (C, Initialize_API);

pragma Export (C, Finalize_API);

pragma Export (C, Count);

pragma Export (C, Factorial);

end API;

package body API is

function Factorial (Val : C.int) return C.int is

Fact : C.int := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

procedure Initialize_API is

procedure Adainit;

Chapter 7: Platform-Specific Information 247

pragma Import (C, Adainit);

begin

Adainit;

end Initialize_API;

procedure Finalize_API is

procedure Adafinal;

pragma Import (C, Adafinal);

begin

Adafinal;

end Finalize_API;

end API;

If the Ada DLL you are building will only be used by Ada applications you do not have to
export Ada entities with a C or Stdcall convention. As an example, the previous package
could be written as follows:

package API is

Count : Integer := 0;

function Factorial (Val : Integer) return Integer;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization and Finalization routines.

end API;

package body API is

function Factorial (Val : Integer) return Integer is

Fact : Integer := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

...

-- The remainder of this package body is unchanged.

end API;

Note that if you do not export the Ada entities with a C or Stdcall convention you will
have to provide the mangled Ada names in the definition file of the Ada DLL ([Creating
the Definition File], page 249).

7.4.7.15 Ada DLLs and Elaboration

The DLL that you are building contains your Ada code as well as all the routines in the
Ada library that are needed by it. The first thing a user of your DLL must do is elaborate
the Ada code ([Elaboration Order Handling in GNAT], page 275).

Chapter 7: Platform-Specific Information 248

To achieve this you must export an initialization routine (Initialize_API in the previous
example), which must be invoked before using any of the DLL services. This elaboration
routine must call the Ada elaboration routine adainit generated by the GNAT binder
([Binding with Non-Ada Main Programs], page 164). See the body of Initialize_Api for
an example. Note that the GNAT binder is automatically invoked during the DLL build
process by the gnatdll tool ([Using gnatdll], page 249).

When a DLL is loaded, Windows systematically invokes a routine called DllMain. It would
therefore be possible to call adainit directly from DllMain without having to provide an
explicit initialization routine. Unfortunately, it is not possible to call adainit from the
DllMain if your program has library level tasks because access to the DllMain entry point
is serialized by the system (that is, only a single thread can execute ’through’ it at a time),
which means that the GNAT run-time will deadlock waiting for the newly created task to
complete its initialization.

7.4.7.16 Ada DLLs and Finalization

When the services of an Ada DLL are no longer needed, the client code should invoke the
DLL finalization routine, if available. The DLL finalization routine is in charge of releasing
all resources acquired by the DLL. In the case of the Ada code contained in the DLL, this is
achieved by calling routine adafinal generated by the GNAT binder ([Binding with Non-
Ada Main Programs], page 164). See the body of Finalize_Api for an example. As already
pointed out the GNAT binder is automatically invoked during the DLL build process by
the gnatdll tool ([Using gnatdll], page 249).

7.4.7.17 Creating a Spec for Ada DLLs

To use the services exported by the Ada DLL from another programming language (e.g., C),
you have to translate the specs of the exported Ada entities in that language. For instance
in the case of API.dll, the corresponding C header file could look like:

extern int *_imp__count;

#define count (*_imp__count)

int factorial (int);

It is important to understand that when building an Ada DLL to be used by other Ada
applications, you need two different specs for the packages contained in the DLL: one for
building the DLL and the other for using the DLL. This is because the DLL calling convention
is needed to use a variable defined in a DLL, but when building the DLL, the variable must
have either the Ada or C calling convention. As an example consider a DLL comprising the
following package API:

package API is

Count : Integer := 0;

...

-- Remainder of the package omitted.

end API;

After producing a DLL containing package API, the spec that must be used to import
API.Count from Ada code outside of the DLL is:

package API is

Count : Integer;

Chapter 7: Platform-Specific Information 249

pragma Import (DLL, Count);

end API;

7.4.7.18 Creating the Definition File

The definition file is the last file needed to build the DLL. It lists the exported symbols. As
an example, the definition file for a DLL containing only package API (where all the entities
are exported with a C calling convention) is:

EXPORTS

count

factorial

finalize_api

initialize_api

If the C calling convention is missing from package API, then the definition file contains the
mangled Ada names of the above entities, which in this case are:

EXPORTS

api__count

api__factorial

api__finalize_api

api__initialize_api

7.4.7.19 Using gnatdll

gnatdll is a tool to automate the DLL build process once all the Ada and non-Ada sources
that make up your DLL have been compiled. gnatdll is actually in charge of two distinct
tasks: build the static import library for the DLL and the actual DLL. The form of the
gnatdll command is

$ gnatdll [switches] list-of-files [-largs opts]

where list-of-files is a list of ALI and object files. The object file list must be the exact
list of objects corresponding to the non-Ada sources whose services are to be included in
the DLL. The ALI file list must be the exact list of ALI files for the corresponding Ada
sources whose services are to be included in the DLL. If list-of-files is missing, only
the static import library is generated.

You may specify any of the following switches to gnatdll:

-a[address]

Build a non-relocatable DLL at address. If address is not specified the default
address 0x11000000 will be used. By default, when this switch is missing,
gnatdll builds relocatable DLL. We advise the reader to build relocatable
DLL.

-b address

Set the relocatable DLL base address. By default the address is 0x11000000.

-bargs opts

Binder options. Pass opts to the binder.

-d dllfile

dllfile is the name of the DLL. This switch must be present for gnatdll to do
anything. The name of the generated import library is obtained algorithmically

Chapter 7: Platform-Specific Information 250

from dllfile as shown in the following example: if dllfile is xyz.dll, the
import library name is libxyz.dll.a. The name of the definition file to use (if
not specified by option -e) is obtained algorithmically from dllfile as shown
in the following example: if dllfile is xyz.dll, the definition file used is
xyz.def.

-e deffile

deffile is the name of the definition file.

-g

Generate debugging information. This information is stored in the object file
and copied from there to the final DLL file by the linker, where it can be read
by the debugger. You must use the -g switch if you plan on using the debugger
or the symbolic stack traceback.

-h

Help mode. Displays gnatdll switch usage information.

-Idir

Direct gnatdll to search the dir directory for source and object files needed
to build the DLL. ([Search Paths and the Run-Time Library (RTL)], page 89).

-k

Removes the @nn suffix from the import library’s exported names, but keeps
them for the link names. You must specify this option if you want to use a
Stdcall function in a DLL for which the @nn suffix has been removed. This
is the case for most of the Windows NT DLL for example. This option has no
effect when -n option is specified.

-l file

The list of ALI and object files used to build the DLL are listed in file, instead
of being given in the command line. Each line in file contains the name of an
ALI or object file.

-n

No Import. Do not create the import library.

-q

Quiet mode. Do not display unnecessary messages.

-v

Verbose mode. Display extra information.

-largs opts

Linker options. Pass opts to the linker.

gnatdll Example

As an example the command to build a relocatable DLL from api.adb once api.adb has
been compiled and api.def created is

Chapter 7: Platform-Specific Information 251

$ gnatdll -d api.dll api.ali

The above command creates two files: libapi.dll.a (the import library) and api.dll

(the actual DLL). If you want to create only the DLL, just type:

$ gnatdll -d api.dll -n api.ali

Alternatively if you want to create just the import library, type:

$ gnatdll -d api.dll

gnatdll behind the Scenes

This section details the steps involved in creating a DLL. gnatdll does these steps for you.
Unless you are interested in understanding what goes on behind the scenes, you should skip
this section.

We use the previous example of a DLL containing the Ada package API, to illustrate the
steps necessary to build a DLL. The starting point is a set of objects that will make up the
DLL and the corresponding ALI files. In the case of this example this means that api.o
and api.ali are available. To build a relocatable DLL, gnatdll does the following:

* gnatdll builds the base file (api.base). A base file gives the information necessary to
generate relocation information for the DLL.

$ gnatbind -n api

$ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base

In addition to the base file, the gnatlink command generates an output file api.jnk

which can be discarded. The -mdll switch asks gnatlink to generate the routines
DllMain and DllMainCRTStartup that are called by the Windows loader when the
DLL is loaded into memory.

* gnatdll uses dlltool (see [Using dlltool], page 251) to build the export table
(api.exp). The export table contains the relocation information in a form which can
be used during the final link to ensure that the Windows loader is able to place the
DLL anywhere in memory.

$ dlltool --dllname api.dll --def api.def --base-file api.base \\

--output-exp api.exp

* gnatdll builds the base file using the new export table. Note that gnatbind must be
called once again since the binder generated file has been deleted during the previous
call to gnatlink.

$ gnatbind -n api

$ gnatlink api -o api.jnk api.exp -mdll

-Wl,--base-file,api.base

* gnatdll builds the new export table using the new base file and generates the DLL
import library libAPI.dll.a.

$ dlltool --dllname api.dll --def api.def --base-file api.base \\

--output-exp api.exp --output-lib libAPI.a

* Finally gnatdll builds the relocatable DLL using the final export table.

$ gnatbind -n api

$ gnatlink api api.exp -o api.dll -mdll

Chapter 7: Platform-Specific Information 252

Using dlltool

dlltool is the low-level tool used by gnatdll to build DLLs and static import libraries.
This section summarizes the most common dlltool switches. The form of the dlltool

command is

$ dlltool [‘switches‘]

dlltool switches include:

--base-file basefile

Read the base file basefile generated by the linker. This switch is used to
create a relocatable DLL.

--def deffile

Read the definition file.

--dllname name

Gives the name of the DLL. This switch is used to embed the name of the DLL
in the static import library generated by dlltool with switch --output-lib.

-k

Kill @nn from exported names ([Windows Calling Conventions], page 238 for a
discussion about Stdcall-style symbols.

--help

Prints the dlltool switches with a concise description.

--output-exp exportfile

Generate an export file exportfile. The export file contains the export table
(list of symbols in the DLL) and is used to create the DLL.

--output-lib libfile

Generate a static import library libfile.

-v

Verbose mode.

--as assembler-name

Use assembler-name as the assembler. The default is as.

7.4.7.20 GNAT and Windows Resources

Resources are an easy way to add Windows specific objects to your application. The objects
that can be added as resources include:

* menus

* accelerators

* dialog boxes

* string tables

* bitmaps

* cursors

* icons

* fonts

Chapter 7: Platform-Specific Information 253

* version information

For example, a version information resource can be defined as follow and embedded into an
executable or DLL:

A version information resource can be used to embed information into an executable or a
DLL. These information can be viewed using the file properties from the Windows Explorer.
Here is an example of a version information resource:

1 VERSIONINFO

FILEVERSION 1,0,0,0

PRODUCTVERSION 1,0,0,0

BEGIN

BLOCK "StringFileInfo"

BEGIN

BLOCK "080904E4"

BEGIN

VALUE "CompanyName", "My Company Name"

VALUE "FileDescription", "My application"

VALUE "FileVersion", "1.0"

VALUE "InternalName", "my_app"

VALUE "LegalCopyright", "My Name"

VALUE "OriginalFilename", "my_app.exe"

VALUE "ProductName", "My App"

VALUE "ProductVersion", "1.0"

END

END

BLOCK "VarFileInfo"

BEGIN

VALUE "Translation", 0x809, 1252

END

END

The value 0809 (langID) is for the U.K English language and 04E4 (charsetID), which is
equal to 1252 decimal, for multilingual.

This section explains how to build, compile and use resources. Note that this section does
not cover all resource objects, for a complete description see the corresponding Microsoft
documentation.

7.4.7.21 Building Resources

A resource file is an ASCII file. By convention resource files have an .rc extension. The
easiest way to build a resource file is to use Microsoft tools such as imagedit.exe to build
bitmaps, icons and cursors and dlgedit.exe to build dialogs. It is always possible to build
an .rc file yourself by writing a resource script.

It is not our objective to explain how to write a resource file. A complete description of the
resource script language can be found in the Microsoft documentation.

Chapter 7: Platform-Specific Information 254

7.4.7.22 Compiling Resources

This section describes how to build a GNAT-compatible (COFF) object file containing the
resources. This is done using the Resource Compiler windres as follows:

$ windres -i myres.rc -o myres.o

By default windres will run gcc to preprocess the .rc file. You can specify an alternate
preprocessor (usually named cpp.exe) using the windres --preprocessor parameter. A
list of all possible options may be obtained by entering the command windres --help.

It is also possible to use the Microsoft resource compiler rc.exe to produce a .res file
(binary resource file). See the corresponding Microsoft documentation for further details.
In this case you need to use windres to translate the .res file to a GNAT-compatible object
file as follows:

$ windres -i myres.res -o myres.o

7.4.7.23 Using Resources

To include the resource file in your program just add the GNAT-compatible object file for
the resource(s) to the linker arguments. With gnatmake this is done by using the -largs

option:

$ gnatmake myprog -largs myres.o

7.4.7.24 Using GNAT DLLs from Microsoft Visual Studio
Applications

This section describes a common case of mixed GNAT/Microsoft Visual Studio application
development, where the main program is developed using MSVS, and is linked with a DLL
developed using GNAT. Such a mixed application should be developed following the general
guidelines outlined above; below is the cookbook-style sequence of steps to follow:

1. First develop and build the GNAT shared library using a library project (let’s assume
the project is mylib.gpr, producing the library libmylib.dll):

$ gprbuild -p mylib.gpr

2. Produce a .def file for the symbols you need to interface with, either by hand or auto-
matically with possibly some manual adjustments (see [Creating Definition File Auto-
matically], page 243):

$ dlltool libmylib.dll -z libmylib.def --export-all-symbols

3. Make sure that MSVS command-line tools are accessible on the path.

4. Create the Microsoft-style import library (see [MSVS-Style Import Library], page 244):

$ lib -machine:IX86 -def:libmylib.def -out:libmylib.lib

If you are using a 64-bit toolchain, the above becomes...

$ lib -machine:X64 -def:libmylib.def -out:libmylib.lib

5. Build the C main

$ cl /O2 /MD main.c libmylib.lib

6. Before running the executable, make sure you have set the PATH to the DLL, or copy
the DLL into into the directory containing the .exe.

Chapter 7: Platform-Specific Information 255

7.4.7.25 Debugging a DLL

Debugging a DLL is similar to debugging a standard program. But we have to deal with two
different executable parts: the DLL and the program that uses it. We have the following
four possibilities:

* The program and the DLL are built with GCC/GNAT.

* The program is built with foreign tools and the DLL is built with GCC/GNAT.

* The program is built with GCC/GNAT and the DLL is built with foreign tools.

In this section we address only cases one and two above. There is no point in trying to
debug a DLL with GNU/GDB, if there is no GDB-compatible debugging information in it.
To do so you must use a debugger compatible with the tools suite used to build the DLL.

7.4.7.26 Program and DLL Both Built with GCC/GNAT

This is the simplest case. Both the DLL and the program have GDB compatible debugging
information. It is then possible to break anywhere in the process. Let’s suppose here that
the main procedure is named ada_main and that in the DLL there is an entry point named
ada_dll.

The DLL ([Introduction to Dynamic Link Libraries (DLLs)], page 240) and program must
have been built with the debugging information (see GNAT -g switch). Here are the step-
by-step instructions for debugging it:

* Launch GDB on the main program.

$ gdb -nw ada_main

* Start the program and stop at the beginning of the main procedure

(gdb) start

This step is required to be able to set a breakpoint inside the DLL. As long as the
program is not run, the DLL is not loaded. This has the consequence that the DLL
debugging information is also not loaded, so it is not possible to set a breakpoint in
the DLL.

* Set a breakpoint inside the DLL

(gdb) break ada_dll

(gdb) cont

At this stage a breakpoint is set inside the DLL. From there on you can use the standard
approach to debug the whole program ([Running and Debugging Ada Programs], page 181).

7.4.7.27 Program Built with Foreign Tools and DLL Built with
GCC/GNAT

In this case things are slightly more complex because it is not possible to start the main
program and then break at the beginning to load the DLL and the associated DLL debugging
information. It is not possible to break at the beginning of the program because there is no
GDB debugging information, and therefore there is no direct way of getting initial control.
This section addresses this issue by describing some methods that can be used to break
somewhere in the DLL to debug it.

First suppose that the main procedure is named main (this is for example some C code
built with Microsoft Visual C) and that there is a DLL named test.dll containing an Ada
entry point named ada_dll.

Chapter 7: Platform-Specific Information 256

The DLL (see [Introduction to Dynamic Link Libraries (DLLs)], page 240) must have been
built with debugging information (see the GNAT -g option).

Debugging the DLL Directly

* Find out the executable starting address

$ objdump --file-header main.exe

The starting address is reported on the last line. For example:

main.exe: file format pei-i386

architecture: i386, flags 0x0000010a:

EXEC_P, HAS_DEBUG, D_PAGED

start address 0x00401010

* Launch the debugger on the executable.

$ gdb main.exe

* Set a breakpoint at the starting address, and launch the program.

$ (gdb) break *0x00401010

$ (gdb) run

The program will stop at the given address.

* Set a breakpoint on a DLL subroutine.

(gdb) break ada_dll.adb:45

Or if you want to break using a symbol on the DLL, you need first to select the Ada
language (language used by the DLL).

(gdb) set language ada

(gdb) break ada_dll

* Continue the program.

(gdb) cont

This will run the program until it reaches the breakpoint that has been set. From that
point you can use the standard way to debug a program as described in ([Running and
Debugging Ada Programs], page 181).

It is also possible to debug the DLL by attaching to a running process.

Attaching to a Running Process

With GDB it is always possible to debug a running process by attaching to it. It is possible
to debug a DLL this way. The limitation of this approach is that the DLL must run long
enough to perform the attach operation. It may be useful for instance to insert a time
wasting loop in the code of the DLL to meet this criterion.

* Launch the main program main.exe.

$ main

* Use the Windows Task Manager to find the process ID. Let’s say that the process PID
for main.exe is 208.

* Launch gdb.

$ gdb

* Attach to the running process to be debugged.

Chapter 7: Platform-Specific Information 257

(gdb) attach 208

* Load the process debugging information.

(gdb) symbol-file main.exe

* Break somewhere in the DLL.

(gdb) break ada_dll

* Continue process execution.

(gdb) cont

This last step will resume the process execution, and stop at the breakpoint we have set.
From there you can use the standard approach to debug a program as described in [Running
and Debugging Ada Programs], page 181.

7.4.7.28 Setting Stack Size from gnatlink

It is possible to specify the program stack size at link time. On modern versions of Windows,
starting with XP, this is mostly useful to set the size of the main stack (environment task).
The other task stacks are set with pragma Storage Size or with the gnatbind -d command.

Since older versions of Windows (2000, NT4, etc.) do not allow setting the reserve size of
individual tasks, the link-time stack size applies to all tasks, and pragma Storage Size has
no effect. In particular, Stack Overflow checks are made against this link-time specified
size.

This setting can be done with gnatlink using either of the following:

* -Xlinker linker option

$ gnatlink hello -Xlinker --stack=0x10000,0x1000

This sets the stack reserve size to 0x10000 bytes and the stack commit size to 0x1000
bytes.

* -Wl linker option

$ gnatlink hello -Wl,--stack=0x1000000

This sets the stack reserve size to 0x1000000 bytes. Note that with -Wl option it is not
possible to set the stack commit size because the comma is a separator for this option.

7.4.7.29 Setting Heap Size from gnatlink

Under Windows systems, it is possible to specify the program heap size from gnatlink

using either of the following:

* -Xlinker linker option

$ gnatlink hello -Xlinker --heap=0x10000,0x1000

This sets the heap reserve size to 0x10000 bytes and the heap commit size to 0x1000
bytes.

* -Wl linker option

$ gnatlink hello -Wl,--heap=0x1000000

This sets the heap reserve size to 0x1000000 bytes. Note that with -Wl option it is not
possible to set the heap commit size because the comma is a separator for this option.

Chapter 7: Platform-Specific Information 258

7.4.8 Windows Specific Add-Ons

This section describes the Windows specific add-ons.

7.4.8.1 Win32Ada

Win32Ada is a binding for the Microsoft Win32 API. This binding can be easily installed
from the provided installer. To use the Win32Ada binding you need to use a project file,
and adding a single with clause will give you full access to the Win32Ada binding sources
and ensure that the proper libraries are passed to the linker.

with "win32ada";

project P is

for Sources use ...;

end P;

To build the application you just need to call gprbuild for the application’s project, here
p.gpr:

gprbuild p.gpr

7.4.8.2 wPOSIX

wPOSIX is a minimal POSIX binding whose goal is to help with building cross-platforms
applications. This binding is not complete though, as the Win32 API does not provide the
necessary support for all POSIX APIs.

To use the wPOSIX binding you need to use a project file, and adding a single with clause
will give you full access to the wPOSIX binding sources and ensure that the proper libraries
are passed to the linker.

with "wposix";

project P is

for Sources use ...;

end P;

To build the application you just need to call gprbuild for the application’s project, here
p.gpr:

gprbuild p.gpr

7.5 Mac OS Topics

This section describes topics that are specific to Apple’s OS X platform.

7.5.1 Codesigning the Debugger

The Darwin Kernel requires the debugger to have special permissions before it is allowed to
control other processes. These permissions are granted by codesigning the GDB executable.
Without these permissions, the debugger will report error messages such as:

Starting program: /x/y/foo

Unable to find Mach task port for process-id 28885: (os/kern) failure (0x5).

(please check gdb is codesigned - see taskgated(8))

Codesigning requires a certificate. The following procedure explains how to create one:

* Start the Keychain Access application (in /Applications/Utilities/Keychain
Access.app)

Chapter 7: Platform-Specific Information 259

* Select the Keychain Access -> Certificate Assistant -> Create a Certificate... menu

* Then:

* Choose a name for the new certificate (this procedure will use "gdb-cert" as an
example)

* Set "Identity Type" to "Self Signed Root"

* Set "Certificate Type" to "Code Signing"

* Activate the "Let me override defaults" option

* Click several times on "Continue" until the "Specify a Location For The Certificate"
screen appears, then set "Keychain" to "System"

* Click on "Continue" until the certificate is created

* Finally, in the view, double-click on the new certificate, and set "When using this
certificate" to "Always Trust"

* Exit the Keychain Access application and restart the computer (this is unfortunately
required)

Once a certificate has been created, the debugger can be codesigned as follow. In a Terminal,
run the following command:

$ codesign -f -s "gdb-cert" <gnat_install_prefix>/bin/gdb

where "gdb-cert" should be replaced by the actual certificate name chosen above, and
<gnat install prefix> should be replaced by the location where you installed GNAT. Also,
be sure that users are in the Unix group _developer.

Chapter 8: Example of Binder Output File 260

8 Example of Binder Output File

This Appendix displays the source code for the output file generated by gnatbind for a
simple ’Hello World’ program. Comments have been added for clarification purposes.

-- The package is called Ada_Main unless this name is actually used

-- as a unit name in the partition, in which case some other unique

-- name is used.

pragma Ada_95;

with System;

package ada_main is

pragma Warnings (Off);

-- The main program saves the parameters (argument count,

-- argument values, environment pointer) in global variables

-- for later access by other units including

-- Ada.Command_Line.

gnat_argc : Integer;

gnat_argv : System.Address;

gnat_envp : System.Address;

-- The actual variables are stored in a library routine. This

-- is useful for some shared library situations, where there

-- are problems if variables are not in the library.

pragma Import (C, gnat_argc);

pragma Import (C, gnat_argv);

pragma Import (C, gnat_envp);

-- The exit status is similarly an external location

gnat_exit_status : Integer;

pragma Import (C, gnat_exit_status);

GNAT_Version : constant String :=

"GNAT Version: Pro 7.4.0w (20141119-49)" & ASCII.NUL;

pragma Export (C, GNAT_Version, "__gnat_version");

Ada_Main_Program_Name : constant String := "_ada_hello" & ASCII.NUL;

pragma Export (C, Ada_Main_Program_Name, "__gnat_ada_main_program_name");

-- This is the generated adainit routine that performs

-- initialization at the start of execution. In the case

-- where Ada is the main program, this main program makes

-- a call to adainit at program startup.

Chapter 8: Example of Binder Output File 261

procedure adainit;

pragma Export (C, adainit, "adainit");

-- This is the generated adafinal routine that performs

-- finalization at the end of execution. In the case where

-- Ada is the main program, this main program makes a call

-- to adafinal at program termination.

procedure adafinal;

pragma Export (C, adafinal, "adafinal");

-- This routine is called at the start of execution. It is

-- a dummy routine that is used by the debugger to breakpoint

-- at the start of execution.

-- This is the actual generated main program (it would be

-- suppressed if the no main program switch were used). As

-- required by standard system conventions, this program has

-- the external name main.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer;

pragma Export (C, main, "main");

-- The following set of constants give the version

-- identification values for every unit in the bound

-- partition. This identification is computed from all

-- dependent semantic units, and corresponds to the

-- string that would be returned by use of the

-- Body_Version or Version attributes.

-- The following Export pragmas export the version numbers

-- with symbolic names ending in B (for body) or S

-- (for spec) so that they can be located in a link. The

-- information provided here is sufficient to track down

-- the exact versions of units used in a given build.

type Version_32 is mod 2 ** 32;

u00001 : constant Version_32 := 16#8ad6e54a#;

pragma Export (C, u00001, "helloB");

u00002 : constant Version_32 := 16#fbff4c67#;

pragma Export (C, u00002, "system__standard_libraryB");

u00003 : constant Version_32 := 16#1ec6fd90#;

pragma Export (C, u00003, "system__standard_libraryS");

Chapter 8: Example of Binder Output File 262

u00004 : constant Version_32 := 16#3ffc8e18#;

pragma Export (C, u00004, "adaS");

u00005 : constant Version_32 := 16#28f088c2#;

pragma Export (C, u00005, "ada__text_ioB");

u00006 : constant Version_32 := 16#f372c8ac#;

pragma Export (C, u00006, "ada__text_ioS");

u00007 : constant Version_32 := 16#2c143749#;

pragma Export (C, u00007, "ada__exceptionsB");

u00008 : constant Version_32 := 16#f4f0cce8#;

pragma Export (C, u00008, "ada__exceptionsS");

u00009 : constant Version_32 := 16#a46739c0#;

pragma Export (C, u00009, "ada__exceptions__last_chance_handlerB");

u00010 : constant Version_32 := 16#3aac8c92#;

pragma Export (C, u00010, "ada__exceptions__last_chance_handlerS");

u00011 : constant Version_32 := 16#1d274481#;

pragma Export (C, u00011, "systemS");

u00012 : constant Version_32 := 16#a207fefe#;

pragma Export (C, u00012, "system__soft_linksB");

u00013 : constant Version_32 := 16#467d9556#;

pragma Export (C, u00013, "system__soft_linksS");

u00014 : constant Version_32 := 16#b01dad17#;

pragma Export (C, u00014, "system__parametersB");

u00015 : constant Version_32 := 16#630d49fe#;

pragma Export (C, u00015, "system__parametersS");

u00016 : constant Version_32 := 16#b19b6653#;

pragma Export (C, u00016, "system__secondary_stackB");

u00017 : constant Version_32 := 16#b6468be8#;

pragma Export (C, u00017, "system__secondary_stackS");

u00018 : constant Version_32 := 16#39a03df9#;

pragma Export (C, u00018, "system__storage_elementsB");

u00019 : constant Version_32 := 16#30e40e85#;

pragma Export (C, u00019, "system__storage_elementsS");

u00020 : constant Version_32 := 16#41837d1e#;

pragma Export (C, u00020, "system__stack_checkingB");

u00021 : constant Version_32 := 16#93982f69#;

pragma Export (C, u00021, "system__stack_checkingS");

u00022 : constant Version_32 := 16#393398c1#;

pragma Export (C, u00022, "system__exception_tableB");

u00023 : constant Version_32 := 16#b33e2294#;

pragma Export (C, u00023, "system__exception_tableS");

u00024 : constant Version_32 := 16#ce4af020#;

pragma Export (C, u00024, "system__exceptionsB");

u00025 : constant Version_32 := 16#75442977#;

pragma Export (C, u00025, "system__exceptionsS");

u00026 : constant Version_32 := 16#37d758f1#;

pragma Export (C, u00026, "system__exceptions__machineS");

u00027 : constant Version_32 := 16#b895431d#;

Chapter 8: Example of Binder Output File 263

pragma Export (C, u00027, "system__exceptions_debugB");

u00028 : constant Version_32 := 16#aec55d3f#;

pragma Export (C, u00028, "system__exceptions_debugS");

u00029 : constant Version_32 := 16#570325c8#;

pragma Export (C, u00029, "system__img_intB");

u00030 : constant Version_32 := 16#1ffca443#;

pragma Export (C, u00030, "system__img_intS");

u00031 : constant Version_32 := 16#b98c3e16#;

pragma Export (C, u00031, "system__tracebackB");

u00032 : constant Version_32 := 16#831a9d5a#;

pragma Export (C, u00032, "system__tracebackS");

u00033 : constant Version_32 := 16#9ed49525#;

pragma Export (C, u00033, "system__traceback_entriesB");

u00034 : constant Version_32 := 16#1d7cb2f1#;

pragma Export (C, u00034, "system__traceback_entriesS");

u00035 : constant Version_32 := 16#8c33a517#;

pragma Export (C, u00035, "system__wch_conB");

u00036 : constant Version_32 := 16#065a6653#;

pragma Export (C, u00036, "system__wch_conS");

u00037 : constant Version_32 := 16#9721e840#;

pragma Export (C, u00037, "system__wch_stwB");

u00038 : constant Version_32 := 16#2b4b4a52#;

pragma Export (C, u00038, "system__wch_stwS");

u00039 : constant Version_32 := 16#92b797cb#;

pragma Export (C, u00039, "system__wch_cnvB");

u00040 : constant Version_32 := 16#09eddca0#;

pragma Export (C, u00040, "system__wch_cnvS");

u00041 : constant Version_32 := 16#6033a23f#;

pragma Export (C, u00041, "interfacesS");

u00042 : constant Version_32 := 16#ece6fdb6#;

pragma Export (C, u00042, "system__wch_jisB");

u00043 : constant Version_32 := 16#899dc581#;

pragma Export (C, u00043, "system__wch_jisS");

u00044 : constant Version_32 := 16#10558b11#;

pragma Export (C, u00044, "ada__streamsB");

u00045 : constant Version_32 := 16#2e6701ab#;

pragma Export (C, u00045, "ada__streamsS");

u00046 : constant Version_32 := 16#db5c917c#;

pragma Export (C, u00046, "ada__io_exceptionsS");

u00047 : constant Version_32 := 16#12c8cd7d#;

pragma Export (C, u00047, "ada__tagsB");

u00048 : constant Version_32 := 16#ce72c228#;

pragma Export (C, u00048, "ada__tagsS");

u00049 : constant Version_32 := 16#c3335bfd#;

pragma Export (C, u00049, "system__htableB");

u00050 : constant Version_32 := 16#99e5f76b#;

pragma Export (C, u00050, "system__htableS");

Chapter 8: Example of Binder Output File 264

u00051 : constant Version_32 := 16#089f5cd0#;

pragma Export (C, u00051, "system__string_hashB");

u00052 : constant Version_32 := 16#3bbb9c15#;

pragma Export (C, u00052, "system__string_hashS");

u00053 : constant Version_32 := 16#807fe041#;

pragma Export (C, u00053, "system__unsigned_typesS");

u00054 : constant Version_32 := 16#d27be59e#;

pragma Export (C, u00054, "system__val_lluB");

u00055 : constant Version_32 := 16#fa8db733#;

pragma Export (C, u00055, "system__val_lluS");

u00056 : constant Version_32 := 16#27b600b2#;

pragma Export (C, u00056, "system__val_utilB");

u00057 : constant Version_32 := 16#b187f27f#;

pragma Export (C, u00057, "system__val_utilS");

u00058 : constant Version_32 := 16#d1060688#;

pragma Export (C, u00058, "system__case_utilB");

u00059 : constant Version_32 := 16#392e2d56#;

pragma Export (C, u00059, "system__case_utilS");

u00060 : constant Version_32 := 16#84a27f0d#;

pragma Export (C, u00060, "interfaces__c_streamsB");

u00061 : constant Version_32 := 16#8bb5f2c0#;

pragma Export (C, u00061, "interfaces__c_streamsS");

u00062 : constant Version_32 := 16#6db6928f#;

pragma Export (C, u00062, "system__crtlS");

u00063 : constant Version_32 := 16#4e6a342b#;

pragma Export (C, u00063, "system__file_ioB");

u00064 : constant Version_32 := 16#ba56a5e4#;

pragma Export (C, u00064, "system__file_ioS");

u00065 : constant Version_32 := 16#b7ab275c#;

pragma Export (C, u00065, "ada__finalizationB");

u00066 : constant Version_32 := 16#19f764ca#;

pragma Export (C, u00066, "ada__finalizationS");

u00067 : constant Version_32 := 16#95817ed8#;

pragma Export (C, u00067, "system__finalization_rootB");

u00068 : constant Version_32 := 16#52d53711#;

pragma Export (C, u00068, "system__finalization_rootS");

u00069 : constant Version_32 := 16#769e25e6#;

pragma Export (C, u00069, "interfaces__cB");

u00070 : constant Version_32 := 16#4a38bedb#;

pragma Export (C, u00070, "interfaces__cS");

u00071 : constant Version_32 := 16#07e6ee66#;

pragma Export (C, u00071, "system__os_libB");

u00072 : constant Version_32 := 16#d7b69782#;

pragma Export (C, u00072, "system__os_libS");

u00073 : constant Version_32 := 16#1a817b8e#;

pragma Export (C, u00073, "system__stringsB");

u00074 : constant Version_32 := 16#639855e7#;

Chapter 8: Example of Binder Output File 265

pragma Export (C, u00074, "system__stringsS");

u00075 : constant Version_32 := 16#e0b8de29#;

pragma Export (C, u00075, "system__file_control_blockS");

u00076 : constant Version_32 := 16#b5b2aca1#;

pragma Export (C, u00076, "system__finalization_mastersB");

u00077 : constant Version_32 := 16#69316dc1#;

pragma Export (C, u00077, "system__finalization_mastersS");

u00078 : constant Version_32 := 16#57a37a42#;

pragma Export (C, u00078, "system__address_imageB");

u00079 : constant Version_32 := 16#bccbd9bb#;

pragma Export (C, u00079, "system__address_imageS");

u00080 : constant Version_32 := 16#7268f812#;

pragma Export (C, u00080, "system__img_boolB");

u00081 : constant Version_32 := 16#e8fe356a#;

pragma Export (C, u00081, "system__img_boolS");

u00082 : constant Version_32 := 16#d7aac20c#;

pragma Export (C, u00082, "system__ioB");

u00083 : constant Version_32 := 16#8365b3ce#;

pragma Export (C, u00083, "system__ioS");

u00084 : constant Version_32 := 16#6d4d969a#;

pragma Export (C, u00084, "system__storage_poolsB");

u00085 : constant Version_32 := 16#e87cc305#;

pragma Export (C, u00085, "system__storage_poolsS");

u00086 : constant Version_32 := 16#e34550ca#;

pragma Export (C, u00086, "system__pool_globalB");

u00087 : constant Version_32 := 16#c88d2d16#;

pragma Export (C, u00087, "system__pool_globalS");

u00088 : constant Version_32 := 16#9d39c675#;

pragma Export (C, u00088, "system__memoryB");

u00089 : constant Version_32 := 16#445a22b5#;

pragma Export (C, u00089, "system__memoryS");

u00090 : constant Version_32 := 16#6a859064#;

pragma Export (C, u00090, "system__storage_pools__subpoolsB");

u00091 : constant Version_32 := 16#e3b008dc#;

pragma Export (C, u00091, "system__storage_pools__subpoolsS");

u00092 : constant Version_32 := 16#63f11652#;

pragma Export (C, u00092, "system__storage_pools__subpools__finalizationB");

u00093 : constant Version_32 := 16#fe2f4b3a#;

pragma Export (C, u00093, "system__storage_pools__subpools__finalizationS");

-- BEGIN ELABORATION ORDER

-- ada%s

-- interfaces%s

-- system%s

-- system.case_util%s

-- system.case_util%b

-- system.htable%s

Chapter 8: Example of Binder Output File 266

-- system.img_bool%s

-- system.img_bool%b

-- system.img_int%s

-- system.img_int%b

-- system.io%s

-- system.io%b

-- system.parameters%s

-- system.parameters%b

-- system.crtl%s

-- interfaces.c_streams%s

-- interfaces.c_streams%b

-- system.standard_library%s

-- system.exceptions_debug%s

-- system.exceptions_debug%b

-- system.storage_elements%s

-- system.storage_elements%b

-- system.stack_checking%s

-- system.stack_checking%b

-- system.string_hash%s

-- system.string_hash%b

-- system.htable%b

-- system.strings%s

-- system.strings%b

-- system.os_lib%s

-- system.traceback_entries%s

-- system.traceback_entries%b

-- ada.exceptions%s

-- system.soft_links%s

-- system.unsigned_types%s

-- system.val_llu%s

-- system.val_util%s

-- system.val_util%b

-- system.val_llu%b

-- system.wch_con%s

-- system.wch_con%b

-- system.wch_cnv%s

-- system.wch_jis%s

-- system.wch_jis%b

-- system.wch_cnv%b

-- system.wch_stw%s

-- system.wch_stw%b

-- ada.exceptions.last_chance_handler%s

-- ada.exceptions.last_chance_handler%b

-- system.address_image%s

-- system.exception_table%s

-- system.exception_table%b

-- ada.io_exceptions%s

Chapter 8: Example of Binder Output File 267

-- ada.tags%s

-- ada.streams%s

-- ada.streams%b

-- interfaces.c%s

-- system.exceptions%s

-- system.exceptions%b

-- system.exceptions.machine%s

-- system.finalization_root%s

-- system.finalization_root%b

-- ada.finalization%s

-- ada.finalization%b

-- system.storage_pools%s

-- system.storage_pools%b

-- system.finalization_masters%s

-- system.storage_pools.subpools%s

-- system.storage_pools.subpools.finalization%s

-- system.storage_pools.subpools.finalization%b

-- system.memory%s

-- system.memory%b

-- system.standard_library%b

-- system.pool_global%s

-- system.pool_global%b

-- system.file_control_block%s

-- system.file_io%s

-- system.secondary_stack%s

-- system.file_io%b

-- system.storage_pools.subpools%b

-- system.finalization_masters%b

-- interfaces.c%b

-- ada.tags%b

-- system.soft_links%b

-- system.os_lib%b

-- system.secondary_stack%b

-- system.address_image%b

-- system.traceback%s

-- ada.exceptions%b

-- system.traceback%b

-- ada.text_io%s

-- ada.text_io%b

-- hello%b

-- END ELABORATION ORDER

end ada_main;

pragma Ada_95;

-- The following source file name pragmas allow the generated file

-- names to be unique for different main programs. They are needed

Chapter 8: Example of Binder Output File 268

-- since the package name will always be Ada_Main.

pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");

pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");

pragma Suppress (Overflow_Check);

with Ada.Exceptions;

-- Generated package body for Ada_Main starts here

package body ada_main is

pragma Warnings (Off);

-- These values are reference counter associated to units which have

-- been elaborated. It is also used to avoid elaborating the

-- same unit twice.

E72 : Short_Integer; pragma Import (Ada, E72, "system__os_lib_E");

E13 : Short_Integer; pragma Import (Ada, E13, "system__soft_links_E");

E23 : Short_Integer; pragma Import (Ada, E23, "system__exception_table_E");

E46 : Short_Integer; pragma Import (Ada, E46, "ada__io_exceptions_E");

E48 : Short_Integer; pragma Import (Ada, E48, "ada__tags_E");

E45 : Short_Integer; pragma Import (Ada, E45, "ada__streams_E");

E70 : Short_Integer; pragma Import (Ada, E70, "interfaces__c_E");

E25 : Short_Integer; pragma Import (Ada, E25, "system__exceptions_E");

E68 : Short_Integer; pragma Import (Ada, E68, "system__finalization_root_E");

E66 : Short_Integer; pragma Import (Ada, E66, "ada__finalization_E");

E85 : Short_Integer; pragma Import (Ada, E85, "system__storage_pools_E");

E77 : Short_Integer; pragma Import (Ada, E77, "system__finalization_masters_E");

E91 : Short_Integer; pragma Import (Ada, E91, "system__storage_pools__subpools_E");

E87 : Short_Integer; pragma Import (Ada, E87, "system__pool_global_E");

E75 : Short_Integer; pragma Import (Ada, E75, "system__file_control_block_E");

E64 : Short_Integer; pragma Import (Ada, E64, "system__file_io_E");

E17 : Short_Integer; pragma Import (Ada, E17, "system__secondary_stack_E");

E06 : Short_Integer; pragma Import (Ada, E06, "ada__text_io_E");

Local_Priority_Specific_Dispatching : constant String := "";

Local_Interrupt_States : constant String := "";

Is_Elaborated : Boolean := False;

procedure finalize_library is

begin

E06 := E06 - 1;

declare

procedure F1;

pragma Import (Ada, F1, "ada__text_io__finalize_spec");

Chapter 8: Example of Binder Output File 269

begin

F1;

end;

E77 := E77 - 1;

E91 := E91 - 1;

declare

procedure F2;

pragma Import (Ada, F2, "system__file_io__finalize_body");

begin

E64 := E64 - 1;

F2;

end;

declare

procedure F3;

pragma Import (Ada, F3, "system__file_control_block__finalize_spec");

begin

E75 := E75 - 1;

F3;

end;

E87 := E87 - 1;

declare

procedure F4;

pragma Import (Ada, F4, "system__pool_global__finalize_spec");

begin

F4;

end;

declare

procedure F5;

pragma Import (Ada, F5, "system__storage_pools__subpools__finalize_spec");

begin

F5;

end;

declare

procedure F6;

pragma Import (Ada, F6, "system__finalization_masters__finalize_spec");

begin

F6;

end;

declare

procedure Reraise_Library_Exception_If_Any;

pragma Import (Ada, Reraise_Library_Exception_If_Any, "__gnat_reraise_library_exception_if_any");

begin

Reraise_Library_Exception_If_Any;

end;

end finalize_library;

Chapter 8: Example of Binder Output File 270

-- adainit --

procedure adainit is

Main_Priority : Integer;

pragma Import (C, Main_Priority, "__gl_main_priority");

Time_Slice_Value : Integer;

pragma Import (C, Time_Slice_Value, "__gl_time_slice_val");

WC_Encoding : Character;

pragma Import (C, WC_Encoding, "__gl_wc_encoding");

Locking_Policy : Character;

pragma Import (C, Locking_Policy, "__gl_locking_policy");

Queuing_Policy : Character;

pragma Import (C, Queuing_Policy, "__gl_queuing_policy");

Task_Dispatching_Policy : Character;

pragma Import (C, Task_Dispatching_Policy, "__gl_task_dispatching_policy");

Priority_Specific_Dispatching : System.Address;

pragma Import (C, Priority_Specific_Dispatching, "__gl_priority_specific_dispatching");

Num_Specific_Dispatching : Integer;

pragma Import (C, Num_Specific_Dispatching, "__gl_num_specific_dispatching");

Main_CPU : Integer;

pragma Import (C, Main_CPU, "__gl_main_cpu");

Interrupt_States : System.Address;

pragma Import (C, Interrupt_States, "__gl_interrupt_states");

Num_Interrupt_States : Integer;

pragma Import (C, Num_Interrupt_States, "__gl_num_interrupt_states");

Unreserve_All_Interrupts : Integer;

pragma Import (C, Unreserve_All_Interrupts, "__gl_unreserve_all_interrupts");

Detect_Blocking : Integer;

pragma Import (C, Detect_Blocking, "__gl_detect_blocking");

Default_Stack_Size : Integer;

pragma Import (C, Default_Stack_Size, "__gl_default_stack_size");

Leap_Seconds_Support : Integer;

pragma Import (C, Leap_Seconds_Support, "__gl_leap_seconds_support");

procedure Runtime_Initialize;

pragma Import (C, Runtime_Initialize, "__gnat_runtime_initialize");

Finalize_Library_Objects : No_Param_Proc;

pragma Import (C, Finalize_Library_Objects, "__gnat_finalize_library_objects");

-- Start of processing for adainit

begin

-- Record various information for this partition. The values

Chapter 8: Example of Binder Output File 271

-- are derived by the binder from information stored in the ali

-- files by the compiler.

if Is_Elaborated then

return;

end if;

Is_Elaborated := True;

Main_Priority := -1;

Time_Slice_Value := -1;

WC_Encoding := ’b’;

Locking_Policy := ’ ’;

Queuing_Policy := ’ ’;

Task_Dispatching_Policy := ’ ’;

Priority_Specific_Dispatching :=

Local_Priority_Specific_Dispatching’Address;

Num_Specific_Dispatching := 0;

Main_CPU := -1;

Interrupt_States := Local_Interrupt_States’Address;

Num_Interrupt_States := 0;

Unreserve_All_Interrupts := 0;

Detect_Blocking := 0;

Default_Stack_Size := -1;

Leap_Seconds_Support := 0;

Runtime_Initialize;

Finalize_Library_Objects := finalize_library’access;

-- Now we have the elaboration calls for all units in the partition.

-- The Elab_Spec and Elab_Body attributes generate references to the

-- implicit elaboration procedures generated by the compiler for

-- each unit that requires elaboration. Increment a counter of

-- reference for each unit.

System.Soft_Links’Elab_Spec;

System.Exception_Table’Elab_Body;

E23 := E23 + 1;

Ada.Io_Exceptions’Elab_Spec;

E46 := E46 + 1;

Ada.Tags’Elab_Spec;

Ada.Streams’Elab_Spec;

E45 := E45 + 1;

Interfaces.C’Elab_Spec;

System.Exceptions’Elab_Spec;

E25 := E25 + 1;

System.Finalization_Root’Elab_Spec;

E68 := E68 + 1;

Chapter 8: Example of Binder Output File 272

Ada.Finalization’Elab_Spec;

E66 := E66 + 1;

System.Storage_Pools’Elab_Spec;

E85 := E85 + 1;

System.Finalization_Masters’Elab_Spec;

System.Storage_Pools.Subpools’Elab_Spec;

System.Pool_Global’Elab_Spec;

E87 := E87 + 1;

System.File_Control_Block’Elab_Spec;

E75 := E75 + 1;

System.File_Io’Elab_Body;

E64 := E64 + 1;

E91 := E91 + 1;

System.Finalization_Masters’Elab_Body;

E77 := E77 + 1;

E70 := E70 + 1;

Ada.Tags’Elab_Body;

E48 := E48 + 1;

System.Soft_Links’Elab_Body;

E13 := E13 + 1;

System.Os_Lib’Elab_Body;

E72 := E72 + 1;

System.Secondary_Stack’Elab_Body;

E17 := E17 + 1;

Ada.Text_Io’Elab_Spec;

Ada.Text_Io’Elab_Body;

E06 := E06 + 1;

end adainit;

-- adafinal --

procedure adafinal is

procedure s_stalib_adafinal;

pragma Import (C, s_stalib_adafinal, "system__standard_library__adafinal");

procedure Runtime_Finalize;

pragma Import (C, Runtime_Finalize, "__gnat_runtime_finalize");

begin

if not Is_Elaborated then

return;

end if;

Is_Elaborated := False;

Runtime_Finalize;

s_stalib_adafinal;

Chapter 8: Example of Binder Output File 273

end adafinal;

-- We get to the main program of the partition by using

-- pragma Import because if we try to with the unit and

-- call it Ada style, then not only do we waste time

-- recompiling it, but also, we don’t really know the right

-- switches (e.g.@: identifier character set) to be used

-- to compile it.

procedure Ada_Main_Program;

pragma Import (Ada, Ada_Main_Program, "_ada_hello");

-- main --

-- main is actually a function, as in the ANSI C standard,

-- defined to return the exit status. The three parameters

-- are the argument count, argument values and environment

-- pointer.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer

is

-- The initialize routine performs low level system

-- initialization using a standard library routine which

-- sets up signal handling and performs any other

-- required setup. The routine can be found in file

-- a-init.c.

procedure initialize;

pragma Import (C, initialize, "__gnat_initialize");

-- The finalize routine performs low level system

-- finalization using a standard library routine. The

-- routine is found in file a-final.c and in the standard

-- distribution is a dummy routine that does nothing, so

-- really this is a hook for special user finalization.

procedure finalize;

pragma Import (C, finalize, "__gnat_finalize");

-- The following is to initialize the SEH exceptions

Chapter 8: Example of Binder Output File 274

SEH : aliased array (1 .. 2) of Integer;

Ensure_Reference : aliased System.Address := Ada_Main_Program_Name’Address;

pragma Volatile (Ensure_Reference);

-- Start of processing for main

begin

-- Save global variables

gnat_argc := argc;

gnat_argv := argv;

gnat_envp := envp;

-- Call low level system initialization

Initialize (SEH’Address);

-- Call our generated Ada initialization routine

adainit;

-- Now we call the main program of the partition

Ada_Main_Program;

-- Perform Ada finalization

adafinal;

-- Perform low level system finalization

Finalize;

-- Return the proper exit status

return (gnat_exit_status);

end;

-- This section is entirely comments, so it has no effect on the

-- compilation of the Ada_Main package. It provides the list of

-- object files and linker options, as well as some standard

-- libraries needed for the link. The gnatlink utility parses

-- this b~hello.adb file to read these comment lines to generate

-- the appropriate command line arguments for the call to the

-- system linker. The BEGIN/END lines are used for sentinels for

-- this parsing operation.

Chapter 8: Example of Binder Output File 275

-- The exact file names will of course depend on the environment,

-- host/target and location of files on the host system.

-- BEGIN Object file/option list

-- ./hello.o

-- -L./

-- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/

-- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a

-- END Object file/option list

end ada_main;

The Ada code in the above example is exactly what is generated by the binder. We have
added comments to more clearly indicate the function of each part of the generated Ada_

Main package.

The code is standard Ada in all respects, and can be processed by any tools that handle
Ada. In particular, it is possible to use the debugger in Ada mode to debug the generated
Ada_Main package. For example, suppose that for reasons that you do not understand, your
program is crashing during elaboration of the body of Ada.Text_IO. To locate this bug,
you can place a breakpoint on the call:

Ada.Text_Io’Elab_Body;

and trace the elaboration routine for this package to find out where the problem might be
(more usually of course you would be debugging elaboration code in your own application).

Chapter 9: Elaboration Order Handling in GNAT 276

9 Elaboration Order Handling in GNAT

This appendix describes the handling of elaboration code in Ada and GNAT, and discusses
how the order of elaboration of program units can be controlled in GNAT, either automat-
ically or with explicit programming features.

9.1 Elaboration Code

Ada defines the term execution as the process by which a construct achieves its run-time
effect. This process is also referred to as elaboration for declarations and evaluation for
expressions.

The execution model in Ada allows for certain sections of an Ada program to be executed
prior to execution of the program itself, primarily with the intent of initializing data. These
sections are referred to as elaboration code. Elaboration code is executed as follows:

* All partitions of an Ada program are executed in parallel with one another, possibly
in a separate address space, and possibly on a separate computer.

* The execution of a partition involves running the environment task for that partition.

* The environment task executes all elaboration code (if available) for all units within
that partition. This code is said to be executed at elaboration time.

* The environment task executes the Ada program (if available) for that partition.

In addition to the Ada terminology, this appendix defines the following terms:

* Invocation

The act of calling a subprogram, instantiating a generic, or activating a task.

* Scenario

A construct that is elaborated or invoked by elaboration code is referred to as an
elaboration scenario or simply a scenario. GNAT recognizes the following scenarios:

- ’Access of entries, operators, and subprograms

- Activation of tasks

- Calls to entries, operators, and subprograms

- Instantiations of generic templates

* Target

A construct elaborated by a scenario is referred to as elaboration target or simply target.
GNAT recognizes the following targets:

- For ’Access of entries, operators, and subprograms, the target is the entry, oper-
ator, or subprogram being aliased.

- For activation of tasks, the target is the task body

- For calls to entries, operators, and subprograms, the target is the entry, operator,
or subprogram being invoked.

- For instantiations of generic templates, the target is the generic template being
instantiated.

Elaboration code may appear in two distinct contexts:

Chapter 9: Elaboration Order Handling in GNAT 277

* Library level

A scenario appears at the library level when it is encapsulated by a package [body]
compilation unit, ignoring any other package [body] declarations in between.

with Server;

package Client is

procedure Proc;

package Nested is

Val : ... := Server.Func;

end Nested;

end Client;

In the example above, the call to Server.Func is an elaboration scenario because it
appears at the library level of package Client. Note that the declaration of package
Nested is ignored according to the definition given above. As a result, the call to
Server.Func will be invoked when the spec of unit Client is elaborated.

* Package body statements

A scenario appears within the statement sequence of a package body when it is bounded
by the region starting from the begin keyword of the package body and ending at the
end keyword of the package body.

package body Client is

procedure Proc is

begin

...

end Proc;

begin

Proc;

end Client;

In the example above, the call to Proc is an elaboration scenario because it appears
within the statement sequence of package body Client. As a result, the call to Proc

will be invoked when the body of Client is elaborated.

9.2 Elaboration Order

The sequence by which the elaboration code of all units within a partition is executed is
referred to as elaboration order.

Within a single unit, elaboration code is executed in sequential order.

package body Client is

Result : ... := Server.Func;

procedure Proc is

package Inst is new Server.Gen;

begin

Inst.Eval (Result);

end Proc;

begin

Chapter 9: Elaboration Order Handling in GNAT 278

Proc;

end Client;

In the example above, the elaboration order within package body Client is as follows:

1. The object declaration of Result is elaborated.

* Function Server.Func is invoked.

2. The subprogram body of Proc is elaborated.

3. Procedure Proc is invoked.

* Generic unit Server.Gen is instantiated as Inst.

* Instance Inst is elaborated.

* Procedure Inst.Eval is invoked.

The elaboration order of all units within a partition depends on the following factors:

* withed units

* parent units

* purity of units

* preelaborability of units

* presence of elaboration-control pragmas

* invocations performed in elaboration code

A program may have several elaboration orders depending on its structure.

package Server is

function Func (Index : Integer) return Integer;

end Server;

package body Server is

Results : array (1 .. 5) of Integer := (1, 2, 3, 4, 5);

function Func (Index : Integer) return Integer is

begin

return Results (Index);

end Func;

end Server;

with Server;

package Client is

Val : constant Integer := Server.Func (3);

end Client;

with Client;

procedure Main is begin null; end Main;

The following elaboration order exhibits a fundamental problem referred to as access-before-
elaboration or simply ABE.

spec of Server

spec of Client

body of Server

body of Main

Chapter 9: Elaboration Order Handling in GNAT 279

The elaboration of Server’s spec materializes function Func, making it callable. The
elaboration of Client’s spec elaborates the declaration of Val. This invokes function
Server.Func, however the body of Server.Func has not been elaborated yet because
Server’s body comes after Client’s spec in the elaboration order. As a result, the value of
constant Val is now undefined.

Without any guarantees from the language, an undetected ABE problem may hinder proper
initialization of data, which in turn may lead to undefined behavior at run time. To prevent
such ABE problems, Ada employs dynamic checks in the same vein as index or null exclusion
checks. A failed ABE check raises exception Program_Error.

The following elaboration order avoids the ABE problem and the program can be success-
fully elaborated.

spec of Server

body of Server

spec of Client

body of Main

Ada states that a total elaboration order must exist, but it does not define what this order
is. A compiler is thus tasked with choosing a suitable elaboration order which satisfies the
dependencies imposed by with clauses, unit categorization, elaboration-control pragmas,
and invocations performed in elaboration code. Ideally an order that avoids ABE problems
should be chosen, however a compiler may not always find such an order due to complications
with respect to control and data flow.

9.3 Checking the Elaboration Order

To avoid placing the entire elaboration-order burden on the programmer, Ada provides
three lines of defense:

* Static semantics

Static semantic rules restrict the possible choice of elaboration order. For instance,
if unit Client withs unit Server, then the spec of Server is always elaborated prior to
Client. The same principle applies to child units - the spec of a parent unit is always
elaborated prior to the child unit.

* Dynamic semantics

Dynamic checks are performed at run time, to ensure that a target is elaborated prior
to a scenario that invokes it, thus avoiding ABE problems. A failed run-time check
raises exception Program_Error. The following restrictions apply:

- Restrictions on calls

An entry, operator, or subprogram can be called from elaboration code only when
the corresponding body has been elaborated.

- Restrictions on instantiations

A generic unit can be instantiated by elaboration code only when the corresponding
body has been elaborated.

- Restrictions on task activation

A task can be activated by elaboration code only when the body of the associated
task type has been elaborated.

Chapter 9: Elaboration Order Handling in GNAT 280

The restrictions above can be summarized by the following rule:

If a target has a body, then this body must be elaborated prior to the scenario that
invokes the target.

* Elaboration control

Pragmas are provided for the programmer to specify the desired elaboration order.

9.4 Controlling the Elaboration Order in Ada

Ada provides several idioms and pragmas to aid the programmer with specifying the desired
elaboration order and avoiding ABE problems altogether.

* Packages without a body

A library package which does not require a completing body does not suffer from ABE
problems.

package Pack is

generic

type Element is private;

package Containers is

type Element_Array is array (1 .. 10) of Element;

end Containers;

end Pack;

In the example above, package Pack does not require a body because it does not
contain any constructs which require completion in a body. As a result, generic
Pack.Containers can be instantiated without encountering any ABE problems.

* pragma Pure

Pragma Pure places sufficient restrictions on a unit to guarantee that no scenario within
the unit can result in an ABE problem.

* pragma Preelaborate

Pragma Preelaborate is slightly less restrictive than pragma Pure, but still strong
enough to prevent ABE problems within a unit.

* pragma Elaborate Body

Pragma Elaborate_Body requires that the body of a unit is elaborated immediately
after its spec. This restriction guarantees that no client scenario can invoke a server
target before the target body has been elaborated because the spec and body are
effectively "glued" together.

package Server is

pragma Elaborate_Body;

function Func return Integer;

end Server;

package body Server is

function Func return Integer is

begin

...

end Func;

end Server;

Chapter 9: Elaboration Order Handling in GNAT 281

with Server;

package Client is

Val : constant Integer := Server.Func;

end Client;

In the example above, pragma Elaborate_Body guarantees the following elaboration
order:

spec of Server

body of Server

spec of Client

because the spec of Server must be elaborated prior to Client by virtue of the with
clause, and in addition the body of Server must be elaborated immediately after the
spec of Server.

Removing pragma Elaborate_Body could result in the following incorrect elaboration
order:

spec of Server

spec of Client

body of Server

where Client invokes Server.Func, but the body of Server.Func has not been elab-
orated yet.

The pragmas outlined above allow a server unit to guarantee safe elaboration use by client
units. Thus it is a good rule to mark units as Pure or Preelaborate, and if this is not
possible, mark them as Elaborate_Body.

There are however situations where Pure, Preelaborate, and Elaborate_Body are not
applicable. Ada provides another set of pragmas for use by client units to help ensure the
elaboration safety of server units they depend on.

* pragma Elaborate (Unit)

Pragma Elaborate can be placed in the context clauses of a unit, after a with clause.
It guarantees that both the spec and body of its argument will be elaborated prior
to the unit with the pragma. Note that other unrelated units may be elaborated in
between the spec and the body.

package Server is

function Func return Integer;

end Server;

package body Server is

function Func return Integer is

begin

...

end Func;

end Server;

with Server;

pragma Elaborate (Server);

package Client is

Val : constant Integer := Server.Func;

end Client;

Chapter 9: Elaboration Order Handling in GNAT 282

In the example above, pragma Elaborate guarantees the following elaboration order:

spec of Server

body of Server

spec of Client

Removing pragma Elaborate could result in the following incorrect elaboration order:

spec of Server

spec of Client

body of Server

where Client invokes Server.Func, but the body of Server.Func has not been elab-
orated yet.

* pragma Elaborate All (Unit)

Pragma Elaborate_All is placed in the context clauses of a unit, after a with clause.
It guarantees that both the spec and body of its argument will be elaborated prior
to the unit with the pragma, as well as all units withed by the spec and body of the
argument, recursively. Note that other unrelated units may be elaborated in between
the spec and the body.

package Math is

function Factorial (Val : Natural) return Natural;

end Math;

package body Math is

function Factorial (Val : Natural) return Natural is

begin

...;

end Factorial;

end Math;

package Computer is

type Operation_Kind is (None, Op_Factorial);

function Compute

(Val : Natural;

Op : Operation_Kind) return Natural;

end Computer;

with Math;

package body Computer is

function Compute

(Val : Natural;

Op : Operation_Kind) return Natural

is

if Op = Op_Factorial then

return Math.Factorial (Val);

end if;

return 0;

end Compute;

end Computer;

Chapter 9: Elaboration Order Handling in GNAT 283

with Computer;

pragma Elaborate_All (Computer);

package Client is

Val : constant Natural :=

Computer.Compute (123, Computer.Op_Factorial);

end Client;

In the example above, pragma Elaborate_All can result in the following elaboration
order:

spec of Math

body of Math

spec of Computer

body of Computer

spec of Client

Note that there are several allowable suborders for the specs and bodies of Math and
Computer, but the point is that these specs and bodies will be elaborated prior to
Client.

Removing pragma Elaborate_All could result in the following incorrect elaboration
order:

spec of Math

spec of Computer

body of Computer

spec of Client

body of Math

where Client invokes Computer.Compute, which in turn invokes Math.Factorial, but
the body of Math.Factorial has not been elaborated yet.

All pragmas shown above can be summarized by the following rule:

If a client unit elaborates a server target directly or indirectly, then if the server unit requires
a body and does not have pragma Pure, Preelaborate, or Elaborate Body, then the client unit
should have pragma Elaborate or Elaborate All for the server unit.

If the rule outlined above is not followed, then a program may fall in one of the following
states:

* No elaboration order exists

In this case a compiler must diagnose the situation, and refuse to build an executable
program.

* One or more incorrect elaboration orders exist

In this case a compiler can build an executable program, but Program_Error will be
raised when the program is run.

* Several elaboration orders exist, some correct, some incorrect

In this case the programmer has not controlled the elaboration order. As a result, a
compiler may or may not pick one of the correct orders, and the program may or may
not raise Program_Error when it is run. This is the worst possible state because the
program may fail on another compiler, or even another version of the same compiler.

Chapter 9: Elaboration Order Handling in GNAT 284

* One or more correct orders exist

In this case a compiler can build an executable program, and the program is run
successfully. This state may be guaranteed by following the outlined rules, or may be
the result of good program architecture.

Note that one additional advantage of using Elaborate and Elaborate_All is that the
program continues to stay in the last state (one or more correct orders exist) even if main-
tenance changes the bodies of targets.

9.5 Controlling the Elaboration Order in GNAT

In addition to Ada semantics and rules synthesized from them, GNAT offers three elabo-
ration models to aid the programmer with specifying the correct elaboration order and to
diagnose elaboration problems.

* Dynamic elaboration model

This is the most permissive of the three elaboration models and emulates the behavior
specified by the Ada Reference Manual. When the dynamic model is in effect, GNAT
makes the following assumptions:

- All code within all units in a partition is considered to be elaboration code.

- Some of the invocations in elaboration code may not take place at run time due
to conditional execution.

GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios that
invoke internal targets. In addition, GNAT generates run-time checks for all external
targets and for all scenarios that may exhibit ABE problems.

The elaboration order is obtained by honoring all with clauses, purity and preelabora-
bility of units, and elaboration-control pragmas. The dynamic model attempts to take
all invocations in elaboration code into account. If an invocation leads to a circular-
ity, GNAT ignores the invocation based on the assumptions stated above. An order
obtained using the dynamic model may fail an ABE check at run time when GNAT
ignored an invocation.

The dynamic model is enabled with compiler switch -gnatE.

* Static elaboration model

This is the middle ground of the three models. When the static model is in effect,
GNAT makes the following assumptions:

- Only code at the library level and in package body statements within all units in
a partition is considered to be elaboration code.

- All invocations in elaboration will take place at run time, regardless of conditional
execution.

GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios that
invoke internal targets. In addition, GNAT generates run-time checks for all external
targets and for all scenarios that may exhibit ABE problems.

The elaboration order is obtained by honoring all with clauses, purity and preelaborabil-
ity of units, presence of elaboration-control pragmas, and all invocations in elaboration
code. An order obtained using the static model is guaranteed to be ABE problem-free,
excluding dispatching calls and access-to-subprogram types.

Chapter 9: Elaboration Order Handling in GNAT 285

The static model is the default model in GNAT.

* SPARK elaboration model

This is the most conservative of the three models and enforces the SPARK rules of
elaboration as defined in the SPARK Reference Manual, section 7.7. The SPARK
model is in effect only when a scenario and a target reside in a region subject to
SPARK_Mode On, otherwise the dynamic or static model is in effect.

The SPARK model is enabled with compiler switch -gnatd.v.

* Legacy elaboration models

In addition to the three elaboration models outlined above, GNAT provides the follow-
ing legacy models:

- Legacy elaboration-checking model available in pre-18.x versions of GNAT. This
model is enabled with compiler switch -gnatH.

- Legacy elaboration-order model available in pre-20.x versions of GNAT. This
model is enabled with binder switch -H.

The dynamic, legacy, and static models can be relaxed using compiler switch -gnatJ, mak-
ing them more permissive. Note that in this mode, GNAT may not diagnose certain elab-
oration issues or install run-time checks.

9.6 Mixing Elaboration Models

It is possible to mix units compiled with a different elaboration model, however the following
rules must be observed:

* A client unit compiled with the dynamic model can only with a server unit that meets
at least one of the following criteria:

- The server unit is compiled with the dynamic model.

- The server unit is a GNAT implementation unit from the Ada, GNAT, Interfaces,
or System hierarchies.

- The server unit has pragma Pure or Preelaborate.

- The client unit has an explicit Elaborate_All pragma for the server unit.

These rules ensure that elaboration checks are not omitted. If the rules are violated, the
binder emits a warning:

warning: "x.ads" has dynamic elaboration checks and with’s

warning: "y.ads" which has static elaboration checks

The warnings can be suppressed by binder switch -ws.

9.7 ABE Diagnostics

GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios that invoke
internal targets, regardless of whether the dynamic, SPARK, or static model is in effect.

Note that GNAT emits warnings rather than hard errors whenever it encounters an elab-
oration problem. This is because the elaboration model in effect may be too conservative,
or a particular scenario may not be invoked due conditional execution. The warnings can
be suppressed selectively with pragma Warnings (Off) or globally with compiler switch
-gnatwL.

Chapter 9: Elaboration Order Handling in GNAT 286

A guaranteed ABE arises when the body of a target is not elaborated early enough, and
causes all scenarios that directly invoke the target to fail.

package body Guaranteed_ABE is

function ABE return Integer;

Val : constant Integer := ABE;

function ABE return Integer is

begin

...

end ABE;

end Guaranteed_ABE;

In the example above, the elaboration of Guaranteed_ABE’s body elaborates the declaration
of Val. This invokes function ABE, however the body of ABE has not been elaborated yet.
GNAT emits the following diagnostic:

4. Val : constant Integer := ABE;

|

>>> warning: cannot call "ABE" before body seen

>>> warning: Program_Error will be raised at run time

A conditional ABE arises when the body of a target is not elaborated early enough, and
causes some scenarios that directly invoke the target to fail.

1. package body Conditional_ABE is

2. procedure Force_Body is null;

3.

4. generic

5. with function Func return Integer;

6. package Gen is

7. Val : constant Integer := Func;

8. end Gen;

9.

10. function ABE return Integer;

11.

12. function Cause_ABE return Boolean is

13. package Inst is new Gen (ABE);

14. begin

15. ...

16. end Cause_ABE;

17.

18. Val : constant Boolean := Cause_ABE;

19.

20. function ABE return Integer is

21. begin

22. ...

23. end ABE;

24.

25. Safe : constant Boolean := Cause_ABE;

Chapter 9: Elaboration Order Handling in GNAT 287

26. end Conditional_ABE;

In the example above, the elaboration of package body Conditional_ABE elaborates the
declaration of Val. This invokes function Cause_ABE, which instantiates generic unit Gen
as Inst. The elaboration of Inst invokes function ABE, however the body of ABE has not
been elaborated yet. GNAT emits the following diagnostic:

13. package Inst is new Gen (ABE);

|

>>> warning: in instantiation at line 7

>>> warning: cannot call "ABE" before body seen

>>> warning: Program_Error may be raised at run time

>>> warning: body of unit "Conditional_ABE" elaborated

>>> warning: function "Cause_ABE" called at line 18

>>> warning: function "ABE" called at line 7, instance at line 13

Note that the same ABE problem does not occur with the elaboration of declaration Safe

because the body of function ABE has already been elaborated at that point.

9.8 SPARK Diagnostics

GNAT enforces the SPARK rules of elaboration as defined in the SPARK Reference Manual
section 7.7 when compiler switch -gnatd.v is in effect. Note that GNAT emits hard errors
whenever it encounters a violation of the SPARK rules.

1. with Server;

2. package body SPARK_Diagnostics with SPARK_Mode is

3. Val : constant Integer := Server.Func;

|

>>> call to "Func" during elaboration in SPARK

>>> unit "SPARK_Diagnostics" requires pragma "Elaborate_All" for "Server"

>>> body of unit "SPARK_Model" elaborated

>>> function "Func" called at line 3

4. end SPARK_Diagnostics;

9.9 Elaboration Circularities

An elaboration circularity occurs whenever the elaboration of a set of units enters a dead-
locked state, where each unit is waiting for another unit to be elaborated. This situation
may be the result of improper use of with clauses, elaboration-control pragmas, or invoca-
tions in elaboration code.

The following example exhibits an elaboration circularity.

with B; pragma Elaborate (B);

package A is

end A;

package B is

procedure Force_Body;

end B;

with C;

Chapter 9: Elaboration Order Handling in GNAT 288

package body B is

procedure Force_Body is null;

Elab : constant Integer := C.Func;

end B;

package C is

function Func return Integer;

end C;

with A;

package body C is

function Func return Integer is

begin

...

end Func;

end C;

The binder emits the following diagnostic:

error: Elaboration circularity detected

info:

info: Reason:

info:

info: unit "a (spec)" depends on its own elaboration

info:

info: Circularity:

info:

info: unit "a (spec)" has with clause and pragma Elaborate for unit "b (spec)"

info: unit "b (body)" is in the closure of pragma Elaborate

info: unit "b (body)" invokes a construct of unit "c (body)" at elaboration time

info: unit "c (body)" has with clause for unit "a (spec)"

info:

info: Suggestions:

info:

info: remove pragma Elaborate for unit "b (body)" in unit "a (spec)"

info: use the dynamic elaboration model (compiler switch -gnatE)

The diagnostic consist of the following sections:

* Reason

This section provides a short explanation describing why the set of units could not be
ordered.

* Circularity

This section enumerates the units comprising the deadlocked set, along with their
interdependencies.

* Suggestions

This section enumerates various tactics for eliminating the circularity.

Chapter 9: Elaboration Order Handling in GNAT 289

9.10 Resolving Elaboration Circularities

The most desirable option from the point of view of long-term maintenance is to rearrange
the program so that the elaboration problems are avoided. One useful technique is to
place the elaboration code into separate child packages. Another is to move some of the
initialization code to explicitly invoked subprograms, where the program controls the order
of initialization explicitly. Although this is the most desirable option, it may be impractical
and involve too much modification, especially in the case of complex legacy code.

When faced with an elaboration circularity, the programmer should also consider the tactics
given in the suggestions section of the circularity diagnostic. Depending on the units in-
volved in the circularity, their with clauses, purity, preelaborability, presence of elaboration-
control pragmas and invocations at elaboration time, the binder may suggest one or more
of the following tactics to eliminate the circularity:

* Pragma Elaborate elimination

remove pragma Elaborate for unit "..." in unit "..."

This tactic is suggested when the binder has determined that pragma Elaborate:

- Prevents a set of units from being elaborated.

- The removal of the pragma will not eliminate the semantic effects of the pragma.
In other words, the argument of the pragma will still be elaborated prior to the
unit containing the pragma.

- The removal of the pragma will enable the successful ordering of the units.

The programmer should remove the pragma as advised, and rebuild the program.

* Pragma Elaborate All elimination

remove pragma Elaborate_All for unit "..." in unit "..."

This tactic is suggested when the binder has determined that pragma Elaborate_All:

- Prevents a set of units from being elaborated.

- The removal of the pragma will not eliminate the semantic effects of the pragma.
In other words, the argument of the pragma along with its with closure will still
be elaborated prior to the unit containing the pragma.

- The removal of the pragma will enable the successful ordering of the units.

The programmer should remove the pragma as advised, and rebuild the program.

* Pragma Elaborate All downgrade

change pragma Elaborate_All for unit "..." to Elaborate in unit "..."

This tactic is always suggested with the pragma Elaborate_All elimination tactic. It
offers a different alernative of guaranteeing that the argument of the pragma will still
be elaborated prior to the unit containing the pragma.

The programmer should update the pragma as advised, and rebuild the program.

* Pragma Elaborate Body elimination

remove pragma Elaborate_Body in unit "..."

This tactic is suggested when the binder has determined that pragma Elaborate_Body:

- Prevents a set of units from being elaborated.

- The removal of the pragma will enable the successful ordering of the units.

Chapter 9: Elaboration Order Handling in GNAT 290

Note that the binder cannot determine whether the pragma is required for other pur-
poses, such as guaranteeing the initialization of a variable declared in the spec by
elaboration code in the body.

The programmer should remove the pragma as advised, and rebuild the program.

* Use of pragma Restrictions

use pragma Restrictions (No_Entry_Calls_In_Elaboration_Code)

This tactic is suggested when the binder has determined that a task activation at
elaboration time:

- Prevents a set of units from being elaborated.

Note that the binder cannot determine with certainty whether the task will block at
elaboration time.

The programmer should create a configuration file, place the pragma within, update
the general compilation arguments, and rebuild the program.

* Use of dynamic elaboration model

use the dynamic elaboration model (compiler switch -gnatE)

This tactic is suggested when the binder has determined that an invocation at elabo-
ration time:

- Prevents a set of units from being elaborated.

- The use of the dynamic model will enable the successful ordering of the units.

The programmer has two options:

- Determine the units involved in the invocation using the detailed invocation infor-
mation, and add compiler switch -gnatE to the compilation arguments of selected
files only. This approach will yield safer elaboration orders compared to the other
option because it will minimize the opportunities presented to the dynamic model
for ignoring invocations.

- Add compiler switch -gnatE to the general compilation arguments.

* Use of detailed invocation information

use detailed invocation information (compiler switch -gnatd_F)

This tactic is always suggested with the use of the dynamic model tactic. It causes the
circularity section of the circularity diagnostic to describe the flow of elaboration code
from a unit to a unit, enumerating all such paths in the process.

The programmer should analyze this information to determine which units should be
compiled with the dynamic model.

* Forced-dependency elimination

remove the dependency of unit "..." on unit "..." from the argument of switch -f

This tactic is suggested when the binder has determined that a dependency present in
the forced-elaboration-order file indicated by binder switch -f:

- Prevents a set of units from being elaborated.

- The removal of the dependency will enable the successful ordering of the units.

The programmer should edit the forced-elaboration-order file, remove the dependency,
and rebind the program.

Chapter 9: Elaboration Order Handling in GNAT 291

* All forced-dependency elimination

remove switch -f

This tactic is suggested in case editing the forced-elaboration-order file is not an option.

The programmer should remove binder switch -f from the binder arguments, and
rebind.

* Multiple-circularities diagnostic

diagnose all circularities (binder switch -d_C)

By default, the binder will diagnose only the highest-precedence circularity. If the
program contains multiple circularities, the binder will suggest the use of binder switch
-d_C in order to obtain the diagnostics of all circularities.

The programmer should add binder switch -d_C to the binder arguments, and rebind.

If none of the tactics suggested by the binder eliminate the elaboration circularity, the
programmer should consider using one of the legacy elaboration models, in the following
order:

* Use the pre-20.x legacy elaboration-order model, with binder switch -H.

* Use both pre-18.x and pre-20.x legacy elaboration models, with compiler switch -gnatH

and binder switch -H.

* Use the relaxed static-elaboration model, with compiler switches -gnatH -gnatJ and
binder switch -H.

* Use the relaxed dynamic-elaboration model, with compiler switches -gnatH -gnatJ

-gnatE and binder switch -H.

9.11 Elaboration-related Compiler Switches

GNAT has several switches that affect the elaboration model and consequently the elabo-
ration order chosen by the binder.

-gnatE

Dynamic elaboration checking mode enabled

When this switch is in effect, GNAT activates the dynamic model.

-gnatel

Turn on info messages on generated Elaborate[All] pragmas

This switch is only applicable to the pre-20.x legacy elaboration models. The
post-20.x elaboration model no longer relies on implicitly generated Elaborate

and Elaborate_All pragmas to order units.

When this switch is in effect, GNAT will emit the following supplementary
information depending on the elaboration model in effect.

- Dynamic model

GNAT will indicate missing Elaborate and Elaborate_All pragmas for
all library-level scenarios within the partition.

- Static model

GNAT will indicate all scenarios invoked during elaboration. In addition, it
will provide detailed traceback when an implicit Elaborate or Elaborate_
All pragma is generated.

Chapter 9: Elaboration Order Handling in GNAT 292

- SPARK model

GNAT will indicate how an elaboration requirement is met by the context
of a unit. This diagnostic requires compiler switch -gnatd.v.

1. with Server; pragma Elaborate_All (Server);

2. package Client with SPARK_Mode is

3. Val : constant Integer := Server.Func;

|

>>> info: call to "Func" during elaboration in SPARK

>>> info: "Elaborate_All" requirement for unit "Server" met by pragma at line 1

4. end Client;

-gnatH

Legacy elaboration checking mode enabled

When this switch is in effect, GNAT will utilize the pre-18.x elaboration model.

-gnatJ

Relaxed elaboration checking mode enabled

When this switch is in effect, GNAT will not process certain scenarios, resulting
in a more permissive elaboration model. Note that this may eliminate some
diagnostics and run-time checks.

-gnatw.f

Turn on warnings for suspicious Subp’Access

When this switch is in effect, GNAT will treat ’Access of an entry, operator,
or subprogram as a potential call to the target and issue warnings:

1. package body Attribute_Call is

2. function Func return Integer;

3. type Func_Ptr is access function return Integer;

4.

5. Ptr : constant Func_Ptr := Func’Access;

|

>>> warning: "Access" attribute of "Func" before body seen

>>> warning: possible Program_Error on later references

>>> warning: body of unit "Attribute_Call" elaborated

>>> warning: "Access" of "Func" taken at line 5

6.

7. function Func return Integer is

8. begin

9. ...

10. end Func;

11. end Attribute_Call;

In the example above, the elaboration of declaration Ptr is assigned
Func’Access before the body of Func has been elaborated.

-gnatwl

Chapter 9: Elaboration Order Handling in GNAT 293

Turn on warnings for elaboration problems

When this switch is in effect, GNAT emits diagnostics in the form of warnings
concerning various elaboration problems. The warnings are enabled by default.
The switch is provided in case all warnings are suppressed, but elaboration
warnings are still desired.

-gnatwL

Turn off warnings for elaboration problems

When this switch is in effect, GNAT no longer emits any diagnostics in the
form of warnings. Selective suppression of elaboration problems is possible
using pragma Warnings (Off).

1. package body Selective_Suppression is

2. function ABE return Integer;

3.

4. Val_1 : constant Integer := ABE;

|

>>> warning: cannot call "ABE" before body seen

>>> warning: Program_Error will be raised at run time

5.

6. pragma Warnings (Off);

7. Val_2 : constant Integer := ABE;

8. pragma Warnings (On);

9.

10. function ABE return Integer is

11. begin

12. ...

13. end ABE;

14. end Selective_Suppression;

Note that suppressing elaboration warnings does not eliminate run-time checks.
The example above will still fail at run time with an ABE.

9.12 Summary of Procedures for Elaboration Control

A programmer should first compile the program with the default options, using none of the
binder or compiler switches. If the binder succeeds in finding an elaboration order, then
apart from possible cases involing dispatching calls and access-to-subprogram types, the
program is free of elaboration errors.

If it is important for the program to be portable to compilers other than GNAT, then the
programmer should use compiler switch -gnatel and consider the messages about missing
or implicitly created Elaborate and Elaborate_All pragmas.

If the binder reports an elaboration circularity, the programmer has several options:

* Ensure that elaboration warnings are enabled. This will allow the static model to
output trace information of elaboration issues. The trace information could shed light
on previously unforeseen dependencies, as well as their origins. Elaboration warnings
are enabled with compiler switch -gnatwl.

Chapter 9: Elaboration Order Handling in GNAT 294

* Cosider the tactics given in the suggestions section of the circularity diagnostic.

* If none of the steps outlined above resolve the circularity, use a more permissive elab-
oration model, in the following order:

- Use the pre-20.x legacy elaboration-order model, with binder switch -H.

- Use both pre-18.x and pre-20.x legacy elaboration models, with compiler switch
-gnatH and binder switch -H.

- Use the relaxed static elaboration model, with compiler switches -gnatH -gnatJ

and binder switch -H.

- Use the relaxed dynamic elaboration model, with compiler switches -gnatH -gnatJ
-gnatE and binder switch -H.

9.13 Inspecting the Chosen Elaboration Order

To see the elaboration order chosen by the binder, inspect the contents of file b~xxx.adb.
On certain targets, this file appears as b xxx.adb. The elaboration order appears as a
sequence of calls to Elab_Body and Elab_Spec, interspersed with assignments to Exxx
which indicates that a particular unit is elaborated. For example:

System.Soft_Links’Elab_Body;

E14 := True;

System.Secondary_Stack’Elab_Body;

E18 := True;

System.Exception_Table’Elab_Body;

E24 := True;

Ada.Io_Exceptions’Elab_Spec;

E67 := True;

Ada.Tags’Elab_Spec;

Ada.Streams’Elab_Spec;

E43 := True;

Interfaces.C’Elab_Spec;

E69 := True;

System.Finalization_Root’Elab_Spec;

E60 := True;

System.Os_Lib’Elab_Body;

E71 := True;

System.Finalization_Implementation’Elab_Spec;

System.Finalization_Implementation’Elab_Body;

E62 := True;

Ada.Finalization’Elab_Spec;

E58 := True;

Ada.Finalization.List_Controller’Elab_Spec;

E76 := True;

System.File_Control_Block’Elab_Spec;

E74 := True;

System.File_Io’Elab_Body;

E56 := True;

Ada.Tags’Elab_Body;

Chapter 9: Elaboration Order Handling in GNAT 295

E45 := True;

Ada.Text_Io’Elab_Spec;

Ada.Text_Io’Elab_Body;

E07 := True;

Note also binder switch -l, which outputs the chosen elaboration order and provides a more
readable form of the above:

ada (spec)

interfaces (spec)

system (spec)

system.case_util (spec)

system.case_util (body)

system.concat_2 (spec)

system.concat_2 (body)

system.concat_3 (spec)

system.concat_3 (body)

system.htable (spec)

system.parameters (spec)

system.parameters (body)

system.crtl (spec)

interfaces.c_streams (spec)

interfaces.c_streams (body)

system.restrictions (spec)

system.restrictions (body)

system.standard_library (spec)

system.exceptions (spec)

system.exceptions (body)

system.storage_elements (spec)

system.storage_elements (body)

system.secondary_stack (spec)

system.stack_checking (spec)

system.stack_checking (body)

system.string_hash (spec)

system.string_hash (body)

system.htable (body)

system.strings (spec)

system.strings (body)

system.traceback (spec)

system.traceback (body)

system.traceback_entries (spec)

system.traceback_entries (body)

ada.exceptions (spec)

ada.exceptions.last_chance_handler (spec)

system.soft_links (spec)

system.soft_links (body)

ada.exceptions.last_chance_handler (body)

system.secondary_stack (body)

Chapter 9: Elaboration Order Handling in GNAT 296

system.exception_table (spec)

system.exception_table (body)

ada.io_exceptions (spec)

ada.tags (spec)

ada.streams (spec)

interfaces.c (spec)

interfaces.c (body)

system.finalization_root (spec)

system.finalization_root (body)

system.memory (spec)

system.memory (body)

system.standard_library (body)

system.os_lib (spec)

system.os_lib (body)

system.unsigned_types (spec)

system.stream_attributes (spec)

system.stream_attributes (body)

system.finalization_implementation (spec)

system.finalization_implementation (body)

ada.finalization (spec)

ada.finalization (body)

ada.finalization.list_controller (spec)

ada.finalization.list_controller (body)

system.file_control_block (spec)

system.file_io (spec)

system.file_io (body)

system.val_uns (spec)

system.val_util (spec)

system.val_util (body)

system.val_uns (body)

system.wch_con (spec)

system.wch_con (body)

system.wch_cnv (spec)

system.wch_jis (spec)

system.wch_jis (body)

system.wch_cnv (body)

system.wch_stw (spec)

system.wch_stw (body)

ada.tags (body)

ada.exceptions (body)

ada.text_io (spec)

ada.text_io (body)

text_io (spec)

gdbstr (body)

Chapter 10: Inline Assembler 297

10 Inline Assembler

If you need to write low-level software that interacts directly with the hardware, Ada pro-
vides two ways to incorporate assembly language code into your program. First, you can
import and invoke external routines written in assembly language, an Ada feature fully
supported by GNAT. However, for small sections of code it may be simpler or more efficient
to include assembly language statements directly in your Ada source program, using the
facilities of the implementation-defined package System.Machine_Code, which incorporates
the gcc Inline Assembler. The Inline Assembler approach offers a number of advantages,
including the following:

* No need to use non-Ada tools

* Consistent interface over different targets

* Automatic usage of the proper calling conventions

* Access to Ada constants and variables

* Definition of intrinsic routines

* Possibility of inlining a subprogram comprising assembler code

* Code optimizer can take Inline Assembler code into account

This appendix presents a series of examples to show you how to use the Inline Assembler.
Although it focuses on the Intel x86, the general approach applies also to other processors.
It is assumed that you are familiar with Ada and with assembly language programming.

10.1 Basic Assembler Syntax

The assembler used by GNAT and gcc is based not on the Intel assembly language, but
rather on a language that descends from the AT&T Unix assembler as (and which is often
referred to as ’AT&T syntax’). The following table summarizes the main features of as
syntax and points out the differences from the Intel conventions. See the gcc as and gas

(an as macro pre-processor) documentation for further information.

Register names
gcc / as: Prefix with ’%’; for example %eax
Intel: No extra punctuation; for example eax

Immediate operand
gcc / as: Prefix with ’$’; for example $4
Intel: No extra punctuation; for example 4

Address
gcc / as: Prefix with ’$’; for example $loc
Intel: No extra punctuation; for example loc

Memory contents
gcc / as: No extra punctuation; for example loc
Intel: Square brackets; for example [loc]

Register contents
gcc / as: Parentheses; for example (%eax)
Intel: Square brackets; for example [eax]

Chapter 10: Inline Assembler 298

Hexadecimal numbers
gcc / as: Leading ’0x’ (C language syntax); for example 0xA0
Intel: Trailing ’h’; for example A0h

Operand size
gcc / as: Explicit in op code; for example movw to move a 16-bit word
Intel: Implicit, deduced by assembler; for example mov

Instruction repetition
gcc / as: Split into two lines; for example

rep

stosl

Intel: Keep on one line; for example rep stosl

Order of operands
gcc / as: Source first; for example movw $4, %eax

Intel: Destination first; for example mov eax, 4

10.2 A Simple Example of Inline Assembler

The following example will generate a single assembly language statement, nop, which does
nothing. Despite its lack of run-time effect, the example will be useful in illustrating the
basics of the Inline Assembler facility.

with System.Machine_Code; use System.Machine_Code;

procedure Nothing is

begin

Asm ("nop");

end Nothing;

Asm is a procedure declared in package System.Machine_Code; here it takes one parameter, a
template string that must be a static expression and that will form the generated instruction.
Asm may be regarded as a compile-time procedure that parses the template string and
additional parameters (none here), from which it generates a sequence of assembly language
instructions.

The examples in this chapter will illustrate several of the forms for invoking Asm; a complete
specification of the syntax is found in the Machine_Code_Insertions section of the GNAT
Reference Manual.

Under the standard GNAT conventions, the Nothing procedure should be in a file named
nothing.adb. You can build the executable in the usual way:

$ gnatmake nothing

However, the interesting aspect of this example is not its run-time behavior but rather the
generated assembly code. To see this output, invoke the compiler as follows:

$ gcc -c -S -fomit-frame-pointer -gnatp nothing.adb

where the options are:

*

-c

compile only (no bind or link)

*

Chapter 10: Inline Assembler 299

-S

generate assembler listing

*

-fomit-frame-pointer

do not set up separate stack frames

*

-gnatp

do not add runtime checks

This gives a human-readable assembler version of the code. The resulting file will have
the same name as the Ada source file, but with a .s extension. In our example, the file
nothing.s has the following contents:

.file "nothing.adb"

gcc2_compiled.:

___gnu_compiled_ada:

.text

.align 4

.globl __ada_nothing

__ada_nothing:

#APP

nop

#NO_APP

jmp L1

.align 2,0x90

L1:

ret

The assembly code you included is clearly indicated by the compiler, between the #APP and
#NO_APP delimiters. The character before the ’APP’ and ’NOAPP’ can differ on different
targets. For example, GNU/Linux uses ’#APP’ while on NT you will see ’/APP’.

If you make a mistake in your assembler code (such as using the wrong size modifier, or
using a wrong operand for the instruction) GNAT will report this error in a temporary file,
which will be deleted when the compilation is finished. Generating an assembler file will
help in such cases, since you can assemble this file separately using the as assembler that
comes with gcc.

Assembling the file using the command

$ as nothing.s

will give you error messages whose lines correspond to the assembler input file, so you can
easily find and correct any mistakes you made. If there are no errors, as will generate an
object file nothing.out.

10.3 Output Variables in Inline Assembler

The examples in this section, showing how to access the processor flags, illustrate how to
specify the destination operands for assembly language statements.

Chapter 10: Inline Assembler 300

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags;

In order to have a nicely aligned assembly listing, we have separated multiple assem-
bler statements in the Asm template string with linefeed (ASCII.LF) and horizontal tab
(ASCII.HT) characters. The resulting section of the assembly output file is:

#APP

pushfl

popl %eax

movl %eax, -40(%ebp)

#NO_APP

It would have been legal to write the Asm invocation as:

Asm ("pushfl popl %%eax movl %%eax, %0")

but in the generated assembler file, this would come out as:

#APP

pushfl popl %eax movl %eax, -40(%ebp)

#NO_APP

which is not so convenient for the human reader.

We use Ada comments at the end of each line to explain what the assembler instructions
actually do. This is a useful convention.

When writing Inline Assembler instructions, you need to precede each register and variable
name with a percent sign. Since the assembler already requires a percent sign at the
beginning of a register name, you need two consecutive percent signs for such names in the
Asm template string, thus %%eax. In the generated assembly code, one of the percent signs
will be stripped off.

Names such as %0, %1, %2, etc., denote input or output variables: operands you later define
using Input or Output parameters to Asm. An output variable is illustrated in the third
statement in the Asm template string:

movl %%eax, %0

The intent is to store the contents of the eax register in a variable that can be accessed
in Ada. Simply writing movl %%eax, Flags would not necessarily work, since the compiler
might optimize by using a register to hold Flags, and the expansion of the movl instruction
would not be aware of this optimization. The solution is not to store the result directly but

Chapter 10: Inline Assembler 301

rather to advise the compiler to choose the correct operand form; that is the purpose of the
%0 output variable.

Information about the output variable is supplied in the Outputs parameter to Asm:

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

The output is defined by the Asm_Output attribute of the target type; the general format is

Type’Asm_Output (constraint_string, variable_name)

The constraint string directs the compiler how to store/access the associated variable. In
the example

Unsigned_32’Asm_Output ("=m", Flags);

the "m" (memory) constraint tells the compiler that the variable Flags should be stored in
a memory variable, thus preventing the optimizer from keeping it in a register. In contrast,

Unsigned_32’Asm_Output ("=r", Flags);

uses the "r" (register) constraint, telling the compiler to store the variable in a register.

If the constraint is preceded by the equal character ’=’, it tells the compiler that the variable
will be used to store data into it.

In the Get_Flags example, we used the "g" (global) constraint, allowing the optimizer to
choose whatever it deems best.

There are a fairly large number of constraints, but the ones that are most useful (for the
Intel x86 processor) are the following:

= output constraint

g global (i.e., can be stored anywhere)

m in memory

I a constant

a use eax

b use ebx

c use ecx

d use edx

S use esi

D use edi

r use one of eax, ebx, ecx or edx

q use one of eax, ebx, ecx, edx, esi or edi

Chapter 10: Inline Assembler 302

The full set of constraints is described in the gcc and as documentation; note that it is
possible to combine certain constraints in one constraint string.

You specify the association of an output variable with an assembler operand through the
%n notation, where n is a non-negative integer. Thus in

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

%0 will be replaced in the expanded code by the appropriate operand, whatever the compiler
decided for the Flags variable.

In general, you may have any number of output variables:

* Count the operands starting at 0; thus %0, %1, etc.

* Specify the Outputs parameter as a parenthesized comma-separated list of Asm_Output
attributes

For example:

Asm ("movl %%eax, %0" & LF & HT &

"movl %%ebx, %1" & LF & HT &

"movl %%ecx, %2",

Outputs => (Unsigned_32’Asm_Output ("=g", Var_A), -- %0 = Var_A

Unsigned_32’Asm_Output ("=g", Var_B), -- %1 = Var_B

Unsigned_32’Asm_Output ("=g", Var_C))); -- %2 = Var_C

where Var_A, Var_B, and Var_C are variables in the Ada program.

As a variation on the Get_Flags example, we can use the constraints string to direct the
compiler to store the eax register into the Flags variable, instead of including the store
instruction explicitly in the Asm template string:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_2 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax", -- save flags in eax

Outputs => Unsigned_32’Asm_Output ("=a", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_2;

The "a" constraint tells the compiler that the Flags variable will come from the eax register.
Here is the resulting code:

#APP

pushfl

popl %eax

#NO_APP

movl %eax,-40(%ebp)

Chapter 10: Inline Assembler 303

The compiler generated the store of eax into Flags after expanding the assembler code.

Actually, there was no need to pop the flags into the eax register; more simply, we could
just pop the flags directly into the program variable:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_3 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"pop %0", -- save flags in Flags

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_3;

10.4 Input Variables in Inline Assembler

The example in this section illustrates how to specify the source operands for assembly
language statements. The program simply increments its input value by 1:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Outputs => Unsigned_32’Asm_Output ("=a", Result),

Inputs => Unsigned_32’Asm_Input ("a", Value));

return Result;

end Incr;

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Incr (Value);

Put_Line ("Value after is" & Value’Img);

end Increment;

The Outputs parameter to Asm specifies that the result will be in the eax register and that
it is to be stored in the Result variable.

The Inputs parameter looks much like the Outputs parameter, but with an Asm_Input

attribute. The "=" constraint, indicating an output value, is not present.

Chapter 10: Inline Assembler 304

You can have multiple input variables, in the same way that you can have more than one
output variable.

The parameter count (%0, %1) etc, still starts at the first output statement, and continues
with the input statements.

Just as the Outputs parameter causes the register to be stored into the target variable after
execution of the assembler statements, so does the Inputs parameter cause its variable to
be loaded into the register before execution of the assembler statements.

Thus the effect of the Asm invocation is:

* load the 32-bit value of Value into eax

* execute the incl %eax instruction

* store the contents of eax into the Result variable

The resulting assembler file (with -O2 optimization) contains:

_increment__incr.1:

subl $4,%esp

movl 8(%esp),%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

movl %ecx,(%esp)

addl $4,%esp

ret

10.5 Inlining Inline Assembler Code

For a short subprogram such as the Incr function in the previous section, the overhead of
the call and return (creating / deleting the stack frame) can be significant, compared to
the amount of code in the subprogram body. A solution is to apply Ada’s Inline pragma
to the subprogram, which directs the compiler to expand invocations of the subprogram
at the point(s) of call, instead of setting up a stack frame for out-of-line calls. Here is the
resulting program:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment_2 is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Outputs => Unsigned_32’Asm_Output ("=a", Result),

Inputs => Unsigned_32’Asm_Input ("a", Value));

return Result;

end Incr;

pragma Inline (Increment);

Chapter 10: Inline Assembler 305

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Increment (Value);

Put_Line ("Value after is" & Value’Img);

end Increment_2;

Compile the program with both optimization (-O2) and inlining (-gnatn) enabled.

The Incr function is still compiled as usual, but at the point in Increment where our
function used to be called:

pushl %edi

call _increment__incr.1

the code for the function body directly appears:

movl %esi,%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

thus saving the overhead of stack frame setup and an out-of-line call.

10.6 Other Asm Functionality

This section describes two important parameters to the Asm procedure: Clobber, which
identifies register usage; and Volatile, which inhibits unwanted optimizations.

10.6.1 The Clobber Parameter

One of the dangers of intermixing assembly language and a compiled language such as Ada is
that the compiler needs to be aware of which registers are being used by the assembly code.
In some cases, such as the earlier examples, the constraint string is sufficient to indicate
register usage (e.g., "a" for the eax register). But more generally, the compiler needs an
explicit identification of the registers that are used by the Inline Assembly statements.

Using a register that the compiler doesn’t know about could be a side effect of an instruction
(like mull storing its result in both eax and edx). It can also arise from explicit register
usage in your assembly code; for example:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Inputs => Unsigned_32’Asm_Input ("g", Var_In));

where the compiler (since it does not analyze the Asm template string) does not know you
are using the ebx register.

In such cases you need to supply the Clobber parameter to Asm, to identify the registers
that will be used by your assembly code:

Chapter 10: Inline Assembler 306

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Clobber => "ebx");

The Clobber parameter is a static string expression specifying the register(s) you are using.
Note that register names are not prefixed by a percent sign. Also, if more than one register
is used then their names are separated by commas; e.g., "eax, ebx"

The Clobber parameter has several additional uses:

* Use ’register’ name cc to indicate that flags might have changed

* Use ’register’ name memory if you changed a memory location

10.6.2 The Volatile Parameter

Compiler optimizations in the presence of Inline Assembler may sometimes have unwanted
effects. For example, when an Asm invocation with an input variable is inside a loop, the
compiler might move the loading of the input variable outside the loop, regarding it as a
one-time initialization.

If this effect is not desired, you can disable such optimizations by setting the Volatile

parameter to True; for example:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Clobber => "ebx",

Volatile => True);

By default, Volatile is set to False unless there is no Outputs parameter.

Although setting Volatile to True prevents unwanted optimizations, it will also disable
other optimizations that might be important for efficiency. In general, you should set
Volatile to True only if the compiler’s optimizations have created problems.

Chapter 11: GNU Free Documentation License 307

11 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The Document, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

Chapter 11: GNU Free Documentation License 308

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, "Title Page" means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the
public.

A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.

Chapter 11: GNU Free Documentation License 309

However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Chapter 11: GNU Free Documentation License 310

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled "History" in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes

Chapter 11: GNU Free Documentation License 311

a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations

Chapter 11: GNU Free Documentation License 312

requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A

Chapter 11: GNU Free Documentation License 313

"Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of
copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with
... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 314

Index

-
–as (dlltool) . 252
–base-file (dlltool) . 252
–create-missing-dirs (gnatmake) 79
–def (dlltool) . 252
–demangle (gprof) . 199
–dllname (dlltool) . 252
–GCC= (gnatchop) . 24
–GCC=compiler name (gnatlink) 169
–GCC=compiler name (gnatmake) 78
–GNATBIND=binder name (gnatmake) 78
–GNATLINK=linker name (gnatmake) 78
–help (dlltool) . 252
–help (gnatbind) . 155
–help (gnatchop) . 23
–help (gnatclean) . 175
–help (gnatlink) . 168
–help (gnatls) . 178
–help (gnatmake) . 78
–help (gnatname) . 16
–help (gnatprep) . 45
–LINK= (gnatlink) . 169
–output-exp (dlltool) . 252
–output-lib (dlltool) . 252
–RTS (gcc) . 104
–RTS (gnatbind) . 157
–RTS (gnatls) . 179
–RTS (gnatmake) . 85
–RTS option . 233
–RTS=sjlj (gnatmake) . 152
–RTS=zcx (gnatmake) . 152
–version (gnatbind) . 155
–version (gnatchop) . 23
–version (gnatclean) . 175
–version (gnatlink) . 167
–version (gnatls) . 178
–version (gnatmake) . 78
–version (gnatname) . 16
–version (gnatprep) . 45
-a (gnatbind) . 155
-a (gnatdll) . 249
-a (gnatls) . 178
-a (gnatmake) . 79
-A (gnatbind) . 155
-A (gnatmake) . 85
-aI (gnatbind) . 155, 166
-aI (gnatls) . 178
-aI (gnatmake) . 84
-aL (gnatmake) . 84
-aO (gnatbind) . 155, 166
-aO (gnatclean) . 176
-aO (gnatls) . 178
-aO (gnatmake) . 85
-aP (gnatls) . 178

-b (gcc) . 91
-b (gnatbind) . 155, 161
-b (gnatdll) . 249
-b (gnatmake) . 80
-b (gnatprep) . 45
-B (gcc) . 91
-B (gnatlink) . 168
-bargs (gnatdll) . 249
-bargs (gnatmake) . 86
-c (gcc) . 91
-c (gnatbind) . 155, 163
-c (gnatchop) . 23
-c (gnatclean) . 176
-c (gnatmake) . 80
-c (gnatname) . 16
-c (gnatprep) . 45
-C (gcc) . 72
-C (gnatmake) . 80
-C (gnatprep) . 45
-C= (gnatmake) . 80
-cargs (gnatmake) . 85
-d (gnatdll) . 249
-d (gnatls) . 178
-d (gnatmake) . 80
-d (gnatname) . 16
-D (gnatbind) . 155
-D (gnatclean) . 176
-D (gnatmake) . 80
-D (gnatname) . 17
-D (gnatprep) . 46
-dnn[k|m] (gnatbind) . 155
-e (gnatbind) . 156, 163
-e (gnatdll) . 250
-e (gprof) . 200
-E (gnatbind) . 156
-E (gprof) . 200
-Ea (gnatbind) . 156
-eI (gnatmake) . 81
-eL (gnatmake) . 81
-Es (gnatbind) . 156
-eS (gnatmake) . 81
-f (gnatbind) . 156, 162
-f (gnatlink) . 168
-f (gnatmake) . 81
-f (gnatname) . 17
-f (gprof) . 200
-F (gnatbind) . 156
-F (gnatclean) . 176
-F (gnatmake) . 81
-F (gprof) . 200
-fada-spec-parent (gcc) . 72
-fcallgraph-info (gcc) . 91
-fdata-sections (gcc) . 215
-fdump-ada-spec (gcc) . 72
-fdump-ada-spec-slim (gcc) . 72

Index 315

-fdump-scos (gcc) . 91
-ffunction-sections (gcc) . 215
-fgnat-encodings (gcc) . 91, 151
-files (gnatls) . 178
-flto (gcc) . 91
-fno-inline (gcc) . 92, 205
-fno-inline-functions (gcc) 92, 206
-fno-inline-functions-called-once (gcc) 92, 206
-fno-inline-small-functions (gcc) 92, 206
-fno-ivopts (gcc) . 92
-fno-strict-aliasing (gcc) . 92
-fno-strict-overflow (gcc) . 92
-fstack-check (gcc) 92, 142, 225
-fstack-usage . 226
-fstack-usage (gcc) . 92
-fuse-ld=name . 153
-fverbose-asm (gcc) . 104
-g (gcc) . 93, 203
-g (gnatdll) . 250
-g (gnatlink) . 168
-g (gnatmake) . 81
-gnat-p (gcc) . 102, 141
-gnat05 (gcc) . 93, 144
-gnat12 (gcc) . 93, 144
-gnat2005 (gcc) . 93, 144
-gnat2012 (gcc) . 93, 144
-gnat83 (gcc) . 93, 143
-gnat95 (gcc) . 93, 143
-gnata (gcc) . 93, 128
-gnata switch . 40
-gnatA (gcc) . 93
-gnatb (gcc) . 93, 107
-gnatB (gcc) . 94
-gnatc (gcc) . 94, 142
-gnatC (gcc) . 94
-gnatd (gcc) . 94, 147
-gnatD (gcc) . 149
-gnatD[nn] (gcc) . 94
-gnatdc switch . 189
-gnatE (gcc) . 99, 142
-gnatE (gnat) . 291
-gnateA (gcc) . 94
-gnateb (gcc) . 95
-gnatec (gcc) . 95
-gnateC (gcc) . 95
-gnated (gcc) . 95
-gnateD (gcc) . 51, 95
-gnateE (gcc) . 95
-gnatef (gcc) . 95
-gnateF (gcc) . 95
-gnateg (gcc) . 96
-gnateG (gcc) . 96
-gnatei (gcc) . 96
-gnateI (gcc) . 96
-gnatel (gcc) . 96
-gnatel (gnat) . 291
-gnatem (gcc) . 96, 152
-gnatep (gcc) . 49, 96

-gnateP (gcc) . 96
-gnateS (gcc) . 96
-gnatet=file (gcc) . 96
-gnateT (gcc) . 97
-gnateu (gcc) . 99
-gnateV (gcc) . 99
-gnateY (gcc) . 99
-gnatf (gcc) . 99, 107
-gnatF (gcc) . 99
-gnatg (gcc) . 99
-gnatG (gcc) . 147
-gnatG[nn] (gcc) . 99
-gnath (gcc) . 100
-gnatH (gcc) . 100
-gnatH (gnat) . 292
-gnati (gcc) . 100, 144
-gnatI (gcc) . 100
-gnatJ (gcc) . 100
-gnatJ (gnat) . 292
-gnatjnn (gcc) . 100, 108
-gnatk (gcc) . 100, 146
-gnatl (gcc) . 101, 106
-gnatl=fname (gcc) . 106
-gnatL (gcc) . 101, 148, 149
-gnatm (gcc) . 101, 107
-gnatn (gcc) . 101, 146
-gnatn switch . 29
-gnatN (gcc) . 101, 146
-gnatN switch . 29
-gnato (gcc) . 201, 220
-gnato? (gcc) . 220
-gnato?? (gcc) . 101, 141, 220
-gnato0 (gcc) . 101
-gnatp (gcc) . 102, 140, 201
-gnatq (gcc) . 102, 108
-gnatQ (gcc) . 102, 108
-gnatr (gcc) . 102, 150
-gnatR (gcc) . 102, 150
-gnats (gcc) . 102, 142
-gnatS (gcc) . 102, 150
-gnatT (gcc) . 102
-gnatu (gcc) . 102, 147
-gnatU (gcc) . 103, 107
-gnatv (gcc) . 103, 105
-gnatV (gcc) . 103
-gnatVa (gcc) . 130
-gnatVc (gcc) . 130
-gnatVd (gcc) . 130
-gnatVe (gcc) . 131
-gnatVf (gcc) . 131
-gnatVi (gcc) . 131
-gnatVm (gcc) . 131
-gnatVn (gcc) . 131
-gnatVo (gcc) . 131
-gnatVp (gcc) . 132
-gnatVr (gcc) . 132
-gnatVs (gcc) . 132
-gnatVt (gcc) . 132

Index 316

-gnatw (gcc) . 103
-gnatw.a (gcc) . 111
-gnatw.A (gcc) . 111
-gnatw.b (gcc) . 112
-gnatw.c (gcc) . 112
-gnatw.C (gcc) . 113
-gnatw.d (gcc) . 113, 114
-gnatw.e (gcc) . 114
-gnatw.f (gnat) . 292
-gnatw.g (gcc) . 115
-gnatw.h (gcc) . 115
-gnatw.H (gcc) . 115
-gnatw.i (gcc) . 116
-gnatw.I (gcc) . 116
-gnatw.j (gcc) . 116
-gnatw.J (gcc) . 117
-gnatw.k (gcc) . 117
-gnatw.l (gcc) . 117
-gnatw.L (gcc) . 118
-gnatw.m (gcc) . 118
-gnatw.M (gcc) . 118
-gnatw.n (gcc) . 118
-gnatw.N (gcc) . 118
-gnatw.o (gcc) . 119
-gnatw.O (gcc) . 119
-gnatw.p (gcc) . 119
-gnatw.P (gcc) . 120
-gnatw.q (gcc) . 120
-gnatw.Q (gcc) . 121
-gnatw.r (gcc) . 121
-gnatw.R (gcc) . 121
-gnatw.s (gcc) . 122
-gnatw.S (gcc) . 122
-gnatw.t (gcc) . 122
-gnatw.T (gcc) . 123
-gnatw.u (gcc) . 123
-gnatw.U (gcc) . 123
-gnatw.v (gcc) . 124
-gnatw.V (gcc) . 124
-gnatw.w (gcc) . 124
-gnatw.W (gcc) . 125
-gnatw.y (gcc) . 126
-gnatw.Y (gcc) . 126
-gnatw.z (gcc) . 126
-gnatw.Z (gcc) . 126
-gnatw a . 111
-gnatw A . 111
-gnatw c (gcc) . 113
-gnatw C (gcc) . 113
-gnatw r (gcc) . 121
-gnatw R (gcc) . 122
-gnatW (gcc) . 103, 145
-gnatwa (gcc) . 110
-gnatwA (gcc) . 111
-gnatwb (gcc) . 111
-gnatwB (gcc) . 112
-gnatwc (gcc) . 112
-gnatwC (gcc) . 112

-gnatwd (gcc) . 113
-gnatwD (gcc) . 113
-gnatwe (gcc) . 114
-gnatwE (gcc) . 114
-gnatwf (gcc) . 114
-gnatwF (gcc) . 115
-gnatwg (gcc) . 115
-gnatwG (gcc) . 115
-gnatwh (gcc) . 115
-gnatwH (gcc) . 115
-gnatwi (gcc) . 115
-gnatwI (gcc) . 116
-gnatwj (gcc) . 116
-gnatwJ (gcc) . 116
-gnatwk (gcc) . 117
-gnatwK (gcc) . 117
-gnatwl (gcc) . 117
-gnatwl (gnat) . 292
-gnatwL (gcc) . 117
-gnatwm (gcc) . 118, 125
-gnatwM (gcc) . 118
-gnatwn (gcc) . 118
-gnatwo (gcc) . 119
-gnatwO (gcc) . 119
-gnatwp (gcc) . 119
-gnatwP (gcc) . 119
-gnatwq (gcc) . 120
-gnatwQ (gcc) . 120
-gnatwr (gcc) . 121
-gnatwR (gcc) . 121
-gnatws (gcc) . 122
-gnatwt (gcc) . 122
-gnatwT (gcc) . 122
-gnatwu (gcc) . 123
-gnatwU (gcc) . 123
-gnatwv (gcc) . 123
-gnatwV (gcc) . 124
-gnatww (gcc) . 124
-gnatwW (gcc) . 124
-gnatwx (gcc) . 125
-gnatwX (gcc) . 125
-gnatwy (gcc) . 125
-gnatwY (gcc) . 125
-gnatwz (gcc) . 126
-gnatwZ (gcc) . 126
-gnatx (gcc) . 103, 151
-gnatX (gcc) . 103, 144
-gnaty (gcc) . 103, 133
-gnaty+ (gcc) . 139
-gnaty- (gcc) . 139
-gnaty[0-9] (gcc) . 133
-gnatya (gcc) . 133
-gnatyA (gcc) . 133
-gnatyb (gcc) . 133
-gnatyB (gcc) . 133
-gnatyc (gcc) . 134
-gnatyC (gcc) . 134
-gnatyd (gcc) . 134

Index 317

-gnatyD (gcc) . 134
-gnatye (gcc) . 135
-gnatyf (gcc) . 135
-gnatyg (gcc) . 135
-gnatyh (gcc) . 135
-gnatyi (gcc) . 135
-gnatyI (gcc) . 135
-gnatyk (gcc) . 135
-gnatyl (gcc) . 135
-gnatyLnnn (gcc) . 137
-gnatym (gcc) . 137
-gnatyMnnn (gcc) . 137
-gnatyn (gcc) . 137
-gnatyN (gcc) . 137
-gnatyo (gcc) . 137
-gnatyO (gcc) . 137
-gnatyp (gcc) . 138
-gnatyr (gcc) . 138
-gnatys (gcc) . 138
-gnatyS (gcc) . 138
-gnatyt (gcc) . 138
-gnatyu (gcc) . 139
-gnatyx (gcc) . 139
-gnatyy (gcc) . 139
-gnatz (gcc) . 103
-h (gnatbind) . 156, 163
-h (gnatclean) . 176
-h (gnatdll) . 250
-h (gnatls) . 178
-h (gnatname) . 17
-H (gnatbind) . 156
-H32 (gnatbind) . 156
-H64 (gnatbind) . 157
-i (gnatmake) . 81
-I (gcc) . 103
-I (gnatbind) . 157, 166
-I (gnatclean) . 177
-I (gnatdll) . 250
-I (gnatls) . 178
-I (gnatmake) . 85
-I- (gcc) . 103
-I- (gnatbind) . 157
-I- (gnatclean) . 177
-I- (gnatls) . 178
-I- (gnatmake) . 85
-j (gnatmake) . 82
-k (dlltool) . 252
-k (gnatchop) . 23
-k (gnatdll) . 250
-k (gnatmake) . 82
-K (gnatbind) . 163
-l (gnatbind) . 157, 163
-l (gnatdll) . 250
-l (gnatmake) . 82
-L (gnatbind) . 157
-L (gnatmake) . 85
-largs (gnatdll) . 250
-largs (gnatmake) . 86

-m (gnatbind) . 157, 161
-m (gnatmake) . 82
-M (gnatbind) . 157, 161
-M (gnatlink) . 168
-M (gnatmake) . 82
-M= (gnatlink) . 168
-margs (gnatmake) . 86
-minimal (gnatbind) . 157
-mwindows . 235
-n (gnatbind) . 157, 164
-n (gnatclean) . 176
-n (gnatdll) . 250
-n (gnatlink) . 168
-n (gnatmake) . 83
-nostdinc (gcc) . 103
-nostdinc (gnatbind) . 157
-nostdinc (gnatmake) . 85
-nostdlib (gcc) . 103
-nostdlib (gnatbind) . 157
-nostdlib (gnatmake) . 85
-o (gcc) . 103
-o (gnatbind) . 158, 163, 165
-o (gnatlink) . 168
-o (gnatls) . 178
-o (gnatmake) . 83
-O (gcc) . 104, 202
-O (gnatbind) . 158, 163
-p (gnatbind) . 158, 162
-p (gnatchop) . 23
-p (gnatmake) . 83
-P (gnatbind) . 158
-P (gnatclean) . 176
-P (gnatmake) . 83
-P (gnatname) . 17
-pass-exit-codes (gcc) . 104, 147
-pg (gcc) . 199
-pg (gnatlink) . 199
-q (gnatchop) . 23
-q (gnatclean) . 176
-q (gnatdll) . 250
-q (gnatmake) . 83
-r (gnatbind) . 163
-r (gnatchop) . 23
-r (gnatclean) . 176
-r (gnatprep) . 46
-R (gnatbind) . 158
-Ra (gnatbind) . 158
-s (gnatbind) . 158, 160
-s (gnatls) . 178
-s (gnatmake) . 83
-s (gnatprep) . 46
-S (gcc) . 104
-S (gnatbind) . 158
-shared (gnatbind) . 159
-static (gnatbind) . 159
-t (gnatbind) . 159, 161
-T (gnatbind) . 159
-T (gnatprep) . 46

Index 318

-T0 option . 233
-u (gnatbind) . 159
-u (gnatls) . 178
-u (gnatmake) . 83
-u (gnatprep) . 46
-U (gnatmake) . 83
-v (dlltool) . 252
-v (gcc) . 104
-v (gnatbind) . 159, 161
-v (gnatchop) . 24
-v (gnatclean) . 176
-v (gnatdll) . 250
-v (gnatlink) . 168
-v (gnatls) . 179
-v (gnatmake) . 83
-v (gnatname) . 17
-v (gnatprep) . 46
-v -v (gnatlink) . 168
-v -v (gnatname) . 17
-V (gcc) . 104
-V (gnatbind) . 159
-vl (gnatmake) . 84
-vm (gnatmake) . 84
-vP (gnatclean) . 176
-w (gcc) . 104, 127
-w (gnatbind) . 159
-w (gnatchop) . 24
-Wall (gcc) . 127
-we (gnatbind) . 161
-Werror (gcc) . 127
-ws (gnatbind) . 161
-Wstack-usage (gcc) . 127
-Wuninitialized (gcc) . 127
-Wunused (gcc) . 126
-Wx (gnatbind) . 159, 160
-x (gnatbind) . 160
-x (gnatmake) . 84
-x (gnatname) . 17
-X (gnatclean) . 176
-xdr (gnatbind) . 160
-Xnnn (gnatbind) . 160
-y (gnatbind) . 160
-z (gnatbind) . 160, 165
-z (gnatmake) . 84

gnat malloc . 157

A
Abnormal Termination or Failure to Terminate

. 189
access before elaboration . 140
Access before elaboration . 140
activate every optional warning 114
ACVC . 143
Ada . 166

Ada 2005 Language Reference Manual 2
Ada 2005 mode . 144
Ada 2012 mode . 144
Ada 83 mode . 143
Ada 83 tests . 143
Ada 95 Language Reference Manual 2
Ada 95 mode . 143
Ada compatibility issues warnings 125
Ada expressions (in gdb) . 185
Ada language extensions . 144
Ada Library Information files 29
Ada.Characters.Latin 1 . 8
ADA INCLUDE PATH . 35, 89
ADA OBJECTS PATH 35, 166
ADA PRJ INCLUDE FILE 89
ADA PRJ OBJECTS FILE 166
ADA PROJECT PATH . 33
adafinal . 164
adainit . 164
Address Clauses . 119
ALI files . 29
Aliasing . 209, 212
alternative . 13
Annex A (in Ada Reference Manual) 190
Annex B (in Ada reference Manual) 190
Anonymous allocators . 111
APIENTRY . 238
Asm . 55
Assert . 128
Assert failures . 111
Assertions . 128
Atomic . 213
Atomic Synchronization . 118
attach to process . 256

B
Bad fixed values . 111
Biased representation . 112
Binder . 164
Binder consistency checks . 161
Binder output (example) . 260
Binder output file . 53
Binding generation (for Ada specs) 72
Binding generation (for C and C++ headers) 68
BINUTILS ROOT . 58
bit order warnings . 124
Breakpoints and tasks . 187
building . 244, 245, 253
Building the GNAT Run-Time Library 39

C
cannot generate code . 88
code page 437 (IBM PC) . 8
code page 850 (IBM PC) . 9
compilation (definition) . 8
compiling . 254

Index 319

configuration . 24
constant . 112
C . 55
C headers (binding generation) 68, 72
C varargs function . 55
C++ . 56
C++ headers (binding generation) 68
C INCLUDE PATH . 58
Calling Conventions . 54
Check . 141, 142
Checks . 140, 141, 142, 201
Checks (overflow) . 216
COBOL . 55
Combining GNAT switches 104
Command Line Argument Expansion 236
Command line length . 168
Compatibility with Ada 83 143
Compilation model . 7
Compile Time Error . 113
Compile Time Warning . 113
Component clause . 113
Conditional compilation . 39
Conditionals . 112
Configuration pragmas . 24
Consistency checks . 161
CONSOLE Subsystem . 235
Convention Ada . 54
Convention Asm . 55
Convention Assembler . 55
Convention C . 55
Convention C++ . 56
Convention COBOL . 55
Convention Default . 56
Convention DLL . 57
Convention External . 56
Convention Fortran . 56
Convention Stdcall . 57
Convention Stubbed . 57
Convention Win32 . 57
Conventions . 3
CR . 7
Cyrillic . 8

D
Deactivated code . 122
Debug . 128
Debug Pool . 228
Debugger . 181
Debugging . 181
Debugging Generic Units . 187
Debugging information . 168
Debugging optimized code . 203
Debugging options . 147
Default . 56
Definition file . 242
Deleted code . 122
Dependencies . 82

Dependency rules (compilation) 77
Dereferencing . 113
Dimension aspect . 221, 223
Dimension Vector (for a dimensioned subtype)

. 223
Dimension System aspect 221, 223
Dimensionable type . 223
Dimensionality analysis . 221
Dimensioned subtype . 223
Division by zero . 140
division by zero . 140
DLL . 57, 240
DLL debugging . 255, 256
DLLs . 244, 245
DLLs and elaboration . 247
DLLs and finalization . 248
Dynamic elaboration model 284

E
elaboration . 142
Elaboration . 117
Elaboration checks . 142
Elaboration control . 276
Elaboration order control . 74
End of source file; Source file, end 7
environment variable; ADA INCLUDE PATH

. 35, 89
environment variable; ADA OBJECTS PATH

. 35, 166
environment variable; ADA PRJ INCLUDE FILE

. 89
environment variable; ADA PRJ OBJECTS FILE

. 166
environment variable; BINUTILS ROOT 58
environment variable; C INCLUDE PATH 58
environment variable; GCC EXEC PREFIX . . . 58
environment variable; GCC ROOT 58
environment variable; PATH 89, 166
environment variable; TMP 236
Error messages . 107
EUC Coding . 10
Exceptions (in gdb) . 186
Export table . 246
Export/Import pragma warnings 125
External . 56

F
Features . 116
FF . 7
File cleanup tool . 175
File names . 12, 13
File Naming Conventions . 15
File naming schemes . 13
Fixed-point Small value . 111
Floating-Point Operations . 206
for gnatmake . 85

Index 320

for profiling . 199
Foreign Languages . 54
Formals . 114
Fortran . 56

G
GCC EXEC PREFIX . 58
GCC ROOT . 58
gdb . 181
Generic formal parameters . 143
Generics . 28, 187
gnat.adc . 13, 27
gnat argc . 165
gnat argv . 165
gnat1 . 88
GNAT (package) . 190
GNAT compilation model . 7
GNAT extensions . 144
GNAT library . 74
GNAT Run-Time Library . 39
GNAT INIT SCALARS . 159
gnatbind . 153
gnatchop . 20
gnatclean . 175
gnatdll . 249
gnatkr . 18
gnatlink . 167
gnatls . 177
gnatmake . 77
gnatname . 15
gnatprep . 44
GNAT . 166
GNU make . 169
GNU/Linux . 234
GPR PROJECT PATH . 33
gprof . 198

H
Hiding of Declarations . 115
HT . 7

I
implicit . 113
Implicit dereferencing . 113
Import library . 242
Improving performance . 200
in binder . 161
including . 168
Inline . 29, 205
Inline Assembler . 297
Inlining . 74, 119
Interfaces . 166
Interfacing to Ada . 54
Interfacing to Assembly . 55
Interfacing to C . 55

Interfacing to C varargs function 55
Interfacing to C++ . 56
Interfacing to COBOL . 55
Interfacing to Fortran . 56
ISO 8859-15 . 8
ISO 8859-2 . 8
ISO 8859-3 . 8
ISO 8859-4 . 8
ISO 8859-5 . 8

L
Latin-1 . 7, 8
Latin-2 . 8
Latin-3 . 8
Latin-4 . 8
Latin-9 . 8
Layout . 120
Legacy elaboration models . 285
LF . 7
Library browser . 177
Library building and using . 31
Linker libraries . 85
Linux . 234

M
Machine Overflows . 141
make (GNU) . 169
memory corruption . 228
Memory Pool . 227
Microsoft Visual Studio . 254
missing . 113
Mixed Language Programming 51
MKS Type type . 221
multiple input files . 164
Multiple units . 142

N
naming scheme . 81
No information messages for why package spec

needs body . 126
No Strict Aliasing . 209
non-symbolic . 191

O
obsolescent . 116
Obsolescent features . 116
Optimization and debugging 203
Optimization Switches 207, 208
Order of elaboration . 276
OS X . 258
Other Ada compilers . 54
overflow . 141, 201
Overflow checks . 141, 201, 216
Overflow mode . 141

Index 321

P
Package spec needing body 126
Parallel make . 82
Parameter order . 119
Parentheses . 120
Passive Task . 214
PATH . 89, 166
pool . 227, 228
Postcondition . 128
pragma Assert . 40
pragma Assertion Policy . 40
pragma Debug . 40
pragma Debug Policy . 41
pragma Elaborate (Unit) . 281
pragma Elaborate All (Unit) 282
pragma Elaborate Body . 280
pragma Export . 75
pragma Inline . 205
pragma Overflow Mode . 219
pragma Preelaborate . 280
pragma Pure . 280
pragma Restrictions . 150
pragma Suppress . 201
pragma Task Dispatching Policy 233
pragma Time Slice . 233
pragma Unsuppress . 201
Pragmas . 24, 115
Precondition . 128
Preprocessing . 44
Preprocessing (gnatprep) . 44
Preprocessors (contrasted with conditional

compilation) . 40
producing list . 82
Profiling . 198

R
rc . 254
rebuilding . 39
Rebuilding the GNAT Run-Time Library 39
Recompilation (by gnatmake) 86
Record Representation (component sizes) 122
Record Representation (gaps) 115
Relaxed elaboration mode . 285
Remote Debugging with gdbserver 188
Resources . 252, 253, 254
RTL . 103
Run-time libraries (platform-specific information)

. 232
Run-Time Library . 39

S
s-digemk.ads file . 221
SCHED FIFO scheduling policy 233
SCHED OTHER scheduling policy 233
SCHED RR scheduling policy 233
Search paths . 85

setjmp/longjmp Exception Model 232
Shift JIS Coding . 9
Size/Alignment warnings . 126
SJLJ (setjmp/longjmp Exception Model) 232
Small value . 111
Source files . 85, 154, 177
Source File Name pragma 12, 13
Source Reference pragmas . 23
SPARK elaboration model . 285
spec (definition) . 8
stack overflow checking 140, 142
Stack Overflow Checking 142, 225
stack traceback . 191
stack unwinding . 191
Stand-alone libraries . 35
Static elaboration model . 284
Static Stack Usage Analysis 226
Stdcall . 57, 238
stderr . 105
storage . 227, 228
Strict Aliasing . 209
String indexing warnings . 124
Stubbed . 57
Style checking . 133
SUB (control character) . 7
Subtype predicates . 128
Subunits . 28
Subunits (and conditional compilation) 42
Suppress . 141, 201
suppressing . 107, 140, 141
Suppressing checks . 140, 141
suppressing search . 85, 177
symbolic . 195
symbolic links . 81
syntax checking . 142
System . 166
System (package in Ada Reference Manual) . . . 190
System.Dim.Mks package (GNAT library) 221
System.IO . 89

T
Task switching (in gdb) . 187
Tasking and threads libraries 232
Tasks (in gdb) . 186
Temporary files . 236
Text IO and performance . 214
Threads libraries and tasking 232
Time stamp checks . 161
TMP . 236
traceback . 191, 195
treat as error . 114
Type invariants . 128
typographical . 3
Typographical conventions . 3

Index 322

U
Unassigned variable warnings 123
Unchecked Conversion warnings 126
unrecognized . 115
unreferenced . 114
Unsuppress . 142, 201
Upper-Half Coding . 9
use by binder . 154
use with GNAT DLLs . 254
using . 254
Uunused subprogram/data elimination 215

V
Validity Checking . 129
varargs function interfaces . 55
Version skew (avoided by ‘‘gnatmake‘‘) 5
Volatile parameter . 306

VT . 7

W
Warning messages . 108
Warnings . 114, 161
warnings 117, 118, 119, 120, 122
Warnings Off control . 124
Win32 . 57
windows . 252
Windows . 234
WINDOWS Subsystem . 235
windres . 254

Z
ZCX (Zero-Cost Exceptions) 232
Zero Cost Exceptions . 152
Zero-Cost Exceptions . 232

	About This Guide
	What This Guide Contains
	What You Should Know before Reading This Guide
	Related Information
	Conventions

	Getting Started with GNAT
	System Requirements
	Running GNAT
	Running a Simple Ada Program
	Running a Program with Multiple Units

	The GNAT Compilation Model
	Source Representation
	Foreign Language Representation
	Latin-1
	Other 8-Bit Codes
	Wide_Character Encodings
	Wide_Wide_Character Encodings

	File Naming Topics and Utilities
	File Naming Rules
	Using Other File Names
	Alternative File Naming Schemes
	Handling Arbitrary File Naming Conventions with gnatname
	Arbitrary File Naming Conventions
	Running gnatname
	Switches for gnatname
	Examples of gnatname Usage

	File Name Krunching with gnatkr
	About gnatkr
	Using gnatkr
	Krunching Method
	Examples of gnatkr Usage

	Renaming Files with gnatchop
	Handling Files with Multiple Units
	Operating gnatchop in Compilation Mode
	Command Line for gnatchop
	Switches for gnatchop
	Examples of gnatchop Usage

	Configuration Pragmas
	Handling of Configuration Pragmas
	The Configuration Pragmas Files

	Generating Object Files
	Source Dependencies
	The Ada Library Information Files
	Binding an Ada Program
	GNAT and Libraries
	Introduction to Libraries in GNAT
	General Ada Libraries
	Building a library
	Installing a library
	Using a library

	Stand-alone Ada Libraries
	Introduction to Stand-alone Libraries
	Building a Stand-alone Library
	Creating a Stand-alone Library to be used in a non-Ada context
	Restrictions in Stand-alone Libraries

	Rebuilding the GNAT Run-Time Library

	Conditional Compilation
	Modeling Conditional Compilation in Ada
	Use of Boolean Constants
	Debugging - A Special Case
	Conditionalizing Declarations
	Use of Alternative Implementations
	Preprocessing

	Preprocessing with gnatprep
	Preprocessing Symbols
	Using gnatprep
	Switches for gnatprep
	Form of Definitions File
	Form of Input Text for gnatprep

	Integrated Preprocessing

	Mixed Language Programming
	Interfacing to C
	Calling Conventions
	Building Mixed Ada and C++ Programs
	Interfacing to C++
	Linking a Mixed C++ & Ada Program
	A Simple Example
	Interfacing with C++ constructors
	Interfacing with C++ at the Class Level

	Generating Ada Bindings for C and C++ headers
	Running the Binding Generator
	Generating Bindings for C++ Headers
	Switches

	Generating C Headers for Ada Specifications
	Running the C Header Generator

	GNAT and Other Compilation Models
	Comparison between GNAT and C/C++ Compilation Models
	Comparison between GNAT and Conventional Ada Library Models

	Using GNAT Files with External Tools
	Using Other Utility Programs with GNAT
	The External Symbol Naming Scheme of GNAT

	Building Executable Programs with GNAT
	Building with gnatmake
	Running gnatmake
	Switches for gnatmake
	Mode Switches for gnatmake
	Notes on the Command Line
	How gnatmake Works
	Examples of gnatmake Usage

	Compiling with gcc
	Compiling Programs
	Search Paths and the Run-Time Library (RTL)
	Order of Compilation Issues
	Examples

	Compiler Switches
	Alphabetical List of All Switches
	Output and Error Message Control
	Warning Message Control
	Debugging and Assertion Control
	Validity Checking
	Style Checking
	Run-Time Checks
	Using gcc for Syntax Checking
	Using gcc for Semantic Checking
	Compiling Different Versions of Ada
	Character Set Control
	File Naming Control
	Subprogram Inlining Control
	Auxiliary Output Control
	Debugging Control
	Exception Handling Control
	Units to Sources Mapping Files
	Code Generation Control

	Linker Switches
	Binding with gnatbind
	Running gnatbind
	Switches for gnatbind
	Consistency-Checking Modes
	Binder Error Message Control
	Elaboration Control
	Output Control
	Dynamic Allocation Control
	Binding with Non-Ada Main Programs
	Binding Programs with No Main Subprogram

	Command-Line Access
	Search Paths for gnatbind
	Examples of gnatbind Usage

	Linking with gnatlink
	Running gnatlink
	Switches for gnatlink

	Using the GNU make Utility
	Using gnatmake in a Makefile
	Automatically Creating a List of Directories
	Generating the Command Line Switches
	Overcoming Command Line Length Limits

	GNAT Utility Programs
	The File Cleanup Utility gnatclean
	Running gnatclean
	Switches for gnatclean

	The GNAT Library Browser gnatls
	Running gnatls
	Switches for gnatls
	Example of gnatls Usage

	GNAT and Program Execution
	Running and Debugging Ada Programs
	The GNAT Debugger GDB
	Running GDB
	Introduction to GDB Commands
	Using Ada Expressions
	Calling User-Defined Subprograms
	Using the next Command in a Function
	Stopping When Ada Exceptions Are Raised
	Ada Tasks
	Debugging Generic Units
	Remote Debugging with gdbserver
	GNAT Abnormal Termination or Failure to Terminate
	Naming Conventions for GNAT Source Files
	Getting Internal Debugging Information
	Stack Traceback
	Non-Symbolic Traceback
	Symbolic Traceback

	Pretty-Printers for the GNAT runtime

	Profiling
	Profiling an Ada Program with gprof
	Compilation for profiling
	Program execution
	Running gprof
	Interpretation of profiling results

	Improving Performance
	Performance Considerations
	Controlling Run-Time Checks
	Use of Restrictions
	Optimization Levels
	Debugging Optimized Code
	Inlining of Subprograms
	Floating Point Operations
	Vectorization of loops
	Other Optimization Switches
	Optimization and Strict Aliasing
	Aliased Variables and Optimization
	Atomic Variables and Optimization
	Passive Task Optimization

	Text_IO Suggestions
	Reducing Size of Executables with Unused Subprogram/Data Elimination
	About unused subprogram/data elimination
	Compilation options
	Example of unused subprogram/data elimination

	Overflow Check Handling in GNAT
	Background
	Management of Overflows in GNAT
	Specifying the Desired Mode
	Default Settings
	Implementation Notes

	Performing Dimensionality Analysis in GNAT
	Stack Related Facilities
	Stack Overflow Checking
	Static Stack Usage Analysis
	Dynamic Stack Usage Analysis

	Memory Management Issues
	Some Useful Memory Pools
	The GNAT Debug Pool Facility

	Platform-Specific Information
	Run-Time Libraries
	Summary of Run-Time Configurations

	Specifying a Run-Time Library
	Choosing the Scheduling Policy

	GNU/Linux Topics
	Required Packages on GNU/Linux

	Microsoft Windows Topics
	Using GNAT on Windows
	Using a network installation of GNAT
	CONSOLE and WINDOWS subsystems
	Temporary Files
	Disabling Command Line Argument Expansion
	Windows Socket Timeouts
	Mixed-Language Programming on Windows
	Windows Calling Conventions
	C Calling Convention
	Stdcall Calling Convention
	Win32 Calling Convention
	DLL Calling Convention
	Introduction to Dynamic Link Libraries (DLLs)
	Using DLLs with GNAT
	Creating an Ada Spec for the DLL Services
	Creating an Import Library
	Building DLLs with GNAT Project files
	Building DLLs with GNAT
	Building DLLs with gnatdll
	Limitations When Using Ada DLLs from Ada
	Exporting Ada Entities
	Ada DLLs and Elaboration
	Ada DLLs and Finalization
	Creating a Spec for Ada DLLs
	Creating the Definition File
	Using gnatdll
	GNAT and Windows Resources
	Building Resources
	Compiling Resources
	Using Resources
	Using GNAT DLLs from Microsoft Visual Studio Applications
	Debugging a DLL
	Program and DLL Both Built with GCC/GNAT
	Program Built with Foreign Tools and DLL Built with GCC/GNAT
	Setting Stack Size from gnatlink
	Setting Heap Size from gnatlink

	Windows Specific Add-Ons
	Win32Ada
	wPOSIX

	Mac OS Topics
	Codesigning the Debugger

	Example of Binder Output File
	Elaboration Order Handling in GNAT
	Elaboration Code
	Elaboration Order
	Checking the Elaboration Order
	Controlling the Elaboration Order in Ada
	Controlling the Elaboration Order in GNAT
	Mixing Elaboration Models
	ABE Diagnostics
	SPARK Diagnostics
	Elaboration Circularities
	Resolving Elaboration Circularities
	Elaboration-related Compiler Switches
	Summary of Procedures for Elaboration Control
	Inspecting the Chosen Elaboration Order

	Inline Assembler
	Basic Assembler Syntax
	A Simple Example of Inline Assembler
	Output Variables in Inline Assembler
	Input Variables in Inline Assembler
	Inlining Inline Assembler Code
	Other Asm Functionality
	The Clobber Parameter
	The Volatile Parameter

	GNU Free Documentation License
	Index

