
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest & Audit-Report SimpleSAMLphp 11.2017
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, BSc. T.-C. Hong, BSc. D. Weißer, MSc. G. Kopf,
MSc. N. Kobeissi, BSc. J. Hector

Index
Introduction
Scope
Identified Vulnerabilities

SSP-01-001 XMLSEC: Casting Cryptographic Keys / Signature Bypass (Critical)
SSP-01-002 XMLSEC: Various XPath Injections (Medium)
SSP-01-003 XMLSEC: DoS in staticLocateKeyInfo (Medium)
SSP-01-004 SAML2: DoS in the Timestamp Function (Info)
SSP-01-005 SimpleSAMLphp: checkURLAllowed can be bypassed (Medium)

Miscellaneous Issues
SSP-01-006 XMLSEC: Using == For Hash Comparison (Low)
SSP-01-007 XMLSEC: Dangerous Use of file_get_contents (Low)
SSP-01-008 SimpleSAMLphp: Use of UTF8 for in SQLAuth (Info)
SSP-01-009 SimpleSAMLphp: Potential XSS due to inaccurate URL filtering (Low)
SSP-01-010 SimpleSAMLphp: Potential XSS due to missing escaping flags (Low)

Conclusions

Cure53, Berlin · 12/16/17 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“SimpleSAMLphp is an award-winning application written in native PHP that deals with
authentication. The project is led by UNINETT, has a large user base, a helpful user
community and a large set of external contributors.”

From https://simplesamlphp.org/

This report documents the findings of a penetration test and security code audit targeting
the SimpleSAMLphp. The project was completed by Cure53 in cooperation with one
expert from Secfault Security GmbH in November 2017. It yielded ten security-relevant
findings.

Besides the aforementioned invited Secfault Security tester, six members of the Cure53
project were also involved in this project. The entire team of seven testers was allocated
a time budget of eighteen days to investigate the target. It must be stated that the tests
were sponsored by Mozilla via the Secure Open Source programme. To facilitate
communications, the Cure53 team was in an ongoing email contact with Jaime Perez
Crespo who is the SimpleSAMLphp project’s maintainer.

Several components were placed in scope of this assessment by the SimpleSAMLphp
client. Specifically encompassed by this test were, first and foremost, the
SimpleSAMLphp application, as well as the SimpleSAMLphp low-level SAML2 library,
and the SimpleSAMLphp module installer. Last but not least, the testers also analyzed
the xmlseclibs library which is heavily used in the project. In addition, several
SimpleSAMLphp modules which underpin the overall use of the product were also
specified as needing attention. In fact, prior to the beginning of the test, the
SimpleSAMLphp maintainer delivered a list of modules that Cure53 was supposed to
audit. A further very detailed documentation pertaining to the scope was supplied to
Cure53 and enumerated all code parts that were deemed as calling for security review
and checkup.

A range of methods and approaches was employed during this assignment. In addition
to a cloud VM that Cure53 put in place to enable testing, the SimpleSAMLphp team also
made their deployment available to testers. For the latter environment, Cure53 had
access to an Identity Provider and a Service Provider to test with. This was done to
make sure that the test setup is as close as possible to a real-life deployment.

As the tests were moving forward, an action plan was devised and split the work into five
Work Packages. It was agreed that WP1 will entail general PHP code audit, WP2 cover
tests against SAML IdP implementation, and WP3 was tasked with identification and

Cure53, Berlin · 12/16/17 2/14

https://cure53.de/
https://simplesamlphp.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

auditing of crypto-relevant parts. The remaining two components were WP4 with tests
against commonly used modules and WP5 comprising tests against xmlseclibs.

In the following sections the report will first provide more technical details on the scope.
It then lists and discusses all findings, finally presenting a conclusion on the overall
security level of the SimpleSAMLphp code and other scope objects as perceived by
Cure53 upon the completion of this project.

Scope
• SimpleSAMLphp, SAML2 and xmlseclibs Codebase

◦ https://github.com/simplesamlphp/simplesamlphp

◦ https://github.com/simplesamlphp/saml2

◦ https://github.com/robrichards/xmlseclibs

◦ https://github.com/simplesamlphp/composer-module-installer

• An IdP was made available for this assessment

◦ https://ssp-demo-idp.paas2.uninett.no/simplesaml/

• An SP was made available for this assessment

◦ https://ssp-demo-sp.paas2.uninett.no/simplesaml/

Cure53, Berlin · 12/16/17 3/14

https://cure53.de/
https://ssp-demo-sp.paas2.uninett.no/simplesaml/
https://ssp-demo-idp.paas2.uninett.no/simplesaml/
https://github.com/simplesamlphp/composer-module-installer
https://github.com/robrichards/xmlseclibs
https://github.com/simplesamlphp/saml2
https://github.com/simplesamlphp/simplesamlphp
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SSP-01-001) for the purpose of facilitating any
future follow-up correspondence.

SSP-01-001 XMLSEC: Casting Cryptographic Keys / Signature Bypass (Critical)

The XMLSecurityKey class defined in xmlseclibs/src/XMLSecurityKey.php specifies a
generic object for holding cryptographic key material for various algorithms. Two
instances of this class could hold two different types of cryptographic keys, for instance
symmetric and asymmetric keys. The class furthermore defines a function named
verifySignature, which is used to verify asymmetric signatures by employing the
respective object’s cryptographic key.

Affected File:
xmlseclibs/src/XMLSecurityKey.php

Affected Source:
public function verifySignature($data, $signature)
{
 switch ($this->cryptParams['library']) {
 case 'openssl':
 return $this->verifyOpenSSL($data, $signature);
 case (self::HMAC_SHA1):
 $expectedSignature = hash_hmac("sha1", $data, $this->key, true);
 return strcmp($signature, $expectedSignature) == 0;
 }
}

It should be noted that this function does not actually check the type of key it is operating
on. This is generally not recommended as it makes it easy to confuse different types of
cryptographic keys. A more advisable design would be to introduce distinct types for
different keys. One particular key type supported by XMLSecurityKey concerns HMAC
keys. When operating on an HMAC key, the XMLSecurityKey class will simply use its
internal key material as an HMAC secret. The verifySignature function would compare
the “signature” that is to be verified with an HMAC over the “signed” data.

The verifySignature function is used in various parts of other libraries. One example is
provided in the code below.

Cure53, Berlin · 12/16/17 4/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
saml2/src/SAML2/HTTPRedirect.php

Affected Source:
public static function validateSignature(array $data, XMLSecurityKey $key)
{
[...]

 if ($key->type !== XMLSecurityKey::RSA_SHA1) {
 throw new \Exception('Invalid key type for validating signature on query
string.');
 }
 if ($key->type !== $sigAlg) {
 $key = Utils::castKey($key, $sigAlg);
 }

 if (!$key->verifySignature($query, $signature)) {
 throw new \Exception('Unable to validate signature on query string.');
 }
}

It can be observed that this function will inspect the type of the signature to be validated.
If it is not of the same type as the provided key, the key will be “casted” to the type of the
signature. This means that if a SAML document contains a “signature” of the type
“HMAC”, then the RSA_SHA1 key will be casted to the HMAC type as well. In this case,
the PEM-encoded RSA public key will be used as a secret key for computing an HMAC
over the data to be “signed”.

It should be assumed that an attacker has access to the RSA public key used for
verification. Hence, an attacker could craft a SAML document containing an HMAC
“signature” which would be accepted by the analyzed implementation. This would hold
even though the attacker did not have access to the private signing key. The sequence
enables remote unauthenticated attackers to bypass the SAML signature validation
function. It should however be noted that the feasibility of this attack depends on how the
verifySignature function is invoked. Invoking it in a way where a condition is
($objXMLSecDSig->verify($key) !== 1) effectively prevents the issue. Further
clarification is needed to highlight that there is another option for bypassing the SAML
signature scheme in this setting. Specifically, it entails making the verifySignature
function return the value of -1. This could, for instance, be achieved by having the
OpenSSL signature verification code fail (e.g., by supplying an overly long signature).

There are several possible ways for addressing this issue. As a first recommendation,
the return value of the verifySignature function should always be checked against its
type and the 0 value. Moreover, using one common class for holding multiple types of

Cure53, Berlin · 12/16/17 5/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

cryptographic keys is generally a bad practice and should be discouraged. If possible,
different classes for individual cryptographic algorithms should be introduced. Casting
cryptographic keys to other types should also be avoided. It must be emphasized that
the latter is the core issue of the described vulnerability as far as the auditors are
concerned.

SSP-01-002 XMLSEC: Various XPath Injections (Medium)

The analyzed solution makes use of XPath for querying XML documents. This is
required, for instance, when verifying the references of an XML signature in a SAML
document.

Affected File:
pxmlseclibs/src/XMLSecurityDSig.php

Affected Source:
if ($uri = $refNode->getAttribute("URI")) {

$arUrl = parse_url($uri);
if (empty($arUrl['path'])) {

 if ($identifier = $arUrl['fragment']) {

 /* This reference identifies a node with the given id by using
 * a URI on the form "#identifier". This should not

include comments.
 */
 $includeCommentNodes = false;

 $xPath = new DOMXPath($refNode->ownerDocument);
 if ($this->idNS && is_array($this->idNS)) {
 foreach ($this->idNS AS $nspf => $ns) {
 $xPath->registerNamespace($nspf, $ns);
 }
 }
 $iDlist = '@Id="'.$identifier.'"';
 if (is_array($this->idKeys)) {
 foreach ($this->idKeys AS $idKey) {
 $iDlist .= " or @$idKey='$identifier'";
 }
 }
 $query = '//*['.$iDlist.']';
 $dataObject = $xPath->query($query)->item(0);

It can be observed that the affected processRefNode function resolves internal XML
references by turning them into XPath expressions. An attacker could therefore inject

Cure53, Berlin · 12/16/17 6/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

their own XPath sub-expressions into the $query expression. One example of this kind
of an attack would be to use a reference with a name like #"] | //*, which would change
the expression in use. During this assessment no way for exploiting this issue in order to
bypass the SAML signature validation could be identified. Nevertheless, XPath Injections
comprise a well-known problem and could potentially have other negative consequences
for the targeted application, including DoS issues or rejecting actually valid SAML
messages.

Please note that the above code excerpt is only an example. The problem appears to be
a systemic issue within the entire code-base: all XPath queries using data from the XML
document appear to be affected. The recommended fix is to apply a strict whitelist under
the premise of a revised filtering approach for XML data that is part of the XPath
expressions. Ideally the allowed character set should be restricted to the minimal size
required. Special characters - like quotes - should generally be forbidden.

SSP-01-003 XMLSEC: DoS in staticLocateKeyInfo (Medium)

The analyzed code contains a Denial of Service condition (DoS) in the
staticLocateKeyInfo function. Code below can be observed to understand the problem at
hand.

Affected File:
xmlseclibs/src/XMLSecEnc.php

Affected Source:
public static function staticLocateKeyInfo($objBaseKey=null, $node=null)
{

if (empty($node) || (! $node instanceof DOMNode)) {
 return null;

}
[...]
foreach ($encmeth->childNodes AS $child) {

 switch ($child->localName) {
 [...]
 case 'RetrievalMethod':
 $type = $child->getAttribute('Type');
 if ($type !== 'http://www.w3.org/2001/04/xmlenc#EncryptedKey') {
 /* Unsupported key type. */
 break;
 }
 $uri = $child->getAttribute('URI');
 if ($uri[0] !== '#') {
 /* URI not a reference - unsupported. */
 break;
 }

Cure53, Berlin · 12/16/17 7/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 $id = substr($uri, 1);

 $query = "//xmlsecenc:EncryptedKey[@Id='$id']";
 $keyElement = $xpath->query($query)->item(0);
 if (!$keyElement) {
 throw new Exception("Unable to locate

EncryptedKey with @Id='$id'.");
 }

 return XMLSecurityKey::fromEncryptedKeyElement($keyElement);
 case 'EncryptedKey':
 return XMLSecurityKey::fromEncryptedKeyElement($child);

It has been unveiled that the staticLocateKeyInfo function calls
fromEncryptedKeyElement in some cases. Please pay attention to the fact that the
element passed to fromEncryptedKeyElement is not necessarily a child element of the
$node element. Under this premise, consider the following implementation of the
fromEncryptedKeyElement.

Affected File:
xmlseclibs/src/XMLSecurityKey.php

Affected Source:
public static function fromEncryptedKeyElement(DOMElement $element)
{

$objenc = new XMLSecEnc();
$objenc->setNode($element);
if (! $objKey = $objenc->locateKey()) {

 throw new Exception("Unable to locate algorithm for this Encrypted Key");
}
$objKey->isEncrypted = true;
$objKey->encryptedCtx = $objenc;
XMLSecEnc::staticLocateKeyInfo($objKey, $element);
return $objKey;

}

This function makes use of the staticLocateKeyInfo in order to locate the desired
element in the XML document. An attacker could therefore build a SAML document,
which triggers an endless loop for these functions. This results in a DoS condition. One
simple way of avoiding this issue is to limit the recursion depth of both functions by
passing a counter parameter which increases upon each call. The functions could check
the value of this parameter and base their next actions on this. Specifically, if the
parameter value exceeds a hard-coded limit, processing of the SAML document could
be aborted.

Cure53, Berlin · 12/16/17 8/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SSP-01-004 SAML2: DoS in the Timestamp Function (Info)

A regular expression within a timestamp conversion function may foster a Denial of
Service since it permits the insertion of an arbitrarily large timestamp.

Affected File:
saml2/src/SAML2/Utils.php

Affected Source:
public static function xsDateTimeToTimestamp($time) {
 $matches = array();
 // We use a very strict regex to parse the timestamp.
 $regex = '/^(\\d\\d\\d\\d)-(\\d\\d)-(\\d\\d)T(\\d\\d):(\\d\\d):

(\\d\\d)(?:\\.\\d+)?Z$/D';
 if (preg_match($regex, $time, $matches) == 0) {
 throw new \Exception(
 'Invalid SAML2 timestamp passed to xsDateTimeToTimestamp: ' .
$time
);
 }
[...]
}

It is recommended to ensure that the regular expression pointed out above is modified to
rule out inputs of arbitrary length. This can be accomplished by, for instance, using a
quantifier for length restrictions.

SSP-01-005 SimpleSAMLphp: checkURLAllowed can be bypassed (Medium)

The checkURLAllowed utility function uses a loose RegExp to parse the input URL. A
specially crafted URL can confuse the RegExp and have it extract the wrong URL parts.
Since this function is used to check if a URL is whitelisted, an attacker can abuse the
flaw and perform a malicious redirection.

Affected File:
lib/SimpleSAML/Utils/HTTP.php

Affected Source:
if (is_array($trustedSites)) {
 assert(is_array($trustedSites));
 preg_match('@^http(s?)://([^/:]+)((?::\d+)?)@i', $url, $matches);

PoC:
https://ssp-demo-idp.paas2.uninett.no/simplesaml/module.php/core/login-admin.php?
ReturnTo=http%3A%2F%2Fssp-demo-idp.paas2.uninett.no:@example.com

Cure53, Berlin · 12/16/17 9/14

https://cure53.de/
https://ssp-demo-idp.paas2.uninett.no/simplesaml/module.php/core/login-admin.php?ReturnTo=http%3A%2F%2Fssp-demo-idp.paas2.uninett.no:@example.com
https://ssp-demo-idp.paas2.uninett.no/simplesaml/module.php/core/login-admin.php?ReturnTo=http%3A%2F%2Fssp-demo-idp.paas2.uninett.no:@example.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The ReturnTo parameter contains a URL that includes a whitelisted URL in the authority
part of a URL, yet the actual host is example.com. A proper URL parsing function should
be used instead of RegExp which is commonly known as prone to bypasses.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SSP-01-006 XMLSEC: Using == For Hash Comparison (Low)

The analyzed code makes use of the == operator for comparing hash values. An excerpt
containing affected code can be consulted next.

Affected File:
xmlseclibs/src/XMLSecurityDSig.php

Affected Source:
public function validateDigest($refNode, $data)
{

$xpath = new DOMXPath($refNode->ownerDocument);
$xpath->registerNamespace('secdsig', self::XMLDSIGNS);
$query = 'string(./secdsig:DigestMethod/@Algorithm)';
$digestAlgorithm = $xpath->evaluate($query, $refNode);
$digValue = $this->calculateDigest($digestAlgorithm, $data, false);
$query = 'string(./secdsig:DigestValue)';
$digestValue = $xpath->evaluate($query, $refNode);
return ($digValue == base64_decode($digestValue));

}

This handling is generally not recommended for two separate reasons. First, the
behavior means that a door can be opened for timing attacks. Even though this is not the
case in this scenario, it is generally a potentially dangerous implication. Secondly, the ==
operator performs type conversions before comparing both values. If both values can be
parsed as integers, then they both get converted to integer values before the
comparison takes place. Hence, the strings “1e3” and “1000” would be considered equal
(the first string makes us of a scientific number notation).

For hash values, this means that if both values start with “0e” and continue with
exclusively numerical characters, these iterations will be considered equal again, even if
they are in fact different. The likelihood that a random SHA-1 hash value takes the
desired form is (1/256)^2 * (10/256)^18, which roughly comes to a value of 2^-99. In

Cure53, Berlin · 12/16/17 10/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

other words, no critical impact arises from this handling if SHA-1 is used. It is strongly
recommended to make use of the === operator which avoids these kinds of unsafe type
conversions.

SSP-01-007 XMLSEC: Dangerous Use of file_get_contents (Low)

A code excerpt from the analyzed source code is supplied below to demonstrate a case
of a dangerous use pertaining to file_get_ contents.

Affected File:
xmlseclibs/src/XMLSecurityDSig.php

Affected Source:
if ($uri = $refNode->getAttribute("URI")) {

$arUrl = parse_url($uri);
if (empty($arUrl['path'])) {

 if ($identifier = $arUrl['fragment']) {
 [...]
 } else {
 $dataObject = file_get_contents($arUrl);
 }
} else {
[...]

The above code uses file_get_contents to load file contents from a resource specified in
the provided XML document. This can generally lead to Denial of Service conditions, as
it can allow reading local files like /dev/random. Furthermore, it could possibly result in
loading remote files from an attack-provided URI. In this case, the
file_get_contents($arUrl) operation will never succeed because $arUrl is not a string but
a parsed URI object.

The issue should ideally be addressed by removing the file_get_contents call.

SSP-01-008 SimpleSAMLphp: Use of UTF8 for in SQLAuth (Info)

The SQLAuth module uses utf8 as the connection charset for MySQL. In spite of what its
name suggests, the module only supports a subset of code points for Unicode. This
could result in vulnerabilities1 that abuse the fact that MySQL silently truncates invalid
values.

Affected File:
modules/sqlauth/lib/Auth/Source/SQL.php

1 https://mathiasbynens.be/notes/mysql-utf8mb4

Cure53, Berlin · 12/16/17 11/14

https://cure53.de/
https://mathiasbynens.be/notes/mysql-utf8mb4
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Source:
/* Driver specific initialization. */
switch ($driver) {
case 'mysql':

/* Use UTF-8. */
$db->exec("SET NAMES 'utf8'");
break;

Two mitigating factors are that the issue mostly affects INSERT and UPDATE
statements and that the module makes use of the SELECT statement. It is nevertheless
recommended to use “utf8mb4”, as this solution fully supports Unicode as the
connection charset. A revised approach will help avoid potential issues.

SSP-01-009 SimpleSAMLphp: Potential XSS due to inaccurate URL filtering (Low)

It was found that many template files make use of the wrong filter function for URLs.
Specifically, the pattern presented next is heavily used.

Affected Code:
<a href="<?php echo htmlspecialchars($this->data['urlAgree']); ?>">

Although htmlspecialchars prevents breaking out of the attribute, it does not eliminate a
potential for injecting XSS payloads that use JavaScript pseudo-protocol. This stems
from the fact that the function only converts the input string to HTML entities. By injecting
something like javascript:alert(document.domain) and having users click on the link,
successful XSS can be accomplished.

A proper URL filter should be used and it verify whether the scheme is in fact
HTTP/HTTPS.

SSP-01-010 SimpleSAMLphp: Potential XSS due to missing escaping flags (Low)

It was discovered that htmlspecialchars is missing the ENT_QUOTES flag as a
parameter on one occasion. If no ENT_QUOTES is specified, the function will still
replace double quotes, however single quotes are left untouched. In the code below, this
becomes an issue because an attacker can break out of the href attribute and achieve
JavaScript execution by specifying a malicious on-handler attribute, e.g. onclick.

Affected File:
simplesamlphp-master/modules/consent/templates/consentform.php

Affected Code:
if ($this->data['sppp'] !== false) {

Cure53, Berlin · 12/16/17 12/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 echo "<p>" . htmlspecialchars($this-
>t('{consent:consent:consent_privacypolicy}')) . " ";
 echo "data['sppp']) .
"'>" . $dstName . "";
 echo "</p>";
}

During the test it was not possible to influence the sppp value in order to exploit this
behavior. However, it is considered good practice to use ENT_QUOTES wherever
possible and it is recommended to enforce this throughout the codebase.

Conclusions
The results of this November 2017 penetration tests and audits of the SimpleSAMLphp
are fairly good. Seven testers from Cure53 and Secfault Security were quite positive
about the overall ten findings on the targeted product, especially since the project entails
an application based on the commonly risky PHP framework.

Among the findings, five were classified as security vulnerabilities and the remaining five
were deemed to be general weaknesses. Only one discovery was rated to be of the
utmost “Critical” severity given its great severity and impact. This problem was
specifically caused by a flaw in the xmlsec library, which was proven to allow signature
bypasses under certain circumstances. Due to the heavy use of xmlsec in other libraries,
this finding was deemed to be a pivotally important issue and flagged for an immediate
fix. Other findings like the various XPATH injections or weak comparisons in xmlsec also
posed serious risks but had a lower significance for this audit, thus receiving “Medium”
rankings.

The majority of the testing efforts were dedicated to the core scope within
SimpleSAMLphp app, especially the web interface and all default modules connected to
the main item. These components were all audited and the code made a strong
impression. Even the easy to overlook PHP features like strong type comparisons seem
to be mitigated and used properly by the SimpleSAMLphp project maintainers. Similarly
strong stature with no issues characterized the modules that were not explicitly enabled
by default but otherwise signaled extensive usage - for instance Oauth/2 and logpeek.
Conversely, one core functionality checking whether a user of the SimpleSAMLphp
supplied URLs was found prone to issues. Specifically, it was bypassed and led to an
array of potential issues in the project.

Covered by the audit were also the libraries like saml2 but, once again, no issues
beyond minor RegExp DoS were spotted in this realm. While the cryptographic
components of this software library were generally implemented in a sound and prudent

Cure53, Berlin · 12/16/17 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

fashion, one major cryptographic vulnerability was an exception to this trend. In SSP-01-
001, one can observe that cryptographic signature checks can be bypassed by an active
attacker. The main issue at hand was that asymmetric cryptographic signature
algorithms were being confused to be in the same category as symmetric authentication
code algorithms. Although the functionality of these two types of cryptographic primitives
does frequently overlap, the symmetric nature of HMACs means that a fundamentally
different API is needed. When the asymmetric API for signatures is overloaded to
support HMAC, a simple change of the HMAC parameters sent over the wire signifies an
attacker having complete control over which messages can be validated. Aside from this
major design error, the cryptographic primitives were found to be reasonably in line with
what can be expected from a standard SAML implementation.

It is believed that this Cure53 test of the SimpleSAMLphp sponsored by Mozilla can be a
stepping stone for the project to become even more secure. It should be noted that the
aforementioned issues must be addressed as soon as possible, though some of the
items reported here were of a rather “Low” impact, mainly because the code was just
weak in terms of incorrectly used output-validation. This is not to say that these
instances can be ignored but rather that preventing vulnerabilities is a work in progress
and it is highly recommended to fix the highlighted code paths as part of a newly revised
and additional hardening approaches. All in all, Cure53 believes SimpleSAMLphp to be
on the right track from a security standpoint.

Cure53 would like to thank Jaime Perez Crespo from the SimpleSAMLphp team for his
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 12/16/17 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest & Audit-Report SimpleSAMLphp 11.2017
	Index
	Introduction

