
JVM’02 1

A profiler and compiler for the Wonka Virtual Machine

Dries Buytaert
dries.buytaert@acunia.com

Frans Arickx
Johan Vos

DEVELOPED at ACUNIA 1, WonkaTM is an
open source2 Virtual Machine (VM) for execut-

ing JavaTM bytecode methods.
Wonka is a self-contained, clean-room VM imple-

mentation designed for use in embedded systems and
is targeted towards Java 2 compliance: it has no de-
pendence on external libraries (except for libc) and
comes with all the essential standard class libraries
(Foundation Profile/CDC), including an Abstract
Windowing Toolkit (AWT), named RudolphTM [1].

Rudolph is suitable for running Wonka directly on
a memory-mapped or framebuffer device, supports
all required graphics operations, has a built-in font
rendering engine, supports GIF and PNG images,
provides input/output device handling, and more.

For maximum portability, Wonka is accompanied
by its own real-time operation system (RTOS), called
OSwaldTM. Thanks to OSwald, Wonka does not re-
quire a host operating system and can run on bare
bones hardware.

As such, Wonka provides a complete, portable
open source solution for embedded systems.

Currently Wonka runs in interpreter mode only
which imposes a performance penalty due to the
runtime overhead of fetching, decoding and execut-
ing bytecode instructions. For performance’s sake,
ACUNIA is developing a runtime compiler to trans-
late Java bytecode to native machine code during
program execution.

I. Profiling and critical path detection

To do selective compilation, methods that repre-
sent a highly favorable opportunity for runtime com-
pilation and optimization need to be identified. Such
methods are typically part of a critical path. Select-
ing methods for compilation is done in two steps.

First, each method’s execution frequency is
tracked using an invocation counter. If this counter
exceeds a preset threshold, the method is denoted

D. Buytaert is PhD student at the University of Antwerp
and software engineer at ACUNIA.

Prof. Dr. F. Arickx is a faculty member of the Department
of Mathematics and Computer Science at the University of
Antwerp, Belgium. E-mail: frans.arickx@ruca.ua.ac.be.

Dr .Ir. J. Vos is Director New Technology at ACUNIA, Bel-
gium. E-mail: johan.vos@acunia.com.

1ACUNIA is a provider of software and hardware solutions
for the next generation telematics services.

2Wonka is available under a BSD-style license and can be
downloaded from http://wonka.acunia.com/.

a critical method, and may be part of a critical
path. The invocation counters are periodically reset
to ensure that only frequently executing methods are
marked as critical.

The second step must detect whether the execu-
tion is in a critical path. The algorithm is inspired
by work of M. Merten [2] but is software-driven. An
additional per-thread saturating counter is used to
measure the dynamic execution percentage of criti-
cal methods. Initialized at its maximum value, the
counter is decremented by D each time a critical
method is invoked and incremented by I each time
a non-critical method is invoked.

If the counter reaches zero, a critical path is identi-
fied and the compiler is activated to compile the crit-
ical methods. As such, the compiler compiles those
methods that have been called a minimum number of
times (what to compile) but only when they account
for a large execution percentage or when they have
run for a longer period of time (when to compile).

The simple counter-based nature of the algorithm
imposes minimal runtime overhead and the profil-
ing framework seems both fast and accurate. Pre-
liminary benchmarks using SPEC JVM98 show per-
formance improvements up to 15% and performance
never being degraded compared to unconditional
compilation.

Our profiling framework can be easily extended
to include other heuristics or metrics. One inter-
esting possibility offered by OSwald is to collect ac-
curate per-thread timing information independent of
context-switches, and hence to identify methods with
particularly time-consuming loops. We plan to ex-
periment with this and with other metrics such as
bytecode size, call stack depth, and so on.

II. Compiling and optimizing methods

Once a critical path has been identified, the compi-
lation and optimization phase can start. To make op-
timizations independent of both front- and backend,
analysis and optimization phases are performed on a
method’s intermediate representation (IR). Methods
are translated to their IR through symbolic execution
using a simulated operand stack.

At compile-time, each method’s IR can be ex-
ported and converted to a PostScript file which al-
lows for quick debugging as the effect of optimiza-
tions can be visually inspected. Figure 1 shows the



JVM’02 2

IR of java.lang.Math.max(II) as emitted by the
compiler itself.

java.lang.Math.max(II)

assign

assign

temporary 2

le

temporary 3

parameter 0

assign

return

assign

true false

parameter 1

jump

Fig. 1. The IR of java.lang.Math.max(II). The solid edges
represent the control flow and the dotted edges represent the
data dependencies. The boxes denote IR instructions and the
ellipses denote literals.

After the translation and optimization phase, a
platform-specific backend is responsible for instruc-
tion selection and register allocation. Instruction se-
lection is done using a BURS tree pattern matcher
emitted by a code generator generator that se-
lects the lowest-cost implementation of a given IR-
construct [3]. The design of the code generator gen-
erator is based on iburg but uses a slightly different
machine description language that makes it possible
to attach dynamic costs and actions to rules in or-
der to facilitate code emission. Register allocation
is performed locally, at the basic block level, using a
linear scan register allocator [4].

The final phase is the translation of the IR to bi-
nary machine code. A built-in assembler makes a sin-
gle pass through the IR, emits binary machine code,
performs basic peephole optimizations, patches un-
resolved jumps and links the compiled method into
the running VM.

III. Interacting with a concurrent
garbage collector

Even though Wonka supports mixed-mode execu-
tion of native and interpreted code, native code gen-
erated by the runtime compiler does not use the Java
operand stack like interpreted methods do. As a di-
rect result, object references used in native code have
to be made reachable for the garbage collector (GC)
to prevent them from being garbage collected.

We decided against generating native code that
explicitly registers and deregisters object references
through function calls. It would introduce a large

amount of method calls which would complicate a
method’s IR, increase compilation time, and drasti-
cally sacrifice runtime performance.

Because of its concurrent GC, Wonka doesn’t use
so-called garbage collection points. As such, our com-
piler can’t export stack maps, a solution that is be-
ing adopted by some of today’s runtime compilers
[5]. Because we can’t determine what the layout of
the stack is at garbage collection time and because
the stack may change during garbage collection, we
have adjusted the GC to make it conservatively scan
registers and stack frames of compiled methods for
pointers to the Java heap. As native stack frames
get pushed and popped during program execution,
object references are implicitly registered and dereg-
istered with minimal runtime overhead. Using this
simple mechanism, garbage collection can be done at
any time, using a concurrent GC.

IV. Conclusions and discussion

This paper presents our profiling framework and
the manner in which methods are selected for com-
pilation. We provide insight into the overall design
of our runtime compiler that we implemented as part
of Wonka, and describe the simple native call stack
scanning algorithm used to make our compiler and
concurrent GC coexist.

While we already generate working machine code
that significantly improves Wonka’s performance, we
have yet to explore most of the existing optimization
algorithms as well as prototype new technologies. We
are confident that the presented compiler architec-
ture will lend itself to this as we have already begun
to take advantage of it.

Our current research work involves extending the
ideas presented in this paper. The outcome of this
work will be a compiler meeting the restrictions and
the real-time characteristics of embedded systems,
and a tool to investigate and prototype selective com-
pilation heuristics.

References

[1] D. Buytaert, Java AWT voor embedded systemen, Licen-
ciaatsthesis, Department of Computer Science, Univer-
sity of Antwerp, 2000.

[2] M. C. Merten and A. R. Trick and C. N. George and
J. C. Gyllenhaal and W. W. Hwu, A hardware-driven
profiling scheme for identifying program hot-spots to sup-
port runtime optimization, ISCA, 136-147, 1999.

[3] C. W. Fraser and D. R. Hanson and T. A. Proebsting,
Engineering a simple, efficient code-generator generator,
ACM letters on programming languages and systems,
1(3):213-226, 1992.

[4] M. Poletto and V. Sarkar, Linear scan register alloca-
tion, ACM transactions on programming languages and
systems, 21(5):895-913, 1999.

[5] M G. Burke and J. Choi and S. J. Fink and D. Grove
and M. Hind and V. Sarkar and M. J. Serrano and
V. C. Sreedhar and H. Srinivasan and J. Whaley, The
Jalapeno dynamic optimizing compiler for Java, Java
Grande, 129-141, 1999.


